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This paper examines the three-dimensional cellular patterns appearing on wings
in subsonic stall and transonic buffet conditions. Unsteady Reynolds-averaged
Navier–Stokes simulations are carried out for three-dimensional infinite swept
configurations closed by periodic boundary conditions in the spanwise direction. In
both flow conditions the occurrence of stall/buffet cells is observed, as well as their
convection at a speed proportional to the sweep angle. In transonic buffet conditions,
this phenomenon is superimposed to the well-documented two-dimensional buffet
instability. These results indicate that the discrepancies between two-dimensional and
three-dimensional buffet are caused by the occurrence of buffet cells and that this
phenomenon is similar to the one observed at low speed. These phenomena are then
studied using global linear stability analysis with the assumption of a periodic flow in
the spanwise direction. From these analyses a mode coherent with the two-dimensional
buffet is obtained, as well as a mode coherent with two-dimensional vortex shedding in
stall conditions. In addition, in both flow conditions an unstable mode reminiscent of
stall/buffet cells is observed.

Key words: instability, aerodynamics, turbulent flows

1. Introduction

Transonic buffet and subsonic stall are two boundaries of the flight envelope of civil
aircraft. Transonic buffet is an oscillation of the shock wave position over a wing
caused by an interaction between a separated boundary layer and the shock wave. This
oscillation induces variation of the aerodynamic forces which can be detrimental to
aircraft handling. A thorough review of the state of knowledge about transonic buffet is
presented by Giannelis, Vio & Levinski (2017). On the other hand, subsonic stall occurs
when flow separation causes a reduction of the lift forces as the wing angle of attack is
increased. These phenomena involve complex physics, part of which is the occurrence
of three-dimensional (3-D) flow features which are named buffet cells and stall cells,
respectively. The stall cells are identified as a spanwise variation of the flow separation,
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while the buffet cells are a spanwise variation of the shock wave position, and thus of the
shock induced flow separation.

Stall cells were observed experimentally (Gregory et al. 1971; Moss & Murdin 1971)
since the 1970s. Most of these studies were carried out for a wing which spans the
entire wind tunnel width, a set-up which is often considered as ‘two-dimensional’
(2-D). However, the flow becomes strongly 3-D when stall cells are present. Early
studies suggested that the phenomenon might be caused by the side walls. However, the
experimental results of Winkelmann & Barlow (1980) contradict this conclusion since
the stall cells are observed over the entire span of wings of aspect ratios up to 12 and
with free tips. They reported that the number of cells is proportional to the aspect ratio.
Schewe (2001) also reports the effect of the aspect ratio on the number of stall cells.
Experiments by Broeren & Bragg (2001) of aerofoil with trailing edge, leading edge and
thin aerofoil type of stall suggest that trailing edge separation is a necessary condition for
the occurrence of stall cells. Yon & Katz (1998) obtained stall cells over a narrow range
of angles of attack and discussed the unsteady nature of the stall cells. More recently,
Dell’Orso & Amitay (2018) carried out a parametric study of the effect of the angle of
attack (α) and the Reynolds number (Re = ρ∞U∞c/μ∞). They identified eight types of
flow topologies from a full span separation (2-D) to the presence of one or two stall cells.
From these results, the stall cells are observed above a given critical Reynolds number and
angle of attack. They also observed conditions for which the topology oscillates in time
between two types of flow topology. This might explain the fact that steady and unsteady
stall cells are reported in the literature. Hence, the stall cells seem to be very sensitive to
the flow conditions and are observed in the presence of a trailing edge separation. The stall
cells can be steady or unsteady depending on the experiments. However, the measurement
methods might also have a time-averaging effect and impact the visualization of an
unsteady behaviour.

Stall cells were computed by Bertagnolio, Sørensen & Rasmussen (2005) for a
wind turbine aerofoil with Reynolds-averaged Navier–Stokes (RANS) and unsteady
Reynolds-averaged Navier–Stokes (URANS) simulations. Manni, Nishino & Delafin
(2016) studied the stall cells over a wing with an aspect ratio equal to 10 at a Reynolds
number of 1 × 106 with URANS and delayed detached eddy simulation. Their URANS
results showed stall cells with spanwise spacing of 1.4 to 1.8 chord length over a narrow
range of angles of attack. Liu & Nishino (2018) studied the unsteady behaviour of stall
cells over a NACA0012 at a Reynolds number of 1.35 × 105 and 1 × 106. Previous work
by the authors (Plante, Dandois & Laurendeau 2019b), based on URANS simulations of
an NACA4412 aerofoil at Reynolds 3.5 × 105, showed the convection of the stall cells in
the spanwise direction when the wing is swept. To the authors’ knowledge this is the first
analysis of the stall cells phenomenon on swept wings.

Multiple models have been proposed for the origin of the phenomenon. Analyses based
on the lifting line theory by Spalart (2014) and Gross, Fasel & Gaster (2015) suggest that
a negative slope of the lift versus the angle of attack is necessary to observe the stall
cells. Analyses with lifting surface models (vortex lattice method) coupled with RANS
data by Gallay & Laurendeau (2015) and Paul & Gopalarathnam (2014) exhibit similar lift
distributions. Kitsios et al. (2009) studied an ellipse and an NACA0015 aerofoil in stall
conditions at a Reynolds number of 200 with global linear stability analyses. They found a
non-oscillatory unstable mode with a spanwise wavenumber β = 2π/Lz = 1.0. Rodríguez
& Theofilis (2011) linked this non-oscillating unstable global mode to the stall cells
phenomenon. However, the existence of this mode has then been questioned by the later
work of He et al. (2017), who were unable to recover the unstable global modes, and this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.848
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with two different numerical approaches. Zhang & Samtaney (2016) carried out similar
stability analyses on an NACA0012 aerofoil at Reynolds numbers in a range from 400 to
1000. Besides the classical oscillatory modes, they identified an unstable non-oscillatory
3-D (β = 2 and 4) mode on an aerofoil in a laminar regime but for slightly higher Reynolds
numbers (between 800 and 1000). They associated this mode with a centrifugal instability
of the recirculation bubble, present when the backflow velocity is larger than 20 % of the
inflow velocity. In these articles, flows with a low Reynolds number of a few hundreds
to a thousand were studied. As such, the literature lacks a proper relation between stall
cells and a global instability for high Reynolds turbulent flows. The present paper has
the purpose of providing this link using RANS models. This is done by carrying out 3-D
URANS simulations and global stability analyses.

Similar flow instabilities are reported for separation bubbles at low Reynolds numbers
on various geometries. Separation bubbles on flat plates were analysed by Theofilis, Hein
& Dallmann (2000) and Rodríguez & Theofilis (2010). In the latter study a link to the
structure of stall cells was proposed in relation with the above mentioned questionable
computations in Rodríguez & Theofilis (2011). Barkley, Gomes & Henderson (2002)
investigated a backward facing step and found a 3-D instability. They studied flows at
Reynolds numbers within a range between 450 to 1050 based on the height of the step,
and associated the 3-D unstable mode with a centrifugal instability thanks to the criterion
of Bayly, Orszag & Herbert (1988). Gallaire, Marquille & Ehrenstein (2007) studied the
flow over a bump at a Reynolds number of 400. They found a non-oscillatory mode
causing the flow to become 3-D. A similar instability was found by Marquet et al. (2009)
for an S-shaped duct and by Picella et al. (2018) in open-cavity flows. Finally, a 3-D
non-oscillatory unstable mode was found for a shockwave boundary layer interaction by
Robinet (2007). These studies show that 3-D instabilities such as those found on aerofoils
at low Reynolds numbers are also found on other configurations displaying recirculation
bubbles.

Concerning transonic buffet, the 2-D phenomenon was investigated for an NACA0012
aerofoil by McDevitt & Okuno (1985) for a wide range of Mach number and angles
of attack at a Reynolds number of 1 × 107. Strouhal numbers (St = fc/U∞) in a range
from 0.06 to 0.07 were identified, and the buffet onset boundary in the Mach number –
angle of attack plane was identified. Similar buffet frequencies were obtained by Benoit
& Legrain (1987) for an RA16SC1 aerofoil and Jacquin et al. (2009) for the OAT15A
aerofoil. The latter study is now widely used to validate numerical models. Recently, Brion
et al. (2017) studied the OALT25, an aerofoil designed to promote laminar flow, with free
transition and tripped boundary layer. They obtained Strouhal numbers of the order of 0.07
in the turbulent boundary layer case. From these experiments, turbulent transonic buffet
is identified as a large amplitude oscillation of the shock position with a well-identified
Strouhal number around 0.07.

Many numerical studies of 2-D transonic buffet have been carried out. Le Balleur &
Girodroux-Lavigne (1989) and Edwards (1993) used viscous–inviscid coupling strategies.
However, the bulk of the numerical simulations reported in the literature is carried out
with URANS models (Goncalves & Houdeville 2004; Thiery & Coustols 2006; Iovnovich
& Raveh 2012; Grossi, Braza & Hoarau 2014; Giannelis, Levinski & Vio 2018; Plante
& Laurendeau 2019). These simulations identified frequencies in the range of those
obtained experimentally. However, the simulations are found to be very sensitive to the
numerical scheme and turbulence model. Large eddy simulations (LES) were carried out
by Garnier & Deck (2010) and Fukushima & Kawai (2018) with excellent agreement with
the experiment of Jacquin et al. (2009). However, such simulations are computationally
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very expensive. Hence, hybrid RANS–LES simulations were attempted (Deck 2005;
Huang et al. 2012; Grossi et al. 2014; Ishida et al. 2016; Deck & Renard 2020) and
Ribeiro et al. (2017) used the lattice Boltzmann method. These simulations predicted
transonic buffet, but discrepancies to the experimental pressure distributions were found.
Hence, URANS simulations reproduce the main feature of transonic buffet. However, the
turbulence modelling has a strong effect on the quantitative results.

Three-dimensional transonic buffet is more complex. Most of the studies were carried
out on half-wing body aircraft configuration. A broadband frequency content with a
dominant frequency higher than the one of 2-D buffet was found experimentally (Roos
1985; Dandois 2016; Koike et al. 2016; Paladini et al. 2019b; Masini, Timme & Peace
2020). On such configurations, the convection of flow perturbations towards the wing tip
was observed and buffet cells can be seen in the pressure-sensitive paint measurements of
Sugioka et al. (2018). Numerical simulations of such configurations were carried out with
URANS (Sartor & Timme 2016) and hybrid RANS–LES simulations (Brunet & Deck
2008; Ishida et al. 2017; Sartor & Timme 2017). Ohmichi, Ishida & Hashimoto (2018)
used dynamic mode decomposition and proper orthogonal decomposition to identify
two dominant modes. One high-frequency mode (St ≈ 0.2–0.6) associated with buffet
cells and one at St ≈ 0.06, coherent with 2-D buffet. Iovnovich & Raveh (2015) studied
simplified swept wings closed by a symmetry plane and an extrapolation boundary
condition to emulate an infinite swept wing. They observed buffet cells and an effect of the
sweep angle on the buffet amplitude and frequency. Previous work by the authors (Plante
et al. 2019b) investigated infinite swept wings closed by periodic boundary conditions.
Such simulations produced much more regular buffet cells and showed that buffet cells
occur without any 3-D disturbance from the physical set-up, thus making this phenomenon
a candidate for an explanation based on global stability analysis.

Transonic buffet was described as a feedback loop between the shock wave motion
and acoustic waves generated near the trailing edge by Lee (1990). The description of
the transonic buffet as a globally unstable mode was introduced by Crouch et al. (2009)
and further investigated by Iorio, González & Ferrer (2014) and Sartor, Mettot & Sipp
(2015). Such analyses produce an accurate prediction of the buffet frequency and onset
angle of attack angle. Three-dimensional global stability analyses were attempted by
Iorio et al. (2014), but an unstable mode specific to 3-D buffet was not found. Recently,
global stability analysis was applied to infinite swept wings using a spanwise periodicity
assumption (Crouch, Garbaruk & Strelets 2018, 2019; Paladini et al. 2019a; Plante et al.
2019a) and fully 3-D analyses (Paladini 2018; He & Timme 2020). Stability analysis has
also been applied to the NASA Common Research Model by Timme (2018, 2019, 2020).
These analyses exhibit unstable modes coherent with the occurrence of buffet cells, thus
emphasising the phenomenological differences between 2-D and 3-D buffet.

This paper aims at showing that the buffet cell phenomenon occurring in transonic flow
has the same origin as the stall cell one occurring during stall at low speed. In particular,
we will show that a similar unstable global mode is at the origin of both phenomena and
highlight discrepancies between linear dynamics predictions provided by global stability
analyses and saturated nonlinear dynamics given by URANS simulations. In addition, the
unstable global mode corresponding to the buffet/stall cell phenomenon is followed from
low speed to transonic conditions to establish a close link between these two phenomena.
First, the numerical methods are presented. Then, numerical solutions for low-speed stall
and transonic buffet conditions are analysed. Linear global stability analyses around steady
baseflow are presented and the transition from the linear to the nonlinear dynamic is
investigated. Finally, the link between the two flow regimes is discussed.
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FIGURE 1. Infinite swept wing configuration.

2. Physical and numerical set-up

This section first describes the physical set-up studied in this paper. Then the governing
equations and the numerical methods used to solve them are presented.

2.1. Configurations
In this study, infinite swept wings are considered. Figure 1 shows the numerical set-up.
Usually, aerodynamic analyses are carried out in a referential (x, y, z) where the span of
the wing is defined as the length Lz along the z direction, and the sweep angle δ is the angle
between the z-axis and the leading edge of the wing. With these definitions, the velocity
in the z direction is null and the free stream velocity is defined by its norm V∞,3D and
the angle of attack α3D (see figure 1). However, it is convenient for the present analysis
to define another referential (x ′, y′, z′) with x ′ normal to the leading edge, y′ = y and z′

aligned with the leading edge. In this referential, the sweep angle becomes a sideslip angle
applied to the free stream velocity V∞,3D.

Since the sweep angle will be changed in this article, we define the 2-D flow quantities
as the conditions in the plane normal to the leading edge, i.e. in the plane (x ′, y′). Hence
we get the relations

M3D = V∞,3D√
γ P∞/ρ∞

= M2D

cos(δ)
, (2.1)

α3D = arctan [tan(α2D) cos(δ)] , (2.2)

Re2D = ρ∞V∞,2Dc2D

μ∞
, (2.3)

Re3D = ρ∞V∞,3Dc3D

μ∞
= Re2D

cos(δ)2
. (2.4)

For this study, the 2-D flow conditions are kept constant when the sweep angle changes
to maintain the similarity. This means that the Mach number M2D, the Reynolds number
Re2D and the angle of attack α2D are kept constant. For convenience the 2-D subscripts
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are dropped (in the following M = M2D, Re = Re2D, α = α2D, etc.) and the reference
quantities are defined as V∞ = V∞,2D = 1.0, c = c2D = 1.0. For example, the Strouhal
number is defined as St = fc2D/V∞,2D = f . This is done to help the comparison of
non-dimensional quantities based on these reference quantities when the sweep angle
varies. The aspect ratio AR is defined as AR = Lz′/c2D = Lz′ and it should be noted that the
baseline aerofoil is always retrieved in the plane (x ′, y′). The (x ′, y′, z′) referential is more
adapted for the present study, and therefore, it will be the only referential used throughout
this paper. As such, the prime symbol is dropped for the sake of conciseness.

The present paper focuses on two regimes: the subsonic stall regime and the transonic
buffet regime. The subsonic study is based on the NACA4412 aerofoil at a Reynolds
number Re = 350 000 and a Mach number M = 0.2 such that compressibility effects
are negligible. This case is selected because it exhibits a trailing edge type of stall. The
transonic case focuses on the ONERA OALT25 aerofoil at M = 0.7352 and Re = 3 × 106,
such that the experimental 2-D results of Brion et al. (2017) can be used for comparison.
This aerofoil was designed to promote laminarity and has been studied experimentally
both with free transition and a boundary layer tripped at 7 % on both sides. With the
tripped boundary layer, the buffet instability is similar to that of other turbulent aerofoils.
In the present study, the laminar region is neglected and simulations are carried out in
fully turbulent conditions. Hence, the experimental data with a tripped boundary layer are
used to validate the numerical set-up for 2-D buffet computations. The final part of the
paper is dedicated to a third aerofoil, the NACA0012, at a Reynolds number Re = 1 × 107

and various Mach numbers and angles of attack. This aerofoil is used to link the results
from the two previous cases, since it allows us to track phenomena from the low Mach
stall regime to the transonic buffet regime. This particular test case is selected since the
experiments of McDevitt & Okuno (1985) showed the transonic buffet in the high Mach
range and this aerofoil is suitable to have a trailing edge type stall behaviour in the low
Mach range. This makes it suitable to observe both the stall cells and the buffet cells.
The aerofoils considered in this paper have a trailing edge thickness of 0.0025, 0.005 and
0.0025 chord units for the NACA4412, OALT25 and NACA0012 aerofoils, respectively.

2.2. Governing equations

2.2.1. Nonlinear model
In this study, the RANS equations are used to model the fluid flow. The one-equation

Spalart–Allmaras turbulence model with the Edwards–Chandra modification is used to
close the RANS equations system. This system reads in integral form

V
∂W
∂t

+ R(W ) = 0, (2.5)

where W = [ρ, ρu, ρv, ρw, ρe, ρν̃]t is the conservative variables vector, V is a diagonal
matrix whose non-zero coefficients are the mesh cells volume and R is the summation of
the convective and viscous fluxes, and the source terms. In this article, z-invariant solutions
(all the derivatives of the flow variables with respect to z are null) with w = 0 will be
referred to as a 2-D solution, while z-invariant solutions with w /= 0 will be referred to as
2.5-D solutions (Ghasemi, Mosahebi & Laurendeau 2014; Bourgault-Côté et al. 2017).

2.2.2. Linear model
Steady solutions W 0 of (2.5), also known as baseflows, are computed to carry out global

linear stability analyses (Sipp et al. 2010; Theofilis 2011; Taira et al. 2017). By definition,
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Aerofoil ni nj np.s. ns.s. nt.e. Δyw Δyf .f . Δxs.f .

NACA4412 512 128 143 353 16 5 × 10−5 100 N/A
OALT25 512 128 133 355 24 8 × 10−6 100 0.004
NACA0012 512 128 170 318 24 2 × 10−6 100 0.004

TABLE 1. Characteristics of the grids.

they satisfy R(W 0) = 0, and under a first-order approximation, infinitesimal perturbations
W ′ about a baseflow W 0 are governed by the linearization of (2.5), which reads

∂W ′

∂t
= AW ′ = −V −1 ∂R

∂W

∣∣∣∣
W 0

W ′ (2.6)

where ∂R/∂W |W 0 is the Jacobian of the discretized RANS equations evaluated about the
baseflow, including the turbulence model. Solutions in the form of normal modes are
sought;

W ′ = eλtŴ , (2.7)

such that (2.6) reduces to the eigenproblem

AŴ = λŴ . (2.8)

Thus, the stability problem consists in computing eigenpairs of the Jacobian operator. The
eigenvectors Ŵ describe the spatial structure of the global modes and the eigenvalues
λ = σ + iω describe their time behaviour (i = √−1). For each mode, the real part σ is
its growth rate and ω is its angular frequency.

2.3. Numerical discretization and algorithms

2.3.1. Computational grids
Three-dimensional grids are obtained from the extrusion of baseline 2-D grids.

Structured grids with an O-type topology are used. Table 1 reports the number of points
on the aerofoil surface (ni), in the direction normal to the aerofoil surface (nj), on the
pressures side (np.s.), on the suction side (ns.s.), on the trailing edge (nt.e.), the wall spacing
(Δyw), the distance from the aerofoil surface to the far-field boundary condition (Δyf .f .)
and the spacing across the shockwave (Δxs.f .).

2.3.2. Solution of the nonlinear model
In this paper, the ONERA-Airbus-Safran elsA (Cambier, Heib & Plot 2013) software

is used to solve the (U)RANS equations. For this study, a cell-centred structured finite
volume method is used. A second-order cell-centred scheme with scalar numerical
dissipation is used for the discretization of the convective fluxes. Convergence towards
steady-state solutions is accelerated using local time steps and geometrical multigrid with
a LU-SSOR pseudo-time integration scheme. In some case, selective frequency damping
(SFD) (Åkervik et al. 2006; Jordi, Cotter & Sherwin 2014, 2015; Richez, Leguille &
Marquet 2016) or a Newton solver (Wales et al. 2012; Busquet et al. 2017) is used to
force the convergence to a steady state. Time-accurate solutions are obtained by using a
second-order dual time stepping approach.
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2.3.3. Solution of the linear model
This study involves 3-D geometries for which A has a high dimension and a large

bandwidth. Therefore, solving the eigenproblem is often too costly. But in our cases,
the baseflows are always homogeneous in the spanwise direction, such that the method
proposed by Schmid, de Pando & Peake (2017) and used by Paladini et al. (2019a) and
Plante et al. (2019a) for n-periodic arrays of fluid systems may be used to significantly
reduce the cost of the eigenvalues computation. This method exploits the block-circulant
structure of matrix A, which takes the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 A1 A2 . . . An−1

An−1 A0 A1 . . . An−2

An−2 An−1 A0 . . . An−3

...
...

...
. . .

...

A1 A2 A3 . . . A0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.9)

when the degrees of freedom are properly indexed. As shown by Schmid et al. (2017), A
can be transformed into a block diagonal matrix

Â =

⎡
⎢⎢⎢⎢⎢⎣

Â0 0 · · · 0

0 Â1
. . .

...

...
. . .

. . . 0

0 · · · 0 Ân − 1

⎤
⎥⎥⎥⎥⎥⎦

(2.10)

with

Âj =
n−1∑
k=0

ρk
j Ak (2.11)

and
ρj = eij(2π/n). (2.12)

Eigenvalues of Â are also eigenvalues of A and each block matrix Âj can be treated
separately, resulting in n separated eigenproblems of the size of a 2-D problem,

Âjvj = λjvj. (2.13)

The eigenvectors of A are then retrieved as

Ŵ = [
vj, ρjvj, ρ

2
j vj, . . . , ρ

n−1
j vj

]t
. (2.14)

This method implies solving the eigenproblem for all the Âj matrices to get the stability
result for all the n possible wavenumbers. However, the only difference between each
Âj matrix is the coefficients ρj such that changing the value of j or n has the effect of
changing the wavenumber. Hence, solving for the matrix Â2 is equivalent to solving Â1
with n divided by two. Therefore, in this study, the problem is only solved for the matrix
Â1 with various values of n. This allows us to get the results over a continuous range of
wavenumbers.
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This analysis yields results similar to the biGlobal stability analysis carried out by
Crouch et al. (2019) and He et al. (2017). However, this approach presents several
advantages. In particular, it does not require tedious mathematical developments to include
the periodicity assumption in the Jacobian matrix. This makes this approach suitable for
the use of a black box computational fluid dynamics solver, in this case elsA.

The linear operator A is obtained with the fully discrete approach proposed by Mettot,
Renac & Sipp (2014). This Jacobian is extracted with a second-order finite difference
scheme as

Au ≈ 1
2ε

(R(W 0 + εu) − R(W 0 − εu)) , (2.15)

where ε is a small parameter and u are vectors chosen to efficiently compute every
non-zero coefficient of the Jacobian matrix (see Beneddine (2017) for details). For the
second-order finite volume scheme used in this study, the numerical stencils have a width
of five grid cells. Hence, A3 = A4 = · · · = An−3 = 0, and all the non-zero block matrices
Aj (2.9) can be retrieved from a 3-D grid with only five grid cells in the spanwise direction
(see Paladini et al. 2019a; Plante et al. 2019a). Hence, the baseflows are computed as
2-D solutions and the grid is extruded to get the 3-D mesh for the extraction of the
3-D Jacobian A. The spanwise spacing Δz must be imposed. Refinement study of this
parameter will be presented, but no extra computational cost is associated with a change in
Δz, which can therefore be chosen arbitrarily small. This Jacobian matrix is then reduced
as Â1 by assuming a given wavenumber in (2.11). The eigenproblems are then solved
with the Arnoldi iteration method (Sorensen 1992) coupled with a shift-and-invert strategy
(Christodoulou & Scriven 1988) to extract inner eigenvalues.

3. Unsteady Reynolds-averaged simulations

This section presents the results of URANS simulations for the low speed and transonic
cases. These simulations are carried out to observe stall and buffet cells as well as the
superposition between the 2-D transonic buffet mode and the buffet cells.

3.1. Subsonic stall
In this section the 2-D and 3-D simulations of the NACA4412 aerofoil at a Reynolds
number of 350 000 are compared. Then the simulations of swept wings are presented.

3.1.1. Unswept δ = 0◦ case
Let us first focus on the flow over an unswept wing in the post-stall regime. Figure 2

shows the lift polar in the unswept case (δ = 0◦) for two kinds of simulations: 2-D
solutions and 3-D solutions with an aspect ratio AR = 6 and 113 spanwise grid points.
The maximum lift coefficient of 1.57 is obtained for an angle of attack around α = 14◦ in
both cases. For angles of attack higher than 16◦ the flow solver failed to converge. This
is caused by the occurrence of an instability linked to a vortex shedding. This is further
discussed in § 4.1.4. In order to obtain steady-state 2-D solutions in this regime, the SFD
method presented by Richez et al. (2016) and the Newton algorithm have been used. The
SFD is used with a local time stepping algorithm and the cut-off frequency and damping
coefficient were based on a parametric study to obtain solutions converged within machine
accuracy. A value of the filter width Δ = 1/74 and the proportional controller coefficient
χ = 50 allowed the solution to converge, and the Courant–Friedrichs–Lewy number is
set to 50 to compute the local time step in the LU-SSOR implicit scheme. To ensure
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FIGURE 2. Lift curve for the 2-D and 3-D steady solutions (NACA4412, Re = 350 000,
M = 0.2, δ = 0◦).

consistency, it has been checked that both methods provide the same solution for several
cases. Successive solutions are obtained by initialising each computation from the previous
angle of attack. The lower branch of the lift polar is obtained by increasing the angle of
attack up to values for which a converged solution could no longer be obtained. Then, by
decreasing the angle of attack starting from these unconverged flow solutions, the solution
method is able to converge on the lower branch of the lift curve. Every solution has been
converged within machine accuracy. Two distinct solutions are found for some angles of
attack. Such hysteresis phenomena of the discretized RANS equations were obtained by
Wales et al. (2012) and Busquet et al. (2017) for the NACA0012 and the OA209 aerofoils,
respectively. Grid convergence has been ensured by carrying out a 2-D simulation at an
angle of attack of 15◦ with a grid refined by a factor 2 in both directions (1024 by 256 grid
cells), resulting in non-significant differences in the pressure distribution.

For angles of attack over 14◦ the 3-D lift coefficient is lower than the 2-D one. These
solutions are obtained using a global time step and the SFD technique. The lower lift
coefficient is associated with the presence of stall cells, as seen in figure 3 for an angle of
attack of 15◦. Four steady stall cells are observed and the skin friction lines exhibit the ‘owl
face’ shape reported in the literature. The left-hand part of this figure shows the result with
a spanwise mesh refinement of a factor 2. No significant change in the result is noticeable,
ensuring the grid convergence of the results. In this simulation, the wavenumber of the stall
cell is 4.2. However, the periodic boundary conditions constrain the possible wavenumbers
since the number of cells must be an integer. Hence, the only possible wavenumbers
that may appear in the simulation are necessarily multiples of β0 = 2π/6. There might
therefore exist a discrepancy with respect to a truly infinite configuration, with AR = ∞.
A more accurate estimation of the most amplified wavenumber may be obtained by
considering a larger aspect ratio. For this reason, a simulation with AR = 12 has also
been run and eight stall cells were obtained. Therefore, the most amplified wavenumber is
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4.5

2.5

0.5

n = 224 n = 112

FIGURE 3. Surface pressure coefficient and skin friction lines of 3-D steady solution with
224 (left-hand side) and 112 (right-hand side) spanwise grid cells (NACA4412, M = 0.2,
Re = 350 000, α = 15◦, δ = 0◦, Lz = 6).

–CP
4.5
2.5
0.5

(b)

(a)

(c)

FIGURE 4. Instantaneous surface pressure coefficient and skin friction lines over a swept
wing (NACA4412, M = 0.2, Re = 350 000, α = 15◦, Lz = 6): (a) sweep 10◦; (b) sweep 20◦;
(c) sweep 30◦.

narrowed down to a value between 14π/12 ≈ 3.7 and 18π/12 ≈ 4.7. This range will be
compared with the result of linear stability analyses in § 4.1.

Since the 2-D solutions are particular cases where every derivative in the spanwise
direction are null, they are also solutions of the 3-D discretized RANS equations. Hence
these results demonstrate the existence of multiple solutions, the 2-D and the 3-D ones,
for a given flow conditions. Such results are in agreement with those from Kamenetskiy
et al. (2014).

3.1.2. Swept cases δ > 0◦, α = 15◦

A fixed value α = 15◦ is now considered and a sweep angle is added. In these conditions,
the flow is unsteady and time-accurate simulations with a non-dimensional time step of
0.008 are carried out. Figure 4 shows the instantaneous pressure coefficient and the skin
friction lines over wings swept at 10◦, 20◦ and 30◦. Four stall cells are observed and the
wavenumber is the same as for the unswept wing (β = 4.2). The topology of the stall
cells also changes with the sweep angle, and the skin friction lines are now aligned in the
cross-flow direction. This is associated with a spanwise convection of the stall cells. This
induces a frequency proportional to the wavelength of the cells and their convection speed
(St = VC/λz). Table 2 summarizes all the wavelength and convection speed obtained for
sweep angles of 0◦, 10◦, 20◦ and 30◦. Figure 5 shows the definition of these quantities.
For the simulations at a constant aspect ratio, the wavenumber is always 4.2. These results
suggest that the sweep angle has no effect on the wavelength of the stall cells. However,
as mentioned previously, this result is constrained by the wing aspect ratio. Finally, the
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δ (◦) AR Ncells λz β VC St

0 6.00 4 1.50 4.20 0.00 0.000
0 12.00 8 1.50 4.20 0.00 0.000

10 6.00 4 1.50 4.20 0.14 0.093
20 6.00 4 1.50 4.20 0.29 0.193
30 6.00 4 1.50 4.20 0.46 0.307

TABLE 2. Stall cells convection frequency for several wing spans and sweep angles
(NACA4412, M = 0.2, Re = 350 000, α = 15◦).

x

y

z VC

AR

λ z
 =

 2π
/β

FIGURE 5. Stall and buffet cells convection model.

convection speed observed in the URANS results is proportional to the sweep angle. These
phenomena are also analysed using stability analyses in § 4.1.3.

3.2. Transonic buffet
This section analyses the transonic buffet on wings based on the OALT25 aerofoil at a
Reynolds number Re = 3 × 106, a Mach number of 0.7352 and an angle of attack of 4◦.
The non-dimensional time step is set to 0.0105. Simulations with the 2.5-D assumptions
are first analysed. Then URANS results for 3-D infinite swept wings are presented.

3.2.1. Spanwise invariant solutions (2.5-D)
Figure 6 shows the time-averaged wall pressure coefficient of 2-D and 2.5-D

simulations. The pressure coefficient on the pressure side and the trailing edge agree with
the experiments of Brion et al. (2017) and the pressure of the supersonic plateau is also the
same. This indicates that the Mach number and angle of attack are the same between the
experiments and the simulations. However, the shock wave of the simulations is located
further downstream compared with the experimental field. It is seen that the pressure
distribution is the same for every sweep angle, except in the shock wave region. This shows
that the flow fields in the (x, y) plane remain close due to the fact that the upstream normal
inflow conditions are kept constant when changing the sweep angle. The time evolution of
the lift coefficient yields a Strouhal number of 0.075. The shock wave motion amplitude
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x
0 0.2 0.4 0.6 0.8 1.0

–1.0

–0.5
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1.5

–CP

Exp. - Brion et al. (2017) (Sweep 0 deg.)

2.0D - Sweep 0 deg.

2.5D - Sweep 10 deg.

2.5D - Sweep 20 deg.

2.5D - Sweep 30 deg.

FIGURE 6. Time-averaged wall pressure coefficient for spanwise invariant solution with
several sweep angles (OALT25, M = 0.7352, Re = 3 × 106, α = 4◦).

can be evaluated from the slope of the time-averaged pressure coefficient in the vicinity
of the shock wave position. The largest buffet amplitude is observed for the unswept case
and the buffet amplitude decreases as the sweep angle is increased. This relation between
the sweep angle and the buffet amplitude is investigated with global stability analyses in
§ 4.2.3.

3.2.2. Superposition between 2-D buffet mode and 3-D buffet cells
Figure 7 shows the instantaneous pressure coefficient and skin friction lines on swept

wings of aspect ratio AR = 6 meshed with 168 spanwise grid cells. For the unswept wing
and the wing swept at 30◦, a variation of the shock wave position is observed, forming the
so-called buffet cells. For the unswept wing (δ = 0◦), spanwise structures are observed.
However, the amplitude of the buffet cells is irregular and the number of buffet cells varies
in time. As such, the wavenumber varies in time and the buffet cells appear and disappear
at random spanwise location since there is no convection. This results in a flow that can
seem chaotic but a dominant Strouhal number of 0.06 is observed. This is related to the
frequency of a chordwise variation of the shock wave position and a variation of the buffet
cells’ amplitude. The same frequency is observed for swept wings (δ > 0◦). However, in
these cases the number of buffet cells is constant and they are convected in the spanwise
direction. Two cells are observed for a sweep angle of δ = 30◦. This result is compared
with the stability analysis results in § 4.2. Figure 7 also shows the instantaneous solution
with 112 and 168 spanwise grid cells. The comparison of the two fields shows that the grid
spacing is sufficient for this case since no significant differences are noticeable in the skin
friction lines and the pressure coefficient.

Figure 8 shows the power spectral density of the sectional lift coefficient with 112, 168
and 224 spanwise grid cells. The sectional lift coefficient is extracted on a given chordwise
wing section, the choice of this section has no effect since the buffet cells are convected
in the spanwise direction. The sectional lift coefficient is sampled at every time step
(0.0105 non-dimensional time unit) over a time frame of 630 non-dimensional time units.
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1.2
0.7
0.2

(b)

(a)

FIGURE 7. Instantaneous surface pressure coefficient and skin friction lines for URANS
simulations of infinite swept wings with two sweep angles (OALT25, M = 0.7352, Re = 3 ×
106, α = 4◦, Lz = 6): (a) δ = 0◦; (b) δ = 30◦ (right-hand side, 112 spanwise grid cells; left-hand
side, 168 spanwise grid cells).
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0.1
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-  P
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FIGURE 8. Sectional lift coefficient power spectral density (OALT25, M = 0.7352,
Re = 3 × 106, α = 4◦, δ = 30◦).

A periodogram with boxcar window and a single block is used to estimate the power
spectral density, which yields a Strouhal number resolution of 0.00158. This method is
used since the signals for the grid refinement study are too short to use a sufficient number
of averaging blocks. This yields noisier spectra and estimation errors on the amplitude.
Nevertheless, one can observe that the peak frequencies are the same. A dashed line is
added to indicate the Strouhal number around 0.06 (the frequency observed for every
sweep angle) and a dashed-dotted line indicates the Strouhal number of 0.135. The latter
is associated with the convection of buffet cells, as it will be shown in this section. Another
peak at a frequency of 0.135 could correspond to the nonlinear interaction between the two
dominant modes (St = 0.135 + 0.055 = 0.19).

Figure 9 shows the power spectral density of the sectional and global lift coefficient with
sweep angles of 10◦, 20◦ and 30◦. These spectra are evaluated using the Welch method
with a Hann window and a 50 % overlap between the blocks. The signal length is of 1 260
non-dimensional time units and nine blocks are used. The Welch method is used since the
time series is longer than in the mesh refinement study. The sampling is done at every
time step (0.0105 non-dimensional time units) for the sectional lift and every 10 time
steps for the global lift. This yields a Strouhal number resolution of 0.0039. One can
notice the frequency between St = 0.055 and 0.06 indicated by a dashed line for every
sweep angle in the global and sectional lift signals. Some harmonics of this frequency
are also observed. This frequency is associated with a chordwise oscillation of the shock
wave position which modulates the buffet cells amplitude (2-D oscillation). However, a
second dominant frequency is observed in the sectional lift coefficient. The latter increases
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FIGURE 9. Effect of the sweep angle on the global and sectional lift coefficient power spectral
density (OALT25, M = 0.7352, Re = 3 × 106, α = 4◦).

with the sweep angle and is due to the buffet cells convection in the spanwise direction.
This second frequency is not observed in the spectrum of the global lift coefficient since
the number of buffet cells is constant. For this reason, the variations of the lift coefficient
associated with the convection are cancelled out when the lift coefficient is averaged along
the span. Like in figure 8, the dashed line indicates the 2-D shock oscillation phenomenon
while the dashed-dot lines indicates the buffet cells’ convection phenomenon. These two
frequencies are further discussed in the next paragraph. Some harmonics of the buffet
cells convection frequency are also observed. For instance the convection Strouhal number
of 0.045 for a sweep angle of 10◦ has a harmonic at 0.09, which is also the convection
frequency for a sweep angle of 20◦.

To visualize the unsteady behaviour of the flow, the pressure has been extracted along
a line parallel to the leading edge. Figure 10 is a (z, t) diagram showing this extraction of
the pressure coefficient near x ′/c = 0.43 for the sweep angle of 30◦. Most of the time,
the pressure is equal to the one on the supersonic plateau. However, two buffet cells
periodically cross the extraction line because the amplitude of the cells changes in time.
This occurs with a period T = 18.0. This results in a Strouhal number equal to 0.055
(around the Strouhal number of 0.06 shown in figure 9). A Strouhal number of this order
is observed for every sweep angle, as previously shown, thus suggesting that the variation
of the buffet cells amplitude relates to a 2-D buffet mode. In addition, this figure allows us
to follow the spanwise location of the buffet cells in time. Hence, the convection speed of
the buffet cells can be extracted as the slope of an isocontour of pressure on this pressure
map (here VC = 0.4) and the associated frequency can be computed with the wavelength
of the buffet cells (St = VC/λz). These quantities are schematized in figure 5 and reported
for multiple sweep angles in table 3. Figure 11 shows the relation between the sweep
angle and the convection speed. The cross-flow velocity varies in tan δ, meaning that the
convection speed is proportional to the far field velocity projected along the leading edge.
This proportionality is true for low-speed flow conditions as well. A fit coefficient of
0.7 is found for the buffet cells and 0.8 for the stall cells. More details are provided in
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FIGURE 10. Extraction of the pressure on a line parallel to the leading edge near x ′/c = 0.43
(OALT25, M = 0.7352, Re = 3 × 106, α = 4◦, δ = 30◦).

δ (◦) AR Ncells λz β VC St

10 6.00 2 3.00 2.09 0.13 0.043
20 6.00 2 3.00 2.09 0.26 0.086
30 6.00 2 3.00 2.09 0.40 0.133

TABLE 3. Buffet cells convection frequency for several sweep angles (OALT25, M = 0.7352,
Re = 3 × 106, α = 4◦).

Plante et al. (2019b). This relation between the sweep angle and the convection speed of
the buffet cells is further analysed using stability analyses in § 4 for the stall and buffet
conditions.

3.3. Partial conclusion
Three-dimensional flow features in the form of stall cells and buffet cells are observed with
URANS modelling, in the low-speed stall regime and in the high-speed buffet regime,
respectively. These phenomena can be obtained with a numerical set-up in which no
disturbances are imposed by the initial conditions and the boundary conditions. This
suggests that there is an instability inherent to these flow conditions. Moreover, the
spanwise length of the cells remains approximately unchanged when the aspect ratio
is increased. This suggests that there is a preferential wavenumber for these flow structures.
However, finding a very accurate estimation of this wavenumber with URANS simulations
would be computationally expensive since the aspect ratio constrains the number of cells
which can be represented, and AR needs to be increased to reduce the uncertainty with
respect to the most amplified wavelength. As it will be shown in the next section, stability
analyses are a more appropriate tool to address this point. Finally, both types of cells
are convected with a velocity proportional to the free stream cross-flow velocity. This
causes an unsteady behaviour which is superimposed to a 2-D unsteadiness in the case
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FIGURE 11. Convection speed of stall (NACA4412, M = 0.2, Re = 350 000, α = 15◦) and
buffet (OALT25, M = 0.7352, Re = 3 × 106, α = 4◦) cells.

of the transonic buffet simulations. These flow behaviours are analysed with global linear
stability analyses in the next section.

4. Global stability analyses

The second part of this study uses global stability analyses to identify linearly unstable
modes which could explain the stall cells and buffet cells observed in § 3. Results for
the low speed and transonic flow conditions are presented and discussed. Parameters
characterising the size and intensity of the recirculation zones in the baseflows are
provided as supplementary material to this article is available at https://doi.org/10.1017/
jfm.2020.848.

4.1. Subsonic stall
Steady 2.5-D and 2-D solutions of the NACA4412 aerofoil at a Reynolds number of
350 000, a Mach number of 0.2, and multiple angles of attack and sweep angles are
converged within machine accuracy. These solutions are used as baseflows for the stability
analyses. For consistency with the previous section, most of the analyses are carried out
for an angle of attack of 15◦.

4.1.1. Case δ = 0◦ and α = 15◦

The following focuses on the case δ = 0◦ and α = 15◦. Figure 12 presents the
eigenvalues spectra obtained for two values of β. For both values, there is an unstable
eigenvalue (positive real part) located along the real axis. This is a non-oscillatory unstable
mode. A mode similar to this one has been observed by Zhang & Samtaney (2016)
for low-Reynolds laminar flow. But in the present case this mode is observed at an
intermediate Reynolds number with the use of a steady RANS baseflow. This figure also
shows the radius covered by the shift-and-invert Arnoldi strategy. Different shifts with
various imaginary parts are used in the shift-and-invert strategy to ensure that modes with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

84
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.848
https://doi.org/10.1017/jfm.2020.848
https://doi.org/10.1017/jfm.2020.848


908 A16-18 F. Plante and others

0.08

0.06

0.04

0.02

–0.02

–0.10 –0.05 0 0.05 0.10 0.15 0.20

β = 3
β = 7

0

St
 =

 ω
/(

2π
)

σ

FIGURE 12. Eigenspectrum (NACA4412, M = 0.2, Re = 350 000, α = 15.0◦, δ = 0.0◦).

non-zero imaginary part are not missed. Figure 13 shows the growth rate of the steady
unstable mode for a range of wavenumbers β. Multiple values of Δz used in the extrusion
of the grid are plotted to ensure that the grid is sufficiently refined. These results can
be considered converged for every β with Δz = 0.002. One can observe that the grid
convergence is poorer in the high β range associated with small structures. This indicates
that a finer grid is required to compute small flow structures, as expected. The grid spacing
used in the URANS simulations (Δz = 0.054) is well converged up to β = 6, covering
the case with the maximum growth rate and the wavenumbers obtained in the URANS
simulations. This is consistent with the grid convergence shown in figure 3.

The maximum growth rate is obtained for a spanwise structure with β ≈ 4.4. This
corresponds to a wavelength λz ≈ 1.43, which is consistent with the value observed in
the URANS simulations (β = 4.2). Indeed, in the simulations, the periodic boundary
conditions constrained the possible wavenumbers to multiples of β0 = 2π/AR. Therefore,
the wavelength of the URANS simulation is as close as possible to that predicted by the
stability analysis, showing that this unstable mode is responsible for the formation of stall
cells. Figure 14 shows the baseflow and the real part of the eigenvector ρ̂e reconstructed
in three dimensions with (2.14), and extracted on the aerofoil surface and the plane z = 0.
The instability is located in the shear layer and upstream of the separation line. The shape
of this mode is consistent with the structure of the stall cells.

4.1.2. Case δ = 0◦ and varying α

These stability analyses are carried out for several angles of attack for which a solution
converged to machine accuracy can be obtained (figure 2). The 3-D unstable mode can
be identified on the upper and lower branch of the lift polar hysteresis. Figure 15 shows
the growth rate of this mode for the most amplified wavenumber of the two branches. The
mode is unstable from an angle of attack of 14.15◦ (the maximum lift) up to 20.5◦ (the last
converged baseflow). On the lower branch, the growth rates are higher than for the upper
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FIGURE 13. Effect of spanwise grid density and the wavenumber on the growth rate of the
unstable mode (NACA4412, M = 0.2, Re = 350 000, α = 15.0◦, δ = 0.0◦).
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FIGURE 14. Flow visualization of the (a) baseflow and (b) 3-D unstable mode (NACA4412,
M = 0.2, Re = 350 000, α = 15.0◦, δ = 0.0◦): (a) ρe/ρe∞ baseflow; (b) real part of the
ρ̂e/ρe∞ eigenmode (β = 4.4) − St = 0.0.

one, but the mode is only unstable for angles of attack lower than 16.9◦. Above this angle,
the mode becomes stable again, even though the flow is massively separated. Figure 16
shows the shape of the modes on the upper and lower branches. One can observe that the
unstable mode is located around the region where the flow separates. For α = 18◦ the flow
separates far from the leading edge. However, for the other angles of attack the separation
is close to the leading edge. Hence, it is possible that the mode is no longer unstable past
α = 16.9◦ on the lower branch because the flow separation becomes fixed on the leading
edge. This tends to validate the idea that stall cells are only observed with a trailing edge
type of stall.

Works based on the lifting line theory by Spalart (2014) and Gross et al. (2015)
suggested that a negative slope of the CL − α curve is a necessary condition for the
occurrence of stall cells. Figure 15 shows the growth rate obtained in these flow conditions
for different values of α, and for the upper branch of the lift hysteresis, the most unstable
eigenvalue crosses the imaginary axis at an angle of attack slightly below 14.15◦. This
coincides with the maximum lift angle of attack in figure 2, which is therefore consistent
with the negative CL − α slope criterion. However, the stability analysis of the lower
branch of the lift hysteresis shows that the stall cell modes are stable for α > 16.9◦,
while the slope of the CL − α curve is negative between 17.0◦ and 17.4◦ (see figure 2),
which contradicts this criterion. Another conclusion of the analysis of Gross et al. (2015)
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FIGURE 15. Effect of the angle of attack on the growth rate of the unstable mode (NACA4412,
M = 0.2, Re = 350 000, δ = 0.0◦). (a) Upper branch of the lift hysteresis. (b) Lower branch of
the lift hysteresis.
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FIGURE 16. Flow visualization of the 3-D unstable mode for several angles of attack on the
two branches of the lift hysteresis (NACA4412, M = 0.2, Re = 350 000, δ = 0.0◦). (a) Real
part of the ρ̂e/ρe∞ eigenmode (α = 18◦, upper branch, β = 5) – St = 0.0. (b) Real part of
the ρ̂e/ρe∞ eigenmode (α = 20.5◦, upper branch, β = 7.5) – St = 0.0. (c) Real part of the
ρ̂e/ρe∞ eigenmode (α = 16.78◦, lower branch, β = 8) – St = 0.0. (d) Real part of the ρ̂e/ρe∞
eigenmode (α = 16.9◦, lower branch, β = 5.5) – St = 0.0.

is that the wavelength of the cells should be λz = −0.5(∂CL/∂α) with a discrete model
or λz = −(π/4)(∂CL/∂α) with a continuous model. Since the linear instability occurs
around the 2-D solution, ∂CL/∂α is taken as the slope of the 2-D lift polar around an
angle of attack of 15.0◦ (−2.52 rad−1). With this slope, the wavelength should be 1.26 or
1.98 (β = 3.2 and 5.0, respectively). The values computed with the URANS (β = 4.2)
simulations and the stability (β = 4.4) analyses fall between the values predicted with this
model. However, the CL − α slope varies in the range of angles of attack studied with the
global stability analysis and the values of β for which the flow is the most unstable does
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FIGURE 17. Effect of the sweep angle on the growth rate and frequency of the 3-D unstable
mode (NACA4412, M = 0.2, Re = 350 000, α = 15.0◦; black, stability analysis; red, URANS
simulations): (a) growth rate; (b) frequency.

not vary significantly. This is in contradiction with the model proposed by Gross et al.
(2015).

4.1.3. Effect of sweep at α = 15◦

The approach followed to carry out stability analyses also enables to study baseflow
with δ /= 0. Figures 17(a) and 17(b) show the growth rate and frequency of the unstable
mode with sweep angles of 0◦, 10◦, 20◦, 30◦ and 40◦. With these curves, it is possible to
track the displacement of the most unstable eigenvalue with respect to the sweep angle.
The frequency of the mode increases with the sweep and its growth rate decreases. For a
sweep angle between 40◦ and 50◦, the mode becomes stable. The value of β for which the
growth rate is maximum also slightly decreases as the sweep angle increases. The stability
results are consistent with the URANS simulations from § 3. For example, the wavenumber
observed in figure 3 in the unswept case is 4.2 with four stall cells. By accounting for the
numerical constraint on the wavenumber (the domain size imposes the possible values of
β), the actual wavenumber on an infinite domain is expected to be between 3.7 and 4.7.
The modes with the maximum growth rate have β between 4.0 and 4.4, hence within the
expected range.

Figure 17(b) also shows the frequency obtained with URANS simulations (red points)
and the frequency extrapolated from the trend of the convection speed (see figure 11) and
the wavenumber (red lines). The frequencies observed in the URANS computations are
well aligned with the frequency obtained with the global linear stability analysis. Hence,
the linear stability analyses predict the behaviour of the stall cells.

4.1.4. 2-D wake instability mode
These analyses are now carried for β = 0, which corresponds to 2-D analyses. Such

analyses are performed for several angles of attack. Figure 18 shows the part of the spectra
where unstable modes are found. The mode becomes unstable for an angle of attack
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FIGURE 18. Effect of the angle of attack on the spectra of the 2-D unstable mode (NACA4412,
M = 0.2, Re = 350 000, δ = 0.0◦, β = 0).
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FIGURE 19. Flow visualization of the (a,b) baseflow and (c,d) 2-D unstable mode on the two
branches of the lift hysteresis (NACA4412, M = 0.2, Re = 350 000, α = 18.0◦, δ = 0.0◦, β =
0.0). (a) The u baseflow; upper branch of the lift hysteresis. (b) The u baseflow; lower branch
of the lift hysteresis. (c) Real part of the ρ̂u eigenmode; upper branch of the lift hysteresis –
St = 0.92. (d) Real part of the ρ̂u eigenmode; lower branch of the lift hysteresis – St = 0.49.

between 16◦ and 17◦ for the upper branch (UB) of the lift hysteresis, and is unstable for
the entire lower branch (LB). This is consistent with the need to use the SFD technique
or a Newton solver to converge the baseflow for angles of attack above 16◦, where it was
observed that the local time stepping technique failed to converge. Figure 19 shows the
eigenmodes for the upper and lower branch of the lift hysteresis at an angle of attack of
18◦. The shape of these modes corresponds to a meandering of the wake which would lead
to shedding of vortices in the nonlinear regime. The wavelength of this mode is larger
for the lower branch, where the size of the separation is larger. As the angle of attack
increases, the size of the separation region becomes larger and the Strouhal number based
on the chord length (Stc) decreases. However, the Strouhal number based on the frontal
height of the separation zone (Stl = Stcl = Stc(xr − xs) sin α) stays constant around 0.2.
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FIGURE 20. Effect of the wavenumber on the 2-D wake instability mode (NACA4412,
M = 0.2, Re = 350 000, α = 18.0◦): (a) growth rate; (b) frequency.

This Strouhal number definition based on the separation height is inspired from the one
of Yon & Katz (1998) and Zaman, McKinzie & Rumsey (1989), but adapted to the case
where the separation point xs is not located at the leading edge but somewhere between the
leading and the trailing edge; here the flow reattaches at the trailing edge (xr = 1.0). This
shows that the Strouhal number based on the separation height is the correct one and its
value is close to the expected one for vortex shedding (Chabert, Dandois & Garnier 2016).
Hence, for α � 16.5◦, the 3-D non-oscillating mode coexists with a 2-D wake instability
mode, such that an unsteady behaviour should be observed in the URANS simulations. On
the other hand, the case α = 15◦ was analysed in § 3.1, and consistently with the stability
results (only the 3-D steady mode is unstable for this value of α), the unsteady computation
converges toward a steady state. Hence, once again, the results of § 3 are consistent with
the stability analyses.

4.1.5. Effect of sweep angle on the 2-D wake instability mode
The same stability analyses are now carried out for sweep angles of 0◦, 10◦, 20◦ and

30◦ and an angle of attack of 18◦. Figure 20 shows the value of the growth rate and the
Strouhal number of the wake instability mode for values of β around zero. This unstable
mode exists for large wavenumbers β. In these figures, modes with a negative value of
β are shown. These modes can also be seen as modes with positive β and a negative
frequency. One can observe that, as expected, the spectrum is symmetric with respect
to the imaginary axis when the sweep angle is null. In this case, the baseflow indeed
exhibits a zero spanwise velocity and perturbations may equivalently propagate (in terms
of phase, the phase-speed being vφ = ω/β) towards the inboard (negative z, vφ < 0) and
outboard (positive z, vφ > 0) directions. If a positive sweep is considered, then a positive
baseflow velocity in the z direction is added and the phase of the perturbation is generally
preferentially advected in this direction (in the case of a constant W(x, y) = W baseflow
velocity, one can show that the frequency ω (respectively, phase-speed vφ) of a mode
just shifts by an amount of βW (respectively, W), due to the Doppler shift). Therefore, a
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FIGURE 21. Eigenspectrum in 2-D and 3-D (OALT25, M = 0.7352, Re = 3 × 106, α = 4.0◦,
δ = 0.0◦): (a) β = 0; (b) β = 2π.

positive sweep generally tends to increase the frequency of 3-D perturbations and their
phase speed. For exactly 2-D oscillating perturbations (as obtained for the wake instability
mode), the phase velocity is infinite (positive or negative), even if sweep is added. It is also
seen that, if the perturbations become slightly 3-D (β /= 0), then the outboard propagating
3-D perturbations are slightly more unstable than the inboard propagating ones. Note
that the discussion would have been different if the group velocity (vg = dω/dβ) was
considered, since the group velocity determines the speed of the envelope and fronts of
a wave-packet and therefore better accounts for actual propagation of the perturbation:
for this a convective/absolute stability analysis should be conducted following Huerre &
Monkewitz (1990). But this is outside the scope of this paper.

4.2. Transonic buffet
The stability of baseflows obtained in the transonic regime for the OALT25 aerofoil at a
Mach number of 0.7352 and a Reynolds number of 3 × 106 is now studied. To begin with,
the unswept case is analysed for several angles of attack. Then the effect of the sweep
angle is analysed for a constant angle of attack of 4◦. Finally, the 2-D case is analysed.

4.2.1. Effect of the angle of attack on the unswept case
Figure 21 shows the spectra obtained for β = 2π and β = 0 for an angle of attack of 4◦

and a sweep angle of 0◦. The cases where β tends to 0 are equivalent to the 2-D cases. As
one can see, an unstable global mode is found at a Strouhal number of 0.075 when β = 0
(unsteady 2-D) and a Strouhal number of zero when β = 2π (non-oscillating 3-D). Hence,
two unstable eigenmodes are found for these flow conditions. This result is analogous to
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FIGURE 22. Effect of the wavenumber β on the 3-D mode (OALT25, M = 0.7352,
Re = 3 × 106, δ = 0.0◦): (a) growth rate; (b) eigenspectrum (α = 4.25◦).

that at low speed where both a stall cells and a wake instability mode were observed. It
should be noted that the spectra are symmetric with respect to the real axis, due to the
symmetry of the problem in the non-swept case (a wave may propagate in the positive and
negative z directions). Thus, an unsteady mode with a negative frequency is also observed.
Following this analysis, figure 22(a) shows the effect of the wavenumber β on the growth
rate of the non-oscillating unstable mode for several angles of attack. All the analyses
are done with a spanwise grid spacing of 0.002. An analysis similar to the one shown in
figure 13 has been carried out. It shows that refining the grid by a factor 100 does not
change significantly the results for β up to 70 and for α = 4.0 and 8.0. It should also
be noted that the spanwise grid spacing used in the URANS simulations (Δz = 0.035)
is properly converged for the range of unstable wavenumbers at an angle of attack
of 4◦. As for the subsonic stall case, a bump in the growth rate is observed for a medium
wavelength around β = 6.0 for the low angle of attack. However, a second bump with a
maximum growth rate at higher β is obtained as the angle of attack increases. For the
particular angle of attack of 4.25◦, the two bumps can clearly be distinguished. These
results are similar to those obtained by Crouch et al. (2019) and Paladini et al. (2019a)
on the OAT15A aerofoil, where an intermediate-wavelength mode and a short-wavelength
one were reported. Crouch et al. (2019) suspected that the short-wavelength might be too
small to be relevant to a RANS framework. Figure 22(b) shows the spectra obtained for
several β in-between the intermediate-wavelength and short-wavelength bumps at an angle
of attack of 4.25◦. One can notice that there is only one unstable eigenvalue for each β.
We do not observe a 2-mode switching, where the originally unstable mode would become
stable while a previously stable mode would become unstable. This shows that these two
bumps are in fact the same mode and not two separate modes which could have been
both unstable for some angles of attack. Although this does not discard arguments on the
physical relevance of the low-wavelength mode, the physical mechanism responsible for
both these modes is the same. Figure 23 shows the CL − α curve of the steady baseflow of
the OALT25. As it is the case for the NACA4412, the angles of attack for which the linear
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FIGURE 23. Lift coefficient of the steady 2-D flow (OALT25, M = 0.7352, Re = 3 × 106,
δ = 0.0◦).

stability shows an unstable 3-D mode corresponds to angles of attack where the CL − α
slope is negative, in agreement with Gross et al. (2015). However, the slope of this curve
around α = 4◦ and the most unstable wavelength does not match the predictions of the
model of Gross et al. (2015). If one takes the slope between 5◦ and 9◦, wavenumbers of 6.5
and 4.13 are predicted with the discrete and continuous models, respectively. The unstable
mode has a wavenumber β = 6.0, which is in the predicted range. However, as was the
case for the subsonic mode, changes in the CL − α slope are not associated with changes
in the wavelength predicted by stability analyses.

4.2.2. Sweep angle effect at α = 4◦

Figure 24(a) shows the effect of the sweep angle on the growth rate of the 3-D mode.
As for the subsonic stall, the growth rate of the 3-D mode decreases as the sweep angle
increases. From this trend, the mode becomes stable for a sweep angle slightly higher than
40◦ and is stable at 50◦. Also, the wavenumber for which the mode is the most unstable
slightly decreases when the sweep angle increases. However, the wavenumber obtained in
the swept URANS (β = 2.09) simulations is not unstable in the stability analysis. It will
be shown in § 5 that this discrepancy is due to nonlinear effects. Figure 24(b) shows the
Strouhal number of the 3-D mode for sweep angles δ of 0◦, 10◦, 20◦, 30◦ and 40◦ for a
range of β. As expected, the frequency increases with β (smaller spanwise structures) and
with the sweep angles (higher convection speed). The URANS results (red points) and the
frequencies extrapolated from the convection speed of the URANS simulations (red lines)
are plotted on this graph as well. The frequencies obtained by Crouch et al. (2019) on the
OAT15A aerofoil are also plotted. For the latter, the values have been corrected for the
fact that the reference speed is taken as the speed normal to the leading edge instead of
the free stream velocity. These curves match the stability results, even though the work
of Crouch et al. (2019) was performed on a different aerofoil. Hence, the linear stability
is able to predict the convection speed of the cells, but because of the discrepancy on the
wavenumber with respect to the URANS simulations, the frequency of the simulations is
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FIGURE 24. Effect of the sweep angle on the 3-D mode (OALT25, M = 0.7352, Re = 3 × 106,
α = 4.0◦; black, stability analysis; red, URANS simulations): (a) growth rate; (b) frequency.

incorrectly predicted by the stability analyses. This is due to nonlinear effects that shift the
wavelength of the cells (see § 5).

Figure 25 shows the baseflow with a sweep angle of 30◦ and the real part of the ρ̂e 2-D
and 3-D unstable modes. The two unstable modes are mostly located in the vicinity of
the shock wave and in the shear layer. The 2-D mode displays the shape of the unstable
mode reported in the 2-D buffet studies of Crouch et al. (2009) and Sartor et al. (2015).
The 3-D mode has spanwise fluctuations in the shock foot and trailing edge region. Those
are regions of flow separation. The shape of this mode is in line with the observations of
Crouch et al. (2019) and Paladini et al. (2019a).

4.2.3. 2-D buffet mode
Figure 26 shows the portion of the spectrum where the unsteady 2-D mode is located.

One interesting point is that the unstable unsteady mode (2-D buffet) is only observed
over a range of angles of attack between 3.75◦ and 6.0◦. The 3-D buffet mode becomes
unstable at an angle of attack around 3.75◦ as well. However, it does not become stable
again at higher angles of attack in the range studied in this paper. Hence, this mode is
observed for transonic stall conditions, where the 2-D buffet is stable. Although this flow
condition is an extreme one, which is not expected to be reached for a civil aircraft, this
result suggests that the 3-D buffet can exist without the 2-D buffet phenomenon occurring.
This is similar to the fact that the stall cells can be obtained without the wake instability
mode.

Finally, it is possible to analyse the effect of β on the 2-D buffet mode. Figure 27
shows this effect on the growth rate and the frequency for several sweep angles. These
are modes with very large wavelengths of at least 10 chord lengths. It should be noted that
the spectrum is symmetric with respect to the real axis for δ = 0◦. But it is not the case
for swept wings. Hence, the effect of β on the growth rate and frequency is not the same
for the positive and negative frequency. The 2-D buffet mode is more stable as the sweep
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FIGURE 25. Flow visualization of the (a) baseflow, (b,c) 2-D and 3-D unstable modes
(OALT25, M = 0.7352, Re = 3 × 106, α = 4.0◦, δ = 30◦). (a) The ρe/ρe∞ baseflow. (b) Real
part of the 2-D ρ̂e/ρe∞ eigenmode (β = 0.0) – St = 0.075. (c) Real part of the 3-D ρ̂e/ρe∞
eigenmode (β = 5.0) – St = 0.356.

angle increases. This is consistent with the fact that the buffet amplitude is lower when the
sweep angle increases as shown in figure 6. Also, β has an effect on the growth rate. Such
results are similar to those of Crouch et al. (2019) for the OAT15A aerofoil. However,
they did not report the peak in the growth rate between β = ±0.5 and β = ±0.6. As
verification, the case of Crouch et al. (2019) has been executed with the numerical set-up
of the present paper with similar results (see the Appendix). Hence, these peaks are not
caused by any problem related to the stability method or its implementation, and their
existence remains unexplained for the OALT25 aerofoil. Also, the inboard propagating
modes (β < 0) are more unstable than the inboard propagating modes when the wing is
swept. This behaviour is opposite to the tendency of the wake instability mode (figure 20).

4.3. Partial conclusion
The global linear stability analyses predict two unstable modes in the subsonic stall
conditions. One which can be related to the stall cells (3-D) and the other to the shedding
of vortices (2-D). The wavenumber, convection speed and frequency of the 3-D mode
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FIGURE 26. Effect of the angle of attack on the 2-D unstable mode (OALT25, M = 0.7352,
Re = 3 × 106, δ = 0.0◦, β = 0.0).
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FIGURE 27. Effect of the wavenumber on the 2-D buffet mode (OALT25, M = 0.7352,
Re = 3 × 106, α = 4.0◦): (a) growth rate; (b) frequency.

are consistent with the URANS results presented in § 3.1. The 2-D mode has the expected
frequency with a Strouhal number based on the separation height of 0.2. However, multiple
frequency and size of the vortices are identified for some flow conditions since multiple
steady-state baseflows are found.
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FIGURE 28. Snapshots of the surface pressure coefficient and skin friction lines of the URANS
simulations (NACA4412, M = 0.2, Re = 350 000, α = 15.0◦, δ = 0◦, Lz = 6): (a) t = 68;
(b) t = 85; (c) t = 102.

Two unstable modes are also identified in the transonic buffet regime. The first is
associated with the 2-D buffet instability at a frequency around 0.07. The second leads to
spanwise flow structures which can be associated with buffet cells. There is a discrepancy
between the wavenumber predicted by the stability analyses and the URANS simulations.
However, the frequency of this mode is that of 3-D structures convected at the same speed
as those in the URANS simulations.

For the case of the NACA4412, two solution branches have been analysed. Such multiple
solutions have been observed in the literature before (Wales et al. 2012; Busquet et al.
2017). Multiple baseflows were not found for the OALT25 aerofoil, however, they cannot
be ruled out. Nevertheless such multiple solutions do not seem to be related to the
occurrence of stall cells since an unstable stall cell mode is found at angles of attack
where only one baseflow is found.

5. From linear to nonlinear regime

Section 3 analysed the nonlinear saturated regime. This was done by starting the solution
from a non-converged RANS solution. Section 4 studied the behaviour of the solution in
the linear regime around a fully converged RANS solution. This section investigates the
transient between the two regimes. To do so, the steady baseflows are extruded to get a
3-D initial condition, and the URANS solver is run from this initial solution.

5.1. NACA4412 at α = 15◦ and δ = 0◦

Figure 28 shows how the solution diverges from the steady 2-D baseflow towards the
solution shown in § 3. As one can see, the flow diverges with four regular stall cells and the
flow topology converges to the one shown previously. This corresponds to a wavenumber
β = 4.2 which is the wavenumber with the maximum growth rate allowable on this grid
(see figure 17a), since the number of cells is constrained by the size of the domain. This
result is consistent with the stability analysis.
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FIGURE 29. Snapshots of the surface pressure coefficient and skin friction lines of the URANS
simulations (OALT25, M = 0.7352, Re = 3 × 106, α = 4.0◦, δ = 20◦, Lz = 6): (a) t = 68;
(b) t = 74; (c) t = 89.

5.2. OALT25 at α = 4◦ and δ = 20◦

Similar analyses can be done for the transonic buffet case. Figure 29 shows three time
samples of the URANS simulation with the extruded baseflow as the initial state and a
sweep angle of 20◦. One can observe that three-dimensionality occurs with the appearance
of six buffet cells (β = 6.28), in agreement with the largest growth rate allowable for this
computational domain (see figure 24a). However, the wavelength progressively increases
towards the value observed in § 3. This shows that the stability analysis predicts the initial
bifurcation from the baseflow to the presence of buffet cells. However, some nonlinear
effects are responsible for the shift of wavelength observed such that the saturated regime
is different from the value predicted by the linear model.

6. Link between stall and buffet cells

Previous solutions were obtained for two different aerofoils, at two Reynolds numbers.
To clearly establish a link between buffet cells and stall cells, the stability analyses are
now carried out for an NACA0012 at a Reynolds number of 1 × 107 and the unstable
eigenvalues are tracked from the low-speed regime to the transonic one. The NACA0012
aerofoil at a high Reynolds number is selected since a trailing edge stall is expected at
low Mach number and transonic buffet at higher speed (McDevitt & Okuno 1985). As the
Mach number increases, the angle of attack is decreased in order to recover the stall and
buffet onset conditions. Figure 30 shows the baseflow obtained for Mach numbers from
0.2 to 0.72. The flow topology at a Mach number of 0.2 is the one of a subsonic stall.
Similar topology, but with a stronger flow acceleration and a weak shock wave near the
leading edge are obtained for Mach numbers of 0.3 and 0.4. However, for Mach numbers
higher than 0.5, the shock wave is stronger and flow separation occurs at the shock foot.

Figure 31(a) shows the growth rate of the 3-D unstable mode. For the low-speed cases,
the maximum growth rate is found for β around 4. This result is similar to the previous
observations on the NACA4412 aerofoil, even though the Reynolds number is by far larger.
For Mach numbers between 0.4 and 0.5, the flow topology changes significantly and so
does the value of the most amplified β. In this case β is greater than 170. These are 3-D
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FIGURE 30. Baseflow Mach number field at several Mach numbers and angle of attack
(NACA0012, Re = 107, δ = 0◦): (a) M = 0.2 and α = 18.2◦; (b) M = 0.3 and α = 15.0◦;
(c) M = 0.4 and α = 12.0◦; (d) M = 0.5 and α = 7.9◦; (e) M = 0.6 and α = 6.15◦;
( f ) M = 0.72 and α = 3.5◦.

modes with a very small wavelength. As the Mach number increases, the value of β for
which the 3-D mode is found decreases to reach a value of 100 for a Mach number of
0.6 and 50 for a Mach number of 0.72. This is consistent with the results of Crouch et al.
(2018), who reported only a short-wavelength mode for the NACA0012 aerofoil and not
the intermediate-wavelength mode as on the OAT15A and OALT25. One major difference
between the NACA0012 and the OALT25 aerofoils is the fact that there is only a flow
separation in the shock foot area for the NACA0012, while the flow over the OALT25
also separates at the trailing edge. Figure 31(b) shows the growth rate of the 3-D mode
normalized by the height of the separation hs. By using this normalization, the maximum
growth rates are located around βhs ≈ 0.25 for every Mach number, which shows that this
is the correct scaling length for this 3-D mode. The amplification factors are normalized
by the same length scale. Two other scalings were attempted, namely a scaling by the
separation length ls and by the projection of the separation length in the direction normal
to the inflow l (see supplementary material to this article). By using the separation length,
a proper scaling is obtained for the subsonic and transonic cases separately. But this scaling
does not hold between these two flow regimes.

Figure 32 displays the eigenvectors at these flow conditions, indicating that the unstable
modes are all located in the vicinity of the flow separation. For a Mach number larger
than 0.5, a shock wave occurs in the baseflow. In these cases, the eigenmode reaches high
values at the separation point and further downstream, but it does not propagate in the
supersonic region upstream of the shock wave, contrary to subsonic cases.

In the case of the OALT25 aerofoil, the 3-D and 2-D modes become unstable around the
same angle of attack. This may suggest that the two unstable modes are somewhat linked.
For this reason, the angle of attack at which an unstable 2-D buffet mode appears has been
searched for the NACA0012 at M = 0.72. Figure 33 shows the region of the spectra around
which the unstable mode is expected. An unstable mode is present at an angle of attack of
4.5◦, but this mode is stable for lower angles of attack. This indicates that the 3-D buffet
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FIGURE 31. Effect of the Mach number and angle of attack on the growth rate of the 3-D mode
(NACA0012, Re = 107, δ = 0◦). (a) Normalized by the chord length. (b) Normalized by the
separation height.
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FIGURE 32. Flow visualization of the 3-D ρ̂e/ρe∞ unstable mode (NACA0012, Re = 107, δ =
0◦): (a) M = 0.2 and α = 18.2◦ – St = 0.0; (b) M = 0.3 and α = 15.0◦ – St = 0.0; (c) M = 0.4
and α = 12.0◦ – St = 0.0; (d) M = 0.5 and α = 7.9◦ – St = 0.0; (e) M = 0.6 and α = 6.15◦ –
St = 0.0; ( f ) M = 0.72 and α = 3.5◦ – St = 0.0.

mode can be unstable (see unstable branch at α = 3.5◦ in figure 31) without an underlying
2-D mode (figure 33).

As it is the case for the NACA4412 and the OALT25 aerofoils, 3-D modes with a
non-zero frequency are obtained when a sweep angle is added. Figure 34 shows the
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FIGURE 33. Effect of the angle of attack on the 2-D unstable mode (NACA0012, M = 0.72,
Re = 107, δ = 0.0◦, β = 0.0).
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FIGURE 34. Effect of the sweep angle on the 3-D mode frequency: (a) subsonic (NACA0012,
M = 0.2, Re = 107, α = 18.5◦); (b) transonic (NACA0012, M = 0.72, Re = 107, α = 4.5◦).

frequency of the 3-D modes with sweep angles of δ = 0◦, 10◦, 20◦ and 30◦, and the scaling
found previously. The angles of attack are slightly increased in comparison with previous
results on the NACA0012 because the sweep angle has a stabilizing effect. As one can
see, the frequency of these unstable modes is still proportional to the spanwise velocity.
Moreover, the proportionality coefficients found for the NACA4412 and the OALT25 still
hold for the NACA0012 in subsonic and transonic regimes, respectively.

Hence it is possible to follow a single and same unstable mode that represents stall
cells in the subsonic regime and buffet cells in the transonic flow regime. This branch
of modes exhibits the same features as those found separately for the NACA4412 and
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the OALT25 aerofoils. This also shows that the stall cell mode is present both at an
intermediate (350 000) and high (1 × 107) Reynolds number. Moreover, a scaling by the
height of the separation bubble is proposed to link the size of the stall cells to that of the
buffet cells.

7. Conclusion

Three-dimensional flows over infinite swept configurations were obtained using
URANS simulations for low-speed stall and transonic buffet conditions. The observed
stall/buffet cells are steady for unswept wings, and convected in the spanwise direction
when the wing is swept. This induces a frequency which can be related to the distance
between two cells and their convection speed. In the case of the subsonic stall,
this unsteadiness dominates the flow. However, it is superimposed to the 2-D buffet
phenomenon at high-speed.

Global linear stability analyses of 2.5-D baseflows were carried out for subsonic stall
and transonic buffet. An unstable 3-D mode was observed in both flow conditions. The
frequency of the latter is null for unswept wings and becomes unsteady as the sweep angle
is increased. The frequencies and wavelength of stall cells obtained with stability analysis
are in line with the observation of the URANS simulations. However, discrepancies
between the wavelength of buffet cells and the global mode with the largest growth rate
are observed. Nevertheless, the frequency of the unstable modes is consistent with that of
structures convected at the convection speed observed in the URANS simulations. A mode
consistent with a 2-D vortex-shedding in subsonic stall conditions was found, as well as a
2-D buffet mode in transonic buffet conditions. The 2-D vortex shedding is not observed
in the URANS simulations because the angle of attack is lower than the one for the onset
of this unstable mode. A similar condition where the buffet cell mode is present but not
the 2-D buffet mode might allow us to obtain steady buffet cells on an unswept wing.

Nonlinear flow simulations starting from the baseflows effectively shows that the flows
diverge following the shapes identified in the stability analyses. In the case of the subsonic
stall, the number of cells predicted in the stability analyses stay constant in the nonlinear
regime. However, the solution of transonic buffet over swept wings diverges towards buffet
cells with a lower wavenumber after the appearance of spanwise flow structures of the
length identified with the stability analyses, possibly because of nonlinear effects.

Finally, results of the stability analyses allow us to follow the angle of onset of a
3-D mode from the low speed to the transonic flow regime. This study was done on an
NACA0012 aerofoil at a Reynolds number of 1 × 107. Although the wavelength of this
mode varies greatly with the Mach number, using the separation height as the reference
length allows us to centre the non-dimensional wavenumber around a value βhs ≈ 0.25.
This result reinforces the conclusion that the two phenomena are the same and are related
to the occurrence of flow separation. Also, the 3-D mode is identified at an angle of attack
lower than the 2-D buffet onset angle. This shows that the buffet cells associated with 3-D
buffet can be observed without the presence of the 2-D buffet.

Hence, this paper provides evidence that the buffet cells and the stall cells are in fact
the same flow instability. Even though it is convenient to describe the 3-D mode in buffet
condition as a 3-D buffet phenomenon in the context of applied aerodynamics, one can
show that this mode is oscillatory only when the wings are swept. Moreover, the physical
mechanisms involved in the 2-D buffet and the buffet cells are different. As such, one can
question the accuracy of naming the so-called buffet cells as 3-D buffet and not just as
stall cells.
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FIGURE 35. Effect of the wavenumber of the 2-D buffet mode (OAT15A, Re = 3 × 106,
α = 3.5◦, δ = 0◦): (a) growth rate; (b) frequency.
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Appendix. OAT15A analysis

As verification for the implementation of the method proposed by Schmid et al. (2017),
we have carried out a global linear stability analysis of transonic buffet of an OAT15A
aerofoil in the same regime as in Crouch et al. (2019). A grid with the same property and
the same numerical set-up as the ones used for the OALT25 aerofoil are used. Figure 35
shows the growth rate and the frequency of the 2-D mode with respect to β. The results of
Crouch et al. (2019) are also presented. One can observe that the frequencies and growth
rates are close to the values found by Crouch et al. (2019). The trend with respect to the
wavenumber is also the same. This agreement verifies the method used in this paper.
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