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In the present treatise, the stability of the boundary layer under solitary waves is
analysed by means of the parabolized stability equation. We investigate both surface
solitary waves and internal solitary waves. The main result is that the stability of
the flow is not of parametric nature as has been assumed in the literature so far.
Not only does linear stability analysis highlight this misunderstanding, it also gives
an explanation why Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231),
Vittori & Blondeaux (Coastal Engng, vol. 58, 2011, pp. 206–213) and Ozdemir
et al. (J. Fluid Mech., vol. 731, 2013, pp. 545–578) each obtained different critical
Reynolds numbers in their experiments and simulations. We find that linear instability
is possible in the acceleration region of the flow, leading to the question of how this
relates to the observation of transition in the acceleration region in the experiments by
Sumer et al. or to the conjecture of a nonlinear instability mechanism in this region
by Ozdemir et al. The key concept for assessment of instabilities is the integrated
amplification which has not been employed for this kind of flow before. In addition,
the present analysis is not based on a uniformization of the flow but instead uses
a fully nonlinear description including non-parallel effects, weakly or fully. This
allows for an analysis of the sensitivity with respect to these effects. Thanks to this
thorough analysis, quantitative agreement between model results and direct numerical
simulation has been obtained for the problem in question. The use of a high-order
accurate Navier–Stokes solver is primordial in order to obtain agreement for the
accumulated amplifications of the Tollmien–Schlichting waves as revealed in this
analysis. An elaborate discussion on the effects of amplitudes and water depths on
the stability of the flow is presented.
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1. Introduction
Solitary waves are frequently encountered in experimental and theoretical fluid

mechanics for several reasons. They are of nonlinear and dispersive nature and may
be described by approximate, analytic solutions, see for instance Benjamin (1966),
Grimshaw (1971) or Fenton (1972). Solitary waves are also simple to generate in
laboratories with good reproducibility. Solitary waves display a series of remarkable
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Stability of boundary layers under solitary waves 63

properties (cf. Miles 1980). The key feature herein is the preservation of their shape
during propagation. However, this holds only in the limit of vanishing frictional
effects by the air, the bottom and the other fluid layers. In reality, a thin viscous
boundary layer will develop at these interfaces. These boundary layers will lead to a
slow drain of energy finally dissipating the solitary wave (Shuto 1976; Miles 1980).
For surface solitary waves these frictional effects are very small in large depths,
becoming more important in small flow depths. Examples of this are solitary waves
in small scale wave tanks or wave run-up on sloping beaches, for which viscosity
may lead to significant discrepancies between theoretical and experimental run up
heights (Pedersen et al. 2013). The bottom boundary layer has been considered to be
the more relevant (cf. Liu & Orfila 2004) and research has focused on it. Investigation
of the bottom boundary layer under a solitary wave was initiated by Liu, Park &
Cowen (2007) when they published theoretical and experimental results concerning
the shape of the boundary layer profile. This work has led to subsequent publications
by Sumer et al. (2010), Vittori & Blondeaux (2008, 2011), Blondeaux, Pralits &
Vittori (2012) and Ozdemir, Hsu & Balachandar (2013) investigating transitions in
the boundary layer. Sumer et al. (2010) investigated experimentally the stability of
the boundary-layer flow under a solitary wave, Vittori & Blondeaux (2008, 2011)
performed direct numerical simulations to this end. Direct numerical simulations
were also conducted by Ozdemir et al. (2013). Whereas Vittori & Blondeaux (2008,
2011) predicted three regimes of the boundary-layer flow: laminar, transitional and
turbulent, Sumer et al. (2010) categorized the flow into four regimes: laminar, laminar
with regular vortex tubes, transitional and fully turbulent. The transition between the
first and the second regime is predicted by Vittori & Blondeaux (2008) to happen
at a Reynolds number ReSumer somewhat below ReSumer = 5 × 105, whereas Sumer
et al. (2010) measured it to be lower, namely at ReSumer = 2 × 105. Here ReSumer
is a Reynolds number defined by Sumer et al. (2010) which is based on particle
displacement and maximum velocity in the outer flow as length and velocity scales.
Ozdemir et al. (2013) categorized also four regimes but defined them differently:
laminar, disturbed laminar, transitional and turbulent. They computed a critical
Reynolds number ReSumer = 8 × 104 for the transition between the laminar and
the disturbed laminar and ReSumer = 1.1 × 106 for the transition between disturbed
laminar and transitional, where we have converted the Reynolds numbers given in
Ozdemir et al. (2013) to those defined by Sumer et al. (2010). Vittori & Blondeaux
(2011) proposed that circumstantial laboratory conditions, such as wall roughness or
vibrations, perturbed the system and led to a lowering of the critical Reynolds number.
Ozdemir et al. (2013) took the analysis by Vittori & Blondeaux (2008, 2011) a step
further by considering some different amplitudes for the initial perturbation added to
the base flow.

In addition to the quantitative disagreements the physical identification of the
instability mechanism was incomplete, even though (Sumer et al. 2010) and Ozdemir
et al. (2013) pointed to the presence of inflection points in the velocity profiles during
deceleration. However, such inflection points are present for all Reynolds numbers,
including those deemed stable. A major step forward was made by Blondeaux
et al. (2012) who employed a type of linear stability analysis. Treating the flow
as approximately stationary and uniform they employed separation of variables to
arrive at a close relative of the Orr–Sommerfeld equation (OSE). Solution of this
equation predicted that the boundary-layer flow under a solitary wave always contains
temporally unstable regions in the deceleration region of the wave. However, while
they compared wavelengths of the unstable Tollmien–Schlichting waves with computed
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results, they did not quantitatively relate the growth rates of the stability analysis
directly to the presence or absence of irregularities in experiments or computations
from the papers discussed above. Instead they resorted to using the growth of the
kinetic energy attached to the perturbations in their direct numerical computations as
an indication for transitions in the flow. As will be discussed later, it is questionable
whether this kinetic energy has a direct physical bearing on the stability properties
of the flow, since the perturbations may be strongly influenced by the discretization
of the Navier–Stokes (NS) equations for low-order solvers, such as that in Vittori &
Blondeaux (2008, 2011).

In spite of the progress made in the aforementioned references, a number of
issues remain and they need to be addressed. The outer velocity field in Sumer et al.
(2010), Vittori & Blondeaux (2008, 2011), Blondeaux et al. (2012) and Ozdemir
et al. (2013) was either given by the simple secant hyperbolic formula (Miles 1980)
or the third-order approximate formula by Grimshaw (1971). Both velocity fields
deviate markedly from the true velocity field. In addition, for the experiments in
Sumer et al. (2010), and the numerical simulations in Vittori & Blondeaux (2008,
2011), Blondeaux et al. (2012) and Ozdemir et al. (2013), the outer velocity field was
made ‘spatially uniform’. A result of the process of uniformization is that nonlinear
terms of the boundary layer equations are neglected and the wall-normal velocity
component is put to zero. This results in a different boundary layer flow, thereby
excluding nonlinear and non-parallel effects. The effect of such approximations must
be carefully checked. In addition, a common difficulty encountered in the works
by Sumer et al. (2010), Vittori & Blondeaux (2008, 2011), Blondeaux et al. (2012)
and Ozdemir et al. (2013) is that the flow of a solitary wave is time dependent
and therefore the notion of hydrodynamic stability needed to be redefined. However,
the risk is then that the resulting definition is of descriptive nature, rather than
being mathematically concise, as for example in Sumer et al. (2010) and Vittori &
Blondeaux (2008, 2011), where instability simply meant that something unexpected
became visible.

The relation between local instabilities, either temporal or spatial, to a global
instability of a non-uniform flow may in general be complex (see, for instance, Huerre
& Monkewitz 1990). As opposed to previous works we avoid any simplification of the
boundary layer flow and we employ a stability theory well adapted to the problem. In
particular, we show that the total amplification of Tollmien–Schlichting waves during
the passage of the solitary wave reveals the true mechanism of instability for this
flow.

Another issue, which is not sufficiently elaborated on in the references, is the
seeding, or triggering, of the perturbation in the flow. Vittori & Blondeaux (2008,
2011) applied white noise with an amplitude of 10−4 as a seeding for the perturbation
before the arrival of the solitary wave. Sumer et al. (2010) did not introduce any
perturbation in their experiments at all, but relied instead on a natural seeding by the
experimental environment. In general, neither the frequency nor the amplitude of the
perturbation have been controlled in (Vittori & Blondeaux 2008, 2011) and (Sumer
et al. 2010). Ozdemir et al. (2013) applied several different amplitudes for the white
noise used as a perturbation before the arrival of the solitary wave. They noted
that depending on the amplitude of the perturbation the boundary layer displays
different stability properties. However, they did not reject the notion of a critical
Reynolds number for this flow but rather gave the values they found based on their
computations.
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The initial perturbation is crucial for the repeatability of the experiment or the direct
numerical simulation. As shown in the present analysis if the initial perturbation is not
carefully controlled, results cannot be considered reliable.

In the present treatise, we describe the flow in the frame of reference following
the solitary wave. The flow then becomes stationary and well-established theories of
hydrodynamic stability (Drazin & Reid 1981) can be applied. Stability in the present
treatise is defined following (Drazin & Reid 1981) as the absence of growth of small
perturbations. Unlike the papers referenced above we start with a fully nonlinear
solitary wave solution for the outer flow and then compute a fully nonlinear, viscous
boundary layer flow. The stability properties of this flow are then obtained using
classical methods of linear stability theory. In particular the parabolized stability
equation (PSE) (Bertolotti, Herbert & Spalart 1992; Herbert 1997), which includes
non-parallel effects, is used to find the unstable regions of the boundary-layer flow.
For comparison, the OSE (Jordinson 1970; Orszag 1971; Van Stijn & Van De Vooren
1980; Drazin & Reid 1981) is also applied. As opposed to Blondeaux et al. (2012),
we investigate the spatial evolution of instabilities in the frame of reference where
the solitary wave is stationary. When describing the flow as stationary the criterion
of amplification from Jordinson (1970), Bertolotti et al. (1992) provides an integrated
measure of the instability. The outcome is that the transition in the boundary-layer
flow under a solitary wave might neither be characterized by a critical Reynolds
number ReSumer (Sumer et al. 2010; Vittori & Blondeaux 2011; Ozdemir et al. 2013)
nor by a critical set of parameters (δc, εc) (Vittori & Blondeaux 2008; Blondeaux et al.
2012). Instead, the appearance of vortex rollers, say, will depend in a large amount on
the initial amplitude of the perturbation. In addition to solving the Orr–Sommerfeld
and PSE for this type of flow a comparison with a direct numerical simulation by
means of a NS solver was performed, revealing remarkably good agreement to the
results by the model equations.

Concerning internal solitary waves, stability of the boundary layer has been
investigated either experimentally (Carr & Davies 2006; Carr, Davies & Shivaram
2008; Carr & Davies 2010) or by direct numerical simulation (Diamessis & Redekopp
2006; Stastna & Lamb 2002, 2008; Aghsaee et al. 2012). Similar to surface solitary
waves the idea of the existence of a critical solitary wave amplitude and Reynolds
number prevails (Diamessis & Redekopp 2006). However, so far the experimental
observations by (Carr & Davies 2006; Carr et al. 2008; Carr & Davies 2010)
could not confirm this conjecture. As shall be shown in the following such an
endeavor is difficult, due to the non-monotonic behaviour of the amplification of
Tollmien–Schlichting waves in terms of the parameters controlling the base flow.

The parameter space for internal solitary waves is vast due to the multiple possible
configurations of the density layers. The present analysis of the stability of the
boundary layer under internal solitary waves is therefore restricted to a simple two
layered fluid as described by Benjamin (1966) and Funakoshi & Oikawa (1986). For
this system, we solve the boundary-layer equations numerically and obtain a solution
for the boundary layer under an internal solitary wave. This solution is then used to
perform a linear stability analysis by means of the PSE. For the two-layered fluid we
retrieve most of the stability properties of the surface solitary wave case, but obtain
generally reduced growth rates.

For a steady boundary-layer flow, linear stability analysis can be used to focus on
the primary instability mechanism (Herbert 1988, 1997). In this picture instability and
transition of the flow are to be taken as distinct phenomena, however linked. During
primary instability Tollmien–Schlichting waves undergo a slow growth. The effect of
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the growth of Tollmien–Schlichting waves on the base flow during primary instability
is weak. Therefore, the base flow is considered almost unaltered during primary
instability. However, once their amplitude reaches a threshold value, a secondary
instability mechanism is triggered which leads to a rapid break down of the base
flow and the emergence of a new flow regime, the actual transition. Different types
of mechanism have been identified to occur during secondary instability (Herbert
1988), the details of which are not relevant for the present investigation. Typically the
threshold value of the amplitude of the Tollmien–Schlichting wave to trigger secondary
instabilities lies at 1 % of the free-stream velocity (Herbert 1988). In the following,
we will refer to this threshold value as the 1 % rule. In other contexts it is referred
to as the eN or N-factor method (Herbert 1997). The above approach of analysing the
different instability mechanisms of the transition process independently has turned out
to be very fruitful for the investigation of the transition in the Blasius boundary layer.
It can be seen as a bottom to top approach, where the individual components are put
together to give the entire picture. This is in contrast to a top to bottom approach
such as the direct numerical simulations by Vittori & Blondeaux (2008, 2011) and
Ozdemir et al. (2013) where the entire phenomenon is investigated at once in order
to extract some knowledge about its components. As shall be seen in the following,
although the present investigation deals only with the primary instability and not with
the actual transition process, we are nevertheless able to indicate whether transition
is going to occur or not by means of the 1 % rule. However, how transition will
occur and the details of the new flow regime are beyond the limits of the theory. We
predict quantities such as critical positions, neutral curves, frequencies, wavenumbers
and last, but not least, amplifications of Tollmien–Schlichting waves which can then
be verified experimentally in the future. A key result of the present investigation is
that the Tollmien–Schlichting wave displays a maximum amplitude at some point in
space, since the boundary layer under a solitary wave has a finite horizontal extension.
Applying the 1 % rule to this gives us an indication of the minimum initial amplitude
of the Tollmien–Schlichting wave needed in order to trigger transition.

The reduction of the analysis to the primary instability has obviously its limitations.
Owing to the linear nature of the analysis and the reduction to two spatial dimensions,
nothing can be said about the nonlinear interaction between different frequency
components of Tollmien–Schlichting waves (Bertolotti et al. 1992) at the latter stage
of the primary instability when amplitudes have grown to moderate levels, nor
can anything be said about the three-dimensional interaction between perturbations
leading to, for example, subharmonic instabilities (Herbert 1984) during secondary
instability. The analysis is independent of the initial amplitude of the perturbations.
It can therefore only give predictions as long as these are small, meaning that the
square magnitude is negligible compared with the free stream flow. If the level of
free-stream turbulence is sufficient, streamwise streaks can destabilize the flow and
lead to a bypass transition in regions deemed linearly stable (Klebanoff 1971; Cossu
& Brandt 2002). In addition they can lead to an altering of the base flow which in
turn can have effects on the amplification of Tollmien–Schlichting waves (Cossu &
Brandt 2002). It needs also to be taken into account that experimental circumstances,
such as bottom roughness, can favour the growth of other frequency components
of the Tollmien–Schlichting waves than predicted by the present idealized analysis
(Pralits et al. 2000; Pralits, Hanifi & Henningson 2002). The catalogue of different
mechanisms during transition is vast (Herbert 1988) and the inclusion of bypass
transitions (Klebanoff 1971; Cossu & Brandt 2002) or turbulent spots (Jocksch &
Kleiser 2008) adds to the complexity.
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In this article the physical problem, the solitary wave solutions and the employed
theories and techniques are briefly explained in § 2. In § 3 we first present stability
properties for surface solitary waves which are then discussed in light of the
previous findings in the literature. Verification by direct numerical solution of the NS
equations follows before the stability of boundary layers for internal solitary waves
are investigated (§ 3.2). The final conclusions are summarized in § 4.

2. Description of the problem
Herein, we investigate a surface or internal solitary wave with amplitude εh0

propagating from right to left on a flat bottom at depth h0 or in a channel of height
h0, respectively (cf. figures 1 and 2, respectively). Neglecting friction, different
formulations for the inviscid solution to the problem exist. These are briefly
discussed in § 2.1. Common to all of these formulations is that the velocity field
(Uinviscid, Vinviscid) under the solitary wave is derived from a potential flow solution.
Lengths are scaled by h0, whereas velocities are scaled by the linear long-wave speed
c0:

x= x∗

h0
, y= y∗

h0
, Uinviscid = U∗inviscid

c0
, Vinviscid = V∗inviscid

c0
, (2.1a−d)

where the asterisk ∗ designates dimensional quantities. The linear long-wave speed
c0 reduces to the shallow water speed

√
gh0 for surface waves, whereas it is given

for internal waves of mild stratification, i.e. ρ2/ρ1 is close to unity, by the following
formula (Keulegan 1953):

c0 =
√

g(ρ1 − ρ2)h1h2

ρ1h0
. (2.2)

In the laboratory frame of reference used in figures 1 and 2, the solitary waves travel
with velocity −cex, where the speed c depends upon the amplitude ε for surface
solitary wave, whereas for internal solitary waves the densities ρ1 and ρ2 and the
depths h1 and h2 also enter into the dependence of c.

2.1. Specification of outer flow
The celebrated first order solution for the inviscid horizontal velocity for solitary
waves (Benjamin 1966; Fenton 1972) is given by

Uinviscid =U0 sech2(kx+ω0t), (2.3)

where for surface solitary waves, we have U0 = ε, k = ω0/c and ω0 = √3ε/4. We
note that Sumer et al. (2010), Blondeaux et al. (2012), Ozdemir et al. (2013) used
the zeroth-order term ω0 for the frequency ω in order to obtain a single parameter
problem as we shall see below. Neglecting convective effects by replacing kx with
a constant, Sumer et al. (2010), Blondeaux et al. (2012) and Ozdemir et al. (2013)
have used this solution for the outer flow. Vittori & Blondeaux (2008, 2011) on the
other hand, invoked Grimshaw’s third-order approximate solution (Grimshaw 1971)
for the outer flow, which is better than the profile given by (2.3), but still deviates
markedly from the exact one for higher amplitudes. Also, Liu et al. (2007) employed
Grimshaw’s solution for the background flow, but this reference did not present any
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FIGURE 1. A surface solitary wave with height εh0 travelling from right to left on
constant depth h0 at speed c. The axes are scaled according to (2.1).
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h2
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c
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y

FIGURE 2. The internal solitary wave in a two-layered fluid with densities ρ1 and ρ2 and
depths h1 and h2. The solitary wave with height εh0 travels from right to left in a channel
of constant height h0 at speed c. The axes are scaled according to (2.1).

stability analysis. Maybe more important, in all of the references that address stability
of surface solitary waves, the approximation of spatially uniform free-stream flow was
made (replacement of kx by a constant in (2.3)), which corresponds to the linear
boundary-layer solution by Liu et al. (2007) since the nonlinear term vanishes.

Herein, we use a numerical solution for the full potential flow for both the surface
solitary waves and the internal solitary waves. The potential solution to the surface
solitary waves is computed by a method derived by Tanaka (1986) combined with
a straightforward application of Cauchy’s formula (Pedersen et al. 2013), whereas
for the potential solution of the internal solitary wave, the method by Funakoshi &
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Oikawa (1986) is employed. As mentioned above, frictional effects will give rise
to a thin viscous boundary layer at the bottom, whose method of solution will be
discussed in the following subsection.

2.2. Boundary-layer equations
In the present work, we use two different length scales. The scaling (2.1) is based on
the first length scale, the equilibrium water depth h0 or the channel height h0. The
second length scale shall be given by δ∗, which is a viscous length scale defined
by Vittori & Blondeaux (2008, 2011), and which characterizes the thickness of the
boundary layer:

δ∗ =
√

2νh0

c0
. (2.4)

If δ∗ is used as a length scale and the linear long wave speed as a velocity scale, the
Reynolds number of the flow is given by

Re= δ
∗c0

ν
= 2h0

δ∗
= 2
δ
, (2.5)

where δ = δ∗/h0. Following Vittori & Blondeaux (2011) we will use δ and ε to
identify the investigated cases. The list of employed δ values for surface solitary
waves, together with the corresponding value of h0 for water is

δ 1× 10−5 4× 10−5 8× 10−5 1× 10−4 4.75× 10−4 8× 10−4 1.34× 10−3 2.67× 10−3 4.49× 10−3

h0 (m) 344.2 54.2 21.5 16.0 2.0 1.0 0.5 0.2 0.1

The smaller δ corresponds to rather deep water, whereas the larger ones approach
values that are relevant for wave tank experiments.

Next to the definition of the Reynolds number in the present treatise and in Vittori
& Blondeaux (2008, 2011) and Blondeaux et al. (2012) (given by Re = 2/δ), a
different Reynolds number ReSumer, defined by Sumer et al. (2010), is based on
half the particle displacement, a = U0/ω0 according to (2.3), as a length scale and
the maximum horizontal free-stream velocity, U0 in (2.3), as a velocity scale. The
Reynolds number ReSumer can be related to ε and δ by the formula given in Vittori
& Blondeaux (2011):

ReSumer = 4√
3

ε3/2

δ2
. (2.6)

When employing the first-order solution for the outer flow, (2.3), as done in Sumer
et al. (2010), Blondeaux et al. (2012) and Ozdemir et al. (2013), the problem is
governed by a single parameter, namely ReSumer, as is apparent when the scaling
defined by U0 and a is used. When, however, taking into account the fully nonlinear
outer flow, as done in the present work, the above reduction of the two parameter
space to a single one is no longer valid. The parametrization of the problem by
ε and δ is more convenient for the comparison to wave tank experiments, since δ,
controlling the water depth, is independent of the amplitude ε. Therefore, ε and δ

are used to classify the cases in the present treatise.
In the following, we employ a scaling where the ordinate and the vertical velocity

are stretched by a factor 1/δ, such that the resulting scaling is given by

x= x∗

h0
, y= y∗

δh0
, u= u∗

c0
, v = v∗

c0δ
. (2.7a−d)
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Inserting this into the NS equations and retaining only the leading-order terms in
δ2, we obtain the unsteady boundary-layer equations. To be able to invoke classical
stability concepts as well as hydrodynamic stability theory (Drazin & Reid 1981), we
introduce a frame of reference following the solitary wave itself. The boundary-layer
flow can be regarded as steady in this frame of reference and is given by

∂u
∂ξ
+ ∂v
∂y
= 0, (2.8)

u
∂u
∂ξ
+ v ∂u

∂y
=−∂pext

∂ξ
+ 1

2
∂2u
∂y2

, (2.9)

∂pext

∂y
= 0, (2.10)

where ξ = x + ct is the moving coordinate and pext is the exterior pressure gradient,
which is given by the inviscid bulk flow:

−∂pext

∂ξ
=Uinviscid(ξ , 0)

∂Uinviscid

∂ξ
(ξ, 0). (2.11)

The boundary conditions for (2.8)–(2.10) in the vertical direction are given by

u= c at y= 0, (2.12)
u=Uinviscid(ξ , 0) at y= yext (2.13)

v = 0 at y= 0, (2.14)

where yext is the ‘edge’ of the boundary layer (Keller 1978). We solve (2.8)–(2.10)
numerically by a Chebyshev collocation method in both spatial directions ξ and y. The
nonlinear equations are solved by Newton iteration until convergence (10−12). We use
in general 80 Gauss–Lobatto–Chebyshev nodes in each direction for all cases in § 3.
This number of nodes allows us to solve (2.8)–(2.10) such that the error contribution
by the inviscid potential solution above becomes dominant. In general, we verify that
the first four digits of the solution are not changing when going over to a higher
resolution.

As an illustration, some profiles of the horizontal velocity component in the
boundary layer under a surface solitary wave are displayed in figure 3 (in the
absolute frame of reference). This boundary-layer flow (in the moving frame of
reference) is thus the steady base flow for the remainder of this study, indicated by
the subscript ‘base’.

2.3. Orr–Sommerfeld equation
The OSE (see Drazin & Reid (1981) for a more detailed review) is based on the
assumption of parallel flow. This means that the normal component of the base flow
is assumed to be negligible, Vbase= 0 and that non-parallel effects are ignored. Hence,
the stability of each profile for a given ξ is analysed independently. Looking at each
profile independently means that we assume the perturbation to have a specific form.
Its streamfunction ψ ′ is expressed as a Tollmien–Schlichting wave travelling along the
horizontal direction:

ψ ′ = φ(y) exp(aξ − iωt), (2.15)
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FIGURE 3. Surface elevation η and profiles of the horizontal velocity component in the
boundary layer under a solitary wave moving from right to left, ε= 0.1, δ= 8× 10−3. The
profiles have been multiplied by 40. The variable ξ and y in the upper panel are scaled by
h0, whereas y in the lower panel is scaled by δ∗. The value at y= 0 of the profiles shown
corresponds to the position ξ , where the profile has been taken. The horizontal velocity
vanishes at y= 0 in order to satisfy the no-slip boundary condition.

where φ is an unknown function controlling the shape of the wave in the normal
direction. The given real number ω is the angular velocity of the wave. The complex
part of a is the wave number and its real part the growth rate of the wave. For a given
angular velocity ω and a given profile at some ξ , the algebraic eigenvalue problem for
the eigenvalue a and the eigenfunction φ is given by the celebrated OSE (Drazin &
Reid 1981):

1
Re

(
D2 + a2

)2
φ + (iω−Ubasea)

(
D2 + a2

)
φ + ∂

2Ubase

∂y2
aφ = 0, (2.16)

where D= d/dy. The boundary conditions for φ are given by

φ(0)=Dφ(0)= 0, φ(y→∞)→ 0. (2.17)

The discrete spectrum of (2.16) will determine the stability of the flow. If there
exists an eigenvalue a with a positive real part, then we say that the base flow is
unstable. This happens usually at a certain value of ξ after which the OSE gives rise
to eigenvalues with positive real part. Unstable regions along the horizontal axis ξ
for a given ω are then defined by

Re a(ξ) > 0, (2.18)
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since for those regions the Tollmien–Schlichting waves given by (2.15) display growth.
As in Jordinson (1970), amplification of the perturbation is measured by

ln
A
A0
=
∫ ξ

ξ0

Re a(x)dx. (2.19)

As shall be seen later on, the non-parallel effects are, however, significant for the
present boundary layer. Therefore, an additional method of linear stability shall be
used, the PSE, presented in the next subsection.

Equation (2.16) is solved using a Chebyshev collocation method on 130 nodes, akin
to the method in Orszag (1971). This is done to guarantee that the first four digits
are fully converged. Comparisons with values for a in the literature for the Blasius
boundary-layer flow (Jordinson 1970) confirm that the present Orr–Sommerfeld solver
gives correct results.

2.4. PSE
The PSE was derived by Bertolotti et al. (1992). An in-depth discussion of this
method can be found in their article and in Herbert (1997). In the present subsection
only a brief summary of the main elements is given. This method pursues two goals.
First, it weakens the parallel flow assumption and only assumes that the flow is
slowly varying in ξ . Second, it reformulates the governing equation as an initial
value problem and not as an eigenvalue problem. Bertolotti et al. (1992) proposed
the following ansatz for the Tollmien–Schlichting wave:

ψ ′ = φ(ξ, y) exp
(∫ ξ

ξ0

a(ξ̂ )dξ̂ − iωt
)
. (2.20)

The above ansatz is for a single frequency ω. The nonlinear description of a
perturbation consisting of multiple frequency components is possible in the framework
of the PSE but this is not performed in the present linear stability analysis. Now the
shape function φ and the wave number and growth rate defined by a are dependent
on ξ . Although the flow is not assumed to be parallel, it is assumed that all flow
variables vary slowly with respect to ξ , such that higher than first-order derivatives
of φ and a with respect to ξ can be neglected. This leads to the following nonlinear
initial value problem for a and φ (cf. Bertolotti et al. 1992):

(L0 + L1) φ + L2
∂φ

∂ξ
+ L3φ

da
dξ
= 0, (2.21)

where the operators Li, i= 0, 1, 2, 3 operate on y only and are given by

L0 =− 1
Re

(
D2 + a2

)2 + (iω−Ubasea)
(
D2 + a2

)− ∂2Ubase

∂y2
a, (2.22)

L1 =−∂
2Vbase

∂y2
D+ Vbase

(
D2 + a2

)
D, (2.23)

L2 =−4a
Re

(
D2 + a2

)+Ubase
(
D2 + 3a2

)− 2iωa− ∂
2Ubase

∂y2
(2.24)

L3 =− 2
Re

(
D2 + 3a2

)− iω+ 3aUbase. (2.25)
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The form of ψ ′, equation (2.20), is not unique and an additional condition is needed
to determine φ and a. The main idea for finding an additional constraint is to restrict
the growth to the parameter a and let φ only have variations in shape. As mentioned
by Bertolotti et al. (1992), several choices are possible. In the present discussion, we
adopt one of their choices, namely to require orthogonality between the horizontal
velocity component and its derivative with respect to ξ :∫ ∞

0

∂2φ

∂ξ∂y
∂φ

∂y
dy= 0, (2.26)

where the overbar designates the complex conjugate. As explained in detail in § 2.3
of Bertolotti et al. (1992), condition (2.26) removes any exponential growth from
φ and adds it to a. In order to be able to measure the growth of the perturbation
independently of the constraint chosen, Bertolotti et al. (1992) defined the amplitude
A of the perturbation in the following way:

A=max
y

∣∣∣∣∂φ∂y

∣∣∣∣ exp
∫ ξ

ξ0

Re a(x)dx. (2.27)

The amplification is then the ratio between the amplitudes at two different points.
The unstable region along the ξ -axis for a given ω begins where A (equation
(2.27)) is minimum and ends where A is maximum, which corresponds to growth of
Tollmien–Schlichting waves. The last term in (2.21) given by L3 da/dξ is neglected
in Bertolotti et al. (1992) as well as in the present work. A back-calculation of
the term after solution of the equations does indeed confirm that it is small (10−4

or less, the other terms being of order unity). The initial condition for (2.21) has
been computed by means of equation (26) in Bertolotti et al. (1992). We solved
(2.21) by a Chebyshev collocation method similar to Bertolotti et al. (1992) with
180 Gauss–Lobatto–Chebyshev nodes in the y direction. This number is determined
by convergence tests. Some results of the numerical verification and validation prior
to the investigation are presented in the Appendix in order to illustrate the well
functioning of the present method.

2.5. Legendre–Galerkin spectral element NS solver
Results obtained by the OSE solver and the PSE solver described above are compared
with direct numerical simulations using the spectral element NS solver NEK5000
which Fischer, Lottes & Kerkemeier (2008) developed at the Argon National
Laboratory. The solver is freely available. Since control of the accuracy is crucial
to obtain correct growth rates of the Tollmien–Schlichting waves, a spectral method
was preferred to a low-order method such as that used in Vittori & Blondeaux (2008,
2011). The NEK5000 solver is based on a Galerkin formulation of the NS equations
and details of the implementation can be obtained in reference Fischer et al. (2008).

The set up used in the present treatise consists of a rectangular box. The boundary
condition on the bottom is a moving wall with velocity (c, 0). At the top we impose
the boundary-layer solution (Ubase, Vbase) given by the boundary-layer solver above.
The right boundary condition is a fixed pressure outflow boundary condition. At the
left, we impose an inflow boundary condition with velocity (Ubase + u′, Vbase + v′),
where (u′, v′) is the velocity profile of a Tollmien–Schlichting wave computed
by means of the PSE above. A similar set-up as that above has been used by
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Fasel (1976) to investigate the stability of the Blasius boundary layer. In general we
used 300 × 12 elements for the domain and the degree of the polynomials was 11.
For this resolution the relative numerical error was approximately 10−4–10−5. In
the Appendix, we present some more details concerning the choice of the present
resolution for the NS solver.

3. Results and discussion
3.1. Linear stability analysis for surface solitary waves

3.1.1. Stability regions and amplifications
Once we have solved the boundary-layer equations for a given δ and ε, (2.8)–(2.9),

we can solve the PSE (2.21). In figure 4, the profiles of ∂ Re(φ)/∂y and ∂ Im(φ)/∂y
are displayed which give the horizontal velocity component u′ of the perturbation,
cf. (2.20), for the case ε= 0.4, δ= 4.75× 10−4 and ω= 0.22 at position ξ =−0.2375.
In addition the profiles of Im(a) Im(φ) and Im(a) Re(φ) are shown, needed to
compute the vertical velocity component v′ of the perturbation. As can be observed
from figure 4, the perturbation velocity (u′, v′) decays towards infinity and has its
maximum magnitude close to the wall. This can also be observed in figure 5, where
contour plots of the modulus and argument of φ in (2.20) are plotted as a function of
ξ and y for this case. We observe that the shape function φ displays a slow change
in ξ . As such the width of φ seems to increase with ξ . It needs to be noted that
the physical significance of φ is somewhat limited as it depends on the constraint
chosen in order to restrict growth to the amplitude of the Tollmien–Schlichting
wave (cf. (2.26)). Whereas figure 5 displays the slow variation of φ with respect
to ξ , we give in figure 6 an example of the rapid change with respect to ξ of the
streamfunction ψ ′ of the perturbation. Figure 6 shows the streamfunction ψ ′ at time
t= 0, normalized by the amplitude A(ξ) (cf. (2.27)).

Computing the amplification of the horizontal velocity component u′ by means of
(2.27) we obtain the curves of zero growth by the criterion of maximum or minimum
amplitude A defined in (2.27). A series of neutral curves for δ=8×10−4 is depicted in
figure 7 for different values of ε. These curves separate regions of growth and decay
for Tollmien–Schlichting waves in the (ξ , ω) plane. The position ξc leftmost on the
neutral curve is called the critical position. For ξ > ξc perturbations are expected to
grow, while they decay for ξ < ξc. In figure 7 we observe an increase in the size
of the unstable regions with ε, but that the unstable regions remain confined within
the decelerating part (ξ > 0) of the flow for the cases shown. Blondeaux et al. (2012),
using their method of linear stability, found regions of temporal instability in the (ξ , k)
plane, where k is the chosen wavenumber. These regions increased with ε and were
also entirely situated in the deceleration region, in accordance with the above result.
As mentioned by Sumer et al. (2010), instability can be expected in the deceleration
part of the flow, since the profile Ubase displays an inflection point here. Rayleigh’s
inflection point theorem is, however, not entirely applicable for the present case, since
non-parallel effects are not negligible and viscosity is important in the boundary layer.

In figure 8 we show the dependence of the unstable region on δ, with a fixed
amplitude ε= 0.4. Overall, the neutral curves move upstream (decreasing ξ ) and cover
a wider frequency span with decreasing δ. For the smaller values of δ the unstable
domain also forms a ‘thumb’ for lower values of ω intruding into the accelerating
region. This thumb is probably of viscous nature, since there are no inflection points
in the velocity profiles for (ξ < 0). As such the form of this thumb is reminiscent of
the unstable region of the Blasius boundary layer (Drazin & Reid 1981). This suggests
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FIGURE 4. Profiles of the perturbation (2.20) computed by means of the PSE. The
parameters are ε = 0.4, δ = 4.75 × 10−4 and ω = 0.22 and the profiles were taken at
position ξ =−0.2375. The profiles are only shown up to a value of the ordinate of y= 10.
However, for the present case the domain extends until y = 45.5, a value at which the
profiles have decayed sufficiently.

that the instability mechanism in this case is similar to that of the Blasius boundary
layer (Baines, Mujumdar & Mitsudera 1996). The smallest δ, from the figure, which
gives instabilities in front of the crest is 0.0001 and corresponds to a water depth of
16 m. Hence, it may not be observable in laboratory wave tanks.

The above stability domains in figures 7 and 8 have been computed by means of
the PSE method. This method accounts approximately for non-parallel effects of the
flow. The OSE (2.16) on the other hand neglects these effects and assumes the flow
to be parallel. In figure 9 neutral curves computed by the PSE method and the OSE
method are displayed together. They are similar, but we observe that the unstable
regions tend to be larger in extent when computed by the OSE. In addition they
are shifted downwards on the ξ axis. The difference in size of the unstable regions
and the shift between the critical positions increase for increasing δ, which is not
surprising, since the normal velocity component scales like δ (cf. (2.7)) and so do
the non-parallel effects. This can be observed when plotting the difference between
the critical positions computed by means of the PSE and the OSE as a function of δ
(cf. figure 10). The difference seems to increase almost linearly with δ. A regression
line is added to guide the eye. Since wave tank experiments are usually performed
for large values of δ, such as the ones used in figure 9, a significant influence on
the stability properties due to non-parallel effects needs to be accounted for. For large
Reynolds numbers (small δ), on the other hand, the OSE is accurate.

All of the solitary waves display some region of instability in the deceleration
region. However, for a given disturbance to become significant, or observable,
the crucial quantity is the total, accumulated amplification as obtained by (2.27)
for the PSE method. For δ = 8 × 10−4 (h0 = 1 m) amplifications are depicted in
figure 11. We observe a striking increase with ε. Disturbances for ε = 0.1 may
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FIGURE 5. (Colour online) (a) Contours of |φ| from (2.20) for the case in figure 4. (b)
Contours of arg(φ) from (2.20) for the case in figure 4.

only be amplified 100 times, say, whereas the factor for ε = 0.4 is above 107.
The variation of the accumulated amplification with δ is shown in figure 12. With
decreasing δ, we observe a strong increase in amplification. From the figure we
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FIGURE 6. (Colour online) Surface plot of Re(ψ)/A(ξ) from (2.20) for the case in
figure 4.
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FIGURE 7. (Colour online) Stability domain for δ= 8× 10−4. The region bounded by the
curves is the unstable region. Here and in the subsequent figures, ξ and ω are scaled by
h0 and c0/(δh0), respectively.

may infer that rather strong disturbances are required for instabilities to become
visible for typical small-scale wave tank experiments with h0 ∼ 0.1–0.2 m. For large
δ, we observe that after the critical position the amplification grows to a maximum
before declining again. For the case (ε = 0.4, δ = 4.5 × 10−3), the growth of
the amplitude of the Tollmien–Schlichting wave is weak such that at ξ = 19.5 the
resulting amplitude is lower than at the critical position. Maximum amplification of
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FIGURE 8. (Colour online) Stability domain for ε=0.4. The region bounded by the curves
is the unstable region.
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FIGURE 9. Comparison of the unstable region for the cases ε = 0.4 and (a) δ = 1.34×
10−3, (b) δ = 2.67 × 10−3 and (c) δ = 4.49 × 10−3 computed by means of the OSE and
the PSE.

approximately 1.5 for this case is at ξ = 7.44. Although in principle unstable, any
growth of Tollmien–Schlichting waves will hardly be observable in experiments for
this case. The characteristic quantities for each case in figures 11 and 12 are tabled

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

61
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.617


Stability of boundary layers under solitary waves 79

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1
0 0.001 0.002 0.003 0.004 0.005

FIGURE 10. (Colour online) Distance ξPSE
c − ξOSE

c between the critical position ξc
computed by means of the PSE and the OSE as a function of δ. The amplitude was set
to ε = 0.4.

ε c ξc tc = ξc/c ωc kc A(ξ = 19.5)/Amin

0.1 1.049 2.125 2.03 0.218 0.212 102.7

0.2 1.094 1.249 1.14 0.228 0.218 105.0

0.3 1.138 0.969 0.85 0.230 0.216 106.5

0.4 1.179 0.820 0.70 0.240 0.220 107.5

TABLE 1. Critical parameters for the case δ = 8× 10−4, for different values of ε.

in tables 1 and 2, respectively. In order to quantify the amplification for each case
(δ, ε), we might relate the maximum amplitude to the minimum amplitude of the
critical Tollmien–Schlichting wave at the neutral curve. This would give us a function
Amax/Amin(δ, ε) for each δ and ε. However, the computation of Amax is difficult, since
it is far downstream outside of the computational domain for many cases. A more
straightforward criterion would be to compute the amplitude at ξ = 19.5 and to relate
this value to the minimum amplitude. We used the value at ξ = 19.5 at the rightmost
end of the computational domain. The value ξ = 19.5 seemed reasonable to us, since
the maximum extension in time behind the crest used by Vittori & Blondeaux (2011),
for example in figure 1 in Vittori & Blondeaux (2011) corresponds approximately to
a spatial location between ξ = 21 and ξ = 23.6. The solitary wave itself has passed
well before this point in time even for an amplitude of ε = 0.05. In figure 13, we
plotted the isolines of the function

log10
A(ξ = 19.5)

Amin
(δ, ε). (3.1)

The isolines exhibit that for each ε, the amplification increases strongly when
decreasing δ. However, when increasing ε, the increase in amplification is large
in the beginning but slows down for larger ε.
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FIGURE 11. (Colour online) Amplification of Tollmien–Schlichting waves for the cases
listed in table 1 using the PSE solver.

8

7

6

5

4

3

2

1

–1

0

0 5 10 15 20

FIGURE 12. (Colour online) Amplification of Tollmien–Schlichting waves for the cases
listed in table 2 using the PSE solver.

δ ξc tc = ξc/c ωc kc A(ξ = 19.5)/Amin

8× 10−4 0.820 0.70 0.240 0.220 107.5

1.34× 10−3 1.157 0.98 0.270 0.246 104.0

2.67× 10−3 1.802 1.53 0.320 0.287 101.2

4.49× 10−3 2.736 2.32 0.375 0.325 10−0.2

TABLE 2. Critical parameters for the case ε = 0.4 for different values of δ.
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FIGURE 13. (Colour online) Isolines of the function log10 (A(ξ = 19.5)/Amin)(δ, ε) and
lines of ReSumer = 2× 105 and ReSumer = 5× 105.

A quantity of interest, also investigated in Blondeaux et al. (2012), is the phase
speed of the critical Tollmien–Schlichting wave. For a given frequency ω, the
wavenumber of the Tollmien–Schlichting wave can approximately be given by Im(a),
where a is defined in (2.20), allowing us to compute the phase speed cp=ω/ Im(a) as
a function of ξ . The phase speed cp gives us the celerity of the wave in the moving
frame of reference. In the absolute frame of reference the phase speed is given by
cp − c, which is plotted in figures 14 and 15. The parameters for the plotted cases
are given in tables 1 and 2, respectively. The Tollmien–Schlichting waves seem to
first propagate in the direction of the solitary wave and then reverse their direction
of propagation. This result has also been obtained by Blondeaux et al. (2012) for
their perturbations. They proposed that the flow reversal in the boundary layer is
causing the Tollmien–Schlichting waves to reverse their direction of propagation
too. From figure 14, we observe in addition that for increasing amplitudes ε, the
Tollmien–Schlichting waves travel with an increasing phase speed. The reason may
be that the magnitude of the particle velocities in the base flow becomes higher for
increasing ε. For increasing δ, we also observe an increase in the magnitude of the
phase speed, although only slightly (cf. figure 15). We suspect, however, that this is
not primarily due to the increase in δ, but as the critical frequency ωc is higher for
increasing δ (cf. table 2), the critical Tollmien–Schlichting wave travels with a higher
phase speed.

3.1.2. Relation to experiments and previously published results
As mentioned in the introduction, research on the boundary layer under a solitary

wave and in particular its stability properties, was initiated when Liu et al. (2007)
derived a theoretical approximation and performed experiments on this flow. The
experiments were performed in an equilibrium depth of h0=0.1 m, which corresponds
to δ=4.5×10−3, and with amplitudes ε=0.3, or less. Figure 12 indicates a maximum
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FIGURE 14. (Colour online) Absolute phase speed cp − c of Tollmien–Schlichting waves
for δ= 8× 10−4. The parameters of the Tollmien–Schlichting waves are given in table 1.
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FIGURE 15. (Colour online) Absolute phase speed cp − c of Tollmien–Schlichting waves
for ε = 0.4. The parameters of the Tollmien–Schlichting waves are given in table 2.

amplification as small as 1.5 even for a wave with ε = 0.4. This explains why they
did not observe any instabilities in their experiments.

Vittori & Blondeaux (2008, 2011) performed direct numerical simulations for a
range of δ of 2.8 × 10−4 6 δ 6 1.34 × 10−3 and found the flow to be stable or not
depending on the amplitude ε. In order to be precise, Vittori & Blondeaux (2008)
wrote 2.8× 10−5 6 δ 6 1.34× 10−4, but presented data only for the above range. We
therefore assume that a typo happened in Vittori & Blondeaux (2008) concerning the
range of investigated δ. Sumer et al. (2010) performed experiments for a range of
2.8 × 104 6 ReSumer 6 2 × 106 and found that the flow turns unstable for Reynolds
numbers larger than ReSumer > 2 × 105. The critical set of parameters (εc, δc) by
Vittori & Blondeaux (2008), was mapped to a critical Reynolds number in Vittori &
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Blondeaux (2011). The value of which was found to be ReSumer ≈ 5 × 105. Ozdemir
et al. (2013) found a different regime appearing after the laminar regime which they
called, disturbed laminar, in the sense that perturbations can be observed to destabilize
the flow. They put the Reynolds number of this transition at ReSumer = 8 × 104. The
disturbed laminar changes to the transitional at ReSumer = 1.1× 105.

Apart from this quantitative discrepancy, there were also qualitative differences
concerning the appearance of the instabilities. Sumer et al. (2010) observed
irregularities in the boundary layer in front of the crest for higher Reynolds
numbers ReSumer. In particular, they presented the case ReSumer = 2 × 106 (cf. figure
10(d) in Sumer et al. 2010, in which instabilities are observable for ξ < 0).
Vittori & Blondeaux (2011) applied (δ = 2.8 × 10−4, ε = 0.2), corresponding to
ReSumer= 2.6× 106 and (δ= 4.75× 10−4, ε= 0.5), corresponding to ReSumer= 3.6× 106

and did not observe any sign of instability in the acceleration region. Ozdemir et al.
(2013) conjectured that for sufficiently strong perturbations a nonlinear instability can
develop in front of the crest for Reynolds numbers larger than ReSumer = 1.1 × 106,
but did not observe any flow transition in front of the crest.

We shall relate these findings to the present results. There are of course differences
in the present work to the works by Vittori & Blondeaux (2008, 2011), Ozdemir
et al. (2013) and Sumer et al. (2010). As stated in § 2.1 we start with a more
accurate description of the outer flow than what was used in the previous studies. In
addition, we do not neglect the nonlinear and non-parallel effects in the boundary
layer. Moreover, the references considered temporal growth of instabilities, whereas
the present study focuses on spatial growth. A more crucial difference is that Vittori
& Blondeaux (2008, 2011) in their simulations and Sumer et al. (2010) in their
experiments did not directly control the amplitude of the perturbation which might
lead to a retarded appearance of the instability in their simulations and experiments,
respectively. The importance of this point should not be underestimated and we shall
discuss it in more detail below.

Concerning the appearance of instabilities in front of the crest, the question of
whether there exists a nonlinear instability mechanism in front of the crest for this
boundary layer as conjectured by Ozdemir et al. (2013) cannot be answered by the
present method. Linear instability is, however, possible in front of the crest and we
observe that the neutral curve for the case (δ = 10−4, ε = 0.4) in figure 8 is the first
to cross the line ξ = 0. This case corresponds to a Reynolds number ReSumer= 6× 107,
which is an order of magnitude larger than what Sumer et al. (2010) found and what
Ozdemir et al. (2013) reported to be the lower bound in order to observe nonlinear
growth in front of the crest. If the observed irregularities in front of the crest in Sumer
et al. (2010) have their origin in a nonlinear growth mechanism and whether this
mechanism is strong enough or not (as Ozdemir et al. 2013 suggested) to induce a
bypass transition is impossible to say without further knowledge of the experimental
conditions. Concerning the quantitative discrepancy between the critical Reynolds
numbers in the works by Vittori & Blondeaux (2008, 2011), Ozdemir et al. (2013)
and Sumer et al. (2010), we discussed the cases δ= 8× 10−4 and ε= 0.1, 0.2, 0.3, 0.4
above (cf. figures 7 and 11 and table 1). These cases have also been investigated
by Vittori & Blondeaux (2008, 2011). In figure 1 in Vittori & Blondeaux (2011),
time profiles of the horizontal velocity component at a point in space are plotted. In
addition, the case ε= 0.1 has been considered stable by both Sumer et al. (2010) and
Vittori & Blondeaux (2011) (see figure 5 in Vittori & Blondeaux 2011). The cases
ε= 0.3 and ε= 0.4, on the other hand, were found to be unstable by both references.
However, the case ε = 0.2 was classified unstable by Sumer et al. (2010), whereas
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Vittori & Blondeaux (2011) deemed it stable. Ozdemir et al. (2013), on the other
hand, would consider this case as disturbed laminar with the possible appearance of
roller pairs.

In figure 11 the growth of the critical Tollmien–Schlichting wave is shown. The
amplifications of the Tollmien–Schlichting waves at ξ = 19.5, as compared with the
minimum value at ξc, are listed in table 1. If we assume that the Tollmien–Schlichting
waves start to roll up into vortices (triggering of the secondary instability) once their
amplitude has grown to a value of 1 % of the mean flow (which we set to unity
for simplicity), the amplification (105) for the unstable case ε = 0.2 in table 1,
tells us that the background noise in the experiments in Sumer et al. (2010) was
higher than 10−7. On the other hand, the case ε = 0.1 (amplification: 102.7) was
classified stable. Therefore, the background noise level in the experiments by Sumer
et al. (2010) might have been between 10−7 and 10−4.7. A similar reasoning finds
the background noise in the simulations by Vittori & Blondeaux (2008, 2011) to
be between 10−8.5 and 10−7. Since linear stability predicts a strong decay of the
perturbations in the acceleration region, the initial 10−4 amplitude perturbation, which
Vittori & Blondeaux (2008, 2011) imposed onto the initial condition before the
solitary wave arrived, should have decayed by the time the critical position was
reached to values much lower than the 10−7 estimated above. The NS solver used by
Vittori & Blondeaux (2008, 2011) and Blondeaux et al. (2012) may have produced
a certain level of numerical noise, which might have provided a sufficient level at ξc
for instabilities to become visible. We find support for this presumption in figure 4 in
Blondeaux et al. (2012), where the level of kinetic energy of the perturbation seems
to stay on a stable level of around 10−8–10−9 for all cases of ε, before arriving at
the critical position. Several reasons for the numerical source of noise are possible,
such as truncation errors or incomplete pressure solutions. Overall, the triggering
mechanism of the instability in these references is not well controlled. A better
approach has been chosen by Ozdemir et al. (2013) where five different intensities of
white noise have been introduced at the beginning of a direct numerical simulation.
In addition they followed the evolution of the root-mean-square velocity during the
course of the simulations. Although being a major improvement over the approach
by Vittori & Blondeaux (2008, 2011), the results cannot be transferred to the case
where a constant level of background noise is present, as for example in laboratories.
As predicted by the present linear stability the perturbations in Ozdemir et al. (2013)
underwent strong decay before growing again. As a consequence of their analysis,
Ozdemir et al. (2013) also obtained a new set of critical Reynolds numbers ReSumer.

The present investigation is different, it solves the governing equations, i.e. the
Orr–Sommerfeld and the PSE, for the perturbations, the Tollmien–Schlichting waves
themselves. The amplification of the Tollmien–Schlichting waves can therefore be
computed independently from any given initial level of noise, as long as the initial
level is small. Since the initial amplitude is crucial for the visual appearance of the
perturbation or observation of transition (triggering of the secondary instability), a
result from the present analysis is that classifications such as that presented in figure 5
of Sumer et al. (2010), figure 5 of Vittori & Blondeaux (2011) or in § 4.4 of Ozdemir
et al. (2013), or the determination of critical parameters (δc, εc) in Blondeaux et al.
(2012), need to be taken with care. The flow is convectively unstable and acts as a
broadband amplifier, similar to the Blasius boundary layer (Herbert 1988).

As mentioned above, in figure 13 isolines for the amplification of the critical
Tollmien–Schlichting waves are plotted. Knowing the initial amplitude at the neutral
curve of the critical Tollmien–Schlichting wave for an experiment or a direct
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numerical simulation, we might by means of the isolines predict whether disturbances
become visible or not. In addition to the isolines, we plotted lines given for the
critical Reynolds numbers ReSumer = 2 × 106 and ReSumer = 5 × 106. For small values
of δ and ε, we observe that the lines seem to coincide with the isolines for an
amplification of 104 and 107, respectively. However, as ε and δ increase the lines do
not follow these isolines anymore. As mentioned in § 2.1, the deviation for increasing
ε reflects the limited accuracy of the first-order approximation of the outer flow. The
deviation for increasing δ, on the other hand, is due to non-parallel effects becoming
significant. For small values of δ and ε, the amplification of Tollmien–Schlichting
waves gives a theoretical explanation for the appearance of transition beyond a critical
ReSumer in the experiments by Sumer et al. (2010) or the simulations by Vittori &
Blondeaux (2008, 2011) and Ozdemir et al. (2013). The stability properties of the
flow are, however, more complex, since neutral curves, critical positions, critical
wavelengths, critical frequencies, etc., can be different for a given ReSumer.

Most important, however, is the fact that the flow may appear to be stable (in
the sense that transition does not occur) for a specific ReSumer or (δc, εc) during
one experimental run, whereas it appears to be unstable during another run. This
observation has been made by Pedersen et al. (2013) for a related problem, namely
the boundary layer of a solitary wave running up a sloping beach, where the
occurrence of irregularities was not strictly repeatable. In fact, unless the disturbance
level is actively controlled we do not believe that experimental repeatability for a
flow transition of this type can be obtained.

3.1.3. Direct numerical simulation
In the analysis above (cf. § 3.1), results have been generated by model equations;

namely the OSE and the PSE. In the present subsection a direct numerical simulation
based on first principles is performed for validation. Our approach is very different
from that of Vittori & Blondeaux (2008, 2011) or Ozdemir et al. (2013), in the
sense that the perturbation is carefully controlled and that we, in contrast to Vittori
& Blondeaux (2008, 2011), employ a high-accuracy solution method for the NS
equations. We note that different types of NS solvers might give different sets of
allegedly critical parameters (εc, δc) depending on their truncation errors, numerical
dissipation rates etc.

As mentioned in § 2, the present direct numerical simulations are performed using
a method developed by Fasel (1976, 2002) to investigate the stability of the Blasius
boundary layer. Thereby a Tollmien–Schlichting wave is introduced at the inlet of the
simulation domain and its evolution is monitored.

Figure 16 shows three plots for the case ε = 0.4 and δ= 8× 10−4. In figure 16(a),
the stability domain of the flow, computed using the PSE solver, has been plotted
by the criterion of maximum or minimum amplitude A in (2.27). We now pick a
particular frequency ω and follow the evolution of a Tollmien–Schlichting wave with
this frequency. In figure 16(b), we have chosen the Tollmien–Schlichting wave with
the critical frequency ωc= 0.24. The velocity field u(ξ , y, t) at a specific point in time
t computed by the NS solver, allows us to compute the perturbation velocity u′(ξ , y, t)
by subtracting the base flow Ubase(ξ , y) from the velocity field:

u′ = u−Ubase. (3.2)

In figure 16(b), a transect of u′ at y = 0.4943 is plotted. We clearly observe a
sinusoidal wave which decays until it reaches the critical position ξc = 0.82 and then
starts to grow, albeit slowly at the beginning. This qualitative picture can be analysed
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FIGURE 16. (a) Stability domain for the case ε = 0.4 and δ = 8× 10−4. (b) Horizontal
perturbation u′ of the horizontal velocity component recorded at a distance y = 0.4943
from the wall for a Tollmien–Schlichting wave of ω = 0.24 computed by means of the
NS solver. (c) Amplification of the Tollmien–Schlichting wave with ω = 0.24 computed
by means of the OSE solver, the PSE solver and the NS solver.

further. Using the solution u(x, y, t) by the NS solver, we compute the amplitude of
the Tollmien–Schlichting wave by means of the envelope of u′ at its maximum, i.e.

A(ξ)=max
t,y
|u′(ξ , y, t)|. (3.3)

This envelope can then be compared with the resulting amplifications using the PSE
and the OSE, computed by means of (2.27) and (2.19), respectively. The result of this
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comparison is depicted in figure 16(c). All three methods predict first a decay of the
Tollmien–Schlichting wave followed by growth. The results by the NS solver and by
the PSE solver agree remarkably well. The results by the Orr–Sommerfeld solver on
the other hand display an earlier growth of the Tollmien–Schlichting wave compared
to the other two solvers, a feature which was also observed by looking at the stability
domains in the subsection above. This indicates that non-parallel effects do lead to
quantitative differences.

A closer look at figure 16(c) reveals that for ξ & 2.5 the amplification curves
computed by the parabolized stability method and the NS solver start to mildly deviate.
This indicates that the effect of nonlinearity becomes increasingly significant. We can
study this effect further. By introducing a superposition of Tollmien–Schlichting waves
at the inlet of our computational domain, we can monitor the perturbation velocity
u′ in horizontal direction at different locations further downstream. The perturbation
velocity u′ of the Tollmien–Schlichting waves introduced at the inlet is thus given by

u′(ξinlet, y, t)=
Nω∑
k=1

Re{Akuk(y) exp i (αkξinlet −ωkt)} (3.4)

where Nω is the number of Tollmien–Schlichting waves used, uk is the shape function
at the inlet, computed by the PSE solver, and αk = Im(ak) is the wavenumber
corresponding to the frequency ωk. The frequencies ωk have been chosen such that
ω1 equals 0.15 and ωNω equals 0.35 with Nω = 61. They are distributed such that we
have an equidistant spacing of Fourier modes:

ωk =1ω(k− 1)+ω1, (3.5)

where 1ω = (ωNω − ω1)/(Nω − 1). The initial amplitude Ak of each Fourier mode
is set uniformly to Ak = 5 × 10−4/Nω. The positions at which we monitor the
perturbation velocity u′ are given by ξ = 2.40, 2.96 and 3.12. At these locations we
record the time series of u′ at a distance of 1.64 from the wall. A decomposition
of the signal into its Fourier modes allows us to find the amplitudes Ak at these
downstream locations. Figure 17 presents the amplitudes Ak as a function of ωk.
In addition, we plot the amplitudes Ak predicted by the present linear PSE solver
for comparison. We observe that the signal received further downstream, consists
of discrete spikes separated by 1ω, indicating that the perturbation u′ at these
locations has its origin in the perturbation introduced at the inlet. When repeating
the computation at lower spatial and temporal resolutions, the simulation displays
the emergence of a continuous spectrum with modes filling the space between the
spikes for the locations further downstream. These modes which are absent for finer
resolutions have probably their origin in the truncation error of the simulation growing
in parallel to the Tollmien–Schlichting waves. Returning to figure 17, for the direct
numerical simulation and the PSE we observe a strong growth of the individual
modes for increasing ξ . Growth is strongest for modes around ω = 0.26 which is
somewhat higher than the critical frequency (ωc = 0.24). We remark that we measure
the amplitude here not by criterion (2.27) but at a specific location in y. For ξ = 2.40,
we see that the amplitudes computed by the NS solver and the linear parabolized
equation solver are agreeing well. However, further downwards, ξ = 2.96, we observe
that the amplitudes computed by the NS solver tend to be somewhat lower than
predicted by the PSE solver. This discrepancy is even more emphasized for ξ = 3.12,
where the modes computed by direct numerical simulation are significantly lower than
the modes computed by the PSE solver. The spectrum reflects the discontinuity of the
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FIGURE 17. (Colour online) Fourier modes of the perturbation velocity u′ computed by
direct numerical simulation (NS) and linear PSE at y= 1.64 and different values of ξ for
the case ε = 0.4 and δ = 8× 10−4.

initial distribution, displaying a sudden jump at ω = 0.15 and ω = 3.5. However, we
observe for ξ = 2.96 and ξ = 3.12, the appearance of (significant) modes outside of
the interval [ω1, ωNω ], but still with a spacing given by 1ω. In particular for ξ = 3.12,
we observe two additional peaks at ω= 0 and ω= 5.3, located respectively at zero or
two times the frequency of the maximum amplitude. As can be seen from the neutral
curve in figure 16(a), this is in contrast to the linear analysis which does not predict
any growth for frequencies around ω= 0. As such the primary effect of nonlinearity
is to distribute energy away from modes of maximum amplification.

We remark that the present nonlinear study is limited as we only present results for
a particular spectrum, namely a uniform initial distribution of Tollmien–Schlichting
waves with frequency spacing 1ω. It needs to be noted that for the simulations, each
of these modes undergoes a phase of decay first, before reaching the neutral curve.
The amount by which each mode has decayed by the time it reaches the neutral
curve is varying. This is different to the experimental situation where it is assumed
that a certain level of noise is present everywhere in the set up, the frequency
distribution of this noise being unknown. We emphasize that the present PSE solver
is linear. A nonlinear version, as derived by Bertolotti et al. (1992), would be able
to account for the interaction between Tollmien–Schlichting modes. In addition, we
only consider two dimensional disturbances, leaving aside any possible interaction
with spanwise modes. Nevertheless, despite its limitation, this nonlinear study reveals
that the present linear stability analysis describes accurately the early growth of the
perturbations destabilizing the flow.

3.2. Linear stability analysis for internal solitary waves
3.2.1. Stability regions and amplifications

The boundary layer under surface solitary waves is characterized by two parameters,
the amplitude ε and the parameter δ. For internal solitary waves, as sketched in
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FIGURE 18. (Colour online) Horizontal velocity profiles for the boundary-layer flow
under an internal solitary wave of elevation with ε = 0.1, δ = 0.0023, ρ1 = 1.25
and h1 = 1

3 .

figure 2, the system contains two more parameters accounting for the density ratio
and the depth ratio between the two layers. In the following we use the lower layer
density ρ1 and the lower layer depth h1 as parameters. The scaling is such that the
upper layer density ρ2 is unity, whereas the upper layer depth is given by h2= 1− h1.
In addition, we consider waves of elevation (ε > 0, h1 < hc) and waves of depression
(ε < 0, h1 > hc), where hc is the height of the critical level (Funakoshi & Oikawa
1986):

hc =
√
ρ2/ρ1

1+√ρ2/ρ1
h0. (3.6)

We compute the base flow (Ubase, Vbase) using the present boundary-layer solver in
combination with the method by Funakoshi & Oikawa (1986). This flow is then the
subject of the present linear stability analysis by means of the PSE. Profiles of the
horizontal velocity component for a wave of elevation are displayed in figure 18.
Qualitatively, the profiles are similar to those of a surface solitary wave. An inversion
of the flow is observed in the deceleration region ξ > 0 of the wave. Although we
consider only two-layered fluids, fluids with a pycnocline with non-zero thickness can
relatively well be approximated by a two-layered system, as long as the thickness
of the pycnocline is small (cf. Carr et al. 2008). This can also be seen in figure 19,
where we plotted the same time histories for the horizontal velocity as in Thiem
et al. (2011) for a wave of depression. The pycnocline of the present two-layered
system lies in the centre of the middle layer of experiment ‘20538’ in Carr & Davies
(2006). The scaling corresponds to that of Thiem et al. (2011). The data has been
taken by a digitization tool from figure 4(a) of Thiem et al. (2011). Although the
agreement between experimental data and numerical result is not excellent it is still
reasonable in view of the uncertainties involved in such measurements. The amplitude
is predicted somewhat lower than for the data. However, the agreement is still closer
to the experimental data than for the numerical method of Thiem et al. (2011).

Carr & Davies (2010) concluded on the basis of their experiments that the
boundary-layer flows of internal solitary waves are qualitatively similar to those
of surface solitary waves. A quantitative comparison is, on the other hand, not
straightforward, because of the additional parameters ρ1 and h1. However, the
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FIGURE 19. (Colour online) Time histories for the horizontal velocity in the boundary
layer of a two-layered fluid corresponding to the case ‘20538’ of Carr & Davies (2006)
at z/h2 = 0.1, 0.2, 0.4 (wave of depression). The experimental data by Carr & Davies
(2006) was scanned from Thiem et al. (2011).
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FIGURE 20. (Colour online) Stability domains for the wave of elevation case ε = 0.1,
δ = 10−3 and h1 = 1

3 for different values of ρ1.

leading-order solution for the internal solitary wave in a two-layered fluid (Keulegan
1953) is in the present scaling independent of the density ratio (we are very grateful
to one anonymous referee for pointing this out). This can also be observed when
we keep all parameters fixed and vary only ρ1. In figure 20, we plotted the neutral
curves for the wave of elevation case ε= 0.1, δ= 10−3 and h1= 1

3 for different values
of ρ1. The unstable regions grow somewhat in extent, when increasing ρ1. However,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

61
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.617


Stability of boundary layers under solitary waves 91

1086420–2
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

FIGURE 21. (Colour online) Amplification curves for the critical Tollmien–Schlichting
waves for the cases in figure 20.

when looking at the amplification of the critical Tollmien–Schlichting waves of the
respective cases, figure 21, we observe that the amplification curves almost coincide
except for ρ1 = 1.5. The case ρ1 = 1.5 may be different in this respect because its
interface is already quite close to the critical level hc, where inviscid instability of
the flow becomes important. In addition, the larger values of ρ1 used to generate the
plot might already be somewhat beyond the range the scaling given by c0 (2.2) is
valid. For depression waves, the same behaviour for varying ρ1 is observed (figures
not shown). As opposed to the density ratio the layer depths h1 and h2 enter the
coefficients of the leading-order solution scaled by c0. Given the first-order formula
for the wave celerity c (Keulegan 1953):

c= c0

√
1+ h2 − h1

h1h2
εh0, (3.7)

we observe that the difference h2− h1 between the layer depths has a concurrent role
to the amplitude ε of the wave. Since decreasing h1 will increase c, we expect that the
flow becomes more unstable with decreasing h1. This can also be seen in figure 22,
where the unstable regions increase in size when decreasing h1 or in figure 23, where
the amplifications of the critical Tollmien–Schlichting waves for the cases in figure 22
are larger the lower h1. The roles of h1 and h2 are inverted for waves of depression
(figures not shown). As for surface solitary waves, increasing ε increases the size
of the unstable regions (cf. figure 24). Surprisingly, for larger values of ε, we see
that the neutral curve is moving away from the crest, i.e. the critical position ξc
decreases first before growing again. It needs to be said that the case for ε = 0.3 is
close to the inviscid stability criterion for internal waves of this geometry (Funakoshi
& Oikawa 1986). Looking at the amplification of the critical Tollmien–Schlichting
waves for these cases does not give a clear picture. The amplification curves for
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FIGURE 22. (Colour online) Stability domains for the case ε = 0.1, ρ1 = 1.25 and
δ = 10−3 for different values of h1.

ε = 0.2, 0.25, 0.3 in figure 25 do not display a significant increased growth of the
critical Tollmien–Schlichting wave compared with the case ε = 0.15. The reason for
this behaviour is not obvious. It might be related to the fact that for large amplitudes
the shape of the internal solitary wave undergoes considerable change, the amplitude
of the solitary waves for ε > 0.15 being already larger than the lower layer depth
h1 = 1

6 . For increasing δ, on the other hand (cf. figure 26), we see a more or less
monotone increase in the size of the unstable region, as for the surface solitary waves.
In addition, we observe again a thumb reaching out into the acceleration region of
the wave for small values of δ. This ‘viscous’ instability is, however, observable
only for water depths larger than approximately 50 m. As for surface solitary waves
the amplification of the critical Tollmien–Schlichting waves increases strongly with
decreasing δ (figure not shown), from a factor of approximately 100 to a factor of
105 for the most extreme case in figure 26.

3.2.2. Relation to experiments and previously published results
In this subsection, the above analysis is applied to several cases published in

the literature. In particular, we analyse the amplification of the depression waves
investigated by direct numerical simulation in Aghsaee et al. (2012) and of the
depression waves investigated experimentally by Carr et al. (2008). Concerning
waves of elevation, we turn to the experiments by Carr & Davies (2010).

Similar to what we did in figure 19, we approximate the depression Dubreil–
Jacotin–Long internal solitary wave with a tangent hyperbolic density distribution
in Aghsaee et al. (2012) by a two-layered fluid. For each experiment in table 1
of Aghsaee et al. (2012), we compute the unstable regions (not shown) and the
amplification for a Tollmien–Schlichting wave with frequency ω= 0.11 (cf. figure 27).
The critical Tollmien–Schlichting wave has a frequency somewhat higher than the
Tollmien–Schlichting wave with maximum amplification, which lies for all cases
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FIGURE 23. (Colour online) Amplification curves for the critical Tollmien–Schlichting
waves for the cases in figure 22.
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FIGURE 24. (Colour online) Stability domains for the case δ = 1.96× 10−3, ρ1 = 1.25
and h1 = 1

6 for different values of ε.

approximately at ω = 0.11. The numbers of the runs from table 1 in Aghsaee et al.
(2012) are printed on the amplification curves in figure 27. We marked the curves
for those cases for which vortex shedding was observed with red colour and dashed
lines and the curves for those cases for which no vortex shedding was observed with
blue colour and solid lines. Not surprisingly the amplifications of those cases for
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FIGURE 25. (Colour online) Amplification curves for the critical Tollmien–Schlichting
waves for the cases in figure 24.
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FIGURE 26. (Colour online) Stability domains for the case ε = 0.1, ρ1 = 1.25 and
h1 = 1

3 for different values of δ.

which no vortex shedding was observed tend to be smaller than the amplifications for
those for which vortex shedding was observed. The passage from blue to red or from
solid to dashed lines is, however, not perfect. A reason for this might be a variation
in the background noise of the solver used by Aghsaee et al. (2012). In addition,
it needs to be said that due to the large number of cases a detailed search for the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

61
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.617


Stability of boundary layers under solitary waves 95

1086420

0

–1

1

2

3

4

5

6

10F

7F

2F
1F

15F19F

22F

13F

17F

12F 9F
4F

5F
16F

14F20F
11F 3F

6F

FIGURE 27. (Colour online) Amplification for the Tollmien–Schlichting waves with
frequency ω= 0.11 for the cases listed in table 1 of Aghsaee et al. (2012).

frequency of the Tollmien–Schlichting wave displaying maximum amplification was
out of the scope of this work. Therefore the maximum amplification for some of the
cases in figure 27 might be somewhat higher than that for ω= 0.11. The same holds
for figures 28 and 29. This might be an additional reason for seeing an overlap of
the red and blue amplification curves. Nevertheless the trend is clearly visible. In
line with the above analysis for surface solitary waves, we infer that the level of
background noise is around 10−4.5 in the solver used by Aghsaee et al. (2012). Some
reservation needs to be taken with respect to the above results, since they apply to
a two-layered system, whereas the Dubreil–Jacotin–Long system in Aghsaee et al.
(2012) might display differences in some features.

The same type of analysis can be done for the experimental runs of a depression
wave given in table 1 in Carr et al. (2008). The Tollmien–Schlichting wave with
maximum amplification lies around ω = 0.1 for these cases. The amplifications are
plotted in figure 28. Again, the numbers of the runs from table 1 in Carr et al.
(2008) are printed as a label on the amplification curves in figure 28. We marked the
curves for those cases for which transition was observed with red colour and dashed
lines and the curves for those cases for which no transition was observed with blue
colour and solid lines. Apart from case ‘140207’ the colours of the lines switch
from blue to red for increasing amplification. The approximate level of background
noise in the experimental facility used by Carr et al. (2008) seems to be at a value
of 10−2.35 ≈ 0.004. As a side remark, if the experimental runs by Carr et al. (2008)
had been investigated using the solver in Aghsaee et al. (2012) no transition would
have been observed for all cases, since the level of background noise in this solver is
much lower than the maximum amplification for the experiments in Carr et al. (2008).
Somewhat later Carr & Davies (2010) investigated the boundary-layer flow of waves
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FIGURE 28. (Colour online) Amplification for the Tollmien–Schlichting waves with
frequency ω= 0.1 for the cases listed in table 1 of Carr et al. (2008).
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FIGURE 29. (Colour online) Amplification for the Tollmien–Schlichting waves with
frequency ω= 0.2 for the cases listed in table 1 of Carr & Davies (2010).

of elevation, presumably at the very same experimental facility. The amplification
curves corresponding to the cases listed in table 1 in Carr & Davies (2010) are
plotted in figure 29. The Tollmien–Schlichting wave with maximum amplification
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Label on curve 1 2 3 4 5 6
Number of experiment 260509 060808 top 21059 top 180609 220609 040808 top

Label on curve 7 8 9 10 11
Number of experiment 170609 280109 top 260509 top 050808 220109 top

TABLE 3. Number of the experiment in Carr & Davies (2010) corresponding to the
label number in figure 29.

was found to have a frequency around ω = 0.2. The numbers of the experiment by
Carr & Davies (2010) corresponding to the number labels on the amplification curve
can be found in table 3. All curves are plotted in blue colour and solid lines since
no vortices were observed by Carr & Davies (2010). This is also consistent with the
above observation that the level of background noise in their experimental facility
is at 10−2.35 ≈ 0.004. The maximum amplification in figure 29 can be determined to
be 100.28 ≈ 2, not enough to induce transition given the local background noise. The
present result gives an answer to the question raised by Carr & Davies (2010), of why
there is no transition observed for the waves of elevation in Carr & Davies (2010) but
there is for the waves of depression in Carr et al. (2008), although by the criterion
of Diamessis & Redekopp (2006), cf. figure 2 in Carr & Davies (2010), the waves
of elevation should be more unstable than the waves of depression. Linear theory is
not able to predict the new flow regime after transition, however some ‘structures’
in the new flow regime might display features having their origin in features of the
Tollmien–Schlichting wave during primary instability. In figure 9 in Carr et al. (2008),
we can measure the spacing between the vortices for experiment ‘080207’ as being
0.080, 0.109, 0.071, 0.137 from left to right. In order to be precise, in the caption
in (Carr et al. 2008) the result is referred to as belonging to experiment ‘080206’.
However, such an experiment is not given in table 1. We suspect therefore that a
typo has happened in the figure caption.

The time at which this plot is taken corresponds to ξ = 7.56 in the present scaling.
For ξ = 7.56, we find that the wavelength of the Tollmien–Schlichting wave is 0.13.
The correspondence to the spacing of the vortices in Carr et al. (2008) is reasonable,
in view of the sources of uncertainty. A further feature can be found in the mention
by Carr et al. (2008) that the vortices were only observable long after the wave crest
has passed. For the case ‘050207’, they mentioned that the vortices only appeared
after ξ =6.87 in the present scaling. This is approximately were we find the maximum
amplification for this case in figure 28. The delayed observation may correspond to the
fact that the Tollmien–Schlichting wave needs time to grow starting from the neutral
curve to a level sufficient to trigger the secondary instability.

As for surface solitary waves, the present results indicate that for the cases
investigated in figure 28 the instability in the boundary layer is not of parametric
nature. The initial amplitude and spectrum of the perturbation plays a major role
whether transition is observable or not. For surface solitary waves, we could give
some explanation for the appearance of a critical Reynolds number ReSumer in terms of
isocontours of the amplification of Tollmien–Schlichting waves for small ε and δ. On
the basis of the above results we consider the quest for a single parameter controlling
the transition in the boundary layer of an internal solitary wave given a certain
perturbation as extremely difficult. This is because the amplification curves do not
display a monotonic behaviour, for example when varying ε (cf. figure 25). By means
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of the amplification of Tollmien–Schlichting waves the observations in the literature
(Carr et al. 2008; Carr & Davies 2010; Aghsaee et al. 2012) can be explained. As
such the boundary layer under internal solitary waves is in general more stable than
the one under surface solitary waves, since the maximum amplifications tend to be
lower, at least for the cases considered. This is somewhat counter intuitive to the fact
that transition in the boundary layer seems to be observed more frequent for internal
solitary waves. The explanation might be that the level of background noise in the
experiments for internal solitary waves is compared with the characteristic velocity
much higher than for surface solitary waves, even if the levels of noise are the same
on an absolute scale. The above analysis is relatively crude. It cannot be excluded
that, due to the relatively large amplitude the initial perturbation is required to have
in order to induce transition, nonlinear interactions between Tollmien–Schlichting
waves may be important. In addition, the method might have to be modified if the
effect of an additional boundary layer by an opposing current (Stastna & Lamb 2002,
2008) has to be accounted for. Yet, it does point to an important ingredient so far
not taken into account: the growth of Tollmien–Schlichting waves.

4. Conclusions
The linear stability of bottom boundary layers under solitary waves has been

analysed by three independent numerical methods, namely, the OSE, the PSE and
the full NS equations. As the PSE method produces results with a level of accuracy
comparable to full NS simulations, it has been chosen as the main tool in this
investigation. The OSE method, on the other hand, does not include non-parallel
effects of the flow and is therefore less accurate than the other two.

Stability domains have been computed in the (ξ , ω) plane, where ξ = x + ct is
the phase of the solitary wave and ω the frequency of the perturbation. Instabilities,
in the sense of growing Tollmien–Schlichting waves, were found in the deceleration
region for all investigated solitary waves, the surface and the internal ones. Tollmien–
Schlichting waves start to grow when the phase surpasses a critical value ξc. This
is in agreement with the temporal stability analysis of Blondeaux et al. (2012). This
instability is probably related to the presence of an inflection point, as suggested by
Sumer et al. (2010). Hence, instabilities are to be expected in the deceleration regions
for any kind of waves.

For surface waves, the unstable region becomes larger and ξc smaller, when
increasing the amplitude (ε) or the Reynolds number (2/δ). We found that linear
instability is possible in front of the crest of the solitary wave. How this relates to
the conjecture of a nonlinear instability by Ozdemir et al. (2013) or the observation
of transition by Sumer et al. (2010) in this region is still an open question.

In spite of the presence of instabilities, many cases have been reported as stable in
the literature, both in experiments and computations. This can be explained by means
of the accumulated amplification, which is a measure of the total amplification of
the Tollmien–Schlichting wave during the passage of the solitary waves. In a typical
wave tank of depth 0.1 m the amplification factors are so modest that instabilities may
hardly grow to an observable level. For surface solitary waves the amplification factor
increases with amplitude and even more with the Reynolds number (2/δ) and we have
obtained values up to 108 and more. The amplification is crucial to the understanding
of this flow problem, since it determines whether a perturbation with a given small
initial amplitude will become observable or not. In stability investigations it is thus
important that the perturbation of the flow is well controlled. Moreover, generally, it is
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futile to identify a critical set of parameters (ε, δ), let alone a single critical Reynolds
number, as has been attempted in the literature. The instability of boundary-layer flows
under solitary waves is thus not a parametric one as has been presumed previously.

In previous investigations not only nonlinear features of the boundary-layer flow
have been omitted but also the nonparallel effects. This was either a result of
approximations in the outer flow or of the method applied, such as Orr–Sommerfeld
type equations. By comparison with results from the PSE we find that the OSE yields
an earlier (reduced ξc) onset of instability and somewhat higher amplifications. The
difference is largest for small Reynolds numbers, corresponding to typical laboratory
wave tanks.

When comparing amplifications determined from full NS simulations to those
obtained by the PSE remarkably good agreement was obtained.

The internal solitary waves are controlled by more parameters than the surface
counterparts and the pattern of instability and amplification factors are thus much
more complex. For the cases of mild stratification considered, the boundary layer
of internal solitary waves displayed much smaller amplifications compared with
the surface solitary waves. As such they are therefore more stable. However, due
to the reduced characteristic velocity of internal waves, the level of background
noise in laboratory experiments is relatively large, which might explain the frequent
observation of transitions in the wake of internal solitary waves.

As opposed to previous works (Vittori & Blondeaux 2008, 2011; Ozdemir et al.
2013), this work focuses on the primary instability, the growth of Tollmien–Schlichting
waves. Nevertheless the present investigation of a single instability mechanism enables
approximate predictions concerning the occurrence of transition by the 1 % rule. A
more detailed investigation including nonlinear and three-dimensional effects would
be needed to perform an analysis of the secondary instability. As such the detailed
picture of transition during secondary instability is still incomplete even for the
Blasius boundary layer (Herbert 1988, 1997). Since, as opposed to the Blasius
boundary layer, the maximum amplification of the Tollmien–Schlichting wave can be
carefully controlled by varying ε and δ, the boundary layer under a solitary wave
might reveal itself as an interesting case in investigating the triggering mechanisms
during secondary instability.
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Appendix. Verification and validation
In this section we present a selection of the verification and validation tests done

prior to the generation of the results for the present analysis. In particular, we present
verification and validation results for the PSE solver and a comparison between results
by the PSE and by the NS solver illustrating the resolution requirements for the NS
solver in order to capture the correct amplification of the Tollmien–Schlichting waves.

As opposed to the Orr–Sommerfeld solver, no explicit reference values are available
to validate the implementation of the PSE solver. Therefore, two cases given in
Bertolotti et al. (1992) are recalculated by means of the OSE and PSE to verify the
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FIGURE 30. The amplification for a Tollmien–Schlichting wave with frequency F= 50×
10−6 for the Blasius boundary layer. The graphs were computed by means of the present
PSE solver and the present OSE solver. The graphs can be compared with figure 4(b) in
Bertolotti et al. (1992).
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FIGURE 31. The amplification for a Tollmien–Schlichting wave with frequency F= 220×
10−6 for the Blasius boundary layer. The graphs were computed by means of the present
PSE solver and the present OSE solver. The graphs can be compared with figure 4(a) in
Bertolotti et al. (1992).

correctness of the present methods, namely the amplification of a Tollmien–Schlichting
wave in the Blasius boundary layer for the frequencies F = 50 × 10−6 and
F = 220 × 10−6, respectively. The results of the present computations can be seen
in figures 30 and 31 and can be compared directly to the graphs in figure 4(a,b) in
Bertolotti et al. (1992). Digitizing the amplification curves from this reference we find
that the results agree to plotting scale. The amplification curves computed by means
of the OSE are slightly different. However, Bertolotti et al. (1992) did not give any
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FIGURE 32. (Colour online) Stability curves for δ = 4.75× 10−4 and ε = 0.3. The
curves for different resolutions converge to one single curve for increasing resolution N.

details on the implementation and resolution used for their OSE solver. Comparison
with eigenvalues given for specific cases (Jordinson 1970) show, however, that the
present OSE solver computes these eigenvalues with an agreement up to the fourth
digit. The resolution used for the PSE in y for the computation of the amplification
curves is 120 for both cases. A second numerical verification consists in computing
the neutral curves for the boundary-layer flow under a solitary wave using the present
PSE solver for different resolutions N in wall-normal direction y. In figure 32,
we present the case ε = 0.3 and δ = 4.75 × 10−4 for different resolutions N. As
can be observed the curves for N > 140 are coinciding to plotting accuracy. The
higher the resolution, the better the curves follow this ultimate curve. For all of
the simulations in § 3, we used a resolution of N = 180. A major issue of the PSE
is the numerical instability with respect to small discretizations 1ξ in horizontal
direction. This is due to a weak ellipticity inherent in the PSEs (Herbert 1997). Li &
Malik (1995) found that for a horizontal step size 1ξ larger than the wavelength of
the Tollmien–Schlichting wave the PSEs are stable. As such the wavelength of the
Tollmien–Schlichting waves is of the order of the boundary-layer thickness, which is
of the order of δ. The step sizes chosen for obtaining the results in § 3 were typically
between 10−3 and 10−1. However, for the present solver, where the term L3 da/dξ
has been neglected in (2.21), tests conducted with much smaller step sizes up to 10−5

did not reveal any numerical instabilities for the present flow. For cnoidal waves, on
the other hand, we observed numerical instabilities for step sizes smaller than the
wavelength. As in Bertolotti et al. (1992) and Herbert (1997) we observed that the
initial condition can evoke a transient numerical response when the initial condition
is not chosen sufficiently accurate. However, this response dies out quickly after a
couple of steps. The initial condition given by the solution of the system (26) in
Bertolotti et al. (1992) is sufficiently accurate in this respect.

Concerning the direct numerical simulations in § 3.1.3, the box given by [−0.4,2.8]×
[0, 36] is discretized by 600× 12 elements. The amplification curves for the critical
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FIGURE 33. (Colour online) Amplification curves for the case ε = 0.4, δ = 8× 10−4 and
ω= 0.24 computed by the NS solver for different polynomial degrees P.

Tollmien–Schlichting wave for the case ε = 0.4, δ = 8 × 10−4 for different values
P of the polynomial degree are plotted in figure 33 together with the amplification
curve computed by means of the PSE solver. The curve for P = 7 displays some
high-frequency noise on top of the curve which lies somewhat off the other
curves. The curves for P = 9 and P = 11 are indistinguishable on a plotting
scale. However, they display a slight undulation, which is absent for the curve
computed by means of the PSE. This undulation occurs since the NS solver does
not neglect the nonlinear interaction between the Tollmien–Schlichting waves. Indeed
the amplitude of this undulation corresponds roughly to the square of the amplitude
of the Tollmien–Schlichting wave. The element size was stretched geometrically in y
direction in order to cluster points closer to the wall. The first grid point in normal
direction is at y = 0.0025 for P = 11. The maximum spacing in horizontal direction
was approximately 0.0016 (P= 11). For higher-frequency waves the requirements are
more severe (not shown).

We remark that we did not only thoroughly verify and validate each method
independently. The application of three independent methods in order to mutually
confirm the present results ensures the correctness of the present analysis. This is
fundamentally different than using just one method without checking its result by
another independent method.
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