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The asymptotic behaviour of solutions of second-order quasilinear elliptic partial
differential equations defined on unbounded domains in R™ contained in strips (when
n = 2) or slabs (when n > 2) is investigated when such solutions satisfy Dirichlet
boundary conditions and the Dirichlet boundary data have appropriate asymptotic
behaviour at infinity. We prove Phragmen—Lindel6f theorems for large classes of
elliptic operators, including uniformly elliptic operators and operators with
well-defined genre, establish exponential decay estimates for uniformly elliptic
operators when the Dirichlet boundary data vanish outside a compact set, establish
the uniqueness of solutions, and give examples of solutions for non-uniformly elliptic
operators which decay but do not decay exponentially. Our principal theorems are
proven using special barrier functions; these barriers are constructed by considering
an operator associated to our original operator.

1. Introduction

Phragmen-Lindel6f theorems ‘at infinity’ for an open set {2 C R™ and an elliptic
partial differential operator @ on R™ are concerned with the behaviour of f(X) as
the norm of X € {2 goes to infinity, where f is a solution of a Dirichlet boundary
value problem for @ in 2. The cases in which {2 is (or is contained in) a strip
in R? or a cylinder in R3 have generated particular interest, in part because of
applications to problems in continuum mechanics. Decay theorems (alternatively,
spatial decay theorems) in such domains are concerned with the rate at which
(appropriate) solutions converge to their asymptotic limits, especially when the
Dirichlet boundary data vanish outside a compact set. These decay estimates, which
have connections with, for example, (linear and nonlinear) heat equations (e.g. [6,
21,23,29,32,39]), fluid mechanics (e.g. [1,3]), extensible films (e.g. [17]) and Saint—
Venant’s principle in elasticity theory (e.g. [12-15,18,35]), often begin by assuming
that the limiting behaviour at infinity of the solution is known. We might view this
interaction as a two-step process, in which a Phragmen—Lindel6f theorem yields the
limiting behaviour of a solution and a decay theorem yields estimates of the rate
at which the solution approaches its limiting values. In this paper we will focus
primarily on Phragmeén-Lindel6f theorems.

Previous results on Phragmen—Lindel6f theorems at infinity have generally con-
cerned limited classes of operators, such as the Laplace operator or other linear
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uniformly elliptic operators (e.g. [2,4,8,33,40]), nonlinear uniformly elliptic opera-
tors (e.g. [22]), the minimal surface operator or other divergence structure operators
(e.g. [19,20,24,26,27,30,37]) or operators whose principal part has one of these
forms (e.g. [6,16,17,25,31,36]). (Two exceptions, however, are [10] and [28].) Decay
estimates were usually obtained for particular classes of operators in special geome-
tries, including strips (e.g. [18,19,22,30,34,37]) and cylinders (e.g. [6,11,15,31]).

Throughout this paper (except in §5), we will assume {2 is an unbounded open
subset of R™ such that, for some fixed M > 0,

NRC{X =(z1,...,7n) ER" | |zp| < M}.

We will consider elliptic operators of the form
Qu(X) = Y ay(X, u(X), Du(X))Diju(X), (1.1)
ij=1

where (a;;(X,t, P)) is a positive definite matrix in which each entry is a C'* function
on R™ X R x R™. For ¢ € C°(R™), we will consider the Dirichlet problem

Qf=0 1in £,
f=¢ ondN.

Our goal is to determine the behaviour of f(X) for X € 2 as | X| — oco. We will
prove theorems of Phragmeén—Lindelof type for solutions f of (1.2)—(1.3) when Q
satisfies one of two general conditions, ¢ has (uniform) limits ‘at infinity’, and, in
some cases, f(X) does not grow too quickly as |X| goes to infinity. The class of
elliptic operators satisfying one of these general conditions includes, for example,
uniformly elliptic operators, minimal surface operators and operators whose coeffi-
cients depend only on the gradient of the solution when these operators are of the
form (1.1). Based, for example, on [6] and [22], one might expect that when @ is
uniformly elliptic, a solution of (1.2)—(1.3) which converges to zero at infinity does
so exponentially when the boundary data vanish outside of some compact set; while
spatial decay estimates are not the focus of this paper, we do prove this conjecture
in corollary 3.4. We observe that when the operator is not uniformly elliptic, there
are solutions of (1.2)—(1.3) which converge to zero but do not do so exponential, as
illustrated in § 3 by examples 3.5 and 3.6.

To illustrate some of our results, we will consider two special cases. In the first
case, we let

2 ={(z,y,2) €ER?: |z| < 1,2* + 4> > 1}

be an ‘infinite washer’, @ be either a uniformly elliptic operator on {2 or the minimal
surface operator on R3, and ¢ € C°(R3) such that there exist continuous functions
h1(6) and ha(6) with

rlggo o(rcos(9),rsin(6),1) = hi(0), (1.4)
rlggo ¢(rcos(9), rsin(h), —1) = ha(0) (1.5)

https://doi.org/10.1017/5S0308210500000196 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000196

Phragmen—Lindeldf theorems 337

uniformly for 6 € [0,2n]. Then, if Q is the minimal surface operator on R3 and
f€C?(2)NCN) is a solution of (1.2)—(1.3), corollary 4.5 implies

Tlin;o f(rcos(8),rsin(), z) = (1 + 2)h1(8) + £(1 — 2)ha(6)
uniformly for 0 < 6 < 27 and —1 < z < 1. Corollary 3.8 implies that this conclu-
sion continues to hold if @ is a uniformly elliptic operator and f € C?(£2) N C°(12)
is a solution of (1.2)—(1.3) which satisfies the condition that, for some C' > 0,
|f(z,y,2)| < C /2 +y? when (x,y,2) € 2 and 2% +y? > 1.

From the conclusion above, we can easily see that the solution to (1.2)—(1.3) is
unique when @ is the minimal surface operator and ¢ satisfies (1.4)—(1.5). It also
easily follows that a solution of (1.2)—(1.3) which grows at most linearly is unique
in this class of functions when @ is a uniformly elliptic operator whose coefficients
a;j(x,y, z,u, Du) are independent of u, and ¢ satisfies (1.4)-(1.5). Since a fully
nonlinear uniformly elliptic operator of the form F(X, Du, D*u) which satisfies
F(X, P,0) = 0 can be reduced (by ‘linearization’) to a uniformly elliptic operator
of the form (1.1), we see that our conclusions above can be applied to appropriate
solutions of F(X, Du, D?*u) = 0.

In the second case, we let @@ be a uniformly elliptic operator and ¢ vanish outside
of a compact set in R™. Then a solution of (1.2)—(1.3) in the class of functions with
(at most) linear growth must actually decay exponentially. For example, suppose
Q is the Laplace operator on R3, 2 is as before (i.e. an ‘infinite washer’) and
¢ € CO(R3) satisfies ¢(z,y,+1) = 0 if 22 + 3% > 1 and

B(cos(f),sin(0), 2) = (1 — 2%)(sin(f) — cos(20)), 0<O<2m, —-1<z<1.

If f is a solution of (1.2)—(1.3) and, for some C' > 0, |f(z y, < CVz? 492 for
22 4+ y? > 1, then corollary 3.2 implies f(z,y,z) — 0 as 2% + y — oo for |z| <
and corollary 3.4 implies that, for r > 1 and 0 < 6 < 27

| f(rcos(8),rsin(f), z)| < §e_”(’”_1)/2 cos(3mz).
7r

For another example, let Qu = 0 be the equation of gas dynamics for a perfect gas
(e.g. [9, eqn (10.8)]); here,

2D;uDju

R LT

for a constant v > 1. Suppose f is a solution of (1.2)—(1.3) which satisfies, for some
C >20and m< /2/(y+1), |f(z,y,2)] < Cr when r > 1 and |Df| < m on {2;
these imply the flow is subsonic and @ f is uniformly elliptic. Then corollary 3.2
implies f(x,y,2) — 0 as 22 + y? — oo for |z| < 1, and corollary 3.4 implies

4
|f(r cos(0), rsin(f), z)| < Ee—w—l)e’mlzl sin(k(1 — |2|)),

where o and k are constants depending only on v and m.

The aspect of this work which is most crucial to its success (and might also be
of independent interest) is the construction of new barrier functions; for ease of
presentation, we will limit our discussion here to R3 and elliptic operators on R2.
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The following geometric idea, used, for example, in [20] (see also [27]), is the genesis
of our construction. Consider the catenoid x2 + y* = cosh?(z), which is a minimal
surface with the z-axis as an axis of symmetry. Define

w(x,y) = y/cosh?(y) —x2  for (z,y) € D = {(z,y) € R?: |z| < cosh(y)}.

The graph of w is a portion of the catenoid obtained by interchanging y and z in
the catenoid above. Notice that w is a solution of the minimal surface equation,

w > 0in D, and

8_w = +o0o on dD,
on

where n is the exterior normal to D on dD. Let S = {(z,y) € R? : |y| < 1} and
suppose f € C2(S)NCY(S) is any solution of the minimal surface equation in S
satisfying f(z,£1) < 0 for |z| < cosh(1). Using well-known comparison principles,
we see that f < w on SN D. In particular, f(0,y) < w(0,y) for |y| < 1. In [38] (see
also [28]), upper and lower barriers of the form g(x,y) = h( /22 + y2) are used;
for upper barriers, g is a supersolution of the elliptic equation under consideration.
Since the surfaces z2 + y? = cosh®(z) and z = h( /22 + y2) have some similarities,
one might wish to mimic the process above. Given a suitable operator @) of the
form (1.1), our construction is based on finding supersolutions and subsolutions for
an operator Q¥ corresponding to @, defining w so that

Z:’(U(SL‘7y) == y:g(1‘72),

and concluding that w is a supersolution or subsolution for ). However, certain
technical differences between minimal surfaces and solutions of @ f = 0 should be
apparent; for example, Q% = @ when Q is the minimal surface operator, while
Q7 # @ in general. One unexpected aspect of this construction is that upper
(lower) barriers for Q will come from subsolutions (supersolutions) for Q.

The remainder of the paper is organized as follows. In § 2, we state our principal
theorems. In §§3-6, we apply our theorems to various kinds of elliptic equations
by verifying the hypotheses of our theorems. Our theorems are proven in §§8, 10
and 11, where we apply the barriers constructed in §§7 and 9. In §12 we prove
corollaries 3.8, 4.5 and 4.6.

2. Main results

We will assume from now on that the coefficients of Q have been normalized so
that

n

> au(X,z,P)=1 for (X,z,P) € R" x R x R". (2.1)
i=1
We will write elements X = (x1,...,2,) of R" as (x,y), where € = (z1,...,Tp—1)

and y = x,,. Corresponding to the operator Q, we define an operator Q% by

Q#v(cc, z) = Z Aij(x, z,v, Dv)D;;v (2.2)

ij=1
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for v = v(x,2) in C?(R"™) with dv/dz # 0, where

Aij(mazatapa ) = q2aija 1< i7 ] <n— 15 (23)

Ain(x, 2,t,p,q) = qain — Zp]qa”, 1<i<n—1, (2.4)

Ann(m; 2 tap; = Qpn — 2 Zp]a]n + Z PiDjaij. (25)
7,7=1

Here a;; means a;j(x,t,z,—p/q,1/q) for 1 < i, j <n,p = (p1,...,pn—1) € R* 7L,
teR,q#0,D;, =9/0x;for 1 <i<n—1,D, =09/9z, Dv= (Dyv,...,D,v) and
The operators Q and Q# are related in the following way. If w = w(zx,y) is in

C*(R"), g = g(x,2) is in C*(R"), g # 0, and g(z, w(z, y)) =y, then
-1

gg(m,w(m,y))Q g(z, w(z,y)) (2.6)

Qu(x,y) =

In particular, if g, > 0 and Q% ¢ > 0, then Qw < 0. This is the crucial observation
in the paper, which enables us to construct supersolutions and subsolutions for
Dirichlet problems related to @ on {2.

We shall assume the following hypothesis on the behaviour of the boundary
data ¢.

AsSUMPTION 2.1. There is a function @ € C°(S™2) such that
drw,y) — d(w) asr— oo
uniformly for w € S"72 and |y| < M

The assumptions on the operator @ will be described by the behaviour of the
following functions.

DEFINITION 2.2. For an operator @ in (1.1) satisfying (2.1), let

e(X, 2, P)=¢(z,y,2,P) = Z aij(XaZaP)Pin (2.7)

i,j=1
for X, PcR", 2z €R, and
n—1 n
e (x, 2,t,p, q) [ Z Aiipipj + 2 Z Ainpiq + Anng i|/z Ay (2.8)
i=1

7,7=1

for ¢ # 0, where A;; = A;;(x, 2,t,p,q) for 1 < i, j < n are given by (2.3)-(2.5),
andz, p e R"!, 2, t, g€ R.

REMARK 2.3. A brief computation shows that (using (2.1))

ann(m;ta 2 _p/qv 1/Q)
1+ E(CB, ta 2, _p/qv 1/(]) - ann(m; ta 2, _p/qv 1/Q)

E#(mﬂzatap5Q) = (29)
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Our first theorem follows.
THEOREM 2.4. Suppose we have the following.
(1) f € C?(2)NC°N) satisfies (1.2)—(1.3).

(2) Q satisfies (2.1) and there exist L = 0 and a positive continuous function o
on [1,00) such that

(@, 2,t,p.9) = o(lpf* +¢°) (2.10)
wheneverx, p ER"™, 2, t, g€R, || > L, |pl*+¢> > 1, |[t| < M and g # 0.
(3) ¢ satisfies assumption 2.1.
Then
lim f(z;,y;) = P(w) (2.11)
j—o0
uniformly for w € S"? and sequences {(x;,y;)} in 2 with |x;| — oo and
x;/|lx;] = w as j — oo.

If condition (2) in theorem 2.4 holds only for |q| > §p > 0, we need to add more
restrictions on the solution f.

THEOREM 2.5. Suppose we have the following.

(1) f € CH2)NCO(2) satisfies (1.2)-(1.3), and f(x,y) has at most linear growth

in its variables; that is, there is a constant C > 0 such that

[f(@,y)| < Cle|  for |z| large, (x,y) € 2. (2.12)

(2) Q satisfies (2.1) and there exist L > 0, 09 > 0, and a positive continuous
function o on [1,00), such that

e#(z,2,t,p,q9) = o(|pl* + ¢%) (2.13)

whenever ¢, p € R, 2, t, e R with |z| > L, p|* +¢*> > 1, |t| < M and
lg| = do-

(3) ¢ satisfies assumption 2.1.

Then
Jim f(@. ) = 2() 2.14)

uniformly for w € S™? and sequences {(z;,y;)} in 2 with |x;] — oo and
x;/lz;| — w as j — oo.

If condition (3) in theorem 2.4 is not assumed, we can still obtain a bound on a
solution given by the bound on the boundary data.

THEOREM 2.6. Suppose we have the following.
(1) f e C?(02)NC%N2) satisfies (1.2).

https://doi.org/10.1017/5S0308210500000196 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000196

Phragmen—Lindeldf theorems 341

(2) Q satisfies (2.1) and there exist L > 0 and a positive continuous function o
on [1,00) such that

e (@, 2,t,p,9) = o(Ipf* + ¢°) (2.15)
whenever ¢, p € R, 2, t, e R with |z| > L, p|* +¢* > 1, |t| < M and
q#0.

Then

Jimsup{[f(2,y)| | 2] > R, (z,y) € 2}
< Jim sup{[f(z, y)l | |2] > R, (2,y) € 02}

In particular, if |f(x,y)| < K on 082, then ||f||p=0) < K.

3. Uniformly elliptic and other equations

In this section, we consider the application of theorem 2.5 to particular classes of
operators. In order to do this, we need to verify that assumption (2) of theorem 2.5
is satisfied. Let us consider the following four conditions.

(1) @ is a uniformly elliptic operator.
(ii) ann(x,t, 2z, p,q) is independent of x, ¢t and z.

(iii) There exist L > 0 and a positive continuous function o on [1,00) such that
ann(x,t,2,p,q) = o(|pl* + ¢*)

whenever z, p € R" !, 2, t, g € R with |z| > L, |p|* +¢*> > 1, |t| < M and

lg| > 0.
(iv) There exist L > 0, do > 0 and a positive continuous function ¢ on [1,00) such
that
ann(,t,2,—p/q,1/q) = o(lp* + ¢*) (3.1)
whenever z, p € R" !, 2, ¢, g € R with |z| > L, |p|* +¢*> > 1, |t| < M and
lql = do.

LEMMA 3.1. Suppose Q satisfies (2.1) and one of conditions (i), (ii) or (iii). Then
Q satisfies condition (iv).

Proof. Suppose first that ) satisfies (i). Then there exists a constant p > 0 such
that n

Z ai’j(maya 2y 2 Q)fifj = /L|£|2

1,j=1

for all¢ € R™, (z,y) € 2,2, € R and p € R L. If we set £ = (0,...,0,1), we get
ann(x,t, 2,p,q) = p. Thus we see that

ann(ma ta 2, _p/Qa 1/Q) 2 s

and so (iv) is satisfied if we let o(p) be the constant function which equals p.
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Suppose next that @ satisfies (ii). Let dp € (0, 1] be fixed. Set
1

k(p) = min{ nn(P,q) P R g ER, = < [p* +4” < p} :
0

Then k(-) is a positive decreasing continuous function on [§3,00). For p € R*!
and ¢ € R with |g| > &y and |p|* + ¢* > 1, we have

P 1) (|P|2 1) (2 2 2)
an(=2.2) 2 KL+ =) = k(2 (0P + %),
( a'q @ ¢ 53(” )

pl> 1 _IpP+¢  IpP+¢* _ 2
— TS s 7 T — < 5 (IpI* + ).
q q q q 9%

If we define o by o(p) = k(205 >p) and set L = 0, then (iv) is satisfied.
Suppose finally that (iii) is true. Let dp € (0, 1] be fixed. Set

since

1

ki) = min] o(pf + )1 p € B g € B < IpP 2 < ).
0

Then k(-) is a positive decreasing continuous function on [§2,00). For z, p € R"!
and y, t, ¢ € R with || > L, (z,q) € 2, |q| > & and |p|?> + ¢* > 1, we have

pl p* 1 pl*> 1 2
“"”(“”y’t""‘)>"(—2+—2 >k 5+ ) 2k (el + ),
749 “ q @ q 52

and so (iv) holds. O
COROLLARY 3.2. Suppose we have the following.

(1) f € CH2)NCY(2) satisfies (1.2)-(1.8) and f(x,y) has at most linear growth

in its variables.
(2) Q satisfies (2.1) and one of conditions (i)—(iv).
(3) ¢ satisfies assumption 2.1.
Then

Jim fla;.;) = 9(0) (32)

uniformly for w € S™? and sequences {(z;,y;)} in 2 with |xz;| — oo and
x;/lz;| — w as j — oo.

Proof. We shall assume condition (iv) is satisfied. From (2.1), we see the largest
eigenvalue of (a;;) is bounded by one. Hence

e(@,z,t,p,q) < |pl* +|ql”.
Then, for any fixed 6y > 0, if |q| > dp and |p|® + ¢% > 1, we have

p1 _ 2
s(m,z,t,——,—) < (pl2+Dlal2 < Z(Ipf + ).
q q 95
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Combining this with (2.9) and (3.1) implies
ann(ma ta 2 _p/qv 1/(])
1= apn(,t,2,—p/q,1/q) + 250_2(|p|2 +q?)

dgo(lpl® +¢%)
"5 +2(lpl +¢?)

s#(cc z,t,p,q) =

forx, pe R" 1 2, ¢, g€ Rwith |z| > L, [p|* +¢*> > 1, [t| < M and |q| > dp. The
corollary now follows from theorem 2.5. O

REMARK 3.3. If F = F(X,z,P,R) is a C? function of X, P € R", z € R, and
R € R™" (i.e. real symmetric n x n matrices) and f € C?(§2) is a solution of the
fully nonlinear equation

F(X,u(X),Du(X), D*u(X)) =0,

then, as in [9, p. 444], f can be considered as the solution of a quasilinear elliptic
equation. If FI(X, z, P,0) = 0, then this quasilinear is of the form (1.1); if addition-
ally F(X, f(X),Df(X), D*u(X)) is a uniformly elliptic operator, then corollary 3.2
(and corollary 3.4) can be applied to f.

Suppose f € C?(£2) N C°(2) satisfies (1.2)-(1.3), f(x,y) = 0 for (z,y) € 9N
when |z| is large, f(x,y) grows at most linearly in || and the linear operator

Z (X F(X), Df (X)) Diju(X) (3.3)

is uniformly elliptic. Then f(x,y) decays exponentially, as indicated in the following
corollary. We also observe that the decay rate obtained in corollary 3.4 (i.e. k) may
not be optimal. If the operator L is not uniformly elliptic, then f(x,y) need not
decay exponentially, even if f(x,y) — 0 as || — 00, as examples 3.5 and 3.6
demonstrate.

COROLLARY 3.4. Suppose we have the following.

(1) f € CH2)NCO(2) satisfies (1.2)-(1.8) and f(x,y) has at most linear growth

in its variables.

(2) Q satisfies (2.1) and is uniformly elliptic with ellipticity constants py and o,
0 < p1 < po < 1; that is,

n

el < > ai (X, 2, P)&&s < palél?

ij=1
for X € 2, P ¢ eR”, z€R.

(3) = max{1, () g} and k = (1/M) tan™(1/a) if j1s > pr, while a = 0
and k= w/2M if po = py

(4) There exists L > 0 such that ¢(z,y) =0 if || > L and |y| < M
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(5) There exists K > 0 such that |f(z,y)| < Ksin(k(M — |y|))e L if |z| = L
and (x,y) € 2.

Then
|f (@, y)| < Ke H=ler Wl sin(k(M - |y])) (3.4)
for (z,y) € 2 with |x| > L

Proof. Let L be the (linear) operator defined by

Lu(X) = Z a; (X, f(X), Df(X))Dsju(X).

ij=1

As in [22], define ((x,y) = e *®ly (y) for a positive function ¥ (with ¥” < 0) to
be determined. Set

n

n(€) =n(X, &) = Z X),Df(X))&&;

for X € 2 and £ € R™. Let ji; = min{py, o} if po > gy and fiy = py = po
otherwise; then a = (2 — f11)/[11. Notice that

i€ < (&) < pal€l,
ﬂl < an.n < Ko,
n—1
xT; xr xr
23 o=l =.1) - 0 < 2(pg —
2T (1) =) =ona| <2020
For each X = (x,y) € £,
n—1 n—1 n—1
K2z, kx;x; k
Mol £ —w<y>( 2 Tt 2 o e T gy 2 )
i=1 i=1 i=1
n—1
kx;
=) 2 Train + ¥ Wann
i=1

Notice that
n—l o ] nolizl

Z(% |Z|2])a J=3 2L D nwes —wie;) 20,
ij=1 i—
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and so

k
ool o) o) o
1 kx
+ EH(H,O)WZ/))

(VW) 22 (= )l )]+ 2 ).
M1 f1

Let us define ¥ € C?(R) by
¥ (y) = Crek sin(k(M — [y]))
for some Cy > 0; notice that §/(0) = 0 because of our choice of k. Now
V'(y) = cleka'y'ﬁmsin(kw — lyl)) = k cos(k(M — [y]))),
V()] = Crelvlk(—asin(k(M — [y])) + cos(k(M — [y])))
and
V" (y) = Cre*lk2 (o = 1)sin(k(M — |y])) — 20 cos(k(M — [y])),

hence

w”@)w%%—m)w ()] + “Z’f Y (y)

el
= C1e* Ik sin(k(M — |y|>>(a2 _p 2ol o) ”—)
H1 M1

JrCleka'y'chos(k(M—|y|))( 9 + 22— 1 “1)
fi1

Since po = 2f11 and a = (2 — f11) /1 (or po = i1 and o = 0), we have

20 — [ 1 - .
a2—1—M+£:T(ﬂ2—ﬂ1)(2ﬂl—ﬂ2)<0
M1 H1 M1
and
_oapot2Ti_
A1

Hence, for any C7 > 0, £ < 0. Notice further that

HIL(=0) > —ana (V) + 2z = ) )]+ 20 ) 20

ifCi 20
Arguing as in [30], we will show that |f| < ¢ on 2. Set C; = K, so that

((z,y) = Ke Mele W sin(k(M — ly])).
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Let € > 0. Corollary 3.2 implies |f(x,y)| — 0 as || — oo and so there exists
I(e) > 0 such that

|f(x,y)| <3¢ and 0<((m,y) < 3¢
if (z,y) € 2 and |z| > I(¢). Therefore,
fl@,y) <((zy) +e for (m,y) €2, x| > ().
Now condition (4) implies f(z,y) = 0 if (z,y) € 992, |z| > L, and so
f@,y) < ((@,y) <((@,y) +e for (z,y) €002, |z > L.
Finally, condition (5) implies |f(zx,y)| < ((z,y) if (z,y) € 2 and |x| = L. Hence
f<l+e omdf(x,y) € N:L<|z|<i}
for any I > I(e). Using the comparison principle (see [9]), we see that
flay) <{(x,y) +e if (xy) €2, | > L.
Since —( is a subsolution, a similar argument shows that
—C(zy) —e < flzy) if (z,y) €2, |z|> L.
Since € > 0 is arbitrary, we see that
[f(@,y)| < ((@,y) for (x,y) € 02, |z| > L.
|

Some operators of the form (1.1), such as the minimal surface operator, are
not, uniformly elliptic but become uniformly elliptic for functions f with bounded
gradient; that is, the linear operator £ given in (3.3) is uniformly elliptic when |V f|
is bounded. For such operators, corollary 3.4 is applicable. For other operators,
however, obtaining a bound on |V f| does not imply that the linear operator £
is uniformly elliptic; as the following examples show, solutions of (1.2)—(1.3) may
decay to zero without decaying exponentially, for such operators.

EXAMPLE 3.5. Let 2 = {(z,y) € R? : 2 > 0, |y| < 7} and define Q by

1 u2+u§

Ugy + ————L—Uyy.
u? 1+u2+u§ vy

Q=

Notice that

( P 1) 22 +1 R S 1
a X Zy——,— - = =
2,2 y Y, 2, qa q q2 + 2’2(]2 +1 q2 +1 2(p2 4 q2)

when p? +¢2 > 1 and q # 0. Let ¢(x,y) = sin(y). Then one solution of the Dirichlet
problem Qu =0 in 2, u = ¢ on 02 is

flz,y) = Y. sin(y).
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Notice that the hypotheses of corollary 3.2 are satisfied and f(z,y) — 0 as  — oo;
however, f does not decay exponentially. (The fact that a;;(z,y, 2, p, ¢) is only pos-
itive definite on {(z,y, z,p, q) : 22+ ¢® > 0} is not important, since the linear oper-
ator L obtained by replacing the coefficients a,;(z,¢) of @ by b;;(x,y) = a;;(f, fy)
(so Lu is proportional to ug, + (f? + f7)uy,) is elliptic for all u.)

EXAMPLE 3.6. Let 2 = {(z,y) € R? : 2 > 0, |y| < 7} and define Q by
Qu = Ugy + a(u® + ui)kuyy

for a, k > 0. Notice that
f(@,y) = c(z +a)™Fsin(y)

is a solution of Qu = 0 if k + 1 = ak?c®* and a € R; further, f(x,47w) = 0 for
z > 0. For example,

f(z,y) = 3@+ )72 sin(y)
is a solution of
Uy + 3(u? + ui)Quyy =0 in{?
with f(0,y) =sin(y) and f(z,£7) =0 for = > 0.

Let us consider an example for which assumption (2) in theorems 2.4 or 2.5 is
not satisfied.

EXAMPLE 3.7. Suppose 2 C {(z,y) € R? : |y| < M}. Let Q be the operator on R?
defined by

1
Qu(z,y) = tiaw (2, y) + =y (2,Y)-
Then
241, 1,
502+2p +12+2q ’

q2

T+ @)@+ )

E(SL‘7 t? Z3p7 q) =

E#(SL‘7 Z’ t’p7 q)

Notice that hypotheses (2) in theorems 2.4 or 2.5 cannot be satisfied since
e#(z,2,t,p,q) — 0 as |z| — occ.

Let us next consider a case in which &; — oo, (x;,y,) € 012, x;/|x;| — w, and
yet the limit ¢(x;,y;) may not exist.

COROLLARY 3.8. Suppose we have the following.
(1) The domain {2 is given by
R={(z1,...,7n-1,y) ER" | =M <y < M}.
(2) Q satisfies (2.1) and one of conditions (i)—(iii).
(3) feC?(2)NC%N2) satisfies (1.2)-(1.3) and there exists C > 0 such that

[f(@,y)l < Cla| for|x[>1, (x,y) € 2.
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(4) There are two functions ®1(w) € C°(S"2) and ®9(w) € C°(S"2) such that

lim ¢(rw, M) = &1(w),  lim g(rw, —M) = dy(w),

T—00 r—00
uniformly for w € S™L.
Then
1

i (P1(w) — Po(w))(y + M) + P2(w)

Jin f(xj,y) =

uniformly for w € S"? and sequences {(x;,y;)} in 2 with |x;| — oo and
x;/|lx;] = w as j — oo.

The proof will be given after the proof of theorem 2.6.

4. Equations with well-defined genre

Now we consider equations to which we can apply theorems 2.4 and 2.5. The class
of equations to which we shall apply these theorems is the class of elliptic operators
Q with a well-defined genre .

DEFINITION 4.1 (see [5], [38, p. 425]). Equation (1.1) has genre A if and only if it
satisfies (2.1) and there are positive constants p; and ps such that for |P| > 1,
Xen teR, PeR",

| PP < e(X,t, P) < pa| PP (4.1)

As examples, we see the minimal surface operator and operators of minimal
surface type (e.g. [7,9]) have genre two, while uniformly elliptic operators, such as
Laplace’s equation, have genre zero.

COROLLARY 4.2. Suppose we have the following.
(1) f € CHN)NC(N) satisfies (1.2)-(1.3).
(2) Q has genre A > 2, satisfies (2.1) and there exist L > 0 and a positive
continuous function o on [1,00) such that

1
ann(mataza_gaa) > U(|p|2+q2) (42)

whenever ¢, p € R, 2, t, e R with |x| > L, |p|* +¢*> > 1, |t| < M and
lg| > 0.

(3) ¢ satisfies assumption 2.1.
Then

lim f(.9;) = B(w) (4.3)

uniformly for w € S"? and sequences {(z;,y;)} in 2 with |x;] — oo and
x;/|x;] = w as j — oo.
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Proof. We will apply theorem 2.4. We only need to verify condition (2) in theo-
rem 2.4. Since @ has a well-defined genre A > 2, there exists uo > 0 such that, if

pl*/* +1/¢* > 1,

1-)\/2
p 1 p|>+1 _
E((E,t,z,——,—) </142(| | B) <ﬂ2|q|)\ 25
q q q

and so from (2.9) and (4.2) we have (notice that A > 2)

5#(m,z,t,p, q) > ann(mﬂtaza_p/Q71/Q) —
1- ann(m; t,z, _p/Q7 1/‘]) + NJ2|Q|)\ 2
> ann(cc,t, Zs _p/Q7 1/‘])
1+ p2|q[?2
o(lpl” + ¢*)
T 1+ pa(pl? + ¢2) 0D/

If [p|?/¢® + 1/¢* < 1, then (2.1) implies

1 241
E(m,t,z,—g,—) < m—j <1
7 q q

Hence from (2.9) and (4.2), we have

1 o(lpl* + ¢%)
# >1 P2
S (mazatap5Q) = 2ann(:c,t,z, qﬂ q) = 2+2ﬂ2(|p|2 +q2)()\_2)/2.

O

REMARK 4.3. Let Q be the minimal surface operator on R3. We wish to compare
one result in [24] with this corollary. If {2 is an open subset of the wedge domain
W ={z,y,2) ER3: 2 > |y| < 2,—00 <z < o0}, $ = 0 and f is a solution of (1.2)—
(1.3), then the corollary to theorem 6 in [24] implies f = 0. On the other hand, if
2 is an open subset of the slab S = {(z,y,2) € R3 : |z] < 1,—00 < ,y < <},
¢ = 0 and f is a solution of (1.2)—(1.3), corollary 3.8 implies f = 0. We observe
that these results are independent and complementary.

One of the differences between theorems 2.4 and 2.5 is that for theorem 2.5
we need to assume the solution grows at most linearly in its variables, while for
theorem 2.4 we do not. On the other hand, if @ has a well-defined genre A > 0
and (2 is a domain inside a (translate of a) salient cone (that is, a cone with vertex
at the origin whose closure contains no subspaces other than {0}), then we can
use [28, theorem 6] to conclude that f(x,y) grows at most linearly in its variables;
for convenience of notation, we will refer to any translation of a salient cone as a
salient cone. Thus we have the following.

COROLLARY 4.4. Suppose we have the following.
(1) f e C?(02)NC%N2) satisfies (1.2)-(1.9).
(2) Q satisfies one of the conditions (ii), (iii) or (iv).
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(3) ¢ satisfies assumption 2.1.
(4) Q has genre A > 0 and satisfies (2.1).

(5) 2 C R? or there is a bounded set D C (2 such that 2\ D has finitely many
components and each component of 2\ D is contained inside a salient cone.

Then
i f(zy,) = 2(0) (4.4
uniformly for w € S™2 and sequences {(z;,y;)} in 2 with |xz;| — oo and
x;/|x;] = w as j — oo,
Proof. Since ¢ satisfies assumption 2.1, there is a constant C such that
|f(z,y)] < C on 0.

If £2 C R?, then since {2 is inside a strip, we can choose a bounded set D such that
2\ D contains two components and each component is contained in a salient cone.
If n > 3, condition (5) implies there is a bounded set D C (2 such that 2\ D has
finitely many components and each component is contained inside a salient cone.
Now we apply [28, theorem 6] to conclude that f(x,y) grows at most linearly in
its variables on each component. Thus the solution grows at most linearly in its
variables. We apply corollary 3.2 to complete the proof. O

Next we consider a situation in which x; — oo, (x;,y;) € 02, x;/|z;| — w and
the limit ¢(x;,y;) may not exist.

COROLLARY 4.5. Suppose
(1) The domain {2 is given by

2 ={(21,... @nm1,y) ERY | =M <y < M},

(2) f e C%02)NCO%N) satisfies (1.2)-(1.3).
(3) Q has a well-defined genre \ > 2.

(4) There exist L 2 0 and a positive continuous function o on [1,00) such that
1
ann(mataza_ga_) 2 U(|p|2+q2) (45)
q q
whenever ¢, p € R"™Y, 2, t, g e R with || > L, |p|*> +¢*> > 0, |t| < M and
lg| > 0.
(5) There are two functions ®1(w) € C°(S™™?) and ®2(w) € C°(S™?) such that

lim ¢(rw, M) = &1(w),  lim g(rw, —M) = dy(w),

r—00 T— 00

uniformly for w € S™L.
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Then
1

i (P1(w) — Po(w)) (y + M) + P2(w)

j—00
uniformly for w € S™? and sequences {(z;,y;)} in 2 with |xz;| — oo and

x;/|x;] = w as j — oo.

The proof will be given after the proof of theorem 2.6.

As we will see from the proof, assumptions (3), (4) and (5) in corollary 4.5 are
primarily used to conclude that the solution has at most linearly growth in its
variables. Since we can use [28, theorem 6] to conclude that solutions grow at most
linearly if @ has a well-defined genre A > 0 and the domain is inside a salient cone,
we obtain the following result.

COROLLARY 4.6. Suppose we have the following.
(1) The domain {2 is given by

2 ={(21,... @nm1,y) ERY | =M <y < M},

(2) f e C%02)NCO%N) satisfies (1.2)-(1.3).
(3) Q has a well-defined genre X\, 0 < A < 2.

(4) 2 CR? or there is a bounded set D C §2, such that 2\ D has finitely many
components and each component of 2\ D is contained inside a salient cone.

(5) There exist L > 0 and a positive continuous function o on [1,00) such that

ann(x,t,2,p,q) = o(|pl* + ¢%) (4.6)
whenever £, p € R, 2, t, g € R with || > L, |p|*+¢*> > 0, |[t| < M, and
lg| > 0.
(6) There are two functions ®1(w) € C°(S"2) and ®2(w) € C°(S"2) such that

lim ¢(rw, M) = &1(w),  lim g(rw, —M) = dy(w),

r—00 T — 00
uniformly for w € S™L.

Then
1

i (P1(w) — Po(w)) (y + M) + P2(w)

Jin fxj,y) =

uniformly for w € S™? and sequences {(z;,y;)} in 2 with |xz;| — oo and
x;/|x;] = w as j — oo.

The proof will be given after the proof of theorem 2.6.
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5. Domains with ‘finitely many ends’

In this section, we will consider domains {2 which are not contained in a slab of
finite width. We will say that a domain {2 has ‘finitely many ends’ if there is a
compact subset D of R™ such that 2\ D is a disjoint union of components (2,
1< k< J, for some J > 1, and

2, CSpy={X eR": |X - VF| < M}

for some M, and some v* = (vF ... vF) with [v*| = 1 for each k € {1,...,J}.
For a domain {2 with ‘finitely many ends’ and a function ¢ defined on R”, we say
¢ converges uniformly on each end if, for each k € {1,...,.J}, there is a function
@), € CY(S™ 1) such that

lim ¢(riw + tv*) = (W)

11— 00

uniformly for w € "1 with w - ¥ = 0, |t| < My, and sequences {r;} such that
r; — 00 as ¢ — 0Q.

COROLLARY 5.1. Suppose we have the following.
(1) The domain {2 has ‘finitely many ends’.
(2) feC?(2)NC%N2) satisfies (1.2)(1.9).

(3) Q satisfies (2.1) and has a well-defined genre A > 2
(1)

For each k € {1,...,J} there exist L > 0 and a positive continuous function
o on [1,00) such that

Z vEvba; (X, 2, P) > o(|P?) (5.1)
,j=1
whenever X, P € R", z € R with | X -v*| < My, | X = (X -vF)W*| > L, |P]? > 1

and P - v* #£ 0.
(5) The boundary data ¢ converge uniformly on each end.

Then on each end 25, 1 <k < J,
lim f(X;) = Pr(w)

1—00
uniformly for w € S"~ with w - v* = 0 and sequences {X;} in 2 with |X;| — oo

and X;/|X;| = w as i — oo.

Proof. Let us fix k € {1,...,J}, which we may assume is 1. Let us now make a
linear transformation of coordinates which maps v! to e, = (0,...,0,1). Let us
denote the coefficients of @, in these new coordinates, as a; j. Then

(nn = E 1/11/ a;j

4,j=1

The proof that f behaves as claimed on the end {2; now follows from corollary 3.2.
If we repeat the same procedure for each (2, the proof follows. O
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Similar to the way in which corollaries 4.5 and 4.6 are related, we obtain the

following from corollary 4.6.

COROLLARY 5.2. Suppose we have the following.
(1) The domain {2 has ‘finitely many ends’.

(2) feC?(02)NC%N2) satisfies (1.2)(1.9).

(3) Q satisfies (2.1) and has a well-defined genre A, 0 < A < 2.

(4)

4) 2 C R? or there is a bounded set D C (2 such that 2\ D has finitely many
components and each component of 2\ D is contained inside a salient cone.

(5) For each k € {1,...,J}, there exist L > 0 and a positive continuous function
o on [1,00) such that

Z v 1/ ai j(X,z,P) = o(|P]*)
1,5=1

whenever X, P € R", z € R with | X -v*| < My, | X —=(X-vFW*| > L, |P]? > 1
and P - v* #£ 0.

(6) The boundary data ¢ converge uniformly on each end.
Then on each end 2, 1 <k < J,
lim f(X;) = @p(w)

1—00

uniformly for w € S with w - vy = 0 and sequences {X;} in 2 with |X;| — oo
and X;/|X;| = w as i — oo.

Proof. The proof is almost the same as that for corollary 4.6, except now we need
to apply [28, theorem 6] to conclude that the solution has at most linear growth in
its variables, and then apply corollary 3.2. O

6. Uniqueness

Another application of theorems 2.4 and 2.5 is the uniqueness of solutions to the
Dirichlet problem (1.2)—(1.3).

COROLLARY 6.1. Suppose we have the following.

(1) All assumptions in one of the corollaries 3.2, 3.8, 4.2, 4.4, 4.5, 4.6 or 5.1 are
satisfied.

(2) The coefficients Q are independent of z.
Then the solutions to the Dirichlet problem
Qf=0 in £2,
f=¢ ondf
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are unique in the class C%(2) N C%(2) in the cases of corollaries 3.8, 4.2, 4.4, 4.5,
4.6 and 5.1, or in the class C*(£2) N C°(2) with at most linear growth in the case
of corollary 3.2.

Proof. Let fi(x,y) and fo(x,y) be two such solutions. Consider
w(@,y) = fi(z,y) = fi(z,y).
Then w(zx,y) = 0 on 912. By one of the corollaries, we have
w(z,y) — 0 as|z] — o0, (x,y)€ 2.
Thus if supg, w > 0, there is a point (g, yo) € 2 such that

w(xo,Yo) = supw.
Q

Since the coefficients of () do not depend on z, from @ f; = 0 and @ fo = 0, we easily
get @**w = 0 in {2 for some linear elliptic operator Q** without zero order term in
w. Thus, from the maximum principle for solutions of linear elliptic equations, w
can not achieve an interior local maximum. Thus supw > 0 is impossible. Similarly,
infow < 0 is impossible. Hence w = 0 in (2; that is, f; = fo in {2. O

7. Barrier functions 1

In this section we assume there exist L > 0 and a positive continuous function o
on [1,00) such that

e*(z,2,t,p,q) = o(lp]* + ¢*) (7.1)

whenever z, p € R"™ ! 2, ¢t, g€ Rwith |x| > L, |p|? +¢*> > 1, |[t| < M and q # 0.
We will first construct ‘upper barriers’ for the Dirichlet problem (1.2)—(1.3); this
construction uses the geometric idea in [20] applied to barriers from [38] and [28].
Specifically, we will prove that there exist functions A(t) > 0, x(¢) > 0 such that
for H > 1, a > A(H), £o € R" ™ with |xo| > L + aeX(¥) and v € R, there exists
W =Wy go~H € C*(24,2, 1) such that, for any constant b,

Q(w +b) <0 in 2 40,0, (7.2)
w = vy on Qa,wg,Ha
a—w = 400 on 2N 02 z0.H, (7.4)
on
2M
w(wo,y) <7+ = for |y < M, (7.5)

where 1 is the exterior unit normal to 02, z, g and {2, 4,z is an open subset of
R™ (the definition of 2, 4, & is given in (7.12)).

7.1. The construction

Define ¥ € C%([1,00)) by
_
w1, o (7))
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Then

/‘00 L dp < o0
7 ap
1 PP(p)

e (x, 2,6, p, )W (VI[P +¢%) > 1 (7.6)

forx, p € R"!, g€ R with |z| > L, |p|> +¢*> > 1, |t| < M and ¢ # 0. Define ¥,
by setting ¥;(p) = p~2if 0 < p < 1 and Wl(p) ="(p) if 1 < p. Define x by

/; 3% for a > 0.

Then it is clear that x(«) is a decreasing function with range (0, 00). Let n be the
inverse of x. Then 7 is a positive decreasing function with range (0, c0).
Let H > 1. Since n(x(H)) = H and 7 is decreasing, we have

and

n(B) >H for0<f<x(H).

For each a > 0, define hq = hq, g by

aeX(H)

t
ha(r) :/ ’7(1n 5) dt for a <r < aeX), (7.7)

Then

t
(ln ) dt
eX (H)

:a/ n(lnt)dt = ahq(1).

Recall that 2M is the width of the strip which contains the domain {2; we define a

function A(H) by
A(H) = QM(/; n(Int) dt)_l. (7.8)

Then, for a > A(H), hq(aeX")) > 2M. Furthermore, for a < r < aeX(#)

eX(H)

h(r) = —n(ln 2) <0, |h(r)] > H

= (o) o (o(n2)) =

Thus, for a < r < aeX(H),

RO By
(b ()2 ” W1 (—hg(r)). (7.9)

and
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For ¢, € R ! with |zg| > L + aeX) ¢ > A(H) and a constant v € R, let
I' = v + aeX)  we define a function g = Jazo.I'M,H DY

Jazo, ol (T, 2) = ha(V]@ — 20| + (2 = 1)2) = M (7.10)

for a? < |z — zo|? + (2 — I')? < a2eX(),
Then, for r = |z — a2+ (z = 2, a <7 <aeXH) 1 <i, j <n—1,

dg T — x4
. a— L1, (r),
J
dg z-1T
& = r h;(r)a
82 I 2 2 1
A S AR LY
2,2 r r r (7.11)
%9 B () (@i —zo)z=11) ) (zi —woi)(2 = 1)
Ox;0z 72 @ 73 ’
g (@i = we) () = x05)
0z,;0x; = ha(r) r2
(1‘1—1‘01)<1‘ —1‘0') 1
— h(r) o+ Siha(r)

where §;; is the Kronecker delta.
Then it is clear that for any number b (with Qqg(zx, z) = Q¥ g(x, z + b))

Qig(x, 2) = Z Aij(x, 2 +b,9,Dg)Dijg

7,7=1
1
AG)

e (x, 2+ b,g,Dg))

i) 1)

> ’ #
= ZA“(CD,Z‘FIJ,Q,DQ)) (E (waz+bvgng)(hg(r))2 +

X (—@Wl(—h;(r))g#(cc, z+b,g,Dg) + @)

r

= (3 ute. = 40,000 ) (1= (D)< 2 + 9. D))
0

In the above equation, we have used the definition of ¥ (x,z + b, g, Dg) and the
fact that if a < r < aeX(H)| then R/ (r) < 0, |Dg| = |h. (r)| > H > 1 and

¥(|Dgl)e#(x, 2 + b,g, Dg) =1 for [Dg| > 1.
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Now we define a domain 2, 5, g in (x,y) space by
Qozormr = {(x,y) : |yl < M, |z — 20| < h, ' (y + M)} (7.12)

The domain {2, ., a7 is obtained by projecting the portion of the graph of the
function

y =g(z,2), a< V]x—xo2+ (z = I')? < aeX)

which satisfies |y| < M and z < I" onto the plane z = 0. Since a > A(H), from the
definition of A(H) we see that (g, y) € 244,z for all —-M <y < M.

Since dg/0z < 0 for z < I', we see that there is a function z = wg z,,r.m(x,y)
defined on (2, z, 7 such that

9(213, wa,w[;,F,H(way)) =y for (way) € Qa,w[,,H~ (713)

In fact, the function z = wq ¢, rm(x,y) can be easily solved from the formula for
g to get

Wazo,ru(T,y) =1 — \/ Yy + M))2 — |z — xo|2. (7.14)
Then from
Q19(x,2) =20 99 <0
19 ’ = Uy 92

and the relationship between Q% and @ we see that for w = wq 4, ~H>
Qw+b) <0 in 2400

for any constant b. This is (7.2).
Since

L —h;'(y + M)
Dw(x,y) = = g, e W)
y \/<ha_1<y+M))2—|cc—:co|2( Wy (ha't (y+M)))

and if (z,y) € 2N 02 4o 1, then |y < M and |x — zo| = h;'(y + M). Thus
ha(|lx — xo|) — M = y and the outer unit normal along 924 4, 1 is

1 (:c—cco
i i e Nl

Thus from the fact that h/, < 0, we have

P+ ) ).

a_w/ |z — x| .
on (\/(ha_l(y+M))2—|CC_CCO|2>(\/1+ h/ erM))))

Let |z —xo| — h ' (y+ M), we see that (7.4) holds. To verify (7.3) and (7.5) we see
that w(x,y) > I' — h; ' (y + M). Since h,(r) is a decreasing function, h, ! is also a
decreasing function. Thus h ' (y 4+ M) < h;1(0) = aeX) for y > —M. Thus

w(x,y) > T —h;'0) =T — aeX),
This is exactly (7.3) since I' = v + aeX(H),
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For (7.5), since w(zxg,y) ="' —h; (y + M),
ow -1 1
0y Y = e ) () (5 £ A0)

Using the fact that h, 1(r) is a decreasing function again, we have

1
In=h; ' (y+ M) <lneXH) = y(H) for |y| < M
a

Since 7 is also decreasing, we have

ow 1 1
" S ) T

Then (7.5) follows from this and

for |y| < —M.

w(wg, —M) = —h;1(0) = I' — aeXH) = 4,

By an argument similar to the one given above, we can construct ‘lower barriers’
for the Dirichlet problem (1.2)-(1.3) to get a function | = lg 2o 4.0 € C*(RPa,z0.H)
by

lawo’yH( 5y)—7_an(H)+\/ y+M)) |€13—:1}0|2

for (z,y) € £24.4,,1 such that for any number b

QU+b) =0 in 24 0.1, (7.15)
< v on Qa,wg,H; (716)
ow
= on 2N 02z 1. (7.17)
2M
w(zo,y) =7 — N for |y| < M, (7.18)

where a > a(H) and |xo| > L + aeX(). We omit the details here.

8. Proof of theorem 2.4

Let w € S"2. For any € > 0, by the assumption on ¢(z,y) and the continuity of
&(w), there exist § > 0 and R > 0 such that if (z,y) € 82, || > R, |y| < M and
|(z/|x]) — w| < &, we have

(. y) — P(w)| <e (8.1)

We choose H > 1 such that 2M/H < e. Let A(H) be the number given in (7.2)-
(7.5). We choose a large number Ry > R+ L + A(H)eX!D) and a small number
0 < 01 < 6 such that if || > Ry, |(z/|z|) — w| < 61, we have

—w‘ <4 for all v with |v — x| < A(H)eXH),

xr
H—w‘<51}.

v

W—{cc||cc|>Rl,
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We claim that if (zg,y) € 2 and £q € W, then
f(®o,y) < P(w) + 3e.

In fact, let w(x,y) = Wa,z0,+,#(x,y) be the upper barrier given by (7.2)-(7.5) with
v =®(w)+2eand a = A(H). w is defined on the domain {2, 4, . We compare the
functions f(x,y) and w(x, y) on the domain 21 = 2, 5, xNL2. If (z,y) € 002N,
from the definition of W and (7.3), (8.1),

f@y) = o(x,y) <P(w) +2¢ =7 < w(z,y). (8.2)
Thus
fle,y) —w(x,y) <0 on dNR2NI. (8.3)
f € C?(2) and (7.4) imply that
flx,y) —w(z,y) <0 on 2N3IM2. (8.4)
Now we claim that f € C?({2) and (7.4) imply that
flz,y) —w(x,y) <0 on 2. (8.5)
Indeed, from (7.2) we have

Z T,y,w ay) +b, Dw(may))wa(may)) <0 on

for any constant b. In particular, for any (x1,y1) € 21, let b= f(x1,y1) —w(@®1,y1)
in above formula; then we have

n

Z aij(mlayla f(x1, 1), Dw(mlayl))Dijw(mlayl) <0
i,j=1

Since (x1,y1) € {21 can be arbitrary,
Z z,y, f(x,y) + b, Dw(z,y))Dijw(z,y)) <O in (2.

Now (8.5) follows from a standard argument, along with the fact (8.3) and (8.4).
In particular, from (8.5) we have

f(man) < w(man) for (man) in Ql~
Thus (7.5) and the choices of v and H yield

2M
f(xo,y) < v+ 5l < P(w) + 3¢ for (o, y) in 4.

Since (xg,y) € 2y is the same as (xg,y) € 2 (this follows from the definition
of £24 4,,1), this proves the claim.
Similarly, using the lower barriers given by (7.15)—(7.18), we can conclude that

f(xo,y) = P(w) —3e  for (xo,y) in £2.
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Thus
|f(€130, y) - Q(w” < 3e  for ((130, y) € 1.

Since ¢y € W is arbitrary, we finally have
|f(z,y) —P(w)| < 3¢ for (z,y) € 2 with x € W. (8.6)

Now if @;/|x;| — w as j — oo, there exists N > 0 such that @; € W. Then
from (8.6), for (x;,y;) € 2, we have

|f(z),y5) —P(w)| <3e ifj=>N

Since € > 0 is arbitrary, the conclusion of theorem 2.4 follows.

9. Barrier functions 2

In this section we will construct ‘upper barriers’ for the Dirichlet problem (1.2)—
(1.3) under the assumptions that there exist L > 0, §p > 0 and a positive continuous
function ¢ on [1,00) such that

e#(z,2,t,p,q) = o(|pl* + ¢%) (9-1)

whenever ¢, p € R"™! 2t g€ Rwith |z| > L, |p|?+¢*> > 1, [t| < M and |q| >
(‘Lower baI‘I‘IGI‘b can be constructed similarly; we leave the detalls to the reader )

We will use the same upper barriers wq z,,,z defined in (7.13)—(7.14). However,
since (9.1) need not hold for all ¢ # 0, there will be a different domain on which
Q%g > 0. (In fact, we can not have Q#g > 0 on 2, 4, g in general if (9.1) only
holds for |q| > d.)

We will prove that for each H > 1, v € R and K > 0, there exist a num-
ber B(H,K,v) > A(H) and a domain A, 4, g x—y C $2qz,,m such that for
a > B(H,K,7), ©y € R"™! with |zo| > L + aeX(H)| the function w = wazo~.0
(given by (7.13)—(7.14) and restricted to Aq ., H,x—~) satisfies

Qw <0 in Aa,wg,H,K—w (9 2)
w =y on /Ia,wg,H,K—’ya (9 3)
w> K on 2N a/la,wo,H,K—w (9 4)
4M
w(xo,y) < v+ N for ly| < M (9.5)

We use the same notation as in the construction of (7.2)—(7.5). Now let H be a
number such that H > v/28y + 1 for the 8y defined in (9.1).

For each &g € R" ™, |zg| > L+ aeX) and a > A(H), let Ag z,,mr be the domain
n (x,y) space defined by

Aa,wo,H = {(may) : |y| < Ms \/§|€B - 213()| < ha_l(y + M)} (96)
The domain A, 4,z is obtained by projecting the portion of the graph of the
function
y =g(z,2), a< V]x—x02+ (2= I)? < aeXH)
which satisfies |y| < M and z —I' < —$h_*(y + M) onto the plane z = 0. Once

again, since a > A(H), (xo,y) € Aa,wg,H for all -M <y < M.
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If (x,9) € Agaym, then |yl < M and v2|x — x| < hy'(y + M). Since y =
ha( V]2 — o2 + (2 = I')2) — M, we have

V2lz — o) < V] —xo2 + (z = 2.

Thus
le — xo|? < (2 = T)2
Since z < I', we have
z—1T 1

Jo—wlr GoTE - V2

Thus for r = ]z — 22+ (2 =12, a < r < aeXH) since b/ (r) < 0 we have,
from (7.11),

og =z-—1T_, 1., 1 ( r) 1
. > — = — - > — . .
P . h,(r) = \/§|ha(r)| \/517 In —) = \/§H > 0 (9.7)

Then using (9.1), in the same way as we verified (7.2), for any number b we have

Q19(x, 2) = Z Aij(x,z+b,9,Dg)D;jg 20 fora<r< aeXt).
ij=1

Since dg/0z < 0 for z < I', we see that there is a function z = wg 4o, rg (T, y)
(the same function given by (7.13)—(7.14)) defined on A, 5, such that

g(mﬂ wa,w[),F,H(ma y)) =Y for ((13, y) € Aa,w[),H'

Also,
Wa g ru(E,y) =1 — \/ y+M — |l — xo2.
Then from
dg
ng(mﬂ Z) > O; - < O;
0z

and the relationship between Q# and @, we see that for w = Wawo,y,H
Qw+b) <0 on Agqgy

for any constant b. This is (9.2). Equations (9.3) and (9.5) are verified in exactly
in the same way as (7.3) and (7.5). For (9.4), we see that if (x,y) € 044 40,0 N 12,
then

V2|x — xo| = b Ny + M). (9.8)

Thus
y+ M = ho(V2]x — x0).

However, since y = hq (/| — xo|2 + (2 = I')2) — M, we have

V2lz — o) = V]e —xo2 + (z — 2.
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That is (using (9.8)),

%h;l(y + M).

e —xo| =2 —T| =
Solving for z, we have (recall that z < I)

1
w(x,y)=2=1— —2ha_1(y + M) on0Agz,.mNI2.

v

As we has seen before, using the fact that h, ! is decreasing, we have

1 1
w(x,y) =T — h1(0) = I' = —=qaeXxH),
(.1) 0=r-—

V2
Since I = v 4+ aeXH) | we have
1
w(x,y) = +(1——)an(H).
(z,y) =7 NG

Then if we choose

— ~)e~x(H)
VDD ),

B(H,K,v) = max{
we have
w(z,y) 2 K on 0Ag 4, N2
This is (9.4).

10. Proof of theorem 2.5

The proof of theorem 2.5 is very similar to that of theorem 2.4 except we shall use
the barriers given by (9.2)—(9.5) instead of (7.2)—(7.5). Thus we shall refer back to
the proof of theorem 2.4 whenever possible.

From (2.12) we may assume that

[f(z,y)l < Cle| for |x| =1, (@,y) € 2. (10.1)

For each € > 0, from assumption 2.1 and the continuity of ¢(w), we see that there
are numbers §; > 0, Ry > 0 such that if r > Ry, 71 > Ry, 12 > Ry,

lp(rw,y) — P(w)| < e for allw € S" 2 and (rw,y) € 622 (10.2)

and

[p(riwi,y1) — ¢(raw2, y2)| < € (10.3)

for all wy, wy € S"2, with |w; —ws| < &1, and (riwi,y1), (rawe, y2) € 2.
Then we can choose a number d5 > 0 (independent of @) such that if |xo| > Ry
(choose R larger if it is necessary),

[zo| |
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Now we choose 3 = 1=(1 4 $62) 7165 and consider the function f; = (8/C)f(z,y),
where C' is the number defined in (10.1). Then

[fi(,y)| < Blz| for || =1, (z,y) € 2. (10.5)
fi1(z,y) satisfies (from (1.2))

n

C C
Qa2f1(z,y) = Z aij(maya Efl(m,y), EDfl(m,y)) Djjfi(z,y) =0 (10.6)

ij=1
and f1 = (8/C)¢ on 012. Thus, from (10.2),
1 (rw, ) — g@(wﬂ < ge for all w € S"2 and (rw, y) € 9. (10.7)
From (10.3),
|fi(riwi, y1) = fi(raws, yo)| < %e (10.8)

for all wy, wy € S"2, with |w; —ws| < 61, and (riwi,y1), (rawe, y2) € 0.
Now for the Q2 given in (10.6), we compute the 52# corresponding to QQ# and Qs.
We have (by (2.13))

2 2 2
Ef(m,y,z,p,q)—%s#( ,y,ﬁ g g) Z (22(2+q2))~

Thus the construction of barrier functions 2 (i.e. §9) applies to the equation (10.6),
and the functions A(H), x(H) do not depend on w and .

We set H = (2MC)(3) ¢! and choose a number R3 > R + L such that if
|| > R,
B

A(H) + = max |P(w)| + ﬁ) . (10.9)

52|m0| > IG(M c c

V20

Set
W ={z||z| > Rs}.

We claim that if (zg,y) € 2 and £q € W, then

fi(zo,y) < g¢(| ol) +3ge.

In fact, let w(x,y) = Wa,z0,+,#(x,y) be the upper barrier given by (9.2)-(9.5) with

K = Léslzol, = E(Q?( 0 ) +26) a=B(H, K,7),
C ||

with the number H as chosen above. w is defined on the domain A, 4, m. We
compare the functions fi(z,y) and w(z,y) on the domain 25 = Ay 4.5 N 12.
From (10.9) and (9.9), we have

V2(K —y)e X
V2 -1 '
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Thus

2(K —
B(H, K, ~)eXH) = % < 4K < 15,5zl

Then if (x,y) € Ay g m, from the definition of A, ., g and the monotonicity of
h;t, we have

2 — 20| < hyH(0) = aeX™) = B(H, K,~)eX™) < 16,)ay). (10.10)

Now if (x,y) € 02N 02, from (10.4), (10.7), (10.8) and (10.10), we have

hle.) = Sotw) < £ (o ) +2¢) =7 < wia)

Thus

filz,y) —w(z,y) <0 on 2N I2s. (10.11)
From (10.5) and (10.10), we have that if (z,y) € (2,

[f1(2,y)] < Blz| < B(lzol + 302l20]) < F502l20| = K

by the choices of 8 and K. Thus

filz,y) —w(xz,y) <0 on 2N0Ns. (10.12)
Then, similar to the proof of theorem 2.4, we conclude that

filz,y) —w(x,y) <0 in .

In particular, from the choices of v and H, we have

Ji(zo,y) < v+ % = %(@(%) +3e).

This proves the claim. Since fi(xq,y) = (8/C)f1(xo,y), we have

F(@o,y) < @(ﬂ) +3e

|330|

for all xy € W. Similarly, we can obtain

Fl@o,y) > @(ﬂ) — 3¢

|0
for all g € W. Thus
‘f(mo,y) —@( - )‘ < 3¢

[ao]
for all xy € W. Now the conclusion of theorem 2.5 follows easily.
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11. Proof of theorem 2.6

Without loss of generality, we may assume

D= Jim swp{lf(@.y)l | la] > R, (2, y) € 92} < +oo.

Then for any € > 0, there is a number R3 > 0 such that if (z,y) € 992, |z| > Ra,
we have

fle,y) <D +e (11.1)

We choose H > 1 such that 2M/H < e. Let A(H) be the number given in (7.2)-
(7.5). We choose a large number Ry > Rs + L + A(H)eX) and set

W ={z||z| > R4}
We claim that if (zg,y) € 2 and &g € W, then
flxo,y) < D + 2e.

In fact, let w(x,y) = Wa,z0,+,#(x,y) be the upper barrier given by (7.2)-(7.5) with
v =D+ eand a = A(H). w is defined on the domain 2, 5, 7. We compare the
functions f(x,y) and w(x, y) on the domain 2y = 24 ¢, m N2 If (x,y) € 2N,
from the definition of W and (7.3), (11.1),
f@,y) = d(x,y) <D+e=vy<w,y). (11.2)

Thus

flx,y) —w(z,y) <0 on d2N . (11.3)
f € C?(2) and (7.4) imply that

flx,y) —w(x,y) <0 on 2N 3.

Then, similar to the proof of theorem 2.4, we can conclude that f(x,y)—w(x,y) <0
on {2 and

2M
f(xo,y) <v+ < D +2e for (zg,y) in 2.

H
This proves the claim.
Now let @y take all possible value such that |zq| > R4 and (zqg,y) € 2 for some

y; then we have
f(@,y) <v+% <D+ 2
for all x with || > R4 and (x,y) € 2 for some y. Thus
sup{f(x,v) | || = Ry, (z,y) € 2} < D + 2e.

Letting € — 0, we obtain

R im sup{f(z,y) | |z| > R, (z,y) € 2} < D.
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Similarly, we can prove

REIJIrloo Sup{_f(may) | |213| 2 Rﬂ (may) € “Q}

< m sup{=f(z,y) | |2 > R, (z,y) € 92}
Thus we have

i sup{|f ()l | 2] > R, (2,9) € 2}
<

Rimsup{|f(@,9)| | |2 > R, (z,y) € 02}

In particular, if |f(x,y)| < K on 0, we have |f(z,y)] < K on 2 by combining
the conclusion above and the maximum principle for elliptic equations.

12. Proofs of corollaries 3.8, 4.5 and 4.6

First of all, for corollary 4.5, we can apply theorem 2.6 to conclude that the solution
f(x,y) is bounded; that is, using conditions (3) and (4), we can verify condition (2)
in theorem 2.6 in the same way as that in the proof of corollary 3.8. For corollary 4.6,
as in the proof of corollary 3.8, using conditions (3) and (4), we can apply [28,
theorem 6] to conclude the solution has at most linear growth in its variables.

To prove the conclusions in corollaries 3.8, 4.5 and 4.6, we only have to show that
for every € > 0, there is a number R5 > 0 such that forallw € S"™2, —M <y < M,

lfrw,y) — G(w,y)| <Te forr>R;, —M<y<M, (12.1)

where

G@9) = 517 (@1(0) = o))y + M) + Ba(), w82 —M <y <M,

By a covering argument, it is clear that (12.1) follows from the following claim.
For each fixed w; € S™ 72, there exist § > 0, Rg > 0 (6 may depend on wy, Rg
may depend on §) such that

lfrw,y) — G(w,y)| <Te forr >R, —M<y<M, |w—w]|<d (12.2)

As with the proof of theorem 2.5, for any ¢ > 0, from the assumption on ¢(x,y)
and the continuity of @1 (w), Po(w), there exist 57 > 0 and Ry > 0 (67 and Ry
are independent of w and depend on €) such that if |z| > Ry, w € S"2 and
|(x/|x|) — w| < 61, we have

[o(x, M) —D1(w)| <€, [d(m, —M) — D (w)| <. (12.3)
And if |w — w1] < &1, we have
[01(w) = P1(w1)| <€ and  [P2(w) — Pa(wr)| < e (12.4)
We prove (12.2) by considering two cases.
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Case 1 (@1 (w1) = P3(w1)).

In this case, since the solution is either bounded or has at most linear growth in
its variables, from condition (2) in corollary 3.8, condition (4) in corollary 4.5 or
condition (5) in corollary 4.6 and the proof of corollary 3.2, we see that condition (2)
in theorem 2.5 is satisfied. Then we basically will go through the proof of theorem 2.5
again (with the same notation unless stated otherwise) and indicate the necessary
changes along the way. Hence one may wish to refer back to the proof of theorem 2.5
to understand the proof of this part. As before, we choose a number do by (10.4).
Set
p

B =114 102)"" 0, 1 :Ef'

Consider the equation @, satisfied by f;. Now we understand that if (z,y) € 912
and appears in one formula, we need to assume y is either always M or —M, and
@ is defined by two functions &; and ®s.

We set

—w

Wl—{€13||€13|>R3, <(51}.

z
Ed
Then we claim that if r > R3 and |w — wy| < 41, (that is, rw € W7), then
|f(rw,y) — G(w,y)| <3¢ for — M <y < M.
In fact, let w(®,y) = Wa a4, m2(,y) be the upper barrier given by (9.2)-(9.5) with
ro=rTrw, K:%52|3}0|,
1= Z(@1w1) +30) = Z(@2(0) +30)
C C
H=2MCp et a= B(H,K,~).

w is defined on the domain A, 4, 7. We compare the functions f1(x,y) and w(x,y)
on the domain (22 = Ay z,, 1 N 2. As we have seen in the proof of theorem 2.5, if

(x,y) € Agwo. 1, then
& = o] < 302fo). (12.5)

Then if (z,y) € 02N ISy, from (10.4), (10.7), (10.8), (12.5) and (12.4), we have

<ﬁ(max{¢1(|mo|) ¢2(| |)} ”6)

= — (max{®(w), P2(w)} + 2¢)

fl(ma y)

= Q

(1(w1) + 3e)

QlQQ

Il
gq

<

(x,y).
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Thus, as in the proof in theorem 2.5, we have

Filmo,y) <7+ 2 = 2@y () + ).

Since f1(xo,y) = (8/C) f1(x0,y), we have

f(@o,y) < Pr(wi) +4e, —M<y<M
for all g = rw € Wj. Similarly, we can get

f(@o,y) 2 Pr(w1) —de, —M<y<M
for all g = rw € W7. Thus

[flrw,y) = Pr(wi)| < de, —M<y<M

for all rw € Wj. However, if |w — wi| < 47, from the definition of G(w,y),
D (w1) = Po(wy) and (12.4), we have that for —M <y < M,

|G(w,y) = P1(w1)] < [P1(w) = P2(W)] + [P2(w) — P1(w1)]
|@1(w) = Py (w1)] + 2|P2(w) — Po(wr)]

3e.

NN

Thus
|frw,y) — G(w,y)| < Te

for all rw € Wy, or r > R3 and |w — w1| < d1. This proves the claim and completes
the proof of case 1.

Case 2 ($1(w1) # P2(w1))-

Since @1(w1) # P2(w1), there are numbers a3 > 0 and d4 > 0 such that, if
|w - W1| < 643

|<151(w) - QQ(W)l > a; > 0. (126)

Set
V={w|weS" 2 |w—uw| < d}.

We want to show that there is a number R;7 > R; (which may depend on d4) such
that

lf(rw,y) — G(w,y)| <3¢ for —M<y<M, weV, r>Rsq (12.7)

To prove (12.7), we fix a wy € V and consider the function

fole.1) = F(e.9) = (e @1 e0) = D20y + M) + i) ).

Then, from (12.3), we see that if || > Ry, and |(x/|z|) — wg| < d1, then

| fo(m, M)| = |p(, M) = P1(wo)| <€ (12.8)
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and

| folz, =M)| = |¢(x, =M) — P2(wo)| < €. (12.9)
Furthermore, it is straightforward to check that in £2, fo(xo,y) satisfies the elliptic
equation
Qo fo(xo,y)

< 1
= az‘j(ﬁcay;foJrG(Wan)aszOaDyfoer(qjl(wo — Po(wo)) )Dijf()
ij=1

=0. (12.10)

Let eg (cc t,z,—p/q,1/q) be the function defined in (2.8) corresponding to @y and
Qo We claim that there exist Ly > 0, 5 > 0 and a positive continuous function oo

n [1,00) (Ly, d5, 02 may depend on the set V7, but do not depend on the specific
choice of wg € V1) such that

p 1
elf (cc,t, it 5) > oy(lpl* + ¢*) (12.11)

forallwg € V, z, p e R, 2, t, ¢ € R with || > Ly, |p|> +¢*> > 1, |t| < M and
lg| = d5.

Assuming the claim for the moment, for the operator (g we can use the barrier
functions 2 (i.e. §9) and the functions A(t), x(¢) do not depend on wy € V (but
may depend on V).

Now we will basically go through the proof of theorem 2.5 again. Using what
have been proved at the beginning of the proof and the definition of fy, we may
assume (the constant C' is independent of the choice of wy € S™2)

fol@y)| < Cla| for o > 1, () € 2. (12.12)

Let 62 be the number given in the proof of theorem 2.5 by (10.4). Let § =
(14 $62)7165 and consider the function f; = (3/C)fo(x,y), where C is the
number defined in (12.12). Then

Ay < Blel for el 1, (x,y) € 2. (12.13)
fi(z,y) satisfies (from (12.10))

Qsfi(z,y) = Z aij(maya %fl + G(wo, y), %Dwfla
ij=1
C 1
EDyfl oaf (P1(wo) = d5z(wo))) Dijfi =0 (12.14)

and f1 = (8/C) fo on 8£2. Thus, from (12.8) and (12.9), for w € S" 2, |w—wp| < d1,
and r > Ry, we have

|f1(rw, M)| < ge and |fi(rw,—M)| < %e. (12.15)
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From the claim (12.11), the construction of barrier functions 2 applies to equa-
tion (12.10), and the functions A(H), x(H) do not depend on the choice of wg € V
(but may depend on V).

Let R3 be the same number as that given in the proof of theorem 2.5. Set

WQ—{m||:c|>R3,iev}.
Ed
We claim that if r > Rs, w € V, (that is, rw € Ws), then
fl(rway) < %6'
In fact, let w(x,y) = Wa,z0,+,#(x,y) be the upper barrier given by (9.2)-(9.5) with

ro=rTrw, K:%52|3}0|,

20
= 66’
We compare the functions fi(z,y) and w(x,y) on the domain 25 = Ay g, 1 N £2.

In the same way as we have seen in the proof of theorem 2.5, if (x,y) € Aq o0, m,
we have

v H=2MCp et a= B(H,K,~).

| — @o| < 02|20]. (12.16)

Now, if (x,y) € 02 N 012, from (10.4), (12.15) and (12.16), we have

file.y) = So(.y) < He =7 < wlw.y).

Thus
. fi(z,y) —w(x,y) <0 on 92N IJNs.

Then, similar to the proof of theorem 2.5, we conclude that

2M 3
fi(xo,y) Sy +— = —ﬁﬂ

H C
Since f1(xo,y) = (8/C)fo(xo,y), we have
fo(xo,y) < 3¢
for all rw = &y € Wy, Similarly, we can get

Jo(zo,y) = —3¢

for all rw = xg € Wsy. Thus
| fo(rwo, y)| < 3e

for r > Rs, wo € V. Using the definition of fy, we have proved (12.7).
It still remains to prove the claim (12.11). For corollary 4.5, from assumption (4),
we have

2
pl©+1
ann(matazapa q) 2 U(| |q2 ) (1217)
whenever , p € R"™!, 2, ¢, ¢ € R with |z| > L, |t| < M and |q| # 0.
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Then, from Qy,

1

0 p 1) ( p 1 )
A\ Tt 2, ==, — | = ann| @, t, 2, ——, — + D1 (wo) — P2(wo .
(2052 2 L ) = Ba(en)

By (12.6) we can choose a number §7 > 0 such that, if |q| > §7, w € V,

‘1+ﬁ(q§1(w)—¢2(u})))‘ > 0. (12.18)

Then the function (with o given in (12.17))

p*+¢*
11+ (¢/2M)(P1(w) — P2(w))?

is a well-defined positive continuous function. Hence we have

() =min o ) 1IpP +a2 = pwe V.l > 50}
p1
agn(mﬂtaza__a _) Z U3(|p|2 +q2)
q q
forallwg € V, &, p € R, 2, ¢, g € R with || > L, |t| < M and |q| > §7. Now

the claim follows from the proof of corollary 3.2.
For corollary 4.6, from assumption (5) in the corollary, we have, for |q| # 0,

1 1 1
agn(mﬂtaza_ga_) —ann(a},t,z,—g,—+—(<151(w0)—<152(w0)))
q q qq 2M
2)

2
) plP+d® =pweV,|q 2 57}~

> o197 + |2+ 517 (1(0) = 2alen)

Now using the d7 > 0 in (12.18), we see the function

atp) = minf o 1+ 34+ S @100

is a well-defined positive continuous function. Then we have
p1
a%n (mﬂ t, z, _Ea E) 2 U4(|p|2 + q2)

forallwg € V, &, p € R, 2, ¢, g € R with || > L, |t| < M and |q| > §7. Now
the claim follows from the proof of corollary 3.2.

For corollary 3.8, we notice that conditions (i) and (ii) of § 3 each imply (iii). The
remainder of the proof now follows as for corollary 4.6.
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