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Abstract

We propose a generalized Cramér–Lundberg model of the risk theory of non-life insur-
ance and study its ruin probability. Our model is an extension of that of Dubey (1977) to
the case of multiple insureds, where the counting process is a mixed Poisson process and
the continuously varying premium rate is determined by a Bayesian rule on the number
of claims. We use two proofs to show that, for each fixed value of the safety loading, the
ruin probability is the same as that of the classical Cramér–Lundberg model and does
not depend on either the distribution of the mixing variable of the driving mixed Poisson
process or the number of claim contracts.
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1. Introduction

Risk theory plays an essential role in non-life insurance mathematics and dates back to the
work of Lundberg (1903). Some of the main purposes of the theory are to model the surplus of
an insurance company, derive the ruin probability, and measure various risks such as Gerber–
Shiu functions (Gerber and Shiu, 1998). In the classical Cramér–Lundberg model, the loss
process is a compound Poisson process with constant intensity, and the premium parameter is
also a constant. There is a vast literature on the classical Cramér–Lundberg model, its gener-
alizations, and risk measures; see, e.g., Rolski et al. (1998), Asmussen and Albrecher (2010),
and Klugman et al. (2012).

The study by Dubey (1977) is an important work on this topic because he proposed several
ruin models driven by a mixed Poisson process instead of a Poisson process. Dubey’s models
describe the scenario in which the true intensity of the insured is unknown at the beginning of
the insurance contract. He studied the ruin probability of some models with a mixed Poisson
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process and adaptive premium. For a single insured and continuously varying premium, Dubey
studied the ruin probability for each of the following methods of changing insurance premiums:
the Bayesian estimator, historical frequency, and Bühlmann estimator. Dubey derived the exact
ruin probability theoretically in the case of the Bayesian estimator and historical frequency, and
derived the asymptotic result in the case of the Bühlmann estimator. He also proposed discrete-
time models of a single insured and a continuous model of multiple insureds with the premium
determined by the Bühlmann estimator. Other scholars that have studied ruin models using a
mixed Poisson process include Grandell (1997) and Minkova (2004). The latter proposed a
ruin model with a gamma-distributed intensity.

There are both discrete- and continuous-time models in the literature for which the premium
is adapted to the claims. Tsai and Parker (2004) used a discrete-time model with adapted pre-
miums determined by Bühlmann’s method and compared, through Monte Carlo simulations,
the ruin probability with that of the classical ruin model. Trufin and Loisel (2013) used a sim-
ilar model, and proved that the adaptive premium policy decreases the ruin probability under
some assumptions. Afonso (2008) and Afonso et al. (2010) studied a continuous-time model
with discretely varying premiums, and presented numerical evaluations of the ruin probabil-
ity. Asmussen (1999) assumed that the company continuously modifies the premium using the
sample mean of the number of observed claims, even though credibility theory or the Bayes
method is not incorporated. Landriault et al. (2012) and Li et al. (2015) used models in which
the premium is determined not only by the number of claims but also by the surplus. Igarashi
(2015) considered a model in which both the intensity of the driving mixed Poisson process and
the premium rate have two values, and derived the optimal timing for switching the premium
rate from the higher value to the lower value.

In previous studies, the surplus processes of an insurance portfolio with dependent business
classes have also been investigated. Müller and Pflug (2001) derived a Lundberg-type result for
the asymptotic ruin probability of risk models with dependent increments under the assumption
of the existence of the probability-generating function. Cossette and Marceau (2000) modeled
the dependence using a Poisson shock process, and Boudreault et al. (2006) proposed a model
that uses the dependence structure between interclaim times and claim sizes.

In this study, we extend the work of Dubey (1977) to study the ruin probability. In one of
Dubey’s models it is assumed that there is only one insured, the counting process is a mixed
Poisson process, and the continuously varying premium rate is determined by a Bayesian rule
based on the number of claims. He showed that, for each fixed value of the safety loading,
the ruin probability of the model is the same as that of the classical Cramér–Lundberg model,
and does not depend on the distribution of the mixing variable of the driving mixed Poisson
process. We propose an extended model in which the insurance portfolio has one or more
insureds. The counting process for each insured is a mixed Poisson process, and the premium
rate of each insured is determined by a Bayesian rule on the number of claims. This describes
the scenario in which the true intensity of each insured is unknown at the start of the insurance
contract and is estimated by the observed number of claims. In this scenario, the interclaim
times of each insured are autocorrelated because the intensity is a random variable, but the
interclaim times of different insureds are independent.

In the proposed model, we show that, for each fixed value of the safety loading, the ruin
probability of the model is the same as that of the classical Cramér–Lundberg model, and
does not depend on either the distribution of the mixing variable of the driving mixed Poisson
process or the number of insurance contracts; that is, we show that the result of Dubey’s model
with the premium based on the Bayesian estimator can be extended to multiple insureds. This
result is also consistent with the result of Dubey’s model that the ruin probability of multiple
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insureds with the premium based on the Bühlmann estimator converges to the ruin probability
of the classical model when the number of insureds approaches infinity. The key lemma for
the proof of our theorem is that the conditional distribution of a random variable associated
with the mixed Poisson process, given the history of the process up to an arrival time, is an
exponential distribution with parameter 1, regardless of the distribution of the mixing variable
of the process. We provide two proofs of the result: the first uses Bayes’ theorem in the same
manner as Dubey (1977), and the second uses stochastic calculus.

This paper is organized as follows. In the next section we define our generalized Cramér–
Lundberg model, state our results, and present a numerical example. We provide the first and
second proofs in Sections 3 and 4, respectively.

2. Our setting and results

We consider the following generalization of the classical Cramér–Lundberg model of the
risk theory of non-life insurance.

Definition 1. We consider an insurance portfolio of n insurance policies. We consider a surplus

process in the form U(t) := u0 + ∫ t
0 c(s) ds −∑N(t)

k=1 Xk, t ≥ 0, where the variables are defined
as follows:

• The claim number processes of the n insured people, Ni = {Ni(t)}t∈[0,∞), i = 1, . . . , n,
are independent mixed Poisson processes, and their aggregation is denoted by N(t) :=∑n

i=1 Ni(t), t ≥ 0. For each i ∈ {1, . . . , n}, the mixing random variable�i of Ni, obtained
by �i = limt→∞ Ni(t)/t almost surely (a.s.), is assumed to satisfy E[�i]<∞. We do
not assume that the �is are identically distributed. The distribution function of �i is
denoted by Fi( · ). Moreover, the filtration generated by process Ni is denoted by Fi =
{Fi(t)}t∈[0,∞).

• Let the claim sizes X1, X2, . . . be a sequence of independent and identically distributed
(i.i.d.) positive random variables that are independent of the processes Ni. We assume
that μ := E[Xk]<∞.

• The instantaneous premium rate c = {c(t)}t∈[0,∞) is defined as

c(t) := (1 + θ )μ
n∑

i=1

E[�i |Fi(t)], t ≥ 0,

where the safety loading θ is a positive constant.

• The initial surplus u0 is a positive constant.

Furthermore, we define the following four concepts:

• The filtration F = {F(t)}t∈[0,∞) is defined as F(t) := F1(t) ∨ · · · ∨Fn(t).

• Let τk be the kth arrival time of N for each positive integer k. We set τ0 := 0.

• Let τ be the ruin time defined as τ := inf{t | U(t)< 0}, where inf ∅ := ∞ by convention.

• Finally, for each k ∈ {1, 2, . . .}, the random variable Ik is defined as

Ik :=
∫ τk

τk−1

n∑
i=1

E[�i |Fi(t)] dt.

https://doi.org/10.1017/jpr.2021.99 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.99


852 M. TOMITA ET AL.

FIGURE 1. Typical sample path of the surplus process and premium rate.

For comparison with our model, we introduce the surplus of the classical Cramér–Lundberg

model: U0(t) := u0 + ct −∑N0(t)
k=1 Xk, t ≥ 0. The intensity of the Poisson process N0 is the

constant λ, and the premium rate c is defined as c := (1 + θ )μλ. The setting is the same as in
Definition 1 except for the claim number process and premium rate. The ruin probability of the
classical Cramér–Lundberg model and the ruin time are defined as

ψ0(u) := P

(
inf

t∈[0,∞)
U0(t)< 0

)
,

τ 0 := inf
{
t | U0(t)< 0

}
,

where inf ∅ := ∞. Additionally, τ 0
k is defined as the kth arrival time of N0 for each positive

integer k. Note that the ruin probability ψ0(u) does not depend on the constant intensity λ.

Remark 1. Compared with the classical Cramér–Lundberg model, where intensity is a con-
stant, the intensity�i in our generalized model is a random variable that describes the scenario
in which the true intensity of each insured is unknown at the start of the insurance contract. The
instantaneous premium rate c(t) at time t is determined as the aggregation of the best estimators
for each �i using the history of Ni up to the time (multiplied by the constant (1 + θ )μ).

Remark 2. Using Bayes’ theorem, Dubey (1977) showed that the expression E[�i |Fi(t)]
equals ∫∞

0 λ1+Ni(t)e−λt dFi(λ)∫∞
0 λNi(t)e−λt dFi(λ)

.

See also Proposition 4.1 of Grandell (1997).

Remark 3. Figure 1 shows a typical sample path of our surplus process U(t) and the corre-
sponding path of the premium rate c(t), where n = 1, �1 ∼ �(1, 1), Xk ∼ �(2, 2), u0 = 1, and
θ = 1

10 .

For our generalized model, we have the following theorem; the second assertion addresses
the ruin probability.

Theorem 1. (i) {U(τk)}k∈{0,1,...}
d= {

U0
(
τ 0

k

)}
k∈{0,1,...}; that is, the distribution of the discrete-

time process {U(τk)}k∈{0,1,...} depends on neither the number n nor the distributions of mixing
variables �i.
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(ii) Furthermore, the ruin probability of our model satisfies P
(
inft∈[0,∞) Ut < 0

)=
P
(

inft∈[0,∞) U0
t < 0

)
; that is, the ruin probability depends on neither the number n nor the

distributions of mixing variables �i.

Remark 4. The distribution of {U(τk)}k∈{1,2,...} and ruin probability P(inft Ut < 0) depend on
the value of the safety loading θ and on the distribution of the Xk. Note also that the second
assertion of Theorem 1 does not hold for the Laplace transform of the time to ruin or more
general Gerber–Shiu functions.

If the Xk have a light-tailed distribution, that is, there is some δ > 0 that satisfies
E[exp(δXk)]<∞, then we also have the following.

Corollary 1. If the Xk have a light-tailed distribution and a positive R exists that satisfies
E[exp(RXk)] − 1 − (1 + θ )μR = 0, then this is the Lundberg adjustment coefficient of our
generalized Cramér–Lundberg model, and the ruin probability is written as

P

(
inf

t∈[0,∞)
Ut < 0

)
= exp(−Ru)

E[ exp(−RUτ ) | τ <∞]
.

The following lemma is the key to the proof of our theorem.

Lemma 1. For each k ∈ {0, 1, . . .}, the random variable Ik+1 is independent of F(τk) and is
exponentially distributed with mean 1.

The next proposition addresses the dependence of {U(τk)}k∈{1,2,...} and the �i.

Proposition 1. Suppose that at least one �i is non-constant. Then, the discrete-time pro-

cess {U(τk)}k∈{0,1,...} is not independent of (�1, . . . , �n): {U(τk)}k∈{0,1,...} | (�1, . . . , �n)
d
=

{U(τk)}k∈{0,1,...}.

Remark 5. Note that the aggregated claim number process N is also a mixed Poisson process
with mixing variable

∑n
i=1 �i. A natural question that arises is whether our instantaneous pre-

mium rate c(t) remains unchanged if we replace
∑n

i=1 E[�i |Fi(t)] with E
[∑n

i=1 �i |FN(t)
]

in its definition, where FN is the filtration generated by N. We provide two examples that
concern the comparison.

• Suppose that �i ∼ �(αi, β) for each i, where the second parameter β is common for all
�i. It then follows from Remark 2 that

n∑
i=1

E[�i |Fi(t)] =
n∑

i=1

Ni(t) + αi

β + t
= N(t) +∑n

i=1 αi

β + t
a.s.

Moreover, because
∑n

i=1 �i ∼ �
(∑n

i=1 αi, β
)
,

E

[
n∑

i=1

�i |FN(t)

]
= N(t) +∑n

i=1 αi

β + t
a.s.

Therefore, for this example,
∑n

i=1 E[�i |Fi(t)] =E
[∑n

i=1 �i |FN(t)
]

a.s.

• Suppose that each �i is uniformly distributed in the interval (0, ai). Because∫ ai

0
λye−λt dλ= y!

ty+1

{
1 − e−ait

y∑
k=0

(ait)k

k!

}
= y!e−ait

ty+1

∞∑
k=y+1

(ait)k

k!

https://doi.org/10.1017/jpr.2021.99 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.99


854 M. TOMITA ET AL.

TABLE 1. Ruin probability for finite time

t = 1 5 10 50 100 1000

n = 1 0.02 0.100 0.155 0.274 0.309 0.356
10 0.162 0.312 0.344 0.362 0.362 0.362
100 0.345 0.361 0.361 0.361 0.361 0.361

for each nonnegative integer y, we see from Remark 2 that

n∑
i=1

E[�i |Fi(t)] =
n∑

i=1

{Ni(t) + 1}∑∞
k=Ni(t)+2

(ait)k

k!
t
∑∞

k=Ni(t)+1
(ait)k

k!
a.s.

Because this is not FN(t)-measurable, for this example

P

[
n∑

i=1

E[�i |Fi(t)] 
=E

[
n∑

i=1

�i |FN(t)

]]
> 0.

We now present a numerical example of the ruin probability in finite time using a Monte
Carlo simulation. We assume the following: the claim size Xk is exponentially distributed with
parameter 1, �i is exponentially distributed with parameter 1, the initial surplus u0 = 5, and
θ = 0.2.

We consider the three cases of n = 1, 10, and 100 insureds. We generate 100 000 random
scenarios and calculate the ruin probability numerically at time t = 1, 5, 10, 50, 100, and 1000.

In all cases, the ruin probability for infinite time equals 1
1.2 exp

(− 0.2·5
1.2

)� 0.362. The results
for finite time are shown in Table 1. The following two points are observed:

1. For finite time, the smaller the number of insureds, the lower the probability of ruin.
This result is easy to understand because the smaller the number of insureds, the larger
the variance of the surplus in finite time.

2. In all cases, the ruin probability approaches a certain level as t approaches infinity. As
expected from Theorem 1, the ruin probability for infinite time is independent of the
number of insureds.

3. Proofs

We first provide a lemma that is a consequence of Bayes’ theorem.

Lemma 2. For each nonnegative integer k, the posterior distribution of (�1, . . . , �n) |F(τk)
satisfies

P
(
�i ≤ λi, i = 1, . . . , n |F(τk)

)=
n∏

i=1

∫ λi
0 ν

Ni(τk)
i e−νiτk dFi(νi)∫∞

0 ν
Ni(τk)
i e−νiτk dFi(νi)

for λi > 0, i = 1, . . . , n.

Proof of Lemma 2. Let {t�}�∈{0,1,...,k} be a strictly increasing sequence of nonnegative real
numbers with t0 = 0, and let {yi,�}, where i ∈ {1, . . . , n} and � ∈ {0, 1, . . . , k}, be a double
sequence of nonnegative integers that satisfy the following two properties:
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• for all i, the sequence {yi,�}�∈{0,1,...,k} is non-decreasing;

• for all �,
∑n

i=1 yi,� = �.

Conditional on σ (�1, . . . , �n), the processes Ni are independent Poisson processes, and

P
(
τ� ∈ [t�, t� + dt�), �= 1, . . . , k |�i = λi, i = 1, . . . , n

)

=
{

k∏
�=1

(
n∑

i=1

λi

)
e−(∑n

i=1 λi)(t�−t�−1)

}
dt1 . . . dtk =

(
n∑

i=1

λi

)k

e−(∑n
i=1 λi)tk dt1 . . . dtk.

Moreover,

P
(
Ni(τ�) = yi,�, i = 1, . . . , n, �= 1, . . . , k |�i = λi, τ� = t�, i = 1, . . . , n, �= 1, . . . , k

)

=
k∏
�=1

∏n
i=1 λ

yi,�−yi,�−1
i∑n

i=1 λi
=
∏n

i=1 λ
yi,k
i(∑n

i=1 λi
)k .

It thus follows that

P
(
τ� ∈ [t�, t� + dt�), Ni(τ�) = yi,�, i = 1, . . . , n, �= 1, . . . , k |�i = λi, i = 1, . . . , n

)

=
(

n∏
i=1

λ
yi,k
i

)
e−(∑n

i=1 λi)tk dt1 . . . dtk =
(

n∏
i=1

λ
yi,k
i e−λitk

)
dt1 . . . dtk,

which, together with Bayes’ theorem, completes the proof. �

Proof of Lemma 1. It suffices to show that

E
[
e−aIk+1 |F(τk)

]= 1

a + 1
for all a ∈ [0,∞). (1)

It follows from Remark 2 that

Ik+1 =
n∑

i=1

∫ τk+1

τk

∫∞
0 λ1+Ni(t)e−λt dFi(λ)∫∞

0 λNi(t)e−λt dFi(λ)
dt =

n∑
i=1

∫ τk+1

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt,

which implies that the left-hand side of (1) is equal to

E

[
exp

{
−a

n∑
i=1

∫ τk+1

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt

} ∣∣F(τk)

]

=E

[
E

[
exp

{
−a

n∑
i=1

∫ τk+1

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt

} ∣∣ σ (�1, . . . , �n) ∨F(τk)

]
|F(τk)

]

(2)

according to the tower property of conditional expectations. Because the conditional distribu-
tion of the inter-arrival time τk+1 − τk given σ (�1, . . . , �n) ∨F(τk) is exponential with mean
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(
∑n

i=1 �i)−1, expression (2) is further equal to

E

[ ∫ ∞

0
exp

{
−a

n∑
i=1

∫ τk+x

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt

}(
n∑

i=1

�i

)
e−x

∑n
i=1 �i dx

∣∣F(τk)

]

=
∫ ∞

0
exp

{
−a

n∑
i=1

∫ τk+x

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt

}
E

[(
n∑

i=1

�i

)
e−x

∑n
i=1 �i

∣∣F(τk)

]
dx

= −
∫ ∞

0
exp

{
−a

n∑
i=1

∫ τk+x

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt

}(
d

dx
E
[
e−x

∑n
i=1 �i

∣∣F(τk)
])

dx

= −
∫ ∞

0
exp

{
−a

n∑
i=1

∫ τk+x

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt

}

×
(

d

dx

n∏
i=1

∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)∫∞

0 λNi(τk)e−λτk dFi(λ)

)
dx (3)

by Lemma 2.
In the following, we show that (3) equals 1/(a + 1). The idea is to observe that

d

dt

∫ ∞

0
λye−λt dFi(λ) =

∫ ∞

0
λy de−λt

dt
dFi(λ) = −

∫ ∞

0
λ1+ye−λt dFi(λ)

for each i and y ≥ 0, where the interchangeability of integration and differentiation is guar-
anteed by Lebesgue’s dominated convergence theorem and our assumption that E[�i]<∞.
Consequently, the integral with respect to t in (3) is, via integration by substitution, rewritten
as follows:∫ τk+x

τk

∫∞
0 λ1+Ni(τk)e−λt dFi(λ)∫∞

0 λNi(τk)e−λt dFi(λ)
dt =

[
− log

(∫ ∞

0
λNi(τk)e−λt dFi(λ)

) ]t=τk+x

t=τk

= − log

(∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)∫∞

0 λNi(τk)e−λτk dFi(λ)

)
.

Expression (3) is therefore equal to

−
∫ ∞

0

{
n∏

i=1

∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)∫∞

0 λNi(τk)e−λτk dFi(λ)

}a(
d

dx

n∏
i=1

∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)∫∞

0 λNi(τk)e−λτk dFi(λ)

)
dx

= − ∫∞
0

{∏n
i=1

∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)

}a{ d
dx

∏n
i=1

∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)

}
dx{∏n

i=1

∫∞
0 λNi(τk)e−λτk dFi(λ)

}a+1

=
− 1

a+1

[{∏n
i=1

∫∞
0 λNi(τk)e−λ(τk+x) dFi(λ)

}a+1
]x=∞

x=0{∏n
i=1

∫∞
0 λNi(τk)e−λτk dFi(λ)

}a+1
= 1

a + 1
,

which verifies our desired equality (1). �
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Proof of Theorem 1(i). Each increment of the discrete-time process {U(τk)}k∈{1,2,...}
satisfies

U(τk) − U(τk−1) = (1 + θ )μIk − Xk (4)

for k = 1, 2, . . .. By Lemma 1, it also follows that F(τk−1) ∨ σ (X1, . . . , Xk−1), Ik, and Xk are
independent, and thus the right-hand side of (4) is independent of F(τk−1) ∨ σ (X1, . . . , Xk−1).
This implies that the discrete-time process {U(τk)}k∈{0,1,...} is a random walk. Moreover, each
increment of the discrete-time process, that is, the right-hand side of (4), has a distribution
that does not depend on either n or the distributions of the �i, because Ik is independent of Xk

and is exponentially distributed with mean 1. This completes the proof of the first assertion in
Theorem 1. �

Proof of Theorem 1(ii). Process U decreases only in jumps, and this implies that
inft∈[0,∞) U(t) = infk∈{0,1,...} U(τk) a.s. This, together with Theorem 1(i), completes the
proof. �

Proof of Corollary 1. Theorem 1(ii) yields P
(

inft∈[0,∞) Ut < 0
)=ψ0(u), and Theorem 1(i)

implies that the distribution of U0(τ 0) is equal to U(τ ).
See Lundberg (1903) for the proof on the existence of a positive R and ψ0(u) =

exp (−Ru)/E[exp (−RU0
τ 0 ) | τ 0 <∞]. �

Proof of Proposition 1. The conditional distribution of τ1 given σ (�1, . . . , �n) is exponen-
tial with mean

(∑n
i=1 �i

)−1, and thus

E[I1 | σ (�1, . . . , �n)] =
∫ ∞

0

{
n∑

i=1

∫ t

0

∫∞
0 λe−λu dFi(λ)∫∞
0 e−λu dFi(λ)

du

}(
n∑

i=1

�i

)
e−t

∑n
i=1 �i dt

=
∫ ∞

0

{
n∑

i=1

∫ s(
∑n

i=1 �i)
−1

0

∫∞
0 λe−λu dFi(λ)∫∞
0 e−λu dFi(λ)

du

}
e−s ds a.s.,

where s := t
∑n

i=1 �i. Moreover, it follows readily by definition that

E[U(τ1) | σ (�1, . . . , �n)] = u0 + (1 + θ )μE[I1 | σ (�1, . . . , �n)] −E[X1],

and E[U(τ1) | σ (�1, . . . , �n)] is therefore almost surely equal to a strictly decreasing function
of
∑n

i=1 �i. Because
∑n

i=1 �i is non-constant by our assumption, the random variable U(τ1)
is not independent of the �i. �

4. Second proof via stochastic calculus

In this section we use stochastic calculus to provide another proof of our key lemma.

Proof of Lemma 1. For each i ∈ {1, . . . , n}, the process

{
Ni(t) −

∫ t

0
E[�i |Fi(s)] ds

}
t∈[0,∞)

(5)
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is an Fi-martingale. Indeed, for 0 ≤ u< t,

E

[
Ni(t) −

∫ t

0
E[�i |Fi(s)] ds |Fi(u)

]
−
{

Ni(u) −
∫ u

0
E[�i |Fi(s)] ds

}

=E[Ni(t) − Ni(u) |Fi(u)] −E

[ ∫ t

u
E[�i |Fi(s)] ds |Fi(u)

]

=E
[
E[Ni(t) − Ni(u) | σ (�i) ∨Fi(u)] |Fi(u)

]− ∫ t

u
E[�i |Fi(u)] ds

=E[(t − u)�i |Fi(u)] − (t − u)E[�i |Fi(u)] = 0 a.s.

Because every Fi-martingale is also an F-martingale, the process (5) is an F-martingale. By
aggregation, we see that the process

{
N(t) − ∫ t

0

∑n
i=1 E[�i |Fi(s)] ds

}
t∈[0,∞) is also an F-

martingale, and hence the F-compensator of the point process N is A(t) := ∫ t
0

∑n
i=1 E[�i |

Fi(s)] ds. Because this compensator has continuous paths, it follows from the Grigelionis
(1977) Poisson reduction result (see also Kallenberg 2017, Corollary 9.30) that the time-
changed process N(A−1( · )), where A−1(s) := inf{t ≥ 0 | A(t)> s}, s ∈ [0,∞), is an F(A−1

( · ))-Poisson process with intensity parameter 1. Consequently, for each k ≥ 0, the random
variable Ik+1 = A(τk+1) − A(τk) is independent of F(τk) and is exponentially distributed with
mean 1. �

5. Conclusion

We proposed an extension of Dubey’s ruin model (1977) with the Bayesian estimator to
multiple insureds. We showed that, for each fixed value of the safety loading, the ruin proba-
bility derived from our model is the same as that of the classical Cramér–Lundberg model and
does not depend on either the distribution of the mixing variable of the driving mixed Poisson
process or the number of insurance contracts; that is, the ruin probability of the model with
the Bayesian estimator in infinite time derived by Dubey (1977) also applies to the case of
multiple insureds. Our result is also consistent with the result of Dubey’s model that the ruin
probability of multiple insureds with the premium based on the Bühlmann estimator converges
to the ruin probability of the classical model when the number of insureds approaches infinity.
We emphasize that our result is not approximate.

We provided two proofs, the first based on Bayes’ theorem and the second via stochastic
calculus. The second proof suggests that our assumption that the counting process is a mixed
Poisson process is not a necessary condition for the validity of our result. A sufficient condition
for our proposition is that the compensator of the counting process is continuous and equal to
the time integral of the Bayesian estimator. This leads to two tasks for future research. One
is to determine somewhat different descriptions of the sufficient condition, and the other is to
study whether the distribution of real loss data satisfies the condition.
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