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The two-dimensional space spanned by the velocity gradient invariants Q and R is
expanded to three dimensions by the decomposition of R into its strain production
−1/3sij sjkski and enstrophy production 1/4ωiωj sij terms. The {Q; R} space is a planar
projection of the new three-dimensional representation. In the {Q; −sss; ωωs} space
the Lagrangian evolution of the velocity gradient tensor Aij is studied via conditional
mean trajectories (CMTs) as introduced by Martı́n et al. (Phys. Fluids, vol. 10, 1998,
p. 2012). From an analysis of a numerical data set for isotropic turbulence of
Reλ ∼ 434, taken from the Johns Hopkins University (JHU) turbulence database, we
observe a pronounced cyclic evolution that is almost perpendicular to the Q–R plane.
The relatively weak cyclic evolution in the Q–R space is thus only a projection of a
much stronger cycle in the {Q; −sss; ωωs} space. Further, we find that the restricted
Euler (RE) dynamics are primarily counteracted by the deviatoric non-local part of
the pressure Hessian and not by the viscous term. The contribution of the Laplacian
of Aij , on the other hand, seems the main responsible for intermittently alternating
between low and high intensity Aij states.
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1. Introduction
The understanding of the small-scale structure of turbulence has been at the core of

turbulence research for a few decades now (see, e.g. Tennekes & Lumley 1972; Frisch
1995; Sreenivasan & Antonia 1997; Tsinober 2001). It was natural to investigate the
properties of the velocity gradient tensor Aij = ∂ui/∂xj (e.g. Ashurst, Kerstein &
Kerr 1987; Lund & Rogers 1994; Soria et al. 1994; Galanti & Tsinober 2000;
Kholmyansky, Tsinober & Yorish 2001; Lüthi, Tsinober & Kinzelbach 2005). Well
known important properties of Aij are the predominant alignment of vorticity ω with
the intermediate eigenvector λ2 of the rate of strain tensor sij = 1/2(Aij +Aji) and the
positiveness of the mean of the corresponding eigenvalue Λ2. The evolution equations
for enstrophy ω2 and strain s2 read

D

Dt

ω2

2
= ωiωj sij + νωi∇2ωi, (1.1)

D

Dt

s2

2
= −sij sjkski − 1

4
ωiωj sij − sij

∂2p

∂xi∂xj

+ νsij ∇2sij . (1.2)

† Email address for correspondence: luethi@ifu.baug.ethz.ch
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Figure 1. (a) Joint p.d.f. of Aij events in the invariant space {Q; R}, plotted in log10 spaced
contours. (b) Vector field and magnitude of the non-dimensional conditional mean rate of
change, vQ,R , in the {Q; R} space.

Equations (1.1) and (1.2) indicate that along with ω2 and s2, the third moments,
enstrophy and strain production, ωiωj sij and sij sjkski , are among the key quantities
of turbulence dynamics. They are responsible for the self-amplifying nature of Aij ,
which is believed to be a universal feature, as is discussed in Tsinober (2001).
Another important relation is the so-called Tennekes and Lumley balance (Tennekes &
Lumley 1972, p. 91) for statistically stationary turbulence 〈ωiωj sij 〉 = −〈νωi∇2ωi〉.
It states that, at whatever high Reynolds number, the viscous and production terms
of enstrophy are of equal importance. It is notable that even at low Reynolds
number the integrals over the flow domain of the enstrophy production and of its
viscous destruction are approximately balanced at any time moment,

∫
ωiωj sijdV ≈

−ν
∫

ωi∇2ωidV , as reported in Tsinober (2001).
It has proven to be a useful way to study some of the local flow properties in

the so called Q–R plane (e.g. Cantwell 1992; Martı́n, Dopazo & Valiño 1998; Ooi
et al. 1999; Chertkov, Pumir & Shraiman 1999; Biferale et al. 2007; Chevillard et al.
2008). Q is the second invariant, Q = 1/4(ω2 − 2s2), of the velocity gradient tensor
Aij and R is its third invariant, R = −1/3sij sjkski − 1/4ωiωj sij . In joint p.d.f. plots
of Q versus R a qualitatively identical ‘tear drop’ shape (see figure 1a) for different
kinds of turbulent flows was found by a number of investigators. Chacı́n & Cantwell
(2000) argue that the shape is a universal characteristic of the small-scale motions
of turbulence. This statement is corroborated by a compilation of Q–R plots of
different flows (Tsinober 2001) and velocity gradient measurements at Reλ = 6600
(see Gulitski et al. 2007). The most characteristic feature is that in strain dominated
regions the strain production term, −sij sjkski , is dominant over ωiωj sij , resulting in
the so-called Vieillefosse tail, (see Vieillefosse 1982).

Neglecting the non-local influence of pressure and viscosity Hij , Cantwell (1992)
derived the so-called restricted Euler (RE) solution for the evolution of Aij as
dQ/dt = −3R and dR/dt = −2/3Q2. In Chacı́n & Cantwell (2000) the analysis is
extended to studying and modelling the term Hij . The same authors employed the
Q–R framework to investigate flow structures of turbulent boundary layers (Chacı́n &
Cantwell 2000). A central finding was that the discriminant, D = 27/4 · R2 + Q3, of
Aij separates sweeps and strong dissipative events D < 0 from ejections D > 0. They
concluded that additional insight into turbulent motions can be gained by studying
the Lagrangian evolution of Aij in the Q–R plane. Martı́n et al. (1998) and Ooi et al.
(1999) identified a mean clockwise evolution of trajectories in the Q–R plane. Several
studies aimed at comprehending and modelling this mean evolution (e.g. Chertkov
et al. 1999; Jeong & Girimaji 2003; Chevillard et al. 2008). The ‘fluid deformation’
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Grid �t ε = 2νsij sij ν τη =
(ν

ε

)1/2

L η =

(
ν3

ε

)1/4

Reλ =
√

15

(
L

η

)2/3

10243 2 × 10−4 0.0928 1.85 × 10−4 0.0446 3.4 0.00287 434

Table 1. Parameters of the numerical JHU simulation.

closure for the deviatoric part of the pressure Hessian HP
ij introduced by Chevillard

et al. (2008) works well in regions with D < 0; however, in regions where D > 0
some features are not accurately reproduced. Generally, when projected onto the Q–R

plane, the role of HP
ij remains somewhat unclear, for example, in the region where

D > 0 and R > 0 the averaged influence of HP
ij is almost negligible.

In the present study the {Q; R} space is expanded to three dimensions,
{Q; −sss; ωωs}. This new representation allows to shed more light on the dynamics
of the velocity gradient tensor Aij . Among other things, the role of HP

ij becomes much
clearer. This paper is organized as follows. In § 2 the details of the numerical JHU
data are outlined. In § 3 Q–R dynamics together with a definition for its variance
of magnitude and direction are introduced. The evolution of Aij in {Q; −sss; ωωs}
space, with special attention to the deviatoric part of the pressure Hessian is presented
in § 4, which is followed by summary and conclusions in § 5.

2. JHU data
For our analysis we have used the JHU turbulence database that is developed as

an open resource by the Johns Hopkins University (see Li et al. 2008). The data is
from a direct numerical simulation of forced isotropic turbulence on a 10243 periodic
grid, using a pseudospectral parallel code. The Taylor Reynolds number is Reλ = 434.
Time integration of the viscous term is done analytically using an integrating factor.
The other terms are integrated using a second-order Adams–Bashforth scheme and
the nonlinear term is written in vorticity form, following Cao & Chen (1999). The
simulation is de-aliased using phase-shift and a 2

√
2/3 truncation (see Patterson &

Orszag 1971). Energy is injected by keeping constant the total energy in modes such
that their wavenumber magnitude is less or equal to 2. After the simulation has
reached a statistical stationary state, 1024 frames of data, which includes the three
components of the velocity vector and the pressure, are generated and ingested into
the database. The duration of the stored data is about one large-eddy turnover time.
For our analysis we have released 8×106 particles into the flow at t = 0 and integrated
their position in time using the Euler method with a time step of δt = 1/22τη. At
every new position the information of velocity, pressure Hessian and the Laplacian
of Aij was stored. A summary of the flow parameters is given in table 1.

3. Q–R dynamics and variance of evolution
Following Martı́n et al. (1998), we calculate the Lagrangian non-dimensional

instantaneous rates of change vQ,R as {Q̇ = DQ/Dt ·τη|Q, R; Ṙ = DR/Dt ·τη|Q, R} as
functions of the velocity gradient invariant variables Q and R, and the corresponding
conditional mean rates of change vQ,R as {〈Q̇|Q, R〉; 〈Ṙ|Q, R〉}. Note that if 〈Q̇|Q, R〉
and 〈Ṙ|Q, R〉 were multiplied by the joint probability P (Q, R) it would be identical
to the probability current W as used, for example, in Chevillard et al. (2008). In all
our results Q and R have been normalized with τ 2

η and τ 3
η , respectively. Q̇ and Ṙ can
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500 B. Lüthi, M. Holzner and A. Tsinober

0.2

0.4

0.6

0.8

1.0

1.2

1.4

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q 0

0.2

–0.2

0.4

–0.4

0.6

–0.6

0.8

–0.8

0

0.2

–0.2

0.4

–0.4

0.6

–0.6

0.8

–0.8

(a) (b)

R
–0.20 –0.10 0 0.10 0.20

R
–0.20 –0.10 0 0.10 0.20

Figure 2. (a) Q–R conditioned contour plots with log10 spacing of the relative variance
σ̂ = σv/‖vQ,R‖. (b) Q–R conditioned contour plots of ‖〈cos(vQ,R, vQ,R)〉‖.

be looked at as components of a velocity vector vQ,R of the state of Aij in the Q–R

space. In figure 1(b) we plot the vector field and the contours of the magnitude of
vQ,R . From, for example, Martı́n et al. (1998) it is known that the conditional mean
trajectories of vQ,R circle in a clockwise direction around the origin. What is perhaps
less well known and demonstrated here, is that ‖vQ,R‖ tends to very small values
along the centreline of the ‘tear drop’ shape, which for Q < 0 regions coincides with
the so-called Vieillefosse tail (Vieillefosse 1982).

By defining a mean and a fluctuating part as vQ,R = vQ,R + v′
Q,R , the variance of

vQ,R is σ 2
v = 〈(vQ,R −vQ,R)2〉. In figure 2(a) logarithmically spaced contours are shown

for σ̂ = σv/‖vQ,R‖. We see that only in the relatively high speed regions, σ̂ drops to
small values where ‖vQ,R‖ and ‖vQ,R‖ are of similar order. Around the Vieillefosse tail
however, ‖vQ,R‖ is typically over an order of magnitude larger than ‖vQ,R‖. The same
trend becomes apparent if we look at the low values of the mean cosine of the angle
between vQ,R and vQ,R , shown in figure 2(b). On the one hand, it is not surprising that
the cosine is far from unity, as it is clear that vQ,R must have significant components
normal to the iso-probability contours of the joint p.d.f. of Q and R. Otherwise a
fluid parcel with low gradients could not reach strong enstrophy or strain states as
intermittently as it occurs in turbulence. We find that this alternation between low
and high intensity states is quite intensive, since even the strongest mean alignment
in the quadrant Q > 0 and R > 0 never exceeds an angle of 45◦ and is very close to
random alignment around the Vieillefosse tail.

4. Evolution in {Q; −sss; ωωs} space
In this section the {Q; R} space is expanded to three dimensions so that the

influence of strain and enstrophy production terms −sij sjkski and ωiωj sij can be
studied separately. For the analysis of the {Q; −sss; ωωs} space a total of 106×40×40
bins are used in a domain {[−0.8e1, 0.8e1], [−0.3e2, 0.3e2], [−0.3e3, 0.3e3]}. The norms
of the ei triplet in the three directions are equivalent to

‖e1‖ = 1/4(ω2 − 2s2),

‖e2‖ = −1/3
√

2sij sjkski,

‖e3‖ = 1/4
√

2ωiωj sij .

⎫⎪⎬⎪⎭ (4.1)
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Figure 3. Conditional mean trajectories (CMTs) of the evolution of Aij in the {Q; −sss; ωωs}
space are shown for two different views inside V95 % represented by ribbons, with the arrows
indicating the direction of the CMTs. The surface with the discriminant D = 27/4 ·R2+Q3 = 0
is shown as a wire mesh. The view point of (a) is chosen such that the envelope of the
ribbons resemble the ‘tear drop’ shape and the clockwise cyclic evolution, known from
the two-dimensional Q–R representation. The three-dimensional view (b) reveals the cyclic
evolution more clearly. All CMTs starting at the centre of a bin inside V95 % from the Q = 0

plane with Q̇ > 0 are plotted (c) in the {−1/3
√

2sss; Q} plane and (d ) in the {1/4
√

2ωωs; Q}
plane, for one complete cycle.

The pre-factors
√

2 for the production terms are used so that for the planar projection
onto the {Q; R} space we have e2 −e3 = eR . This domain spans five times the averages
of enstrophy (strain) and enstrophy (strain) production. Each bin that contains more
than five entries is used to define a joint probability volume. We find that for our data
95 % of all events fall into the volume represented by ribbons in figure 3(a, b) and it
is henceforth referred to as V95 %. Similar to {Q; R} space (see Martı́n et al. 1998) we
define the conditional mean rates of change for the {Q; −sss; ωωs} space as

vQ =

〈
DQ

Dt
· τ 3

η | Q, −1/3
√

2sss, 1/4
√

2ωωs

〉
vsss =

〈
D(−1/3

√
2sij sjkski)

Dt
· τ 4

η | Q, −1/3
√

2sss, 1/4
√

2ωωs

〉

vωωs =

〈
D(1/4

√
2ωiωj sij )

Dt
· τ 4

η | Q, −1/3
√

2sss, 1/4
√

2ωωs

〉
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.2)
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Figure 4. (a) For each CMT shown in figure 3(c, d ) the duration of one revolution is measured
and plotted versus its initial distance from the origin r0. The inset shows the ratio, r0/r2π,
between the distances from to origin before and after one complete cycle. (b) For the same

CMTs the angular velocity dθ/dt · τη is plotted over the angle θ of the {1/4
√

2ωωs; Q} state.
The dashed line is at 〈dθ/dt · τη〉 = 0.16.

Analogously to the two-dimensional case, (4.2) represents the three components of
a velocity vector v of Aij in the {Q; −sss; ωωs} space. Like for {Q; R}, Q and
the production terms are normalized with τ 2

η and τ 3
η , respectively. To illustrate that

the Q–R plane is a projection of the {Q; −sss; ωωs} space we show in figure 3(a) the
evolution of conditional mean trajectories (CMTs) starting from the centre of each
bin within V95 % from a view point approximately perpendicular to the Q–R plane, i.e.
{Q · e1; [−1/3

√
2sss · e2 −1/4

√
2ωωs · e3]}. The surface of D = 0, with the discriminant

D = 27/4 · R2 + Q3, is rendered as a wire mesh. From this view point the well known
clockwise evolution is evident in the enstrophy dominated regions where Q > 0, while
around the Vieillefosse tail the evolution is less clear. However, if the view point
is moved such that it is facing almost the Q–ωωs plane (figure 3b), our first main
result becomes much clearer: There is a pronounced anticlockwise cyclic evolution,
with a rotation axis that is almost perpendicular to the Q–R plane. This non-trivial
cyclic evolution is one of the manifestations of the time irreversibility of turbulent
flows, as reflected by other manifestations, such as positive net enstrophy and strain
production and the 4/5 Kolmogorov law. To better illustrate the characteristics of
the CMTs, we show in figure 3(c, d ) selected CMTs that start from the Q = 0 plane
with Q̇ > 0 at the centre of each bin inside V95 %. The CMTs are integrated over
one revolution until they cross again the Q = 0 plane. Figure 3(c) shows how during
vortex compression (ωωs < 0 and −sss ∼ 0) all CMTs are attracted towards a very
narrow region, before diverging again slightly in the strain dominated region (Q < 0).
Figure 3(d ) reveals how the CMTs spiral towards the origin. Summarizing, a typical
cycle for all CMTs starts with enstrophy production (ωωs > 0) often associated with
strain production (−sss > 0) leading to enstrophy dominated regions (Q > 0). This
is followed by vortex compression (ωωs < 0) while the CMTs reach strain dominated
regions (Q < 0).

To quantify the cyclic evolution of Aij figure 4(a) reveals that complete revolutions
of all CMTs shown in figure 3(c,d ) have a duration of about 40τη, regardless of r0,
the initial distance of a CMT from the origin. During one cycle the distance r roughly
diminishes by a factor of 5, as seen in the inset of the same figure. The angular
velocities, dθ/dt · τη, of the CMTs are measured and plotted over the angle θ , with

tan(θ) = Q/(1/4
√

2ωωs) (figure 4b). On average dθ/dt · τη = 0.16, which results in a
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Figure 5. (a) CMTs of the RE contribution to the evolution of Aij inside the V95 % volume

in the {Q; −sss; ωωs} space. (b) CMTs of the HP
ij contribution to the evolution of Aij inside

the V95 % volume. The arrows are indicating the direction of the CMTs. (c) Projection of the

vP field onto the {−1/3
√

2sss; Q} plane with iso-contours for its magnitude. (d ) Same as

(c) but projection onto the {1/4
√

2ωωs; Q} plane.

cycle duration of 2π/0.16 � 39τη that is of the order of the integral time TL � 60τη.
Without access to Aij dynamics at significantly higher Reynolds number it is not
clear how the cycle duration is determined by TL and τη, i.e. how it is affected by
direct and bidirectional coupling between small and large scales. The good collapse
of all curves at θ = π/2 and 3π/2, where the CMTs reach their extreme values of
positive and negative Q, is noteworthy.

Taking the gradient of the Navier–Stokes equation one obtains

DAij

Dt
= −AikAkj − ∂2p

∂xi∂xj

+ ν
∂2Aij

∂xk∂xk

. (4.3)

Using the incompressibility condition Aii = 0, the pressure is given by

AikAki = − ∂2p

∂xi∂xi

. (4.4)

Subtracting (4.4) from (4.3) with the condition that the trace of the pressure term be
zero produces

DAij

Dt
= −AikAkj + AkmAmk

δij

3
− ∂2p

∂xi∂xj

+
∂2p

∂xi∂xi

δij

3
+ ν

∂2Aij

∂xk∂xk

. (4.5)

The first two terms of the right-hand side of (4.5) lead to the well-known RE
solution (Cantwell 1992) in the {Q; R} space and the corresponding CMTs for vRE in
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three-dimensional space are shown in figure 5(a). The main characteristic of the RE
trajectories is that they are not doomed to spiral and converge towards the origin, but
that they escape and leave the volume at high strain and enstrophy production rates.
As an interesting additional feature we observe that any CMT starting at D > 0 first
makes a looping, peaking at high enstrophy values, before reaching high production
rates. We observed that adding the viscous term of (4.5) does hardly change the
qualitative behaviour of the CMTs. The field vν of ν∇2Aij is relatively weak and is
mainly pointing towards the origin (Chevillard et al. 2008 and own observations not
shown herein).

Chevillard et al. (2008) studied the role of the deviatoric part of the pressure
Hessian HP

ij and reported two main features. First, HP
ij is counteracting the effect

induced by the RE term. Second, in the quadrant above the right Vieillefosse tail the
directions of the CMTs are uncertain due to negligible magnitudes of v

p
R,Q. The action

of the deviatoric part of the pressure Hessian in the {Q; −sss; ωωs} space is shown
in figure 5(b). As expected, also in the three-dimensional representation the action of
HP

ij is counteracting the RE contribution. Generally, the magnitude of vp increases

with increasing ‖Q‖ (figure 5c,d ) and is maximal in high strain regions, where HP
ij

counteracts strain production, as indicated by the lower arrow in figure 5(b) and as
can be clearly seen in the projection of the vP field onto the {−1/3

√
2sss; Q} plane,

rendered in figure 5(c). In high enstrophy regions HP
ij enhances enstrophy production

and thereby counteracts the contribution of RE, figure 5(d ). Again, adding to HP
ij

the viscous term does not change the qualitative picture. This comprises our second
main result: For the dynamics of Aij the deviatoric non-local part of the pressure
Hessian and not the viscous term is predominantly counteracting the RE dynamics.
In addition, we note that unlike the trajectories in {Q; R} space, the CMTs of vp

are quite ordered in three dimensions. The main features are that from the alignment
with the e3 (ωωs) axis at high Q (figure 5d ) the CMTs tend towards negative Q

while turning 270◦ at very low magnitudes of vp (see grey arrow in figure 5b) to align
with the −e2 (sss) axis moving towards strain destruction (figure 5c). The combined
influence of RE and HP

ij , the evolution of the inviscid CMTs, is shown in figure 6(a)
and reveals a clear pattern. In contrast to the RE dynamics the cyclic evolution is
now present, but the CMTs are spiralling away from the origin. Especially at high
production rates of either strain or enstrophy the CMTs leave V95 % more or less at
a normal angle. In Q > 0 regions HP

ij attenuates a too strongly converging spiralling

motion of RE, while in Q < 0 regions HP
ij fully counteracts the RE field.

Finally, we investigate in more detail the variance σ̂ 2. We remind that it has to
be the variance that shuffles among low- and high-intensity Aij events, as the CMTs
themselves simply spiral towards low values of Q, sss and ωωs. In particular, we
ask whether the main contribution to σ̂ 2 stems from HP

ij or from ν∇2Aij . Because
during our analysis we observed that the ‖〈cos(v, v)〉‖ and the variance σ̂ commute
very closely, in figure 6(b–d ) we show for this purpose the contours of averaged
conditioned cosines projected onto the {ωωs; Q} plane. In figure 6(b) the inviscid
case is shown. In regions with ‖Q‖ > 0.2 the values are typically above 0.7 and are
approaching unity where vP is highest. Since the variance of the RE term is zero
by definition, we conclude that in those regions the influence of HP

ij leads only to a

relatively small variance. If the evolution of the non-local HP
ij term has a vanishing

variance then closures that are based only on the position in the {Q; −sss; ωωs}
space should be possible. Contrarily, the viscous term that is rendered in figure 6(c)
is fluctuating more intensively. The average alignment between v and v never exceeds
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Figure 6. (a) Spiralling CMTs, arrows indicating the direction, of the inviscid contribution

to the evolution of Aij inside the V95 % volume. Contours in the {1/4
√

2ωωs; Q} plane of
conditioned average cosines between the fields of mean v and instantaneous v evolution of
Aij is shown for the inviscid field in (b), the viscous field in (c) and for the total field in (d ).

45◦. From this we conclude, as a third result, that the viscous term is more important
than HP

ij for alternating between low and high intensity Aij events. The combined
outcome for ‖〈cos(v, v)〉‖ of all terms of (4.5) is shown in figure 6(d ). Except for
vortex compressing regions, where ωiωj sij < 0 and Q̇ < 0 and which occupy about
one third of the fluid flow volume, the alignment between v and v is quite weak, for
example, a typical angle is in the range of 10◦–30◦. However, as compared to the
alignment of vQ,R–vQ,R in the {Q; R} space shown in figure 2(b) the alignment is
typically stronger.

5. Summary and conclusion
To improve fundamental understanding of the dynamics of the velocity gradient

tensor Aij we have expanded the two-dimensional {Q; R} space to a three-dimensional
{Q; −sss; ωωs} space. Analysing a numerical data set of isotropic turbulence at
Reλ ∼ 434, provided by JHU turbulence database, we demonstrate that in the three-
dimensional space there exists a strong cyclic evolution of the Aij state. The cycle
is oriented almost perpendicular to the Q–R plane and successively encounters high
enstrophy/strain production events, enstrophy dominated regions, vortex compression
events and strain dominated regions. The duration for one complete cycle is about
40τη ∼ O(TL). Future investigations at higher Re number will show how this is
affected by bi-directional coupling of small and large scales, which is the main and
outstanding manifestation of non-locality (see Tsinober 2001).
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Looking separately at the influences of the RE, the deviatoric part of the pressure
Hessian HP

ij and the viscous term ν∇2Aij , two additional observations can be made.

First, we find that it is primarily the term HP
ij that is responsible for counteracting

the RE dynamics. This is not in conflict with Tsinober, Ortenberg & Shtilman (1999),
who find that in regions of high strain the pressure Hessian even enhances the growth
of stretching. The difference to ∂2p/(∂xi∂xj ) is that HP

ij is deviatoric. Closer analysis
showed that the non-local part of the pressure Hessian counteracts RE dynamics,
while the local part enhances it. In future work this will be investigated in more detail.

Second, it appears that the viscous term plays the leading role for the variance
of the Aij evolution. We note that without such a variance, low and high intensity
Aij events would not be alternating as quickly as it is observed in turbulent flows,
because then any Aij state could evolve only along its CMTs, which are spiralling
slowly towards low gradient events. The active behaviour of the viscous term reflects
that it is not just a simple damping term for the inviscid dynamics of Aij , i.e. that it
is more active than usually thought.

We conclude by observing that the non-locality plays a crucial role for the evolution
of the velocity gradients. This comprises a fundamental challenge for any closure
based on local and Lagrangian history information and generally for a more complete
comprehension of the Aij dynamics. Our results indicate that closures for HP

ij that are
linked to the position in the {Q; −sss, ωωs} space should be possible. As a benchmark
we propose the strong qualitative property that vP is aligned with e3, along ωωs, for
Q > 0 and with −e2, along sss, for Q < 0.
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