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The asymptotic behaviour of solutions of second-order quasilinear elliptic partial
di® erential equations de¯ned on unbounded domains in Rn contained in strips (when
n = 2) or slabs (when n > 2) is investigated when such solutions satisfy Dirichlet
boundary conditions and the Dirichlet boundary data have appropriate asymptotic
behaviour at in¯nity. We prove Phragmµen{Lindel�of theorems for large classes of
elliptic operators, including uniformly elliptic operators and operators with
well-de¯ned genre, establish exponential decay estimates for uniformly elliptic
operators when the Dirichlet boundary data vanish outside a compact set, establish
the uniqueness of solutions, and give examples of solutions for non-uniformly elliptic
operators which decay but do not decay exponentially. Our principal theorems are
proven using special barrier functions; these barriers are constructed by considering
an operator associated to our original operator.

1. Introduction

Phragm³en{Lindel�of theorems `at in­ nity’ for an open set « » Rn and an elliptic
partial di¬erential operator Q on Rn are concerned with the behaviour of f (X) as
the norm of X 2 « goes to in­ nity, where f is a solution of a Dirichlet boundary
value problem for Q in « . The cases in which « is (or is contained in) a strip
in R2 or a cylinder in R3 have generated particular interest, in part because of
applications to problems in continuum mechanics. Decay theorems (alternatively,
spatial decay theorems) in such domains are concerned with the rate at which
(appropriate) solutions converge to their asymptotic limits, especially when the
Dirichlet boundary data vanish outside a compact set. These decay estimates, which
have connections with, for example, (linear and nonlinear) heat equations (e.g. [6,
21,23,29,32,39]), ®uid mechanics (e.g. [1,3]), extensible ­ lms (e.g. [17]) and Saint{
Venant’s principle in elasticity theory (e.g. [12{15,18,35]), often begin by assuming
that the limiting behaviour at in­ nity of the solution is known. We might view this
interaction as a two-step process, in which a Phragm³en{Lindel�of theorem yields the
limiting behaviour of a solution and a decay theorem yields estimates of the rate
at which the solution approaches its limiting values. In this paper we will focus
primarily on Phragm³en{Lindel�of theorems.

Previous results on Phragm³en{Lindel�of theorems at in­ nity have generally con-
cerned limited classes of operators, such as the Laplace operator or other linear
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uniformly elliptic operators (e.g. [2,4,8,33,40]), nonlinear uniformly elliptic opera-
tors (e.g. [22]), the minimal surface operator or other divergence structure operators
(e.g. [19, 20, 24, 26, 27, 30, 37]) or operators whose principal part has one of these
forms (e.g. [6,16,17,25,31,36]). (Two exceptions, however, are [10] and [28].) Decay
estimates were usually obtained for particular classes of operators in special geome-
tries, including strips (e.g. [18,19,22,30,34,37]) and cylinders (e.g. [6,11,15,31]).

Throughout this paper (except in x 5), we will assume « is an unbounded open
subset of Rn such that, for some ­ xed M > 0,

« » fX = (x1; : : : ; xn) 2 Rn j jxnj < Mg:

We will consider elliptic operators of the form

Qu(X) =
nX

i;j = 1

aij(X; u(X); Du(X))Diju(X); (1.1)

where (aij(X; t; P )) is a positive de­ nite matrix in which each entry is a C1 function
on Rn £ R £ Rn. For ¿ 2 C0(Rn), we will consider the Dirichlet problem

Qf = 0 in « ; (1.2)

f = ¿ on @« : (1.3)

Our goal is to determine the behaviour of f (X) for X 2 « as jXj ! 1. We will
prove theorems of Phragm³en{Lindel�of type for solutions f of (1.2){(1.3) when Q
satis­ es one of two general conditions, ¿ has (uniform) limits `at in­ nity’, and, in
some cases, f (X) does not grow too quickly as jX j goes to in­ nity. The class of
elliptic operators satisfying one of these general conditions includes, for example,
uniformly elliptic operators, minimal surface operators and operators whose coe¯ -
cients depend only on the gradient of the solution when these operators are of the
form (1.1). Based, for example, on [6] and [22], one might expect that when Q is
uniformly elliptic, a solution of (1.2){(1.3) which converges to zero at in­ nity does
so exponentially when the boundary data vanish outside of some compact set; while
spatial decay estimates are not the focus of this paper, we do prove this conjecture
in corollary 3.4. We observe that when the operator is not uniformly elliptic, there
are solutions of (1.2){(1.3) which converge to zero but do not do so exponential, as
illustrated in x 3 by examples 3.5 and 3.6.

To illustrate some of our results, we will consider two special cases. In the ­ rst
case, we let

« = f(x; y; z) 2 R3 : jzj < 1; x2 + y2 > 1g

be an `in­ nite washer’, Q be either a uniformly elliptic operator on « or the minimal
surface operator on R3, and ¿ 2 C0(R3) such that there exist continuous functions
h1( ³ ) and h2( ³ ) with

lim
r ! 1

¿ (r cos(³ ); r sin(³ ); 1) = h1( ³ ); (1.4)

lim
r ! 1

¿ (r cos(³ ); r sin( ³ ); 1) = h2( ³ ) (1.5)
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uniformly for ³ 2 [0; 2 º ]. Then, if Q is the minimal surface operator on R3 and
f 2 C2( « ) \ C0( ·« ) is a solution of (1.2){(1.3), corollary 4.5 implies

lim
r ! 1

f (r cos(³ ); r sin(³ ); z) = 1
2 (1 + z)h1( ³ ) + 1

2(1 z)h2( ³ )

uniformly for 0 6 ³ 6 2 º and 1 6 z 6 1. Corollary 3.8 implies that this conclu-
sion continues to hold if Q is a uniformly elliptic operator and f 2 C2( « ) \ C0( ·« )
is a solution of (1.2){(1.3) which satis­ es the condition that, for some C > 0,
jf (x; y; z)j 6 C

p
x2 + y2 when (x; y; z) 2 « and x2 + y2 > 1.

From the conclusion above, we can easily see that the solution to (1.2){(1.3) is
unique when Q is the minimal surface operator and ¿ satis­ es (1.4){(1.5). It also
easily follows that a solution of (1.2){(1.3) which grows at most linearly is unique
in this class of functions when Q is a uniformly elliptic operator whose coe¯ cients
ai;j(x; y; z; u; Du) are independent of u, and ¿ satis­ es (1.4){(1.5). Since a fully
nonlinear uniformly elliptic operator of the form F (X; Du; D2u) which satis­ es
F (X; P; 0) ² 0 can be reduced (by `linearization’) to a uniformly elliptic operator
of the form (1.1), we see that our conclusions above can be applied to appropriate
solutions of F (X; Du; D2u) = 0.

In the second case, we let Q be a uniformly elliptic operator and ¿ vanish outside
of a compact set in Rn. Then a solution of (1.2){(1.3) in the class of functions with
(at most) linear growth must actually decay exponentially. For example, suppose
Q is the Laplace operator on R3, « is as before (i.e. an `in­ nite washer’) and
¿ 2 C0(R3) satis­ es ¿ (x; y; §1) = 0 if x2 + y2 > 1 and

¿ (cos(³ ); sin(³ ); z) = (1 z2)(sin(³ ) cos(2³ )); 0 6 ³ 6 2 º ; 1 6 z 6 1:

If f is a solution of (1.2){(1.3) and, for some C > 0, jf (x; y; z)j 6 C
p

x2 + y2 for
x2 + y2 > 1, then corollary 3.2 implies f(x; y; z) ! 0 as x2 + y2 ! 1 for jzj 6 1,
and corollary 3.4 implies that, for r > 1 and 0 6 ³ 6 2 º ,

jf(r cos(³ ); r sin(³ ); z)j 6 8

º
e º (r 1)=2 cos(1

2 º z):

For another example, let Qu = 0 be the equation of gas dynamics for a perfect gas
(e.g. [9, eqn (10.8)]); here,

Qu = ¢ u
2DiuDju

2 ( ® 1)jDuj2 Diju

for a constant ® > 1. Suppose f is a solution of (1.2){(1.3) which satis­ es, for some
C > 0 and m <

p
2=( ® + 1), jf (x; y; z)j 6 Cr when r > 1 and jDf j 6 m on « ;

these imply the ®ow is subsonic and Qf is uniformly elliptic. Then corollary 3.2
implies f (x; y; z) ! 0 as x2 + y2 ! 1 for jzj 6 1, and corollary 3.4 implies

jf (r cos( ³ ); r sin(³ ); z)j 6 4

k
e k(r 1)ek¬ jzj sin(k(1 jzj));

where ¬ and k are constants depending only on ® and m.
The aspect of this work which is most crucial to its success (and might also be

of independent interest) is the construction of new barrier functions; for ease of
presentation, we will limit our discussion here to R3 and elliptic operators on R2.
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The following geometric idea, used, for example, in [20] (see also [27]), is the genesis
of our construction. Consider the catenoid x2 + y2 = cosh2(z), which is a minimal
surface with the z-axis as an axis of symmetry. De­ ne

w(x; y) =

q
cosh2(y) x2 for (x; y) 2 D = f(x; y) 2 R2 : jxj < cosh(y)g:

The graph of w is a portion of the catenoid obtained by interchanging y and z in
the catenoid above. Notice that w is a solution of the minimal surface equation,
w > 0 in D, and

@w

@n
= +1 on @D;

where n is the exterior normal to D on @D. Let S = f(x; y) 2 R2 : jyj < 1g and
suppose f 2 C2(S) \ C0( ·S) is any solution of the minimal surface equation in S
satisfying f (x; §1) 6 0 for jxj 6 cosh(1). Using well-known comparison principles,
we see that f 6 w on S \ D. In particular, f(0; y) 6 w(0; y) for jyj 6 1. In [38] (see
also [28]), upper and lower barriers of the form g(x; y) = h(

p
x2 + y2) are used;

for upper barriers, g is a supersolution of the elliptic equation under consideration.
Since the surfaces x2 + y2 = cosh2(z) and z = h(

p
x2 + y2) have some similarities,

one might wish to mimic the process above. Given a suitable operator Q of the
form (1.1), our construction is based on ­ nding supersolutions and subsolutions for
an operator Q# corresponding to Q, de­ ning w so that

z = w(x; y) =) y = g(x; z);

and concluding that w is a supersolution or subsolution for Q. However, certain
technical di¬erences between minimal surfaces and solutions of Qf = 0 should be
apparent; for example, Q# = Q when Q is the minimal surface operator, while
Q# 6= Q in general. One unexpected aspect of this construction is that upper
(lower) barriers for Q will come from subsolutions (supersolutions) for Q# .

The remainder of the paper is organized as follows. In x 2, we state our principal
theorems. In xx 3{6, we apply our theorems to various kinds of elliptic equations
by verifying the hypotheses of our theorems. Our theorems are proven in xx 8, 10
and 11, where we apply the barriers constructed in xx 7 and 9. In x 12 we prove
corollaries 3.8, 4.5 and 4.6.

2. Main results

We will assume from now on that the coe¯ cients of Q have been normalized so
that

nX

i = 1

aii(X; z; P ) = 1 for (X; z; P ) 2 Rn £ R £ Rn: (2.1)

We will write elements X = (x1; : : : ; xn) of Rn as (x; y), where x = (x1; : : : ; xn 1)
and y = xn. Corresponding to the operator Q, we de­ ne an operator Q# by

Q# v(x; z) =

nX

i;j = 1

Aij(x; z; v; Dv)Dijv (2.2)
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for v = v(x; z) in C2(Rn) with @v=@z 6= 0, where

Aij(x; z; t; p; q) = q2aij ; 1 6 i; j 6 n 1; (2.3)

Ain(x; z; t; p; q) = qain

n 1X

j = 1

pjqaij ; 1 6 i 6 n 1; (2.4)

Ann(x; z; t; p; q) = ann 2

n 1X

j = 1

pjajn +

n 1X

i;j = 1

pipjaij : (2.5)

Here aij means aij(x; t; z; p=q; 1=q) for 1 6 i, j 6 n, p = (p1; : : : ; pn 1) 2 Rn 1,
t 2 R, q 6= 0, Di = @=@xi for 1 6 i 6 n 1, Dn = @=@z, Dv = (D1v; : : : ; Dnv) and
Dij = DiDj for 1 6 i, j 6 n.

The operators Q and Q# are related in the following way. If w = w(x; y) is in
C2(Rn), g = g(x; z) is in C2(Rn), gz 6= 0, and g(x; w(x; y)) = y, then

Qw(x; y) =
1

g3
z (x; w(x; y))

Q# g(x; w(x; y)): (2.6)

In particular, if gz > 0 and Q# g > 0, then Qw 6 0. This is the crucial observation
in the paper, which enables us to construct supersolutions and subsolutions for
Dirichlet problems related to Q on « .

We shall assume the following hypothesis on the behaviour of the boundary
data ¿ .

Assumption 2.1. There is a function © 2 C0(Sn 2) such that

¿ (r!; y) ! © (!) as r ! 1

uniformly for ! 2 Sn 2 and jyj 6 M .

The assumptions on the operator Q will be described by the behaviour of the
following functions.

Definition 2.2. For an operator Q in (1.1) satisfying (2.1), let

"(X; z; P ) = "(x; y; z; P ) =

nX

i;j = 1

aij(X; z; P )PiPj (2.7)

for X, P 2 Rn, z 2 R, and

"# (x; z; t; p; q) =

µ n 1X

i;j = 1

Aijpipj + 2

n 1X

i = 1

Ainpiq + Annq2

¶¿ nX

i = 1

Aii (2.8)

for q 6= 0, where Aij = Aij(x; z; t; p; q) for 1 6 i, j 6 n are given by (2.3){(2.5),
and x, p 2 Rn 1, z, t, q 2 R.

Remark 2.3. A brief computation shows that (using (2.1))

"# (x; z; t; p; q) =
ann(x; t; z; p=q; 1=q)

1 + "(x; t; z; p=q; 1=q) ann(x; t; z; p=q; 1=q)
: (2.9)
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Our ­ rst theorem follows.

Theorem 2.4. Suppose we have the following.

(1) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(2) Q satis¯es (2.1) and there exist L > 0 and a positive continuous function ¼
on [1; 1) such that

"# (x; z; t; p; q) > ¼ (jpj2 + q2) (2.10)

whenever x, p 2 Rn 1, z, t, q 2 R, jxj > L, jpj2 +q2 > 1, jtj 6 M and q 6= 0.

(3) ¿ satis¯es assumption 2.1.

Then
lim

j ! 1
f (xj; yj) = © (!) (2.11)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

If condition (2) in theorem 2.4 holds only for jqj > ¯ 0 > 0, we need to add more
restrictions on the solution f .

Theorem 2.5. Suppose we have the following.

(1) f 2 C2( « )\C0( ·« ) satis¯es (1.2){(1.3), and f(x; y) has at most linear growth
in its variables; that is, there is a constant C > 0 such that

jf(x; y)j 6 C jxj for jxj large; (x; y) 2 « : (2.12)

(2) Q satis¯es (2.1) and there exist L > 0, ¯ 0 > 0, and a positive continuous
function ¼ on [1; 1), such that

"# (x; z; t; p; q) > ¼ (jpj2 + q2) (2.13)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and
jqj > ¯ 0.

(3) ¿ satis¯es assumption 2.1.

Then
lim

j ! 1
f (xj; yj) = © (!) (2.14)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

If condition (3) in theorem 2.4 is not assumed, we can still obtain a bound on a
solution given by the bound on the boundary data.

Theorem 2.6. Suppose we have the following.

(1) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2).
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(2) Q satis¯es (2.1) and there exist L > 0 and a positive continuous function ¼
on [1; 1) such that

"# (x; z; t; p; q) > ¼ (jpj2 + q2) (2.15)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and
q 6= 0.

Then

lim
R ! 1

supfjf (x; y)j j jxj > R; (x; y) 2 « g
6 lim

R ! 1
supfjf (x; y)j j jxj > R; (x; y) 2 @« g:

In particular, if jf (x; y)j 6 K on @« , then jjf jjL1 ( « ) 6 K.

3. Uniformly elliptic and other equations

In this section, we consider the application of theorem 2.5 to particular classes of
operators. In order to do this, we need to verify that assumption (2) of theorem 2.5
is satis­ ed. Let us consider the following four conditions.

(1) Q is a uniformly elliptic operator.

(ii) ann(x; t; z; p; q) is independent of x, t and z.

(iii) There exist L > 0 and a positive continuous function ¼ on [1; 1) such that

ann(x; t; z; p; q) > ¼ (jpj2 + q2)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and
jqj > 0.

(iv) There exist L > 0, ¯ 0 > 0 and a positive continuous function ¼ on [1; 1) such
that

ann(x; t; z; p=q; 1=q) > ¼ (jpj2 + q2) (3.1)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and
jqj > ¯ 0.

Lemma 3.1. Suppose Q satis¯es (2.1) and one of conditions (i), (ii) or (iii). Then
Q satis¯es condition (iv).

Proof. Suppose ­ rst that Q satis­ es (i). Then there exists a constant · > 0 such
that nX

i;j = 1

ai;j(x; y; z; p; q) ¹ i ¹ j > · j¹ j2

for all ¹ 2 Rn, (x; y) 2 « , z, q 2 R and p 2 Rn 1. If we set ¹ = (0; : : : ; 0; 1), we get
ann(x; t; z; p; q) > · . Thus we see that

ann(x; t; z; p=q; 1=q) > · ;

and so (iv) is satis­ ed if we let ¼ ( » ) be the constant function which equals · .
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Suppose next that Q satis­ es (ii). Let ¯ 0 2 (0; 1] be ­ xed. Set

k( » ) = min

»
ann(p; q) : p 2 Rn 1; q 2 R;

1

¯ 2
0

6 jpj2 + q2 6 »

¼
:

Then k(¢) is a positive decreasing continuous function on [ ¯ 2
0 ; 1). For p 2 Rn 1

and q 2 R with jqj > ¯ 0 and jpj2 + q2 > 1, we have

ann

³
p

q
;

1

q

´
> k

³
jpj2
q2

+
1

q2

´
> k

³
2

¯ 2
0

(jpj2 + q2)

´
;

since
jpj2

q2
+

1

q2
6 jpj2 + q2

q2
+

jpj2 + q2

q2
6 2

¯ 2
0

(jpj2 + q2):

If we de­ ne ¼ by ¼ ( » ) = k(2 ¯ 2
0 » ) and set L = 0, then (iv) is satis­ ed.

Suppose ­ nally that (iii) is true. Let ¯ 0 2 (0; 1] be ­ xed. Set

k( » ) = min

»
¼ (jpj2 + q2) : p 2 Rn 1; q 2 R;

1

¯ 2
0

6 jpj2 + q2 6 »

¼
:

Then k(¢) is a positive decreasing continuous function on [̄ 2
0 ; 1). For x, p 2 Rn 1

and y, t, q 2 R with jxj > L, (x; q) 2 « , jqj > ¯ 0 and jpj2 + q2 > 1, we have

ann

³
x; y; t;

p

q
;

1

q

´
> ¼

³
jpj2

q2
+

1

q2

´
> k

³
jpj2

q2
+

1

q2

´
> k

³
2

¯ 2
0

(jpj2 + q2)

´
;

and so (iv) holds.

Corollary 3.2. Suppose we have the following.

(1) f 2 C2( « )\C0( ·« ) satis¯es (1.2){(1.3) and f (x; y) has at most linear growth
in its variables.

(2) Q satis¯es (2.1) and one of conditions (i){(iv).

(3) ¿ satis¯es assumption 2.1.

Then

lim
j ! 1

f (xj; yj) = © (!) (3.2)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

Proof. We shall assume condition (iv) is satis­ ed. From (2.1), we see the largest
eigenvalue of (aij) is bounded by one. Hence

"(x; z; t; p; q) 6 jpj2 + jqj2:

Then, for any ­ xed ¯ 0 > 0, if jqj > ¯ 0 and jpj2 + q2 > 1, we have

"

³
x; z; t;

p

q
;

1

q

´
6 (jpj2 + 1)jqj 2 6 2

¯ 2
0

(jpj2 + q2):
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Combining this with (2.9) and (3.1) implies

"# (x; z; t; p; q) > ann(x; t; z; p=q; 1=q)

1 ann(x; t; z; p=q; 1=q) + 2 ¯ 2
0 (jpj2 + q2)

> ¯ 2
0 ¼ (jpj2 + q2)

¯ 2
0 + 2(jpj2 + q2)

for x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and jqj > ¯ 0. The
corollary now follows from theorem 2.5.

Remark 3.3. If F = F (X; z; P; R) is a C2 function of X , P 2 Rn, x 2 R, and
R 2 Rn£n (i.e. real symmetric n £ n matrices) and f 2 C2( « ) is a solution of the
fully nonlinear equation

F (X; u(X); Du(X); D2u(X)) = 0;

then, as in [9, p. 444], f can be considered as the solution of a quasilinear elliptic
equation. If F (X; z; P; 0) = 0, then this quasilinear is of the form (1.1); if addition-
ally F (X; f (X); Df (X); D2u(X)) is a uniformly elliptic operator, then corollary 3.2
(and corollary 3.4) can be applied to f .

Suppose f 2 C2( « ) \ C0( ·« ) satis­ es (1.2){(1.3), f (x; y) = 0 for (x; y) 2 @«
when jxj is large, f (x; y) grows at most linearly in jxj and the linear operator

L u(X) =

nX

i;j = 1

ai;j(X; f (X); Df (X))Diju(X) (3.3)

is uniformly elliptic. Then f (x; y) decays exponentially, as indicated in the following
corollary. We also observe that the decay rate obtained in corollary 3.4 (i.e. k) may
not be optimal. If the operator L is not uniformly elliptic, then f (x; y) need not
decay exponentially, even if f (x; y) ! 0 as jxj ! 1, as examples 3.5 and 3.6
demonstrate.

Corollary 3.4. Suppose we have the following.

(1) f 2 C2( « )\C0( ·« ) satis¯es (1.2){(1.3) and f (x; y) has at most linear growth
in its variables.

(2) Q satis¯es (2.1) and is uniformly elliptic with ellipticity constants · 1 and · 2,
0 < · 1 6 · 2 6 1; that is,

· 1j¹ j2 6
nX

i;j = 1

ai;j(X; z; P ) ¹ i ¹ j 6 · 2j¹ j2

for X 2 « , P; ¹ 2 Rn, z 2 R.

(3) ¬ = maxf1; ( · 2 · 1)=· 1g and k = (1=M) tan 1(1=¬ ) if · 2 > · 1, while ¬ = 0
and k = º =2M if · 2 = · 1.

(4) There exists L > 0 such that ¿ (x; y) = 0 if jxj > L and jyj 6 M .
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(5) There exists K > 0 such that jf (x; y)j 6 K sin(k(M jyj))e kL if jxj = L
and (x; y) 2 « .

Then

jf (x; y)j 6 Ke kjxjek¬ jyj sin(k(M jyj)) (3.4)

for (x; y) 2 « with jxj > L.

Proof. Let L be the (linear) operator de­ ned by

L u(X) =
nX

i;j = 1

ai;j(X; f(X); Df (X))Diju(X):

As in [22], de­ ne ± (x; y) = e kjxjã (y) for a positive function ã (with ã 00 6 0) to
be determined. Set

² (») = ² (X; ¹ ) =

nX

i;j = 1

ai;j(X; f (X); Df (X)) ¹ i ¹ j

for X 2 « and » 2 Rn. Let ~· 1 = minf · 1; 1
2
· 2g if · 2 > · 1 and ~· 1 = · 1 = · 2

otherwise; then ¬ = ( · 2 ~· 1)=~· 1. Notice that

~· 1j»j2 6 ² (») 6 · 2j»j2;

~· 1 6 an;n 6 · 2;
­­­­2

n 1X

i = 1

xi

jxjai;n

­­­­=

­­­­²
³

x

jxj ; 1

´
²

³
x

jxj ; 0

´
an;n

­­­­6 2(· 2 ~· 1):

For each X = (x; y) 2 « ,

ekjxj L ± = ã (y)

³ n 1X

i;j = 1

k2xixj

jxj2 ai;j +
n 1X

i;j = 1

kxixj

jxj3 ai;j
k

jxj

n 1X

i = 1

ai;i

´

2ã 0(y)

n 1X

i = 1

kxi

jxj ai;n + ã 00(y)an;n

= ²

³
kx

jxj ; 0

´
ã (y) k

³
²

³
x

jxj ; 1

´
²

³
x

jxj ; 0

´
an;n

´
ã 0(y)

+ an;nã 00(y)
k

jxj

³ n 1X

i;j = 1

³
¯ i;j

xixj

jxj2

´
ai;j

´
ã (y):

Notice that

n 1X

i;j = 1

³
¯ i;j

xixj

jxj2

´
ai;j =

1

jxj2
n 1X

i = 2

i 1X

j = 1

² (xjei xiej) > 0;
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and so

ekjxj L ± 6 an;n

³
ã 00(y)

k

an;n

³
²

³
x

jxj ; 1

´
²

³
x

jxj ; 0

´
an;n

´
ã 0(y)

+
1

an;n
²

³
kx

jxj ; 0

´
ã (y)

´

6 an;n

³
ã 00(y) + 2

k

~· 1
( · 2 ~· 1)jã 0(y)j +

· 2k2

~· 1

ã (y)

´
:

Let us de­ ne ã 2 C2(R) by

ã (y) = C1ek¬ jyj sin(k(M jyj))

for some C1 > 0; notice that ã 0(0) = 0 because of our choice of k. Now

ã 0(y) = C1ek¬ jyj y

jyj(k¬ sin(k(M jyj)) k cos(k(M jyj)));

jã 0(y)j = C1ek¬ jyjk( ¬ sin(k(M jyj)) + cos(k(M jyj)))

and

ã 00(y) = C1ek¬ jyjk2(( ¬ 2 1) sin(k(M jyj)) 2 ¬ cos(k(M jyj)));

hence

ã 00(y) + 2
k

~· 1
( · 2 ~· 1)jã 0(y)j +

· 2k2

~· 1

ã (y)

= C1ek¬ jyjk2 sin(k(M jyj))
³

¬ 2 1
2 ¬ ( · 2 ~· 1)

~· 1
+

· 2

~· 1

´

+ C1ek¬ jyjk2 cos(k(M jyj))
³

2¬ + 2
· 2 ~· 1

~· 1

´
:

Since · 2 > 2~· 1 and ¬ = ( · 2 ~· 1)=~· 1 (or · 2 = ~· 1 and ¬ = 0), we have

¬ 2 1
2 ¬ ( · 2 ~· 1)

~· 1
+

· 2

~· 1
=

1

~· 1
( · 2 ~· 1)(2~· 1 · 2) 6 0

and

2 ¬ + 2
· 2 ~· 1

~· 1
= 0:

Hence, for any C1 > 0, L ± 6 0. Notice further that

ekjxj L ( ± ) > an;n

³
ã 00(y) + 2

k

~· 1
( · 2 ~· 1)jã 0(y)j +

· 2k2

~· 1

ã (y)

´
> 0

if C1 > 0.
Arguing as in [30], we will show that jf j 6 ± on « . Set C1 = K , so that

± (x; y) = Ke kjxjek¬ jyj sin(k(M jyj)):
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Let ° > 0. Corollary 3.2 implies jf (x; y)j ! 0 as jxj ! 1 and so there exists
l( ° ) > 0 such that

jf (x; y)j 6 1
2 ° and 0 6 ± (x; y) < 1

2 °

if (x; y) 2 ·« and jxj > l( ° ). Therefore,

f (x; y) 6 ± (x; y) + ° for (x; y) 2 ·« ; jxj > l( ° ):

Now condition (4) implies f (x; y) = 0 if (x; y) 2 @« , jxj > L, and so

f (x; y) 6 ± (x; y) < ± (x; y) + ° for (x; y) 2 @« ; jxj > L:

Finally, condition (5) implies jf (x; y)j 6 ± (x; y) if (x; y) 2 ·« and jxj = L. Hence

f 6 ± + ° on @f(x; y) 2 « : L < jxj < lg

for any l > l( ° ). Using the comparison principle (see [9]), we see that

f (x; y) 6 ± (x; y) + ° if (x; y) 2 ·« ; jxj > L:

Since ± is a subsolution, a similar argument shows that

± (x; y) ° 6 f (x; y) if (x; y) 2 ·« ; jxj > L:

Since ° > 0 is arbitrary, we see that

jf (x; y)j 6 ± (x; y) for (x; y) 2 @« ; jxj > L:

Some operators of the form (1.1), such as the minimal surface operator, are
not uniformly elliptic but become uniformly elliptic for functions f with bounded
gradient; that is, the linear operator L given in (3.3) is uniformly elliptic when jrf j
is bounded. For such operators, corollary 3.4 is applicable. For other operators,
however, obtaining a bound on jrf j does not imply that the linear operator L
is uniformly elliptic; as the following examples show, solutions of (1.2){(1.3) may
decay to zero without decaying exponentially, for such operators.

Example 3.5. Let « = f(x; y) 2 R2 : x > 0, jyj < º g and de­ ne Q by

Qu =
1

1 + u2 + u2
y

uxx +
u2 + u2

y

1 + u2 + u2
y

uyy :

Notice that

a2;2

³
x; y; z;

p

q
;

1

q

´
=

z2q2 + 1

q2 + z2q2 + 1
> 1

q2 + 1
> 1

2(p2 + q2)

when p2 +q2 > 1 and q 6= 0. Let ¿ (x; y) = sin(y). Then one solution of the Dirichlet
problem Qu = 0 in « , u = ¿ on @« is

f(x; y) =

p
2

x +
p

2
sin(y):
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Notice that the hypotheses of corollary 3.2 are satis­ ed and f (x; y) ! 0 as x ! 1;
however, f does not decay exponentially. (The fact that aij(x; y; z; p; q) is only pos-
itive de­ nite on f(x; y; z; p; q) : z2 + q2 > 0g is not important, since the linear oper-
ator L obtained by replacing the coe¯ cients aij(z; q) of Q by bij(x; y) = aij(f; fy)
(so Lu is proportional to uxx + (f 2 + f 2

y )uyy) is elliptic for all u.)

Example 3.6. Let « = f(x; y) 2 R2 : x > 0, jyj < º g and de­ ne Q by

Qu = uxx + ¬ (u2 + u2
y)kuyy

for ¬ , k > 0. Notice that

f (x; y) = c(x + a) 1=k sin(y)

is a solution of Qu = 0 if k + 1 = ¬ k2c2k and a 2 R; further, f (x; § º ) = 0 for
x > 0. For example,

f (x; y) = 1
2(x + 1

4) 1=2 sin(y)

is a solution of
uxx + 3(u2 + u2

y)2uyy = 0 in «

with f (0; y) = sin(y) and f (x; § º ) = 0 for x > 0.

Let us consider an example for which assumption (2) in theorems 2.4 or 2.5 is
not satis­ ed.

Example 3.7. Suppose « » f(x; y) 2 R2 : jyj 6 Mg. Let Q be the operator on R2

de­ ned by

Qu(x; y) = uxx(x; y) +
1

x2 + 1
uyy(x; y):

Then

"(x; t; z; p; q) =
x2 + 1

x2 + 2
p2 +

1

x2 + 2
q2;

"# (x; z; t; p; q) =
q2

1 + (x2 + 1)(p2 + q2)
:

Notice that hypotheses (2) in theorems 2.4 or 2.5 cannot be satis­ ed since
"# (x; z; t; p; q) ! 0 as jxj ! 1.

Let us next consider a case in which xj ! 1, (xj; yj) 2 @« , xj=jxjj ! !, and
yet the limit ¿ (xj ; yj) may not exist.

Corollary 3.8. Suppose we have the following.

(1) The domain « is given by

« = f(x1; : : : ; xn 1; y) 2 Rn j M < y < Mg:

(2) Q satis¯es (2.1) and one of conditions (i){(iii).

(3) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3) and there exists C > 0 such that

jf(x; y)j 6 C jxj for jxj > 1; (x; y) 2 « :
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(4) There are two functions © 1(!) 2 C0(Sn 2) and © 2(!) 2 C0(Sn 2) such that

lim
r ! 1

¿ (r!; M) = © 1(!); lim
r ! 1

¿ (r!; M ) = © 2(!);

uniformly for ! 2 Sn 1.

Then

lim
j ! 1

f(xj; y) =
1

2M
( © 1(!) © 2(!))(y + M ) + © 2(!)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

The proof will be given after the proof of theorem 2.6.

4. Equations with well-de¯ned genre

Now we consider equations to which we can apply theorems 2.4 and 2.5. The class
of equations to which we shall apply these theorems is the class of elliptic operators
Q with a well-de­ ned genre ¶ .

Definition 4.1 (see [5], [38, p. 425]). Equation (1.1) has genre ¶ if and only if it
satis­ es (2.1) and there are positive constants · 1 and · 2 such that for jP j > 1,
X 2 « , t 2 R, P 2 Rn,

· 1jP j2 ¶ 6 "(X; t; P ) 6 · 2jP j2 ¶ : (4.1)

As examples, we see the minimal surface operator and operators of minimal
surface type (e.g. [7,9]) have genre two, while uniformly elliptic operators, such as
Laplace’s equation, have genre zero.

Corollary 4.2. Suppose we have the following.

(1) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(2) Q has genre ¶ > 2, satis¯es (2.1) and there exist L > 0 and a positive
continuous function ¼ on [1; 1) such that

ann

³
x; t; z;

p

q
;

1

q

´
> ¼ (jpj2 + q2) (4.2)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and
jqj > 0.

(3) ¿ satis¯es assumption 2.1.

Then

lim
j ! 1

f (xj; yj) = © (!) (4.3)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.
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Proof. We will apply theorem 2.4. We only need to verify condition (2) in theo-
rem 2.4. Since Q has a well-de­ ned genre ¶ > 2, there exists · 2 > 0 such that, if
jpj2=q2 + 1=q2 > 1,

"

³
x; t; z;

p

q
;

1

q

´
6 · 2

³
jpj2 + 1

q2

1́ ¶ =2

6 · 2jqj ¶ 2;

and so from (2.9) and (4.2) we have (notice that ¶ > 2)

"# (x; z; t; p; q) > ann(x; t; z; p=q; 1=q)

1 ann(x; t; z; p=q; 1=q) + · 2jqj¶ 2

> ann(x; t; z; p=q; 1=q)

1 + · 2jqj¶ 2

> ¼ (jpj2 + q2)

1 + · 2(pj2 + q2)( ¶ 2)=2
:

If jpj2=q2 + 1=q2 < 1, then (2.1) implies

"

³
x; t; z;

p

q
;

1

q

´
6 jpj2 + 1

q2
6 1:

Hence from (2.9) and (4.2), we have

"# (x; z; t; p; q) > 1
2 ann

³
x; t; z;

p

q
;

1

q

´
> ¼ (jpj2 + q2)

2 + 2 · 2(jpj2 + q2)( ¶ 2)=2
:

Remark 4.3. Let Q be the minimal surface operator on R3. We wish to compare
one result in [24] with this corollary. If « is an open subset of the wedge domain
W = fx; y; z) 2 R3 : z >; jyj < z; 1 < x < 1g, ¿ ² 0 and f is a solution of (1.2){
(1.3), then the corollary to theorem 6 in [24] implies f ² 0. On the other hand, if
« is an open subset of the slab S = f(x; y; z) 2 R3 : jzj < 1; 1 < x; y < 1g,
¿ ² 0 and f is a solution of (1.2){(1.3), corollary 3.8 implies f ² 0. We observe
that these results are independent and complementary.

One of the di¬erences between theorems 2.4 and 2.5 is that for theorem 2.5
we need to assume the solution grows at most linearly in its variables, while for
theorem 2.4 we do not. On the other hand, if Q has a well-de­ ned genre ¶ > 0
and « is a domain inside a (translate of a) salient cone (that is, a cone with vertex
at the origin whose closure contains no subspaces other than f0g), then we can
use [28, theorem 6] to conclude that f(x; y) grows at most linearly in its variables;
for convenience of notation, we will refer to any translation of a salient cone as a
salient cone. Thus we have the following.

Corollary 4.4. Suppose we have the following.

(1) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(2) Q satis¯es one of the conditions (ii), (iii) or (iv).
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(3) ¿ satis¯es assumption 2.1.

(4) Q has genre ¶ > 0 and satis¯es (2.1).

(5) « » R2 or there is a bounded set D » « such that « n D has ¯nitely many
components and each component of « n D is contained inside a salient cone.

Then

lim
j ! 1

f (xj; yj) = © (!) (4.4)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

Proof. Since ¿ satis­ es assumption 2.1, there is a constant C such that

jf(x; y)j 6 C on @« :

If « » R2, then since « is inside a strip, we can choose a bounded set D such that
« n D contains two components and each component is contained in a salient cone.
If n > 3, condition (5) implies there is a bounded set D » « such that « n D has
­ nitely many components and each component is contained inside a salient cone.
Now we apply [28, theorem 6] to conclude that f(x; y) grows at most linearly in
its variables on each component. Thus the solution grows at most linearly in its
variables. We apply corollary 3.2 to complete the proof.

Next we consider a situation in which xj ! 1, (xj; yj) 2 @« , xj=jxj j ! ! and
the limit ¿ (xj ; yj) may not exist.

Corollary 4.5. Suppose

(1) The domain « is given by

« = f(x1; : : : ; xn 1; y) 2 Rn j M < y < Mg:

(2) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(3) Q has a well-de¯ned genre ¶ > 2.

(4) There exist L > 0 and a positive continuous function ¼ on [1; 1) such that

ann

³
x; t; z;

p

q
;

1

q

´
> ¼ (jpj2 + q2) (4.5)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 0, jtj 6 M and
jqj > 0.

(5) There are two functions © 1(!) 2 C0(Sn 2) and © 2(!) 2 C0(Sn 2) such that

lim
r ! 1

¿ (r!; M) = © 1(!); lim
r ! 1

¿ (r!; M ) = © 2(!);

uniformly for ! 2 Sn 1.
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Then

lim
j ! 1

f(xj; y) =
1

2M
( © 1(!) © 2(!))(y + M ) + © 2(!)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

The proof will be given after the proof of theorem 2.6.
As we will see from the proof, assumptions (3), (4) and (5) in corollary 4.5 are

primarily used to conclude that the solution has at most linearly growth in its
variables. Since we can use [28, theorem 6] to conclude that solutions grow at most
linearly if Q has a well-de­ ned genre ¶ > 0 and the domain is inside a salient cone,
we obtain the following result.

Corollary 4.6. Suppose we have the following.

(1) The domain « is given by

« = f(x1; : : : ; xn 1; y) 2 Rn j M < y < Mg:

(2) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(3) Q has a well-de¯ned genre ¶ , 0 < ¶ < 2.

(4) « » R2 or there is a bounded set D » « , such that « n D has ¯nitely many
components and each component of « n D is contained inside a salient cone.

(5) There exist L > 0 and a positive continuous function ¼ on [1; 1) such that

ann(x; t; z; p; q) > ¼ (jpj2 + q2) (4.6)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 0, jtj 6 M , and
jqj > 0.

(6) There are two functions © 1(!) 2 C0(Sn 2) and © 2(!) 2 C0(Sn 2) such that

lim
r ! 1

¿ (r!; M) = © 1(!); lim
r ! 1

¿ (r!; M ) = © 2(!);

uniformly for ! 2 Sn 1.

Then

lim
j ! 1

f(xj; y) =
1

2M
( © 1(!) © 2(!))(y + M ) + © 2(!)

uniformly for ! 2 Sn 2 and sequences f(xj ; yj)g in ·« with jxj j ! 1 and
xj=jxjj ! ! as j ! 1.

The proof will be given after the proof of theorem 2.6.
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5. Domains with `̄ nitely many ends’

In this section, we will consider domains « which are not contained in a slab of
­ nite width. We will say that a domain « has `­ nitely many ends’ if there is a
compact subset D of Rn such that « n D is a disjoint union of components « k,
1 6 k 6 J , for some J > 1, and

« k » Sk = fX 2 Rn : jX ¢ ¸ kj 6 Mkg

for some Mk and some ¸ k = ( ¸ k
1 ; : : : ; ¸ k

n) with j ¸ kj = 1 for each k 2 f1; : : : ; Jg.
For a domain « with `­ nitely many ends’ and a function ¿ de­ ned on Rn, we say
¿ converges uniformly on each end if, for each k 2 f1; : : : ; Jg, there is a function
© k 2 C0(Sn 1) such that

lim
i ! 1

¿ (ri! + t¸ k) = © k(!)

uniformly for ! 2 Sn 1 with ! ¢ ¸ k = 0, jtj 6 Mk, and sequences frig such that
ri ! 1 as i ! 1.

Corollary 5.1. Suppose we have the following.

(1) The domain « has `̄ nitely many ends’.

(2) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(3) Q satis¯es (2.1) and has a well-de¯ned genre ¶ > 2.

(4) For each k 2 f1; : : : ; Jg there exist L > 0 and a positive continuous function
¼ on [1; 1) such that

nX

i;j = 1

¸ k
i ¸ k

j ai;j(X; z; P ) > ¼ (jP j2) (5.1)

whenever X; P 2 Rn, z 2 R with jX ¢ ¸ kj 6 Mk, jX (X ¢ ¸ k) ¸ kj > L, jP j2 > 1
and P ¢ ¸ k 6= 0.

(5) The boundary data ¿ converge uniformly on each end.

Then on each end « k, 1 6 k 6 J ,

lim
i ! 1

f (Xi) = © k(!)

uniformly for ! 2 Sn 1 with ! ¢ ¸ k = 0 and sequences fXig in ·« k with jXij ! 1
and Xi=jXij ! ! as i ! 1.

Proof. Let us ­ x k 2 f1; : : : ; Jg, which we may assume is 1. Let us now make a
linear transformation of coordinates which maps ¸ 1 to en = (0; : : : ; 0; 1). Let us
denote the coe¯ cients of Q, in these new coordinates, as ~ai;j . Then

~an;n =

nX

i;j = 1

¸ 1
i ¸ 1

j ai;j :

The proof that f behaves as claimed on the end « 1 now follows from corollary 3.2.
If we repeat the same procedure for each « k, the proof follows.
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Similar to the way in which corollaries 4.5 and 4.6 are related, we obtain the
following from corollary 4.6.

Corollary 5.2. Suppose we have the following.

(1) The domain « has `̄ nitely many ends’.

(2) f 2 C2( « ) \ C0( ·« ) satis¯es (1.2){(1.3).

(3) Q satis¯es (2.1) and has a well-de¯ned genre ¶ , 0 < ¶ < 2.

(4) « » R2 or there is a bounded set D » « such that « n D has ¯nitely many
components and each component of « n D is contained inside a salient cone.

(5) For each k 2 f1; : : : ; Jg, there exist L > 0 and a positive continuous function
¼ on [1; 1) such that

nX

i;j = 1

¸ k
i ¸ k

j ai;j(X; z; P ) > ¼ (jP j2)

whenever X; P 2 Rn, z 2 R with jX ¢ ¸ kj 6 Mk, jX (X ¢ ¸ k) ¸ kj > L, jP j2 > 1
and P ¢ ¸ k 6= 0.

(6) The boundary data ¿ converge uniformly on each end.

Then on each end « k, 1 6 k 6 J ,

lim
i ! 1

f (Xi) = © k(!)

uniformly for ! 2 Sn 1 with ! ¢ ¸ k = 0 and sequences fXig in ·« k with jXij ! 1
and Xi=jXij ! ! as i ! 1.

Proof. The proof is almost the same as that for corollary 4.6, except now we need
to apply [28, theorem 6] to conclude that the solution has at most linear growth in
its variables, and then apply corollary 3.2.

6. Uniqueness

Another application of theorems 2.4 and 2.5 is the uniqueness of solutions to the
Dirichlet problem (1.2){(1.3).

Corollary 6.1. Suppose we have the following.

(1) All assumptions in one of the corollaries 3.2, 3.8, 4.2, 4.4, 4.5, 4.6 or 5.1 are
satis¯ed.

(2) The coe± cients Q are independent of z.

Then the solutions to the Dirichlet problem

Qf = 0 in « ;

f = ¿ on @«
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are unique in the class C2( « ) \ C0( ·« ) in the cases of corollaries 3.8, 4.2, 4.4, 4.5,
4.6 and 5.1, or in the class C2( « ) \ C0( ·« ) with at most linear growth in the case
of corollary 3.2.

Proof. Let f1(x; y) and f2(x; y) be two such solutions. Consider

w(x; y) = f1(x; y) f1(x; y):

Then w(x; y) = 0 on @« . By one of the corollaries, we have

w(x; y) ! 0 as jxj ! 1; (x; y) 2 « :

Thus if sup « w > 0, there is a point (x0; y0) 2 « such that

w(x0; y0) = sup
«

w:

Since the coe¯ cients of Q do not depend on z, from Qf1 = 0 and Qf2 = 0, we easily
get Q ¤ ¤ w = 0 in « for some linear elliptic operator Q ¤ ¤ without zero order term in
w. Thus, from the maximum principle for solutions of linear elliptic equations, w
can not achieve an interior local maximum. Thus sup w > 0 is impossible. Similarly,
inf « w < 0 is impossible. Hence w = 0 in « ; that is, f1 = f2 in « .

7. Barrier functions 1

In this section we assume there exist L > 0 and a positive continuous function ¼
on [1; 1) such that

"# (x; z; t; p; q) > ¼ (jpj2 + q2) (7.1)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and q 6= 0.
We will ­ rst construct `upper barriers’ for the Dirichlet problem (1.2){(1.3); this
construction uses the geometric idea in [20] applied to barriers from [38] and [28].
Speci­ cally, we will prove that there exist functions A(t) > 0, À (t) > 0 such that
for H > 1, a > A(H), x0 2 Rn 1 with jx0j > L + ae À (H) and ® 2 R, there exists
w = wa;x0 ;® ;H 2 C2( « a;x0;H) such that, for any constant b,

Q(w + b) 6 0 in « a;x0;H ; (7.2)

w > ® on ·« a;x0 ;H ; (7.3)

@w

@n
= +1 on « \ @« a;x0;H ; (7.4)

w(x0; y) 6 ® +
2M

H
for jyj 6 M; (7.5)

where n is the exterior unit normal to @« a;x0;H and « a;x0;H is an open subset of
Rn (the de­ nition of « a;x0 ;H is given in (7.12)).

7.1. The construction

De­ ne ª 2 C0([1; 1)) by

ª ( » ) =
1

minf1; ¼ ( » 2)g :
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Then Z 1

1

1

» 3 ª ( » )
d » < 1

and

"# (x; z; t; p; q) ª (
p

jpj2 + q2) > 1 (7.6)

for x, p 2 Rn 1, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and q 6= 0. De­ ne ª 1

by setting ª 1( » ) = » 2 if 0 < » < 1 and ª 1( » ) = ª ( » ) if 1 6 » . De­ ne À by

À ( ¬ ) =

Z 1

¬

d »

» 3 ª 1( » )
for ¬ > 0:

Then it is clear that À ( ¬ ) is a decreasing function with range (0; 1). Let ² be the
inverse of À . Then ² is a positive decreasing function with range (0; 1).

Let H > 1. Since ² ( À (H)) = H and ² is decreasing, we have

² (­ ) > H for 0 < ­ < À (H):

For each a > 0, de­ ne ha = ha;H by

ha(r) =

Z ae À (H)

r

²

³
ln

t

a

´
dt for a 6 r 6 aeÀ (H): (7.7)

Then

ha(aeÀ (H)) = 0;

ha(a) =

Z ae À (H)

a

²

³
ln

t

a

´
dt

= a

Z e À (H)

1

² (ln t) dt = ah1(1):

Recall that 2M is the width of the strip which contains the domain « ; we de­ ne a
function A(H) by

A(H) = 2M

³Z eÀ (H)

1

² (ln t) dt

´ 1

: (7.8)

Then, for a > A(H), ha(aeÀ (H)) > 2M . Furthermore, for a < r 6 ae À (H),

h0
a(r) = ²

³
ln

r

a

´
< 0; jh0

a(r)j > H

and

h00
a(r) =

1

r

³
²

³
ln

r

a

´ 3́

ª 1

³
²

³
ln

r

a

´´
> 0:

Thus, for a < r 6 aeÀ (H),

h00
a(r)

(h0
a(r))2

=
h0

a(r)

r
ª 1( h0

a(r)): (7.9)
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For x0 2 Rn 1 with jx0j > L + aeÀ (H), a > A(H) and a constant ® 2 R, let
= ® + ae À (H), we de­ ne a function g = ga;x0 ; ;M;H by

ga;x0; ;M;H(x; z) = ha(
p

jx x0j2 + (z )2) M (7.10)

for a2 < jx x0j2 + (z )2 < a2e2À (H).
Then, for r =

p
jx x0j2 + (z )2, a < r 6 ae À (H), 1 6 i, j 6 n 1,

@g

@xj
=

xj x0j

r
h0

a(r);

@g

@z
=

z

r
h0

a(r);

@2g

@z2
= h00

a(r)
(z )2

r2
h0

a(r)
(z )2

r3
+ h0

a(r)
1

r
;

@2g

@xi@z
= h00

a(r)
(xi x0i)(z )

r2
h0

a(r)
(xi x0i)(z )

r3
;

@2g

@xi@xj
= h00

a(r)
(xi x0i)(xj x0j)

r2

h0
a(r)

(xi x0i)(xj x0j)

r3
+ ¯ ijh0

a(r)
1

r
;

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

(7.11)

where ¯ ij is the Kronecker delta.
Then it is clear that for any number b (with Q1g(x; z) = Q# g(x; z + b))

Q1g(x; z) =

nX

i;j = 1

Aij(x; z + b; g; Dg)Dijg

=

³
h00

a(r)

(h0
a(r))2

"# (x; z + b; g; Dg) +
1

r
h0

a(r)
1

rh0
a(r)

"# (x; z + b; g; Dg)

´

£
nX

i = 1

Aii(x; z; g; Dg)

>
³ nX

i = 1

Aii(x; z + b; g; Dg)

´³
"# (x; z + b; g; Dg)

h00
a(r)

(h0
a(r))2

+
h0

a(r)

r

´

=

³ nX

i = 1

Aii(x; z + b; g; Dg)

´

£
³

h0
a(r)

r
ª 1( h0

a(r))"# (x; z + b; g; Dg) +
h0

a(r)

r

´

=

³ nX

i = 1

Aii(x; z + b; g; Dg)

´
h0

a(r)

r

³
1 ª 1(jDgj)"# (x; z + b; g; Dg)

´

> 0:

In the above equation, we have used the de­ nition of "# (x; z + b; g; Dg) and the
fact that if a < r < aeÀ (H), then h0

a(r) < 0, jDgj = jh0
a(r)j > H > 1 and

ª (jDgj)"# (x; z + b; g; Dg) > 1 for jDgj > 1:
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Now we de­ ne a domain « a;x0;H in (x; y) space by

« a;x0;H = f(x; y) : jyj < M; jx x0j < h 1
a (y + M )g: (7.12)

The domain « a;x0;H is obtained by projecting the portion of the graph of the
function

y = g(x; z); a <
p

jx x0j2 + (z )2 < ae À (H)

which satis­ es jyj < M and z < onto the plane z = 0. Since a > A(H), from the
de­ nition of A(H) we see that (x0; y) 2 « a;x0;H for all M < y < M .

Since @g=@z < 0 for z < , we see that there is a function z = wa;x0; ;H (x; y)
de­ ned on « a;x0;H such that

g(x; wa;x0; ;H(x; y)) = y for (x; y) 2 « a;x0 ;H : (7.13)

In fact, the function z = wa;x0; ;H(x; y) can be easily solved from the formula for
g to get

wa;x0; ;H(x; y) =

q
(h 1

a (y + M ))2 jx x0j2: (7.14)

Then from

Q1g(x; z) > 0;
@g

@z
< 0

and the relationship between Q# and Q we see that for w = wa;x0 ;® ;H ,

Q(w + b) 6 0 in « a;x0;H

for any constant b. This is (7.2).
Since

Dw(x; y) =
1q

(h 1
a (y + M))2 jx x0j2

³
x x0;

h 1
a (y + M )

h0
a(h 1

a (y + M ))

´

and if (x; y) 2 « \ @« a;x0;H , then jyj < M and jx x0j = h 1
a (y + M ). Thus

ha(jx x0j) M = y and the outer unit normal along @« a;x0;H is

n =
1q

1 + (h0
a(h 1

a (y + M )))2

³
x x0

jx x0j ; h0
a(h 1

a (y + M ))

´
:

Thus from the fact that h0
a < 0, we have

@w

@n
> jx x0j

± q
(h 1

a (y + M ))2 jx x0j2
²± q

1 + (h0
a(h 1

a (y + M)))2
² :

Let jx x0j ! h 1
a (y +M ), we see that (7.4) holds. To verify (7.3) and (7.5) we see

that w(x; y) > h 1
a (y + M ). Since ha(r) is a decreasing function, h 1

a is also a
decreasing function. Thus h 1

a (y + M ) 6 h 1
a (0) = aeÀ (H) for y > M . Thus

w(x; y) > h 1
a (0) = aeÀ (H):

This is exactly (7.3) since = ® + aeÀ (H).
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For (7.5), since w(x0; y) = h 1
a (y + M),

@w

@y
(x0; y) =

1

h0
a(h 1

a (y + M ))
=

1

² (ln((1=a)h 1
a (y + M )))

:

Using the fact that h 1
a (r) is a decreasing function again, we have

ln
1

a
h 1

a (y + M ) 6 ln eÀ (H) = À (H) for jyj 6 M:

Since ² is also decreasing, we have

@w

@y
(x0; y) 6 1

² ( À (H))
=

1

H
for jyj 6 M:

Then (7.5) follows from this and

w(x0; M ) = h 1
a (0) = ae À (H) = ® :

By an argument similar to the one given above, we can construct `lower barriers’
for the Dirichlet problem (1.2){(1.3) to get a function l = la;x0;® ;H 2 C2( « a;x0;H )
by

la;x0;® ;H (x; y) = ® ae À (H) +

q
(h 1

a (y + M))2 jx x0j2

for (x; y) 2 « a;x0;H such that for any number b

Q(l + b) > 0 in « a;x0;H ; (7.15)

w 6 ® on ·« a;x0;H ; (7.16)

@w

@n
= +1 on « \ @« a;x0 ;H ; (7.17)

w(x0; y) > ®
2M

H
for jyj 6 M; (7.18)

where a > a(H) and jx0j > L + aeÀ (H). We omit the details here.

8. Proof of theorem 2.4

Let ! 2 Sn 2. For any ° > 0, by the assumption on ¿ (x; y) and the continuity of
© (!), there exist ¯ > 0 and R > 0 such that if (x; y) 2 @« , jxj > R, jyj 6 M and
j(x=jxj) !j < ¯ , we have

j¿ (x; y) © (!)j < ° : (8.1)

We choose H > 1 such that 2M=H < ° . Let A(H) be the number given in (7.2){
(7.5). We choose a large number R1 > R + L + A(H)eÀ (H) and a small number
0 < ¯ 1 < ¯ such that if jxj > R1, j(x=jxj) !j < ¯ 1, we have

­­­­
v

jvj !

­­­­< ¯ for all v with jv xj 6 A(H)eÀ (H):

Set

W =

»
x j jxj > R1;

­­­­
x

jxj !

­­­­< ¯ 1

¼
:
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We claim that if (x0; y) 2 ·« and x0 2 W , then

f(x0; y) < © (!) + 3 ° :

In fact, let w(x; y) = wa;x0 ;® ;H(x; y) be the upper barrier given by (7.2){(7.5) with
® = © (!) + 2 ° and a = A(H). w is de­ ned on the domain « a;x0;H . We compare the
functions f (x; y) and w(x; y) on the domain « 1 ² « a;x0;H \ « . If (x; y) 2 @« \@« 1,
from the de­ nition of W and (7.3), (8.1),

f (x; y) = ¿ (x; y) < © (!) + 2 ° = ® 6 w(x; y): (8.2)

Thus

f (x; y) w(x; y) < 0 on @« \ @« 1: (8.3)

f 2 C2( « ) and (7.4) imply that

f (x; y) w(x; y) < 0 on « \ @« 1: (8.4)

Now we claim that f 2 C2( « ) and (7.4) imply that

f(x; y) w(x; y) < 0 on « 1: (8.5)

Indeed, from (7.2) we have

nX

i;j = 1

aij(x; y; w(x; y) + b; Dw(x; y))Dijw(x; y)) 6 0 on « 1

for any constant b. In particular, for any (x1; y1) 2 « 1, let b = f (x1; y1) w(x1; y1)
in above formula; then we have

nX

i;j = 1

aij(x1; y1; f(x1; y1); Dw(x1; y1))Dijw(x1; y1) 6 0:

Since (x1; y1) 2 « 1 can be arbitrary,

nX

i;j = 1

aij(x; y; f (x; y) + b; Dw(x; y))Dijw(x; y)) 6 0 in « 1:

Now (8.5) follows from a standard argument, along with the fact (8.3) and (8.4).
In particular, from (8.5) we have

f (x0; y) 6 w(x0; y) for (x0; y) in « 1:

Thus (7.5) and the choices of ® and H yield

f(x0; y) 6 ® +
2M

H
6 © (!) + 3° for (x0; y) in « 1:

Since (x0; y) 2 « 1 is the same as (x0; y) 2 « (this follows from the de­ nition
of « a;x0;H), this proves the claim.

Similarly, using the lower barriers given by (7.15){(7.18), we can conclude that

f(x0; y) > © (!) 3 ° for (x0; y) in « :
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Thus
jf (x0; y) © (!)j 6 3° for (x0; y) 2 « :

Since x0 2 W is arbitrary, we ­ nally have

jf(x; y) © (!)j 6 3 ° for (x; y) 2 « with x 2 W: (8.6)

Now if xj=jxj j ! ! as j ! 1, there exists N > 0 such that xj 2 W . Then
from (8.6), for (xj ; yj) 2 « , we have

jf (xj ; yj) © (!)j 6 3 ° if j > N:

Since ° > 0 is arbitrary, the conclusion of theorem 2.4 follows.

9. Barrier functions 2

In this section we will construct `upper barriers’ for the Dirichlet problem (1.2){
(1.3) under the assumptions that there exist L > 0, ¯ 0 > 0 and a positive continuous
function ¼ on [1; 1) such that

"# (x; z; t; p; q) > ¼ (jpj2 + q2) (9.1)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jpj2 + q2 > 1, jtj 6 M and jqj > ¯ 0.
(`Lower barriers’ can be constructed similarly; we leave the details to the reader.)

We will use the same upper barriers wa;x0;® ;H de­ ned in (7.13){(7.14). However,
since (9.1) need not hold for all q 6= 0, there will be a di¬erent domain on which
Q# g > 0. (In fact, we can not have Q# g > 0 on « a;x0;H in general if (9.1) only
holds for jqj > ¯ 0.)

We will prove that for each H > 1, ® 2 R and K > 0, there exist a num-
ber B(H; K; ® ) > A(H) and a domain ¤ a;x0 ;H;K ® » « a;x0 ;H such that for
a > B(H; K; ® ), x0 2 Rn 1 with jx0j > L + aeÀ (H), the function w = wa;x0;® ;H

(given by (7.13){(7.14) and restricted to ¤ a;x0;H;K ® ) satis­ es

Qw 6 0 in ¤ a;x0 ;H;K ® ; (9.2)

w > ® on ·¤ a;x0;H;K ® ; (9.3)

w > K on « \ @¤ a;x0;H;K ® ; (9.4)

w(x0; y) 6 ® +
4M

H
for jyj 6 M: (9.5)

We use the same notation as in the construction of (7.2){(7.5). Now let H be a
number such that H >

p
2 ¯ 0 + 1 for the ¯ 0 de­ ned in (9.1).

For each x0 2 Rn 1, jx0j > L + ae À (H) and a > A(H), let ¤ a;x0;H be the domain
in (x; y) space de­ ned by

¤ a;x0;H = f(x; y) : jyj < M;
p

2jx x0j < h 1
a (y + M )g: (9.6)

The domain ¤ a;x0 ;H is obtained by projecting the portion of the graph of the
function

y = g(x; z); a <
p

jx x0j2 + (z )2 < ae À (H)

which satis­ es jyj < M and z < 1
2
h 1

a (y + M ) onto the plane z = 0. Once
again, since a > A(H), (x0; y) 2 ¤ a;x0;H for all M < y < M .
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If (x; y) 2 ¤ a;x0;H , then jyj < M and
p

2jx x0j < h 1
a (y + M ). Since y =

ha(
p

jx x0j2 + (z )2) M , we have
p

2jx x0j <
p

jx x0j2 + (z )2:

Thus

jx x0j2 < (z )2:

Since z 6 , we have

zp
jx x0j2 + (z )2

6 1p
2

:

Thus for r =
p

jx x0j2 + (z )2, a < r 6 ae À (H), since h0
a(r) < 0 we have,

from (7.11),

@g

@z
=

z

r
h0

a(r) > 1p
2

jh0
a(r)j =

1p
2

²

³
ln

r

a

´
> 1p

2
H > ¯ 0: (9.7)

Then using (9.1), in the same way as we veri­ ed (7.2), for any number b we have

Q1g(x; z) =

nX

i;j = 1

Aij(x; z + b; g; Dg)Dijg > 0 for a < r < aeÀ (H):

Since @g=@z < 0 for z < , we see that there is a function z = wa;x0; ;H (x; y)
(the same function given by (7.13){(7.14)) de­ ned on ¤ a;x0;H such that

g(x; wa;x0 ; ;H (x; y)) = y for (x; y) 2 ¤ a;x0;H :

Also,

wa;x0; ;H(x; y) =

q
(h 1

a (y + M ))2 jx x0j2:

Then from

Q1g(x; z) > 0;
@g

@z
< 0;

and the relationship between Q# and Q, we see that for w = wa;x0;® ;H ,

Q(w + b) 6 0 on ¤ a;x0;H

for any constant b. This is (9.2). Equations (9.3) and (9.5) are veri­ ed in exactly
in the same way as (7.3) and (7.5). For (9.4), we see that if (x; y) 2 @¤ a;x0;H \ « ,
then

p
2jx x0j = h 1

a (y + M ): (9.8)

Thus

y + M = ha(
p

2jx x0j):

However, since y = ha(
p

jx x0j2 + (z )2) M , we have

p
2jx x0j =

p
jx x0j2 + (z )2:
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That is (using (9.8)),

jx x0j = jz j =
1p
2

h 1
a (y + M):

Solving for z, we have (recall that z < )

w(x; y) = z =
1p
2

h 1
a (y + M ) on @¤ a;x0;H \ « :

As we has seen before, using the fact that h 1
a is decreasing, we have

w(x; y) > 1p
2

h 1
a (0) =

1p
2

ae À (H):

Since = ® + aeÀ (H), we have

w(x; y) > ® +

³
1

1p
2

´
aeÀ (H):

Then if we choose

B(H; K; ® ) = max

» p
2(K ® )e À (H)

p
2 1

; A(H)

¼
; (9.9)

we have
w(x; y) > K on @¤ a;x0;H \ « :

This is (9.4).

10. Proof of theorem 2.5

The proof of theorem 2.5 is very similar to that of theorem 2.4 except we shall use
the barriers given by (9.2){(9.5) instead of (7.2){(7.5). Thus we shall refer back to
the proof of theorem 2.4 whenever possible.

From (2.12) we may assume that

jf (x; y)j 6 Cjxj for jxj > 1; (x; y) 2 « : (10.1)

For each ° > 0, from assumption 2.1 and the continuity of © (!), we see that there
are numbers ¯ 1 > 0, R1 > 0 such that if r > R1, r1 > R1, r2 > R1,

j¿ (r!; y) © (!)j < ° for all ! 2 Sn 2 and (r!; y) 2 @« (10.2)

and

j ¿ (r1!1; y1) ¿ (r2!2; y2)j 6 ° (10.3)

for all !1, !2 2 Sn 2, with j!1 !2j 6 ¯ 1, and (r1!1; y1), (r2!2; y2) 2 @« .
Then we can choose a number ¯ 2 > 0 (independent of x0) such that if jx0j > R1

(choose R1 larger if it is necessary),
­­­­

x0

jx0j
x

jxj

­­­­6 ¯ 1 if jx x0j 6 ¯ 2jx0j: (10.4)
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Now we choose ­ = 1
16

(1 + 1
4
¯ 2) 1 ¯ 2 and consider the function f1 = (­ =C)f (x; y),

where C is the number de­ ned in (10.1). Then

jf1(x; y)j 6 ­ jxj for jxj > 1; (x; y) 2 « : (10.5)

f1(x; y) satis­ es (from (1.2))

Q2f1(x; y) ²
nX

i;j = 1

aij

³
x; y;

C

­
f1(x; y);

C

­
Df1(x; y)

´
Dijf1(x; y) = 0 (10.6)

and f1 = (­ =C) ¿ on @« . Thus, from (10.2),

jf1(r!; y)
­

C
© (!)j <

­

C
° for all ! 2 Sn 2 and (r!; y) 2 @« : (10.7)

From (10.3),

jf1(r1!1; y1) f1(r2!2; y2)j 6 ­

C
° (10.8)

for all !1, !2 2 Sn 2, with j!1 !2j 6 ¯ 1, and (r1!1; y1), (r2!2; y2) 2 @« .

Now for the Q2 given in (10.6), we compute the "#
2 corresponding to Q#

2 and Q2.
We have (by (2.13))

"#
1 (x; y; z; p; q) =

­ 2

C2
"#

³
x; y;

C

­
z;

C

­
p;

C

­
q

´
> ­ 2

C2
¼

³
C2

­ 2
(p2 + q2)

´
:

Thus the construction of barrier functions 2 (i.e. x 9) applies to the equation (10.6),
and the functions A(H), À (H) do not depend on ! and x.

We set H = (2MC)(­ ) 1 ° 1 and choose a number R3 > R + L such that if
jx0j > R3,

¯ 2jx0j > 16

³
(
p

2 1)­p
2C

A(H) +
­

C
max j© (!)j +

­

C

´
: (10.9)

Set
W = fx j jxj > R3g:

We claim that if (x0; y) 2 ·« and x0 2 W , then

f1(x0; y) <
­

C
©

³
x0

jx0j

´
+ 3

­

C
° :

In fact, let w(x; y) = wa;x0 ;® ;H(x; y) be the upper barrier given by (9.2){(9.5) with

K = 1
16 ¯ 2jx0j; ® =

­

C

³
©

³
x0

jx0j

´
+ 2 °

´
; a = B(H; K; ® );

with the number H as chosen above. w is de­ ned on the domain ¤ a;x0;H . We
compare the functions f1(x; y) and w(x; y) on the domain « 2 ² ¤ a;x0;H \ « .

From (10.9) and (9.9), we have

B(H; K; ® ) =

p
2(K ® )e À (H)

p
2 1

:
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Thus

B(H; K; ® )e À (H) =

p
2(K ® )p

2 1
6 4K 6 1

4
¯ 2jx0j:

Then if (x; y) 2 ¤ a;x0;H , from the de­ nition of ¤ a;x0;H and the monotonicity of
h 1

a , we have

jx x0j 6 h 1
a (0) = aeÀ (H) = B(H; K; ® )eÀ (H) 6 1

4 ¯ 2jx0j: (10.10)

Now if (x; y) 2 @« \ @« 2, from (10.4), (10.7), (10.8) and (10.10), we have

f1(x; y) =
­

C
¿ (x; y) <

­

C

³
©

³
x0

jx0j

´
+ 2 °

´
= ® 6 w(x; y):

Thus

f1(x; y) w(x; y) < 0 on @« \ @« 2: (10.11)

From (10.5) and (10.10), we have that if (x; y) 2 « 2,

jf1(x; y)j 6 ­ jxj 6 ­ (jx0j + 1
4 ¯ 2jx0j) 6 1

16 ¯ 2jx0j = K

by the choices of ­ and K. Thus

f1(x; y) w(x; y) < 0 on « \ @« 2: (10.12)

Then, similar to the proof of theorem 2.4, we conclude that

f1(x; y) w(x; y) < 0 in « 2:

In particular, from the choices of ® and H , we have

f1(x0; y) 6 ® +
2M

H
=

­

C

³
©

³
x0

jx0j

´
+ 3°

´
:

This proves the claim. Since f1(x0; y) = (­ =C)f1(x0; y), we have

f (x0; y) 6 ©

³
x0

jx0j

´
+ 3 °

for all x0 2 W . Similarly, we can obtain

f (x0; y) > ©

³
x0

jx0j

´
3 °

for all x0 2 W . Thus ­­­­f (x0; y) ©

³
x0

jx0j

´­­­­6 3 °

for all x0 2 W . Now the conclusion of theorem 2.5 follows easily.
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11. Proof of theorem 2.6

Without loss of generality, we may assume

D = lim
R ! 1

supfjf(x; y)j j jxj > R; (x; y) 2 @« g < +1:

Then for any ° > 0, there is a number R3 > 0 such that if (x; y) 2 @« , jxj > R3,
we have

f (x; y) 6 D + ° : (11.1)

We choose H > 1 such that 2M=H < ° . Let A(H) be the number given in (7.2){
(7.5). We choose a large number R4 > R3 + L + A(H)e À (H) and set

W = fx j jxj > R4g:

We claim that if (x0; y) 2 ·« and x0 2 W , then

f (x0; y) < D + 2 ° :

In fact, let w(x; y) = wa;x0 ;® ;H(x; y) be the upper barrier given by (7.2){(7.5) with
® = D + ° and a = A(H). w is de­ ned on the domain « a;x0;H . We compare the
functions f (x; y) and w(x; y) on the domain « 0 = « a;x0;H \ « . If (x; y) 2 @« \@« 0,
from the de­ nition of W and (7.3), (11.1),

f(x; y) = ¿ (x; y) < D + ° = ® 6 w(x; y): (11.2)

Thus

f (x; y) w(x; y) < 0 on @« \ @« 0: (11.3)

f 2 C2( « ) and (7.4) imply that

f (x; y) w(x; y) < 0 on « \ @« 0:

Then, similar to the proof of theorem 2.4, we can conclude that f (x; y) w(x; y) < 0
on « 0 and

f (x0; y) 6 ® +
2M

H
6 D + 2 ° for (x0; y) in « :

This proves the claim.
Now let x0 take all possible value such that jx0j > R4 and (x0; y) 2 « for some

y; then we have

f (x; y) 6 ® +
2M

H
6 D + 2°

for all x with jxj > R4 and (x; y) 2 « for some y. Thus

supff (x; y) j jxj > R4; (x; y) 2 « g 6 D + 2 ° :

Letting ° ! 0, we obtain

lim
R ! + 1

supff (x; y) j jxj > R; (x; y) 2 « g 6 D:
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Similarly, we can prove

lim
R ! + 1

supf f(x; y) j jxj > R; (x; y) 2 « g

6 lim
R ! + 1

supf f (x; y) j jxj > R; (x; y) 2 @« g:

Thus we have

lim
R ! + 1

supfjf (x; y)j j jxj > R; (x; y) 2 « g

6 lim
R ! + 1

supfjf (x; y)j j jxj > R; (x; y) 2 @« g:

In particular, if jf (x; y)j 6 K on @« , we have jf (x; y)j 6 K on « by combining
the conclusion above and the maximum principle for elliptic equations.

12. Proofs of corollaries 3.8, 4.5 and 4.6

First of all, for corollary 4.5, we can apply theorem 2.6 to conclude that the solution
f (x; y) is bounded; that is, using conditions (3) and (4), we can verify condition (2)
in theorem 2.6 in the same way as that in the proof of corollary 3.8. For corollary 4.6,
as in the proof of corollary 3.8, using conditions (3) and (4), we can apply [28,
theorem 6] to conclude the solution has at most linear growth in its variables.

To prove the conclusions in corollaries 3.8, 4.5 and 4.6, we only have to show that
for every ° > 0, there is a number R5 > 0 such that for all ! 2 Sn 2, M < y < M ,

jf(r!; y) G(!; y)j 6 7 ° for r > R5; M < y < M; (12.1)

where

G(!; y) =
1

2M
( © 1(!) © 2(!))(y + M ) + © 2(!); ! 2 Sn 2; M < y < M:

By a covering argument, it is clear that (12.1) follows from the following claim.
For each ­ xed !1 2 Sn 2, there exist ¯ > 0, R6 > 0 ( ¯ may depend on !1, R6

may depend on ¯ ) such that

jf (r!; y) G(!; y)j 6 7 ° for r > R6; M < y < M; j! !1j 6 ¯ : (12.2)

As with the proof of theorem 2.5, for any ° > 0, from the assumption on ¿ (x; y)
and the continuity of © 1(!), © 2(!), there exist ¯ 1 > 0 and R1 > 0 ( ¯ 1 and R1

are independent of ! and depend on ° ) such that if jxj > R1, ! 2 Sn 2 and
j(x=jxj) !j < ¯ 1, we have

j ¿ (x; M) © 1(!)j < ° ; j ¿ (x; M ) © 2(!)j < ° : (12.3)

And if j! !1j < ¯ 1, we have

j© 1(!) © 1(!1)j 6 ° and j© 2(!) © 2(!1)j 6 ° : (12.4)

We prove (12.2) by considering two cases.
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Case 1 (©1(!1) = ©2(!1)).

In this case, since the solution is either bounded or has at most linear growth in
its variables, from condition (2) in corollary 3.8, condition (4) in corollary 4.5 or
condition (5) in corollary 4.6 and the proof of corollary 3.2, we see that condition (2)
in theorem 2.5 is satis­ ed. Then we basically will go through the proof of theorem 2.5
again (with the same notation unless stated otherwise) and indicate the necessary
changes along the way. Hence one may wish to refer back to the proof of theorem 2.5
to understand the proof of this part. As before, we choose a number ¯ 2 by (10.4).
Set

­ = 1
16

(1 + 1
4
¯ 2) 1 ¯ 2; f1 =

­

C
f:

Consider the equation Q2 satis­ ed by f1. Now we understand that if (x; y) 2 @«
and appears in one formula, we need to assume y is either always M or M , and
© is de­ ned by two functions © 1 and © 2.

We set

W1 =

»
x j jxj > R3;

­­­­
x

jxj !1

­­­­< ¯ 1

¼
:

Then we claim that if r > R3 and j! !1j < ¯ 1, (that is, r! 2 W1), then

jf(r!; y) G(!; y)j 6 3 ° for M < y < M:

In fact, let w(x; y) = wa;x0 ;® ;H(x; y) be the upper barrier given by (9.2){(9.5) with

x0 = r!; K = 1
16 ¯ 2jx0j;

® =
­

C
( © 1(!1) + 3 ° ) =

­

C
( © 2(!1) + 3 ° );

H = 2MC­ 1 ° 1; a = B(H; K; ® ):

w is de­ ned on the domain ¤ a;x0;H . We compare the functions f1(x; y) and w(x; y)
on the domain « 2 ² ¤ a;x0;H \ « . As we have seen in the proof of theorem 2.5, if
(x; y) 2 ¤ a;x0;H , then

jx x0j 6 1
4 ¯ 2jx0j: (12.5)

Then if (x; y) 2 @« \ @« 2, from (10.4), (10.7), (10.8), (12.5) and (12.4), we have

f1(x; y) =
­

C
¿ (x; y)

<
­

C

³
max

»
© 1

³
x0

jx0j

´
; © 2

³
x0

jx0j

´¼
+ 2 °

´

=
­

C
(maxf © 1(!); © 2(!)g + 2° )

6 ­

C
( © 1(!1) + 3° )

= ®

6 w(x; y):
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Thus, as in the proof in theorem 2.5, we have

f1(x0; y) 6 ® +
2M

H
=

­

C
( © 1(!1) + 4 ° ):

Since f1(x0; y) = (­ =C)f1(x0; y), we have

f (x0; y) 6 © 1(!1) + 4° ; M < y < M

for all x0 = r! 2 W1. Similarly, we can get

f (x0; y) > © 1(!1) 4° ; M < y < M

for all x0 = r! 2 W1. Thus

jf(r!; y) © 1(!1)j 6 4 ° ; M < y < M

for all r! 2 W1. However, if j! !1j < ¯ 1, from the de­ nition of G(!; y),
© 1(!1) = © 2(!2) and (12.4), we have that for M < y < M ,

jG(!; y) © 1(!1)j 6 j © 1(!) © 2(!)j + j© 2(!) © 1(!1)j
6 j © 1(!) © 1(!1)j + 2j© 2(!) © 2(!1)j
6 3 ° :

Thus

jf (r!; y) G(!; y)j 6 7 °

for all r! 2 W1, or r > R3 and j! !1j < ¯ 1. This proves the claim and completes
the proof of case 1.

Case 2 (©1(!1) 6= ©2(!1)).

Since © 1(!1) 6= © 2(!1), there are numbers a1 > 0 and ¯ 4 > 0 such that, if
j! !1j 6 ¯ 4,

j© 1(!) © 2(!)j > a1 > 0: (12.6)

Set

V = f! j ! 2 Sn 2; j! !1j < ¯ 4g:

We want to show that there is a number R7 > R1 (which may depend on ¯ 4) such
that

jf(r!; y) G(!; y)j 6 3 ° for M < y < M; ! 2 V; r > R7: (12.7)

To prove (12.7), we ­ x a !0 2 V and consider the function

f0(x; y) = f(x; y)

³
1

2M
( © 1(!0) © 2(!0))(y + M ) + © 2(!0)

´
:

Then, from (12.3), we see that if jxj > R1, and j(x=jxj) !0j < ¯ 1, then

jf0(x; M )j = j ¿ (x; M) © 1(!0)j < ° (12.8)
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and

jf0(x; M )j = j¿ (x; M ) © 2(!0)j < ° : (12.9)

Furthermore, it is straightforward to check that in « , f0(x0; y) satis­ es the elliptic
equation

Q0f0(x0; y)

²
nX

i;j = 1

aij

³
x; y; f0 + G(!0; y); Dxf0; Dyf0 +

1

2M
( © 1(!0) © 2(!0))

´
Dijf0

= 0: (12.10)

Let "#
0 (x; t; z; p=q; 1=q) be the function de­ ned in (2.8) corresponding to Q0 and

Q#
0 . We claim that there exist L1 > 0, ¯ 5 > 0 and a positive continuous function ¼ 2

on [1; 1) (L1, ¯ 5, ¼ 2 may depend on the set V1, but do not depend on the speci­ c
choice of !0 2 V1) such that

"#
0

³
x; t; z;

p

q
;

1

q

´
> ¼ 2(jpj2 + q2) (12.11)

for all !0 2 ·V , x, p 2 Rn 1, z, t, q 2 R with jxj > L1, jpj2 + q2 > 1, jtj 6 M and
jqj > ¯ 5.

Assuming the claim for the moment, for the operator Q0 we can use the barrier
functions 2 (i.e. x 9) and the functions A(t), À (t) do not depend on !0 2 V (but
may depend on V ).

Now we will basically go through the proof of theorem 2.5 again. Using what
have been proved at the beginning of the proof and the de­ nition of f0, we may
assume (the constant C is independent of the choice of !0 2 Sn 2)

jf0(x; y)j 6 Cjxj for jxj > 1; (x; y) 2 « : (12.12)

Let ¯ 2 be the number given in the proof of theorem 2.5 by (10.4). Let ­ =
1

16
(1 + 1

4
¯ 2) 1 ¯ 2 and consider the function f1 = (­ =C)f0(x; y), where C is the

number de­ ned in (12.12). Then

jf1(x; y)j 6 ­ jxj for jxj > 1; (x; y) 2 « : (12.13)

f1(x; y) satis­ es (from (12.10))

Q3f1(x; y) ²
nX

i;j = 1

aij

³
x; y;

C

­
f1 + G(!0; y);

C

­
Dxf1;

C

­
Dyf1 +

1

2M
( © 1(!0) © 2(!0))

´
Dijf1 = 0 (12.14)

and f1 = (­ =C)f0 on @« . Thus, from (12.8) and (12.9), for ! 2 Sn 2, j! !0j < ¯ 1,
and r > R1, we have

jf1(r!; M )j <
­

C
° and jf1(r!; M )j <

­

C
° : (12.15)
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From the claim (12.11), the construction of barrier functions 2 applies to equa-
tion (12.10), and the functions A(H), À (H) do not depend on the choice of !0 2 V
(but may depend on V ).

Let R3 be the same number as that given in the proof of theorem 2.5. Set

W2 =

»
x j jxj > R3;

x

jxj
2 V

¼
:

We claim that if r > R3, ! 2 V , (that is, r! 2 W2), then

f1(r!; y) <
3­

C
° :

In fact, let w(x; y) = wa;x0 ;® ;H(x; y) be the upper barrier given by (9.2){(9.5) with

x0 = r!; K = 1
16 ¯ 2jx0j;

® =
2­

C
° ; H = 2MC­ 1 ° 1; a = B(H; K; ® ):

We compare the functions f1(x; y) and w(x; y) on the domain « 2 ² ¤ a;x0 ;H \ « .
In the same way as we have seen in the proof of theorem 2.5, if (x; y) 2 ¤ a;x0;H ,

we have

jx x0j 6 1
4 ¯ 2jx0j: (12.16)

Now, if (x; y) 2 @« \ @« 2, from (10.4), (12.15) and (12.16), we have

f1(x; y) =
­

C
¿ (x; y) <

2­

C
° = ® 6 w(x; y):

Thus
f1(x; y) w(x; y) < 0 on @« \ @« 2:

Then, similar to the proof of theorem 2.5, we conclude that

f1(x0; y) 6 ® +
2M

H
=

3­

C
° :

Since f1(x0; y) = (­ =C)f0(x0; y), we have

f0(x0; y) 6 3 °

for all r! = x0 2 W2. Similarly, we can get

f0(x0; y) > 3 °

for all r! = x0 2 W2. Thus
jf0(r!0; y)j 6 3 °

for r > R3, !0 2 V . Using the de­ nition of f0, we have proved (12.7).
It still remains to prove the claim (12.11). For corollary 4.5, from assumption (4),

we have

ann(x; t; z; p; q) > ¼

³
jpj2 + 1

q2

´
(12.17)

whenever x, p 2 Rn 1, z, t, q 2 R with jxj > L, jtj 6 M and jqj 6= 0.
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Then, from Q0,

a0
nn

³
x; t; z;

p

q
;

1

q

´
= ann

³
x; t; z;

p

q
;

1

q
+

1

2M
( © 1(!0) © 2(!0))

´
:

By (12.6) we can choose a number ¯ 7 > 0 such that, if jqj > ¯ 7, ! 2 ·V ,
­­­­1 +

q

2M
( © 1(!) © 2(!)))

­­­­> 0: (12.18)

Then the function (with ¼ given in (12.17))

¼ 3( » ) = min

»
¼

³
jpj2 + q2

j1 + (q=2M )( © 1(!) © 2(!))j2

´
j jpj2 + q2 = » ; ! 2 ·V ; jqj > ¯ 7

¼

is a well-de­ ned positive continuous function. Hence we have

a0
nn

³
x; t; z;

p

q
;

1

q

´
> ¼ 3(jpj2 + q2)

for all !0 2 V , x, p 2 Rn 1, z, t, q 2 R with jxj > L, jtj 6 M and jqj > ¯ 7. Now
the claim follows from the proof of corollary 3.2.

For corollary 4.6, from assumption (5) in the corollary, we have, for jqj 6= 0,

a0
nn

³
x; t; z;

p

q
;

1

q

´
= ann

³
x; t; z;

p

q
;

1

q
+

1

2M
( © 1(!0) © 2(!0))

´

> ¼

³
jpj2 +

­­­­
1

q
+

1

2M
( © 1(!0) © 2(!0))

­­­­
2´

:

Now using the ¯ 7 > 0 in (12.18), we see the function

¼ 4( » ) = min

»
¼

³
jpj2+

­­­­
1

q
+

1

2M
( © 1(!) © 2(!))

­­­­
2´

: jpj2+q2 = » ; ! 2 ·V ; jqj > ¯ 7

¼
:

is a well-de­ ned positive continuous function. Then we have

a0
nn

³
x; t; z;

p

q
;

1

q

´
> ¼ 4(jpj2 + q2)

for all !0 2 V , x, p 2 Rn 1, z, t, q 2 R with jxj > L, jtj 6 M and jqj > ¯ 7. Now
the claim follows from the proof of corollary 3.2.

For corollary 3.8, we notice that conditions (i) and (ii) of x 3 each imply (iii). The
remainder of the proof now follows as for corollary 4.6.
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