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SUMMARY
Many applications require unmanned ground vehicles
(UGVs) to travel at high speeds on sloped, natural terrain.
In this paper, a potential field-based method is proposed
for UGV navigation in such scenarios. In the proposed
approach, a potential field is generated in the two-
dimensional “trajectory space” of the UGV path curvature
and longitudinal velocity. In contrast to traditional potential
field methods, dynamic constraints and the effect of
changing terrain conditions can be easily expressed in the
proposed framework. A maneuver is chosen within a set
of performance bounds, based on the local potential field
gradient. It is shown that the proposed method is subject to
local maxima problems, rather than local minima. A simple
randomization technique is proposed to address this problem.
Simulation and experimental results show that the proposed
method can successfully navigate a small UGV between
predefined waypoints at speeds up to 7.0 m/s, while avoiding
static hazards. Further, vehicle curvature and velocity are
controlled during vehicle motion to avoid rollover and
excessive side slip. The method is computationally efficient,
and thus suitable for onboard real-time implementation.

KEYWORDS: Mobile robots; Potential fields; Outdoor terrain;
Motion planning.

1. Introduction and Related Work
Unmanned ground vehicles (UGVs) are expected to play
significant roles in future military, planetary exploration,
and materials handling applications.1,2 Many applications
require UGVs to move at high speeds over rough, natural
terrain. One important challenge for high-speed navigation
lies in avoiding dynamically inadmissible maneuvers (i.e.,
maneuvers that self-induce vehicle failure due to rollover and
excessive side slip).3 This is challenging as it requires real-
time analysis of vehicle dynamics, and consideration of the
effects of terrain inclination, roughness, and traction. Another
challenge for high-speed navigation lies in rapidly avoiding
static hazards such as trees, large rocks or boulders, water
traps, etc.4 Such hazards are often detected at short range
(particularly “negative obstacles,” or depressions below
the nominal ground plane), and thus hazard avoidance
maneuvers must be generated very rapidly.
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Artificial potential fields have long been successfully
employed for robot control and motion planning due to their
effectiveness and computational efficiency. Generally, these
methods construct artificial potential functions in a robot’s
workspace such that the function’s global minimum value
lies at the robot’s goal position and local maxima lie at
locations of obstacles. The robot is “pushed” by an artificial
force proportional to the potential function gradient at the
robot’s position, and thus moves toward the goal position
while avoiding hazards.

First works based on this approach were performed
by Khatib as a real-time obstacle avoidance method for
manipulators.5 Latombe applied potential field methods to
the general robot path planning problem, including high
d.o.f. manipulators and mobile robots operating at low speeds
in structured, planar environments.6 This work proposed
various techniques for implementing potential field-based
planning methods that do not suffer from local minima,
a classical problem for potential field planners. Ge et al.
applied the potential field concept for dynamic control
of a mobile robot, with moving obstacles and goal in
a structured environment.7 This work addressed the local
minima problem by judiciously choosing appropriate forms
of the potential functions. Decision-making logic was also
integrated into the motion planning strategy to avoid local
minima. Path planning using potential fields has also been
applied to parallel computation schemes and nonholonomic
systems.8,9 In summary, potential fields have been applied
extensively to the problem of path planning of manipulators
and mobile robots operating at low speeds in structured,
indoor settings.10–14 These methods do not consider the
effects of terrain inclination, roughness, and traction on UGV
mobility, nor do they address the problem of dynamically
inadmissible maneuvers.

The application of artificial potential fields to mobile robot
navigation in natural terrain has recently been addressed.15

This approach relies on a vision-based classification
algorithm to analyze local terrain and determine the
locations of obstacles and nontraversable terrain regions.
A conventional potential field planner is then applied to
the 2-D traversability map. Since the approach is designed
for low-speed operation on relatively flat, lightly cluttered
environments it does not consider the effects of terrain
inclination, roughness, or traction, nor does it address the
problem of dynamically inadmissible maneuvers.

Here, a local reactive navigation method is presented
for high-speed UGVs on rough, uneven terrain. In the
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410 High-speed navigation

Fig. 1. Trajectory space illustration and maneuver examples corresponding to various locations in the trajectory space.

proposed method, a potential field is defined in the two-
dimensional “trajectory space” of the robot’s path curvature
and longitudinal velocity.19,20 This is in contrast to other
proposed methods, where potential fields are defined in
the Cartesian or configuration space. The trajectory space
framework allows dynamic constraints, terrain conditions,
and navigation conditions (such as waypoint location(s),
goal location, hazard location(s), and desired velocity) to
be easily expressed as potential functions. A maneuver is
chosen within a set of performance bounds, based on the
potential field gradient. This yields a desired value for the
UGV path curvature and velocity. Desired values for the
UGV’s steering angle and throttle can then be computed as
inputs to low-level tracking controllers.

The proposed approach has some similarity to the dynamic
window approach to navigation.16–18 In that approach, a
potential-like field is developed in the 2-dimensional space
of translation and rotational velocities, and a behavior is
chosen in the space. The method considers goal and obstacle
locations, but does not consider dynamic constraints (due
to rollover and side slip) and terrain conditions (such as
inclination, roughness, and traction).

In Section 2 of this paper, the trajectory space is introduced
and problem assumptions are stated. In Section 3, potential
functions are defined based on dynamic constraints, terrain
conditions, and navigation conditions. In Section 4, the
navigation algorithm is outlined. In Section 5, the problems
of local minima and maxima are described, and a simple
randomization technique for mitigating the effects of these
problems is described. In Sections 6 and 7, simulation
and experimental results are presented that show that the
proposed method can successfully navigate a small UGV
between predefined waypoints at speeds up to 7.0 m/s, while
avoiding static hazards, vehicle rollover, and excessive side
slip. The method is computationally efficient, and thus
suitable for onboard real-time implementation.

2. Trajectory Space Description and Problem
Assumptions

2.1. Trajectory space description
The trajectory space, TS ∈ �2, is defined as a two-
dimensional space of a UGV’s instantaneous path curvature
and longitudinal velocity.19,20 This space clearly cannot
describe the complete vehicle state, but can rather capture

important UGV state and configuration information and serve
as a physically intuitive description of the current vehicle
status. A UGV’s “position” in TS is a curvature-velocity pair
and is denoted as τ = (κ , v). The relationship of a point in
the trajectory space and a vehicle maneuver is shown in
Figs. 1(a) and (b). Note that in this work, only positive
longitudinal velocities are considered.

The trajectory space is a useful space for UGV navigation
for two reasons. First, points in the trajectory space map
easily and uniquely to the points in UGV actuation space
(generally consisting of one throttle control input and one
steering angle control input). Thus, navigation algorithms de-
veloped for use in the trajectory space will map to command
inputs that obey vehicle nonholonomic constraints. Second,
constraints related to dynamic effects such as UGV rollover
and side slip are easily expressible in the trajectory space,
since these effects are strong functions of the UGV velocity
and path curvature.20 Trajectory space constraints can also
be formulated as functions of important terrain parameters,
including terrain inclination, roughness, and traction.

In the proposed navigation method, a potential field
is constructed in the trajectory space based on dynamic
constraints, terrain conditions, and navigation conditions. An
appropriate navigation command is then selected based on
the properties of this field. Potential field formulation and a
navigation methodology are discussed in Section 3.

2.2. Problem assumptions
In this work, it is assumed that the UGV has a priori
knowledge of the positions of widely spaced (i.e., many
vehicle lengths) waypoint and/or goal locations.3,21,31 Such
knowledge is often derived from high-level path planning
methods that rely on coarse elevation or topographical map
data. It is assumed that the locations of hazards can be locally
detected from onboard range sensors, and might take the
form of terrain discontinuities such as rocks or ditches, or
nongeometric hazards such as soft soil. Hazard detection
and sensing issues are important aspects of UGV navigation
in natural terrain, but are not a focus of this work.

It is also assumed that estimates of local terrain inclination,
roughness, and traction can be sensed or estimated. The
inclination of a UGV-sized terrain patch is defined in a
body-fixed frame B (see Fig. 2) by two parameters, θ and
ø, associated with the roll and pitch, respectively, of a plane
fit to the patch. Roughness is defined as terrain unevenness
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Fig. 2. Definition of a UGV coordinate system.

caused by features that are less than one-half the vehicle
wheel radius in size. Roughness is here characterized by
the fractal dimension � and is defined over the interval
� Î [2, 3].22 The maximum available traction at a wheel-
terrain contact point is defined as the product of the terrain
friction coefficient µ and the normal force acting on the
terrain. This model assumes point contact between the wheel
and terrain and neglects nonlinear effects due to wheel slip
and terrain and/or tire deformation. Note that estimates of
terrain inclination, roughness, and traction can be derived
from elevation and visual data via a variety of classification
algorithms.22–26

The vehicle mass, inertia tensor, center of gravity (c.g.)
position, and kinematic properties are assumed to be
known with reasonable certainty. The vehicle is assumed
to be equipped with inertial and GPS sensors that allow
measurement of the vehicle’s linear rates and accelerations
and position in space with reasonable certainty.

Coordinate systems employed in this work are shown in
Fig. 2. A body frame B is fixed to the vehicle, with its origin
at the vehicle center of mass. The position of the vehicle in
the inertial frame I is expressed as the position of the origin
of B. The vehicle attitude is expressed by x-y-z Euler angles
using the vehicle yaw ψ , roll θ , and pitch ø defined in B.
(Note that since the UGV suspension is assumed to be rigid,
the vehicle roll and pitch are equal to the terrain roll and
pitch.) The vehicle wheelbase length is denoted by L, the
c.g. height from the ground is h, and the half-width is d. For
simplicity, the UGV is here assumed to be axially symmetric.

3. Potential Field Definition
In the proposed method, a potential field is constructed in the
trajectory space and vehicle maneuvers are selected based on
the properties of this field. The potential field is defined as a
sum of potential functions relating to each constraint, hazard,
and goal or waypoint location. Here, potential functions
are defined for dynamic rollover and side slip constraints,
waypoints (and goal) locations, hazard locations, and the
desired UGV velocity.

3.1. Potential functions for rollover and side
slip constraints
During high-speed operation, a UGV must avoid dynamically
inadmissible maneuvers, i.e., maneuvers that self-induce
vehicle failure due to rollover and excessive side slip.

This is challenging as it requires real-time analysis of
vehicle dynamics, and consideration of the effects of terrain
inclination, roughness, and traction. Note that although some
side slip is expected and unavoidable, substantial slip that
causes large heading or path following errors is detrimental.
Rollover is also generally undesirable despite the fact that
some UGVs are designed to be mechanically invertible.

In the proposed approach, constraint functions related to
rollover and side slip are computed from low-order dynamic
models and expressed as potential function sources in the
trajectory space. Clearly, higher d.o.f. models are available
for predicting rollover and side slip, however the proposed
models have been shown to be reasonably accurate in
practice.17

A rollover constraint for a UGV traveling on uneven terrain
can be modeled as

κr (v) = dgz ± hgx

hv2
− δr , (1)

where κr is the maximum admissible path curvature, v
is the UGV longitudinal velocity, g∗ is the gravitational
acceleration of the ∗-axis direction in B. The two solutions to
Eq. (1) correspond to travel on positive/negative inclination
side slips, with nonzero gx components reflecting the effect of
terrain roll. Note that δr is introduced here as a small positive
“safety margin” for reasons described later. A potential
function is then defined as

PFr (κ, ν)

=

⎧⎪⎨
⎪⎩

Kr

(
1 − (κ − κmax)2

(κr (v) − κmax)2

)
κr < |κ| < κmax

0 0 ≤ |κ| < κr

(2)

where κmax is the maximum attainable path curvature for a
UGV based on kinematic steering constraints, and is assumed
to be independent of velocity. Here, Kr is a positive gain
parameter to modulate the potential function height. The
introduction of δr in Eq. (1) causes Eq. (2) to be nonzero
at curvature-velocity pairs that approach but do not exceed
the UGV’s predicted stability limit. An illustration of a
potential function for the UGV rollover constraint is shown in
Fig. 3.

A corresponding repulsive force is generated as the
negative gradient of the repulsive potential, as

Fr = −∇PFr (k, ν) = −∇νPFr (k, ν) − ∇ρPFr (k, ν), (3)

where

∇νPFr (κ, ν)=
⎧⎨
⎩

4Kr

(κ −κmax)2(κr (v)+δr )

v(κr (v)−κmax)3
, κr < |κ|<κmax

0, 0 ≤ |κ| < κr

∇ρPFr (κ, ν) =
⎧⎨
⎩

2Kr

(κ − κmax)

(κr (v) − κmax)2
, κr < |κ| < κmax

0, 0 ≤ |κ| < κr.
(4)

This repulsive force grows increasingly large as the UGV
curvature exceeds the maximum allowable curvature defined
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in Eq. (1), and is zero otherwise. Thus, the repulsive force
affects navigation only when the UGV is on the verge of ex-
ecuting a dynamically inadmissible maneuver due to rollover.

Side slip occurs when the lateral traction forces between a
UGV’s wheels and the terrain is exceeded by the sum of the
centrifugal force and lateral gravitational force component.
The maximum path curvature that a UGV can track without
excessive side slip can be modeled as follows:

κs(ν) = −gx ± µgz

v2
− δs, (5)

where ρs is the maximum admissible path curvature. Again,
δs is introduced for reasons identical to those described
earlier. A potential function is then defined as

PFs(κ, ν) =
⎧⎨
⎩

Ks

(
1 − (κ − κmax)2

(κs(ν) − κmax)2

)
, κs < |κ| < κmax

0, 0 ≤ |κ| < κs.

(6)

Again, Ks is a positive gain parameter to modulate the
potential function height. An illustration of a potential
function for the side slip constraint appears similar to that
for the rollover constraint shown in Fig. 3.

A corresponding repulsive force is generated as the
negative gradient of the repulsive potential as

Fs = −∇PFs(κ, ν) = −∇νPFs(κ, ν) − ∇ρPFs(κ, ν), (7)

where

∇νPFs(κ, ν) =
⎧⎨
⎩

4Ks

(κ −κmax)2(κs(v)+δr )

v(κs(v) − κmax)3
, κr < |κ|<κmax

0, 0 ≤ |κ| < κr

(8)

∇ρPFs(κ, ν) =
⎧⎨
⎩

2Ks

(κ − κmax)

(κs(v) − κmax)2
, κr < |κ| < κmax

0, 0 ≤ |κ| < κs.

Fig. 3. Illustration of potential function of rollover and side slip
constraints.

Fig. 4. Illustration of effect of terrain inclination on rollover
constraint.

The repulsive force grows increasingly large as the UGV
curvature exceeds the maximum allowable curvature defined
in Eq. (5), and is zero otherwise. Thus, the repulsive force
affects navigation only when the UGV is on the verge of
executing a dynamically inadmissible maneuver due to side
slip.

The models employed earlier are functions of the terrain
inclination and traction. An example of the effects of varying
inclination on the constraint equation (1) can be observed in
Fig. 4. Here, rollover constraints are shown for the case of
flat terrain, rolling terrain with θ = 15◦, and rolling terrain
with θ = 30◦. The solid or dashed lines indicate the point
at which the value of Eq. (2) exceeds zero. It can be seen
that as terrain inclination increases, the rollover constraint
model predicts that a UGV can safely execute negative
curvature maneuvers (“downslope” turns) at greater velocity
than positive curvature maneuvers (“upslope” turns). This
is physically reasonable, since during negative curvature
maneuvers the gravity vector gx component acts counter to
centripetal acceleration.

An example of the effect of traction on the constraint
equation (5) can be observed in Fig. 5. Here, side slip
constraints are shown for the case of flat terrain, with
µ = 0.2, 0.6, and 1.0. The solid or dashed lines indicate
the point at which the value of Eq. (6) exceeds zero. It
can be seen that as terrain traction increases, the side slip
constraint model predicts that a UGV can safely execute a
fixed-curvature maneuver at greater velocity. Again, this is
physically reasonable, since during travel on high-traction
terrain the available cornering force is greater than on low-
traction terrain. Thus, the proposed potential functions can
capture the effects of terrain inclination and traction.

Terrain roughness influences rollover and side slip by
inducing variation in the wheel normal forces. It has been
shown that for natural terrain, the presence of roughness
leads to a distribution of curvature-velocity pairs at which
rollover or side slip occurs, with the mean of this distribution
approximately described by the prediction from the rigid-
body models of Eqs. (1) and (5).17,28 Monte Carlo simulation
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Fig. 5. Illustration of effect of terrain traction on side slip constraint.

Fig. 6. Comparison of possible UGV paths toward a waypoint.

methods have been developed for analyzing this distribution
as a function of terrain roughness.27,28 Detailed discussion of
the effects of terrain roughness on UGV mobility are beyond
the scope of this paper.

In practice, probability distribution functions related to
rollover and side slip can be determined as a function
of terrain roughness via offline Monte Carlo simulation
analysis. The parameters δr and δs can then be chosen to
correspond to 3σ limits of these distributions. A look-up

table can then be constructed relating δr and δs to roughness
� . Since roughness can be measured online in real time, δr

and δs can be modulated to account for roughness. Thus, the
proposed potential functions can be adapted for in rough
terrain scenarios if measurements or estimates of terrain
roughness are available.

3.2. Potential function for waypoint locations
To enable UGV navigation between waypoints, an attractive
potential function is composed with a corresponding
attractive force that tends to “pull” the UGV toward the
desired waypoint at a given instant. The form of the potential
function influences the shape of the resulting UGV path. For
example, consider a UGV moving toward a desired waypoint
as shown in Fig. 6. Two possible paths to the waypoint are
illustrated as paths A and B, resulting from two different
potential functions. Both paths possess the same initial
curvature. Path B, however, is more direct and thus more
desirable than Path A in the absence of other constraints.

To generate direct paths between waypoints, a method
illustrated in Fig. 7 is proposed. Let Od be the Euclidean
distance between the UGV c.g. and the waypoint. A line
connecting the UGV c.g. and waypoint intersects a circle
centered at the UGV c.g. with radius 2ρmax. The desired
curvature ρd to this “virtual waypoint” is taken as the
curvature that leads to the intersection point. In the case
where Od < 2/κmax, κd is taken as the curvature that leads to
the waypoint directly.

A potential function corresponding to the current desired
waypoint location is then defined as follows:

PFw(κ) = Kw(κ − κd )2, (9)

where Kg is a positive gain parameter to modulate the
potential function height. An illustration of a potential
function for waypoint location is shown in Fig. 8.

A corresponding attractive force is generated as the
negative gradient of the attractive potential as

Fw = −∇ρPFw(κ), (10)

where

∇ρPFw(κ, ν) = 2Kw(κ − κd ). (11)

Fig. 7. Computation of desired steering angle using “virtual waypoints.”
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Fig. 8. Illustration of potential function for waypoint location.

The difference in robot trajectories resulting from the use
of virtual waypoints is illustrated in a simulation result
presented in Section 6.1.

3.3. Potential function for desired velocity
A potential function related to the desired UGV velocity can
be simply expressed as follows:

PFv(v) = Kv(v − vd )3, (12)

where vd is the desired UGV velocity and Kv is a positive
gain parameter to modulate the potential function height.
Note that vd may be a function of position or time to reflect
high-level objectives. An illustration of the potential function
for the desired velocity is shown in Fig. 9.
A corresponding attractive force is generated as the negative
gradient of the attractive potential as

Fv = −∇νPFv(ν) (13)

Fig. 9. Illustration of potential function of desired velocity.

Fig. 10. Minimum and maximum steering angles toward a hazard.

where

∇vPFv(κ, ν) = 3Kv(ν − νd )2. (14)

3.4. Potential function for hazard locations
A potential function related to hazard locations should
consider (at minimum) the relative position and orientation
of the UGV and hazard(s). Consider the general situation
of a UGV approaching a static hazard shown in Fig. 10.
Here κ1 and κ2 are the maximum and minimum path
curvatures toward the hazard from the current UGV position
and velocity. A point vehicle representation is assumed and
hazard boundaries are computed accordingly.

Here, a potential function for hazard location is proposed
that considers several factors. First, path curvatures between
κ1 and κ2 are undesirable if the UGV is near the hazard, yet
can be safely employed if the hazard is distant. Second, the
potential function value should be higher at high speed than
at low speed since both path tracking accuracy and response
time decrease with increasing speed. Third, the orientations
of hazard(s) relative to the current waypoint (with respect
to the UGV position) should influence the hazard potential
function value, thus allowing a UGV to “pass” hazards
without being unduly disturbed by them. This is illustrated
in Fig. 11.

Fig. 11. Influence of relative locations of waypoints and hazards.
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Fig. 12. Illustration of potential function for single hazard location.

From these observations, a potential function for hazard
locations is defined as follows:

PFh(κ, ν)= Kh(Khvv+1)

(KhdOd +1)(Kha|Ad |+1)
e−(κ−X)2/2σ 2

, (15)

where Ad is the minimum angle between the current waypoint
and the hazard of interest (see Fig. 11), X = (κ1 + κ2)/2, and
σ = (κ1 − κ2)/2. Kh, Khd, Kha, and Khv are positive gain
parameters to modulate the potential function height.

The hazard potential function is chosen as a scaled
Gaussian with σ proportional to the hazard “width” as
observed by the UGV at a given distance. As the UGV
approaches the hazard or travels at increased speed, the
magnitude of the potential function grows. As the heading
angle to the hazard relative to the current waypoint diverges,
the magnitude of the potential function diminishes. An
illustration of the potential function for a UGV approaching
a hazard is shown in Fig. 12. Note that a single function
is employed for each hazard, and multiple hazards can be
described as a summation of multiple functions.

A corresponding repulsive force is generated as the
negative gradient of the repulsive potential as

Fh = −∇PFh(κ, ν) = −∇νPFh(κ, ν) − ∇ρPFh(κ, ν),

(16)
where

∇νPFh(κ, ν) = KhKhv

(KhdOd + 1)(Kha|Ad | + 1)
e−(κ−X)2/2σ 2

∇ρPFh(κ, ν) = Kh(Khvv + 1)(κ − X)

σ (KhdOd + 1)(Kha|Ad | + 1)
e−(κ−X)2/2σ 2

.

(17)

3.5. Definition of net potential field
A net potential field is generated as the sum of all proposed
potential functions as

NPF(κ, ν) = PFr (κ, ν) + PFs(κ, ν) + PFw(κ)

+ PFv(v) +
n∑

i=1

PFhi(κ, ν), (18)

Fig. 13. Illustration of proposed net potential field.

where n is the number of hazards present and PFhi is
the potential function corresponding to the ith hazard. An
illustration of a net potential field is shown in Fig. 13.

A net force field corresponding to the net potential field is
generated as the sum of all proposed virtual forces

NF(κ, ν) = −∇PFr (κ, ν) − ∇PFs(κ, ν) − ∇PFw(κ)

−∇PFv(v) −
n∑

i=1

∇PFhi(κ, ν). (19)

4. Navigation Algorithm Description
During navigation, the gradient of the net potential field is
computed at the UGV’s position in the trajectory space (i.e.,
its instantaneous path curvature and longitudinal velocity
τ = (κ , v)). A desired curvature and velocity is then chosen
in the direction of maximum descent as τ ∗ = τ + NF(τ ).
The desired maneuver τ ∗ is used to derive command inputs
for low-level control of UGV steering angle and throttle.
This procedure is repeated at a control rate appropriate to the
navigation task, usually 1–10 Hz.

Three factors must be considered during implementation
of the proposed algorithm. First, not all regions of TS are
reachable in a finite time t due to limits on UGV acceleration,
deceleration, and steering rate. Thus, τ ∗ should be chosen in
a subspace of TS termed the “reachable trajectory space.”20

Second, calculation of the potential functions in Eq. (18)
may be corrupted by sensor noise, and thus filtering should be
performed during the gradient calculations in Eq. (19). Third,
the desired path curvature and velocity must be mapped to
steering angle and throttle command inputs to perform low-
level control. These factors are discussed later.

4.1. Reachable trajectory space description
The reachable trajectory space is computed based on
knowledge of the UGV’s instantaneous curvature and
velocity, and its acceleration, braking, and steering
characteristics. For a UGV located at τ in the trajectory
space, an estimate of the maximum and minimum attainable
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Fig. 14. Single-track UGV model for reachable trajectory space
calculation.

velocities in a time t is

vmax
reachable = v + a+t

(20)
vmin

reachable = v − a−t,

where a+ and a− are UGV acceleration/deceleration
parameters, respectively, assuming constant acceleration/
deceleration capability. The maximum and minimum
attainable path curvatures for a front-wheel steered vehicle
in time t are

κmax
reachable(v) = κ + κ̇maxt

(21)
κmin

reachable(v) = κ − κ̇maxt,

where κ̇max is the maximum rate of change of path
curvature. This parameter can be computed from the single-
track vehicle model shown in Fig. 14.29 In this model, the
properties of the front and rear wheel pairs are lumped into
single front and rear wheels located on the centerline of the
vehicle, and

|κ̇max| = tan δ̇max

L
, (22)

where δ̇max is the maximum rate of change of the UGV
steering angle. Figure 15 shows an example of the reachable
trajectory space.

4.2. Potential field gradient calculation
In practical application of the proposed algorithm, the calcu-
lation of the potential functions in Eq. (18) will be corrupted
by sensor noise, and thus filtering must be performed during
the gradient calculations in Eq. (19). Here a plane-fitting
approach is proposed to compute the potential field gradient.
This approach was chosen due to its computational efficiency
and ability to mitigate the potentially significant effects of
noise on the gradient calculation.

In the proposed approach, the reachable trajectory space,
which is nominally rectangular, is discretized into nine equal-
area rectangular regions. Other discretization geometries and
resolutions are possible, however this discretization was
found to yield good results in simulation and experimental
trials. A maneuver is chosen via the following algorithm:

1. The value of the net potential field at the center of each
region is calculated from Eq. (18) (see Fig. 15(a) and (b));

2. A plane fit to the potential field values is calculated and
the gradient of the plane is computed (see Fig. 15(c)).
The direction of maximum descent is taken as the desired
maneuver direction;

3. The desired maneuver τ ∗ is chosen as the point on the
boundary of the reachable trajectory space in the direction
of the desired maneuver from the current point.

4.3. Command input calculation
To perform low-level control of the UGV, the desired
maneuver τ ∗ is mapped to a pair of command inputs for
the UGV steering angle and throttle setpoint. Assuming a
single-track vehicle model (see Fig. 14), the steering angle
can be computed from the path curvature as

δ = tan−1(Lκ). (23)

The desired maneuver velocity can be used directly as a low-
level control setpoint, assuming a velocity controlled vehicle.
A variety of low-level control laws can then be employed to
track the desired curvature and velocity. In this work, simple
PD compensators were employed.

5. Local Minimum Problem Discussion

5.1. Conventional local minimum description
The existence of local minima is a fundamental problem
associated with potential fields constructed from multiple

Fig. 15. Illustration of gradient calculation algorithm.
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Fig. 16. Example of conventional local minimum.

Fig. 17. Example of conventional free-path local minimum.

potential functions. A classical local minimum situation
for Cartesian space potential field methods is illustrated in
Fig. 16. Due to the interaction of the repulsive and attractive
potential functions associated with the hazard and goal, Area
A is a possible location of a local minimum. In Cartesian
space potential field applications, this would result in the
robot stopping in Area A and not the goal location.

A second situation is shown in Fig. 17. Here, the goal is
located between the UGV and a hazard, and the waypoint
lies within the region of influence of the hazard potential
function. In this case, the global minimum of the potential
field is not the waypoint position. A UGV might reach this
global minimum yet not reach the waypoint. This situation
is called a “free-path local minimum.”

5.2. Trajectory space local maximum and minimum
description
Situations that lead to local minimum situations in classical
potential field approaches often lead to local maximum
situations in the proposed method. For example, Fig. 18
shows a situation similar to that shown in Fig. 16, with

Fig. 18. Example of trajectory space local maximum.

a corresponding trajectory space potential field. In this
situation, τ = (0, νd ) , κd = 0, X = 0, Ad = 0, θ = ø = 0◦,
and µ = 1.0. Thus, only the hazard potential function
influences computation of τ ∗. In this situation, the hazard
potential function of Eq. (15) becomes

PFh(κ, ν) = Kh(Khvv + 1)

KhdOd + 1
e−κ2/2σ 2

(24)

and ∇ρPFh(0, νd) = 0. Thus, the symmetry of the hazard
potential function causes the potential field gradient to be
zero in the curvature dimension, and the desired maneuver
directs the UGV toward the hazard.

Local maxima are unlikely to occur in practice since sensor
noise, terrain unevenness, and terrain inclination all tend to
introduce asymmetry to the net potential field. However, to
address this issue, Gaussian random noise of small amplitude
is added to each element of the net potential field during the
algorithm described in Section 4.2. This method serves to
perturb unstable local maxima, and avoid situations such as
that shown in Fig. 18. It has been observed empirically that
the addition of a small amount of random noise does not
degrade navigation performance.

An example of the effect of this method is shown in
Fig. 19. Here, a situation similar to that shown in Fig. 16 is
presented. In this case, however, the addition of noise causes
the UGV to be perturbed from the (unstable) local maxima
in the trajectory space, and select a maneuver that leads to
successful navigation to the goal.

The existence of local minima is possible when a UGV
encounters multiple hazards. In contrast to Cartesian space
methods, a trajectory space local minima does not result in the
UGV stopping at a location that is not the goal location (save
for cases where v = 0). Rather, the UGV continues to move at
the curvature and velocity corresponding to the local minima
point. Thus, the trajectory space net potential function is
continually changing, even if the UGV is “trapped” in a local
minima.

As has been noted by previous researchers, a simple
method for addressing these situations is to continue moving
according to the total virtual force until the relative positions
of the hazards have eliminated the existence of the local
minimum.7 Since the potential function is continually
changing, it is highly likely that the local minima will migrate
or vanish over time. Though simple, this “waiting” method
has been found to be effective in practice.

Another potential type of local minimum that can occur is
a limit cycle, where the vehicle follows the same trajectory
permanently, usually due to the presence of dense obstacles.
Methods for avoiding such limit cycles have been developed
by previous researchers.32

6. Simulation Results
Simulations were conducted of a small four-wheeled UGV
traveling at high speeds over uneven terrain using Matlab and
the dynamic simulation software ADAMS 12.0. ADAMS
is a multibody simulation engine that allows simulation
of high d.o.f. systems on uneven terrain. The UGV was
modeled as a front-wheel steered vehicle with a mass of
3.1 kg and independent spring-damper suspensions with
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Fig. 19. Example of local maximum avoidance by addition of noise.

linear stiffness and damping parameters k = 500.0 N/m and
b = 110 N s/m, respectively. The UGV length L = 0.27 m, the
half-width d = 0.124 m, the height of UGV c.g. from ground
h = 0.055 m, and the wheel diameter was 0.12 m.

Wheel–terrain contact forces were derived from the
magic tire model using standard parameters for a passenger
vehicle tire operating on asphalt.30 This model is generally
accepted for modeling onroad mobility, and was assumed
to be a reasonable model for offroad mobility when soil
deformation is small. Terrain roughness was created using
fractal techniques, with fractal number of 2.05, grid spacing
of 2 wheel diameters, and height scaling of 35 wheel
diameters.18 This corresponds to flat but bumpy terrain.
Potential function gain parameters were chosen empirically
to balance the relative contributions of the various potential
functions to the net potential field. The parameter values were
set as follows: Kr = 800, Ks = 800, Kw = 0.3, Kv = 0.5 ×
10−5, Kh = 1500, Khd = 0.05, Kha = 10, Khv = 0.07. These
parameters were derived from analysis of simulation studies.
Good performance of the algorithm was observed to exist
across a range of parameters.

6.1. Effect of virtual waypoints
Figure 20 shows a simulation result illustrating the effect of
using virtual waypoints (see Section 3.2). Here, the UGV
began at (x, y) = (0.0, 0.0) and a single waypoint was set at
(x, y) = (15.0, 15.0). Paths resulting from the use of virtual
waypoints are in general more direct than paths resulting
from widely spaced user-defined waypoints. In this result, the
total length of the trajectory employing virtual waypoints was
21.4 m compared to 22.8 m without using virtual waypoints.

6.2. Obstacle avoidance and waypoint navigation
Numerous simulations were performed to study the
algorithm’s ability to guide a UGV at high speed among
multiple waypoints while avoiding multiple hazards on flat
terrain. Results from a representative simulation are shown

Fig. 20. Influence of virtual waypoint.

in Figs. 21–23. Here, the UGV began at (x, y) = (0.0, 0.0),
hazards were set at (x, y) = {(15.0, 0.0), (50.0, 22.0)}, and
waypoints were set at (x, y) = {(30.0, 0.0), (40.0, 20.0), (60.0,
20.0)}. PD control was employed for steering angle and
velocity control. The desired velocity during this simulation
was 5.0 m/s. For this small vehicle at this speed, both rollover
and significant side slip were possible.

Figure 21 shows the UGV Cartesian space trajectory and
shape of the potential field at two locations. The vehicle
safely navigated between three waypoints while avoiding two
hazards. Figure 22 shows that the velocity remained near the
desired value of 5.0 m/s except during turns of large curvature
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Fig. 21. Map and sample trajectory spaces of simulation result.

Fig. 22. UGV velocity and curvature—simulation results.

Fig. 23. UGV roll angle and slip angle—simulation results.
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Fig. 24. Map and trajectory of simulation result for desired velocity
of 5.0 m/s.

(points (a), (b), and (c)). During these turns, the rollover
and/or side slip potential functions caused the velocity
to decrease in order to avoid a dynamically inadmissible
maneuver. Figure 23 shows plots of the UGV roll angle
and slip angle during the trajectory. Slip angle refers to the
difference of the angle between the UGV velocity vector
at the c.g. and the longitudinal axis of the vehicle. Due to
the UGV’s relatively high speed, the maximum values of
roll angle and slip angle are large, but did not lead to a
dynamically inadmissible maneuver.

6.3. Effect of velocity on navigation
Simulations were performed to study the effect of desired
UGV velocity on algorithm performance. A map of a
representative simulation is shown in Fig. 24. Hazards are
located at (x, y) = {(25.0, 0.0), (40.0, 2.0)} and waypoints
are set at (x, y) = {(50.0, 0.0), (70.0, 0.0)}. Vehicle and
terrain parameters were identical to those in the simulation
in Section 6.1.

Simulation results are shown in Figs. 25 and 26 for the
case where the desired UGV velocity was 5.0 m/s. As in the
simulations of Section 6.1, the UGV velocity decreased at
regions of large path curvature in order to avoid dynamically
inadmissible maneuvers. The UGV safely navigated between
two waypoints while avoiding two hazards.

Fig. 26. Map and trajectory of simulation result for desired velocity
of 7.0 m/s.

In contrast, Figs. 27 and 28 show results from a simulation
of a UGV traveling through identical terrain with the same
hazard and waypoint locations, now with a desired velocity
of 7 m/s. In this case, the UGV successfully skirted both
of the hazards and reached both waypoints. The overall
path differed significantly from the previous simulation,
however, due to the increased speed of the UGV and
the correspondingly reduced achievable path curvature.
However, the UGV safely navigated at a relatively high speed
while avoiding rollover or significant side slip.

6.4. Effect of terrain inclination on algorithm performance
Simulations were performed to study the effect of terrain
inclination on algorithm performance. An illustration of the
scenario is shown in Fig. 28. The hazard and waypoint
locations are identical to those in the scenario presented in
Section 6.2, however, here the terrain was inclined at a roll
angle of 20◦. With respect to the UGV’s initial orientation.
Vehicle and terrain parameters were identical to those in the
previous simulations. The desired UGV velocity was 5.0 m/s.

Simulation results are shown in Figs. 29 and 30.
The resulting UGV trajectory shown in Fig. 29 differs
significantly from the flat-terrain case (see Fig. 24) due to
the effect of terrain inclination on trajectory space rollover
and side slip constraints. As expected, the UGV executed a

Fig. 25. UGV velocity and curvature for desired velocity of 5.0 m/s.
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Fig. 27. UGV velocity and curvature for desired velocity of 7.0 m/s.

Fig. 28. Illustration of scenario for terrain inclination analysis.

Fig. 29. Trajectory of simulation result for terrain inclination of 20.

safe “downslope” maneuver due to potential field asymmetry
caused by terrain inclination. As in the simulations of
Section 6.1, UGV velocity decreased at regions of large
path curvature to avoid dynamically inadmissible maneuvers
(see Fig. 30). This result highlights the algorithm’s ability to
safely navigate a UGV even on steeply inclined terrain.

7. Experimental Results
A limited number of proof-of-concept experiments were
performed to study the algorithm’s effectiveness in rough,
natural terrain. Experiments were performed on the UGV
ARTEMIS, shown in Fig. 31.20 ARTEMIS is a four-
wheeled front-wheel steered vehicle equipped with a Zenoah
G2D70 gasoline engine, 700 MHz Pentium III PC-104
onboard computer, Crossbow AHRS-400 INS, a tachometer
to measure wheel angular velocity, 20 cm resolution DGPS,
and Futaba steering and throttle control servos. The UGV
length L = 0.56 m, the half-width d = 0.29 m, the height of
UGV c.g. from ground h = 0.26 m, and the wheel diameter
was 0.25 m. The body mass was 28.0 kg and the mass of
each wheel was 1.85 kg. Experiments were conducted on flat,
bumpy terrain covered with grass with an estimated µ = 0.8.
In each experiment, the UGV initial position was the origin
of the inertial frame, with initial heading aligned with the
x axis. Unfortunately, due to hardware malfunctions, only a
limited number of experiments were performed.

First, experiments were conducted to study high-speed
hazard avoidance. A hazard with 1.0 m radius was set at
(x, y) = (15.0, 0.0) and a waypoint was set at (x, y) = (30.0,
0.0). The desired velocity was set at 4.0 m/s. For the
ARTEMIS UGV, rollover can occur at speeds above
3.5 m/s.

Results from the experiment are shown in Figs. 32–34.
The UGV trajectory is shown in Fig. 32. It can be seen that
the UGV successfully avoided the hazard and reached the
waypoint. UGV velocity and curvature profiles are shown in
Fig. 33. The UGV roll angle profile is shown in Fig. 34.
As in the simulation studies, the velocity decreased at
periods of large curvature (i.e., around x = 15.0 m) and was
controlled to near 4.0 m/s in hazard-free regions (i.e., after
x = 25.0 m). Finally, the vehicle navigated without rollover
or side slip. Each computation cycle, involving construction
of the net potential field and selection of a maneuver, required
approximately 50 ms.

Other experiments were conducted to study high-speed
navigation between multiple waypoints. Three waypoints
were set at (x, y) = {(25.0, 0.0), (30.0, 10.0), (40.0, 10.0)}.
The desired velocity was 4.0 m/s. The target waypoint was
indexed when the UGV moved to within 2.0 m of the current
waypoint. An experimental result is shown in Figs. 35–37.
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Fig. 30. UGV velocity and curvature for terrain inclination of 20.

Fig. 31. ARTEMIS experimental UGV on outdoor terrain.

Figure 35 shows that the vehicle successfully navigated
between waypoints and reached the goal location. Figure
36 shows that the velocity was controlled near 4.0 m/s, and
decreased during periods of large curvature. The UGV roll

Fig. 32. GPS trajectory of hazard avoidance experiment.

angle profile is shown in Fig. 37. Again, the vehicle navigated
without rollover or side slip. These results suggest that the
proposed method can be used for real-time navigation of a
UGV at high speeds.

Fig. 33. Velocity and curvature of hazard avoidance experiment.
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Fig. 34. UGV roll angle of hazard avoidance experiment.

Fig. 35. Trajectory of waypoint navigation experiment.

8. Conclusions
This paper has presented a novel potential field-based
method for high-speed navigation of UGVs on rough
terrain. The potential field is constructed in the trajectory

Fig. 37. UGV roll angle of waypoint navigation experiment.

space defined by a UGV instantaneous path curvature
and longitudinal velocity. Dynamic constraints, terrain
conditions, and navigation conditions can be expressed in the
proposed potential field framework. A maneuver is chosen
within a set of performance bounds, based on the local
potential field gradient. Issues related to local minima and
maxima were discussed, and it was shown that a simple
randomization technique can be employed to address these
problems. Simulation and experimental results demonstrated
the effectiveness of the method in rough, natural terrain. The
method is computationally efficient, and thus suitable for
onboard real-time implementation. Current research involves
experimental validation of the method on highly rough
outdoor terrain.
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