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REVERSE MATHEMATICS OF FIRST-ORDER THEORIES
WITH FINITELY MANYMODELS

DAVID R. BELANGER

Abstract. We examine the reverse-mathematical strength of several theorems in classical and effective
model theory concerning first-order theories and their number of models.We prove that, among these, most
are equivalent to one of the familiar systems RCA0 ,WKL0, orACA0 . We are led to a purely model-theoretic
statement that impliesWKL0 but refutes ACA0 over RCA0 .

§1. Introduction. Simpson [22,Ch. II.8 and IV.3] laid the foundation for the study
of first-order logic from the point of view of reverse mathematics. There he pro-
vided suitable definitions of objects such as theories and models in the language of
second-order arithmetic, and proved versions of several important theorems, includ-
ing the Soundness and Completeness Theorems, in the weak axiom system RCA0.
In [22, Ch. IX.4] he began the study of model theory proper by formalizing and
proving the existence theorem for recursively saturatedmodels in the systemWKL0.
This work wasmotivated, however, by its applications to metamathematical conser-
vation theorems. Recently, there has been a surge interest in the reverse mathematics
of model theory per se, and researchers such as Harris, Hirschfeldt, Lange, Shore,
and Slaman have undertaken a systematic study using Simpson’s framework.
While much of this work has fallen into the familiar pattern of placing lists of the-

orems in correspondence with one of several knownaxiom systems—most often one
of the Big Five isolated by Friedman [5,6]—it has also enriched the field by suggest-
ing totally new axiom systems. For example, Hirschfeldt, Shore, and Slaman [13],
in studying the classical existence theorem for atomic models, isolated the new
reverse-mathematical principles AMT andΠ0

1G. Hirschfeldt, Lange, and Shore [12],
drawing on work in effective model theory by Goncharov [8] and Peretyat′kin [19],
have studied various versions of the classical existence theorem for homogeneous
models, finding further connections with AMT and with induction principles such
as BΣ0

2 and IΣ0
2, and discovering a new hierarchy of principles Π

0
nGA between

IΣ0
n and IΣ

0
n+1 but incomparable with BΣ

0
n+1.

Given the known connections between reverse and effective mathematics
(as described in, for example, Friedman, Simpson, and Smith [7]), it should come as
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no surprise that the reverse-mathematical approach to model theory also has strong
connections with effective model theory. On the one hand, many known results and
techniques from the effective setting can be formalized in RCA0. On the other, the
fact that many other results cannot be formalized in RCA0 suggests new questions
in effective mathematics.
It has typically been the case in effective model theory that when a particular
object is being studied its complexity is tightly controlled, while that of other objects
varies freely. An example that comes up frequently is the isomorphism relation: two
models are isomorphic if there is an isomorphism between them. The Turing degree
of the isomorphism is not normally considered, unless it is the main object of
interest, as in the study of recursive stability or relative categoricity. Because it is
unnatural in reverse mathematics to treat a model or theory differently from an
isomorphism—all second-order objects obey the same basic set-existence axioms—
our approach here must be more uniform. When interpreted in �-models, our
results over RCA0 can be viewed as correspondingly uniform results in effective
mathematics.
In this paper we address, within various subsystems of second-order arithmetic,
the following two questions of basic model theory.

Q1. Under what conditions is a complete theory ℵ0-categorical?
Q2. For what finite values n may we have a complete theory with exactly n models

up to isomorphism?

We assume familiarity with reverse mathematics and with model theory.
Subsections 1.1 and 1.2 describe some of our less standard notation, and provide
a few useful lemmas in reverse mathematics and in model theory, respectively.
Subsections 2.1 and 2.2 summarise our answers to the questions Q1 and Q2,
respectively. Most of the proofs are deferred to the remainder of the paper, namely
Sections 3–7. Each section among Sections 3–7 is built around a particular con-
struction or technique, and is split into four parts: first, a brief description of the
construction and its goals; second, a subsection giving the construction itself; third,
a “verification” subsectionwhere basic properties are checked (such as completeness
and consistency of a particular theory); and, finally, an “applications” subsection
where the construction is used to prove claims from Subsections 2.1 and 2.2.
Suitable machinery is introduced and developed as needed, including a WKL0
version of the Henkin model construction in Section 5 and an RCA0 version of
the Fraı̈ssé limit construction in Section 6. Unless otherwise stated, all reasoning is
in RCA0. A theorem’s statement may be tagged with the axiom system in which it is
being proved, such as RCA0, ACA0, or “Classical” when reasoning in ZFC.

1.1. Notation for reverse mathematics. Most of our reverse-mathematical nota-
tion follows Simpson [22]. We useM and S to denote the first- and second-order
parts, respectively, of a model (M,S,+M , ·M, 0M, 1M,<M ) of RCA0. We typically
assume, without mention, that we are working inside such a model; when we do
mention the model we omit the operation symbols, writing simply (M,S). We say
that a set X ∈ S is finite if it has an upper bound inM . We use the symbol {0, 1}<M
or 2<M to denote the set of all finite binary strings in S. We use IΣ0

1 to denote the
axiom scheme of induction for Σ01 formulas with parameters fromM and S. We also
use the following notation.
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Definition 1.1. Fix a set Z ∈ S in a model (M,S) of RCA0.

(i) Given a sequence of sets X0, . . . , Xn−1 ∈ S, where n ∈ M may be
nonstandard, we define the coded tuple 〈X0, . . . , Xn−1〉 as the predicate:

〈X0, . . . , Xn−1〉(〈i, k〉) ⇐⇒ k ∈ Xi .
Given a sequence of sets X0, X1, . . . ∈ S with indices ranging over all of
M , we define the coded sequence 〈X0, X1, . . .〉 similarly:

〈X0, X1, . . .〉(〈i, k〉) ⇐⇒ k ∈ Xi.
We sometimes treat coded tuples and coded sequences as sets, for example,
by writing 〈i, k〉 ∈ 〈X0, X1, . . .〉. Depending on how the sets Xi are pre-
sented, a coded tuple or coded sequence may or may not to be an element
of S. In this paper, we usually point out when it is.

(ii) Given a set Z ∈ S and a number s ∈ M , let KZs = {e < s : ΦZe,s(e)
converges}, where Φe is the e-th Turing functional. The Turing jump enu-
meration for Z is the coded sequence 〈KZ0 , KZ1 , . . .〉. Note that the Turing
jump enumeration exists in S by Δ01 comprehension. We let KZat s denote
the set difference KZs −KZs−1.

(iii) The Turing jump of Z, written KZ , is the Σ01 predicate

KZ(n) ⇐⇒ (∃s)[n ∈ KZs ].
We often write n ∈ KZ to mean KZ(n).

The following lemma shows how the Turing jump fits into reverse mathematics.

Lemma 1.2 (RCA0). Let (M,S) be a model of RCA0. Then (M,S) is a model of
ACA0 if and only if KZ is an element of S for every Z ∈ S.
Proof. See Simpson [22, Ex. VIII.1.12]. 	

Lemma 1.2 allows us to obtain reversals from a principle P to ACA0 by coding
〈KZ0 , KZ1 , . . .〉 into an object and arguing that, if P holds, then we can use Δ01
comprehension to recover KZ . We use this method frequently, for example, in the
proofs of Proposition 4.5 and Proposition 6.11.

1.2. Backgroundand notation formodel theory. All definitions are in the language
of second-order arithmetic. Our definitions for basic model-theoretic terms such as
language, formula, sentence, structure, model, consistent, and satisfiable are mostly
as given in Simpson [22, Ch. II.8] and in Hirschfeldt, Lange, and Shore [12].
All structures have countably infinite domain unless otherwise specified. Given
a languageL, anL-theory is any set of L-sentences. A complete L-theory is a theory
containing either φ or ¬φ for every L-sentence φ. Two structures A and B are
isomorphic if there is an isomorphism between them. When we are working in a
model (M,S) of RCA0, the isomorphism must be an element of S. A theory is
ℵ0-categorical if all of its models are isomorphic.
We shall need the following theorem.

Theorem 1.3 (RCA0. Weak Completeness Theorem). Every deductively-closed
consistent theory is satisfiable. In particular, every complete consistent theory is sat-
isfiable, and every deductively-closed consistent theory can be extended to a complete
consistent theory.
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Originally due to Gödel, the Weak Completeness Theorem 1.3 was formal-
ized in effective mathematics by Morley and translated to reverse mathematics by
Simpson [22, Thm II.8.4]. Weak is in the name to contrast this with the stronger
statement, not provable in RCA0, which does not include deductively-closed as
a hypothesis:

Theorem 1.4. The statement, “Every consistent theory is satisfiable” is equivalent
toWKL0 over RCA0.
Proof. See Simpson [22, Thm IV.3.3]. 	
One of theWeak Completeness Theorem’s immediate consequences is the following
theorem of Łos and Vaught.

Theorem 1.5.

(i) (Classical. Łos, Vaught.) If T is an L-theory with only one countable model,
then for every L-sentence φ, either T 
 φ or T 
 ¬φ.

(ii) (RCA0.) Every deductively-closed theory with exactly one model up to
isomorphism is complete.

(iii) The statement of part (i) is equivalent toWKL0 over RCA0.
Proof. A proof of part (i) can be found in standard texts such as Marker [14].
Part (ii) and the forward direction of part (iii) are implicit in the proof given in
Simpson [22, Ch. II.8] of the Weak Completeness Theorem 1.3.
For the reverse direction of (iii), assume that¬WKL0 holds. ByTheorem 1.4, there
is a language L0 and a consistent L0-theory T0 with no models. We may assume
L0 is a relational language. Let L1 = {≤} be the language of partial orders, and let
T1 be the theory of dense linear orders without endpoints, which is ℵ0-categorical in
RCA0. Define a new language L = L0 ∪L1 ∪ {R}, where R is a new 0-ary relation,
and an L-theory T by:

T = {¬R→ φ : φ ∈ T0} ∪ {¬R→ all relations in L1 are empty}
∪ {R→ φ : φ ∈ T1} ∪ {R→ all relations in L0 are empty}

This T has exactly one model, but neither proves nor refutes the sentence R. 	
Thus, in the systemWKL0, if we wish to show that a theory is complete, it is enough
to construct a model and show that it is unique up to isomorphism. This is, in
general, not enough in the weaker system RCA0. Instead, we use a suitably effective
notion of quantifier elimination.

Definition 1.6.

(i) We say a theory T has quantifier elimination if, for every L-formula φ(x̄),
there is a quantifier-freeL-formula �(x̄)—possibly one of the formal logical
symbols Tr or Fa—such that T 
 φ(x̄)↔ �(x̄).

(ii) We say a theory T has effective quantifier elimination if there is a function
which takes as input any L-formula φ(x̄) and returns an L-formula �(x̄)—
possibly Tr or Fa—such that T 
 φ(x̄)↔ �(x̄).

Any theory with effective quantifier elimination has quantifier elimination,
and, in a relational language, any theory with quantifier elimination is complete.
The following lemma, used in the work of Hirschfeldt, Shore, and Slaman [13],
is our main tool for proving completeness of a theory.
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Lemma 1.7 (RCA0). Suppose T is a theory and there is a function which takes as
input an L-formula �(x̄, y) which is a conjunction of literals and returns a quantifier-
free L-formula �(x̄) such that T 
 (∃y)�(x̄ , y) ↔ �(x̄). Then T has effective
quantifier elimination.

Proof. Suppose such a function f exists, and fix any L-formula φ(x̄). We show
how to produce a � such that T 
 φ(x̄) ↔ �(x̄). Suppose first that φ(x̄) is of
the form (∃y)�(x̄, y), where � is quantifier-free. The usual proof of De Morgan’s
laws may be carried out in RCA0, so we may assume that � is in disjunctive normal
form, say �0(x̄, y)∨ · · · ∨ �n−1(x̄, y). Since RCA0 is also strong enough to prove the
distributivity of ∃ over ∨, we haveT 
 φ(x̄)↔ (∃y)�0(x̄, y)∨· · · ∨ (∃y)�n−1(x̄, y).
We may now use the provided function f to find quantifier-free formulas
�0(x̄), . . . , �n−1(x̄) such that T 
 (∃y)�i (x̄, y) ↔ �i(x̄) for all i < n. Then
T 
 φ(x̄)↔ �0(x̄) ∨ · · · ∨�n−1(x̄), so �0 ∨ · · · ∨ �n−1 is the desired �.
Now suppose thatφ(x̄) is a formula of arbitrary quantifier depth n > 0.Using the

above procedure on the deepest quantifiers of φ, we can find a formula which is
provably equivalent to φ and has quantifier depth n−1. Iterate this procedure using
Δ01 recursion to get a quantifier-free � such that T 
 φ(x̄)↔ �(x̄). 	
The following definitions are of central importance to the study of ℵ0-categorical
theories.

Definition 1.8. Fix a natural number n, a languageL, and a complete, consistent
L-theory T .

(i) An n-type of T is a set p(x0, . . . , xn−1) of formulas in variables taken from
{x0, . . . , xn−1} such that T ⊆ p(x0, . . . , xn−1) and, if c0, . . . , cn−1 are new
constants not in L, then the set

{φ(ci0 , . . . , cik−1 ) : φ(xi0 , . . . , xik−1 ) ∈ p(x0, . . . , xn−1)}

is a complete, consistent L∪{c0, . . . , cn}-theory.We sometimes abbreviate
p(x0, . . . , xn−1) to p(x̄), or just p. We often omit n and call p(x̄) simply
a type.

(ii) A type p(x̄) of T is principal if there is a formula φ(x̄) ∈ p(x̄) such
that T 
 φ(x̄) → �(x̄) for all �(x̄) ∈ p(x̄). Otherwise, p(x̄) is
nonprincipal.

(iii) Suppose that A is a model of T and p(x̄) is a type. We say that A realizes
p(x̄) if there is a tuple ā from its domain such that A |= φ(ā) for every
φ(x̄) ∈ p(x̄). Otherwise, we say thatA omits p(x̄).

An RCA0 version of the classical Type Omitting Theorem can be proved by an
easy Henkin-style construction.

Theorem 1.9 (Classical andRCA0. TypeOmittingTheorem). LetT be a complete
theory and p(x̄) a nonprincipal type. There is a model of T that omits p(x̄).

Proof. See Harizanov [9, Theorem 6.1]. 	
Muchmore intricate type-omitting theorems can be found in the work ofMillar [17]
in effective mathematics. Some of these have been studied in reverse mathematics
by Hirschfeldt, Shore, and Slaman [13].
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§2. Summary of results. The main results of this paper fall into two classes,
listed separately in Subsections 2.1 and 2.2. Subsection 2.1 deals with a theorem of
Ryll-Nardzewski, Engeler, and Svenonius about ℵ0-categorical theories and their
n-types. Subsection 2.2 deals with theorems about theories, not necessarily
ℵ0-categorical, that have only finitely many models.1

2.1. Reverse mathematics and ℵ0-categorical theories. Recall our first question:
Q1. Under what conditions is a complete theory T ℵ0-categorical?
In the classical setting, Engeler [4], Ryll-Nardzewski [20], and Svenonius [23]
independently discovered a number of properties characterising ℵ0-categorical
theories. Many such properties are now known. We focus on the following five:

Theorem 2.1 (Classical. Engeler; Ryll-Nardzewski; Svenonius). Let T be a com-
plete, consistent theory, and letM denote the true natural numbers �. The following
are equivalent:

(S1) There is a function f : M → M such that, for all n ∈ M , T has exactly f(n)
distinct n-types.

(S2) There is a function f : M → M such that, for all n ∈ M , T has no more than
f(n) distinct n-types.

(S3) T has only finitely many n-types, for each n ∈M .
(S4) T is ℵ0-categorical.
(S5) All types of T are principal.

Our approach to the question Q1 is to explore the reverse-mathematical strength
of Theorem 2.1, allowing nonstandardM . In other words, we replace Q1 with the
more specific question:

Q1′ What is the strength over RCA0 of each implication (Si → Sj)?

It is simple to check that the classical proofs of equivalence for principles (S1)–(S5),
as found in standard texts such as Marker [14], all work in ACA0. Over RCA0, each
implication therefore lies somewhere between RCA0 and ACA0.
The following table summarizes our results. Each implication (Si → Sj) is equiv-
alent to the principle named in the cell in row (Si) and column (Sj); tautologies of
the form (Si → Si) are greyed out; and any other blank cell means “unknown”.
Each of these equivalences is justified in one of Theorem 2.2, Theorem 2.3, and
Theorem 2.4 below.

(S1) (S2) (S3) (S4) (S5)
(S1) RCA0 RCA0 RCA0RCA0

(S2)ACA0 RCA0 ACA0RCA0

(S3)ACA0ACA0 ACA0RCA0

(S4) WKL0 RCA0

(S5)ACA0ACA0 ACA0 ACA0

We begin by isolating, in Theorem 2.2, the implications that require a detailed
proof, indicating in each case where in this paper the proof can be found. We then
list, in Theorem 2.3, several implications that are easily provable in RCA0, giving in
each case a short argument or reference. All other implications in the table follow

1These are sometimes called Ehrenfeucht theories.
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by composing implications from Theorems 2.2 and 2.3, as outlined in the proof of
Theorem 2.4.
Theorem 2.2.
(i) RCA0 
 ((S2)→ (S1))→ ACA0. (Proposition 6.11)
(ii) RCA0 
 ((S2)→ (S4))→ ACA0. (Corollary 6.14)
(iii) RCA0 
 ((S3)→ (S2))→ ACA0. (Proposition 6.12)
(iv) RCA0 
 ((S5)→ (S3))→ ACA0. (Proposition 4.5)
(v) RCA0 
 ((S4)→ (S3))↔ WKL0. (Propositions 3.5 and 5.6)
(vi) RCA0 
 ((S5)→ (S4))→ ACA0. (Proposition 4.6) 	
Theorem 2.3.
(i) RCA0 
 (S1)→ (S2).
(ii) RCA0 
 (S2)→ (S3).
(iii) RCA0 
 (S3)→ (S5).
(iv) RCA0 
 (S1)→ (S4).
(v) RCA0 
 (S4)→ (S5).
Proof.

(i) By definition.
(ii) By definition.
(iii) We prove the contrapositive. Suppose that T has a nonprincipal n-type
p = {�0(x̄), �1(x̄), . . .}. Then there are infinitely many m ∈ M such that
the formula

�m =
∧
i<m

�i ∧ ¬�m

is consistent with T . These �m can be extended uniformly to an infinite
coded sequence of distinct n-types.

(iv) Suppose that the property (S1) holds of T , and we are given two models
A |= T and B |= T . We can construct an isomorphism f : A → B by an
effective version of the usual back-and-forth argument. For an example of
an effective back-and-forth argument, see the proof of Lemma 3.5 below.

(v) We prove the contrapositive. Suppose that T has a nonprincipal type p.
By the Weak Completeness Theorem 1.3, there is a modelA of T realizing
p; and by the Type Omitting Theorem 1.9, there is a model B that does not
realize p. TheseA and B cannot be isomorphic, so T is not ℵ0-categorical.

	
Theorem 2.4. All equivalences listed in the table are correct.
Proof sketch. We have already proved many of these equivalences in

Theorems 2.2 and 2.3. All others can be deduced from these. For example, we can see
that (S1 → S5) holds in RCA0 by combining parts (i), (ii), and (iii) of Theorem 2.3:

RCA0 
 (S1 → S2) ∧ (S2 → S3) ∧ (S3 → S5)

and applying the rules of propositional logic. On the other hand, we can see that
(S5 → S1) implies ACA0 over RCA0 by combining parts (i) and (ii) of Theorem 2.3
with part (iv) of Theorem 2.2:

RCA0 
 (S1 → S2) ∧ (S2 → S3) ∧ ((S5 → S3)→ ACA0).

The remaining directions are similar. 	
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We can also combine parts of Theorems 2.2 and 2.3 to show that the two remaining
directions, (S4 → S1) and (S4 → S2), each imply WKL0 over RCA0. Hence their
strength over RCA0 lies somewhere betweenWKL0 and ACA0. The question of their
precise strength remains open.
Question 2.5. What is the strength over RCA0 of (S4 → S1) and (S4 → S2)?
There are other statements besides (S1)–(S5) which are commonly given as pieces
of the Ryll-Nardzewski theorem. Here we list a few statements that are provably
equivalent, in RCA0, to one of (S1)–(S5). Some of these will be useful in the work
that follows.

(S3′) For each n there is a number k such that any set {φ0, . . . , φk} of n-ary
formulas contains a pair φi , φj , i �= j, such that T 
 φi ↔ φj .

(S5′) Every model of T is atomic, that is, realizes only principal types.
(S5′′) There is an atomic model of T realizing all types of T .
Theorem 2.6.

(i) RCA0 proves that a complete theoryT has only finitely many n-types if and only
if there is a number k such that any set {φ0, . . . , φk} of n-ary formulas contains
a pair φi , φj , i �= j, such thatT 
 φi ↔ φj . In particular,RCA0 
 (S3 ↔ S3′).

(ii) RCA0 
 (S5 ↔ S5′) and RCA0 
 (S5 ↔ S5′′). 	
2.2. Reverse mathematics and theories with finitely many models. Recall our
second question of basic model theory:

Q2. For what finite values n may we have a complete theory with exactly n models up
to isomorphism?

In the classical setting, this question was settled by work of Ehrenfeucht and work
of Vaught. Ehrenfeucht’s idea was to add to a linear order a sequence of constant
symbols that together give a small number of nonprincipal types, which can either
be realized or omitted to give a certain number of nonisomorphic models. This can
be carried out in ACA0.

Theorem 2.7 (Classical and ACA0. Ehrenfeucht). For every n ≥ 3, there is
a complete theory T with exactly n models up to isomorphism.

Proof. See Chang and Keisler [1, Ex. 2.3.16]. 	
Vaught’s idea was, given a complete theory T which is not ℵ0-categorical, to use the
nonprincipal type guaranteed by the Ryll-Nardzewski Theorem 2.1 to show that
T has at least three models. This can also be carried out in ACA0:

Theorem 2.8 (Classical and ACA0. Vaught). There is no complete theory with
exactly two models up to isomorphism.

Proof. See Chang and Keisler [1, Thm. 2.3.15]. 	
Since RCA0 is enough to prove theWeak Completeness Theorem 1.3 and to prove
that some theories areℵ0-categorical—for instance, the theory of dense linear orders
without endpoints—we now have a full answer to Q2 over ACA0:

Corollary 2.9 (Classical and ACA0). Fix n ≥ 1. There is a complete theory
T with exactly n models up to isomorphism if and only if n = 1 or n ≥ 3.
It is not immediately clear whether Ehrenfeucht’s and Vaught’s constructions
should work in systems weaker than ACA0. In Section 7 below, we get a different
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answer toQ2 in the systemRCA0+¬WKL0 by adapting a construction ofMillar [15]
from effective mathematics. Millar’s idea was to define a complete decidable theory
T with a recursive nonprincipal 1-type p(x) such that there is exactly one decidable
model omitting p and exactly n−1 decidable models realizing p, both up to classical
and up to recursive isomorphism. This construction can be carried out assuming
the failure of Weak König’s Lemma:

Theorem 2.10 (RCA0+¬WKL0). For every n ≥ 1, there is a complete theory with
exactly n models up to isomorphism.

Proof. See Section 7.3 below. 	
Corollary 2.11.

(i) ¬WKL0 implies the statement of Ehrenfeucht’s Theorem 2.7 over RCA0.
(ii) The statement of Vaught’s Theorem 2.8 impliesWKL0 over RCA0.

It remains to answer Q2 in the systemWKL0 +¬ACA0. A reasonable first step is to
ask whether the proofs of Corollary 2.9 or Theorem 2.10 can be carried out in this
system. The work in Section 5 below gives the following:

Theorem 2.12. Over RCA0, the following are equivalent:

(i) (¬WKL0) ∨ ACA0.
(ii) There is a complete theory with a nonprincipal type and only finitely many
models up to isomorphism.

(iii) There is a complete theory with infinitely many n-types, for some n, and with
only finitely many models up to isomorphism.

Proof. The direction ((i) → (ii)) follows from the use of a nonprincipal type
in the proofs of Theorem 2.7 and Theorem 2.10 in the systems ACA0 and
RCA0 + ¬WKL0, respectively. The direction ((ii) → (iii)) is immediate. The final
direction ((iii)→ (i)) follow from Proposition 5.7 below. 	
Although Theorem 2.12 is interesting in itself—it is the first example of a
natural-seeming statement equivalent to (¬WKL0) ∨ ACA0 or, in its negation, to
WKL0 + ¬ACA0—it is a serious obstacle if we want a full answer to Q2 over RCA0.
Since the constructions of Ehrenfeucht, Vaught, and Millar each require a non-
principal type, Theorem 2.12 tells us none of them can be used in the system
WKL0+¬ACA0. Beyond this, we know very little about the case ofWKL0+¬ACA0.

Question 2.13. Fix a model (M,S) ofWKL0+¬ACA0. Is there a complete theory
T ∈ S with a finite number n ∈ M , n ≥ 2 of models? If so, what values of n are
possible?

§3. Coding an extendable binary tree as a theory. Our first and most straight-
forward technique is one that has seen heavy use in effective mathematics, and has
already been used in reverse mathematics by Hirschfeldt, Shore, and Slaman [13]
and by Harris [10]. The earliest published use appears to be Ehrenfeucht [3].
Recall that we are working within a model (M,S) of RCA0, and that 2<M

denotes the set of all finite binary strings. We say that a binary tree T ⊆ 2<M
is extendable if, for every � ∈ T , at least one of �̂0, �̂1 is in T . (Here the ̂ symbol
denotes concatenation.) Fix an extendable binary tree T , and let L = (Ui)i∈M
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be a relational language with each Ui unary. In Section 3.1 below we describe
a complete L-theory T with the property that, for each � ∈ 2<M ,

� is in T if and only if T 
 (∃x)
[∧

i<|�|
�(i)=0

¬Ui(x) ∧
∧

j<|�|
�(j)=1

Uj(x)
]

if and only if T 
 (∃≥nx)
[∧

i<|�|
�(i)=0

¬Ui(x) ∧
∧

j<|�|
�(j)=1

Uj(x)
]
for all n.

The theory T also has quantifier elimination, so its 1-types are determined entirely
by literals of the form Ui(x) and ¬Ui(x). This gives a natural correspondence
between the 1-types of T and the paths in T , and between the n-types of T and the
coded tuples of paths in T .
We give the full construction in Subsection 3.1, some basic verification in Sub-
section 3.2, and a direct application in Subsection 3.3. Further applications are
obtained in Section 4, where we examine a specific instance of this construction.

3.1. Construction. LetL = (Ui)i∈M be a relational languagewith everyUi unary.
Fix an extendable tree T . (Extendable is defined at the beginning of this section.)
Consider the following axiom schemes:

Ax I. (∃≥nx)
[∧

i<|�|
�(i)=0

¬Ui(x) ∧
∧

j<|�|
�(j)=1

Uj(x)
]
for every n ∈M and every � ∈ T .

Ax II. ¬(∃x)
[∧

i<|�|
�(i)=0

¬Ui (x) ∧
∧

j<|�|
�(j)=1

Uj(x)
]
for every � �∈ T .

Let T ∗ be the collection of all sentences in Ax I and II, and let T be the deductive
closure ofT ∗. This completes the construction.AlthoughT ∗ is clearly in the second-
order part of (M,S) by Δ01 comprehension, it is not immediately evident that T is
in S. One of our first tasks in the next subsection is to prove that it is.
3.2. Verification. Here we list some important properties of T , such as its
existence, completeness, and consistency. The analogous situation in effective math-
ematics is described in Harizanov [9, Section 7]. Unfortunately, we cannot rely on
the proofs there, since in RCA0 we do not have access to tools such as strong forms
of the Completeness Theorem. Instead we give longer, elementary proofs.
Lemma 3.1 (RCA0). T ∗ has effective quantifier elimination.
Proof. Fix a quantifier-freeL-formula φ(x̄, y) which is a conjunction of literals.
It suffices by Lemma 1.7 to show an effective procedure producing a quantifier-
free � such that T 
 � ↔ (∃y)φ(x̄, y). By identifying and renaming variables if
necessary, we may assume that no conjunct in φ is of the form y = xi or xi = y.
Check whether there is a � ∈ T such that |�| ≥ i and �(i) = 0 whenever ¬Ui(y)
is a conjunct in φ, and |�| ≥ i and �(i) = 1 whenever Ui(y) is in φ. If there is no
such �, then φ contradicts Ax II, so we may let � be the formal logical symbol Fa.
Now suppose there is such a �, and let � be the formula obtained from
φ by replacing each conjunct mentioning y with the propositional symbol Tr.
Clearly T ∗ 
 (∃y)φ(x̄, y)→ �(x̄). We wish to show the converse. Fix n = |x̄|+ 1.
The following is a version of the Pigeonhole Principle, and is easily seen to
be a tautology:(

�(x̄) ∧
∧
k<�<n

yk �= y�

)
→

(
�(x̄) ∧

∨
k<n

∧
i<n−1

yk �= xi

)
.
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As φ has no conjunct of the form y = xi or xi = y, we deduce a second tautology:⎛⎜⎜⎝�(x̄) ∧ ∧
k<n

⎛⎜⎜⎝∧
� �=k
yk �= y� ∧

∧
i<|�|
�(i)=0

¬Ui (yk) ∧
∧
j<|�|
�(j)=1

Uj(yk)

⎞⎟⎟⎠
⎞⎟⎟⎠ →

∨
k<n

φ(x̄, yk).

This statement, together with the instance of Ax I which uses the n and � specified
above, gives T ∗ 
 �(x̄)→ (∃y)φ(x̄, y). 	
Proposition 3.2 (RCA0).

(i) For every L-sentence φ, either φ is provable from T ∗, or ¬φ is provable
from T ∗.

(ii) T is an element of S.
(iii) T is a complete theory. T has quantifier elimination.

Proof.

(i) Given an L-sentence φ, use the procedure from Lemma 3.1 to produce
a quantifier-free � such that T ∗ 
 φ ↔ �. Since L is relational, � is a
propositional combination of Tr and Fa, and hence provably equivalent
either to Tr or to Fa. If Tr, then φ is in T ; if Fa, then ¬φ is in T .

(ii) If T contains a contradiction, that is, a pair of sentences of the form
φ and ¬φ, then T is the set of all L-sentences, which is certainly in S.
Otherwise, by part (i), T contains exactly one of each pair {φ,¬φ}:
we can effectively decide which by searching for the shortest proof of
either T ∗ 
 φ or T ∗ 
 ¬φ.

(iii) Completeness of T follows from part (i). Quantifier elimination is
inherited from T ∗. 	

Lemma 3.3 (RCA0). T is consistent.

Proof. We build a model A |= T with domain {a0, a1, . . .}, beginning with its
quantifier-free diagram. For each i, k ∈ M , let Rk(ai) hold in A if and only if
left(�i)(k) = 1, where left(�i) is the path in T extending � which is leftmost with
respect to the ordering 0 < 1. Recursively extend to a full quantifier-free diagram
by adding formulas of the form¬φ and φ∧�, in the usual way. It is straightforward
to check that this diagram satisfies every axiom in T ∗. (Here we are using the usual
truth-functional semantics, as given in Simpson [22, Ch. II.8].)
Now we extend to a complete diagram forA. Fix any φ(ā), where φ is a formula

and ā is a tuple of elements. We must decide whether to place φ(ā) into the diagram
of A. By iterating the effective construction of Proposition 3.1, obtain a quantifier-
free � such that T ∗ 
 � ↔ φ. Add φ(ā) if and only if �(ā) is in the quantifier-free
diagram. We claim that this process yields a complete, consistent diagram. For a
contradiction, suppose that it does not. Then there is a formula φ(ā) which fails to
have one of the following properties:

• If φ(ā) = ¬�(ā), then φ is in the diagram iff �(ā) is not in the diagram.
• If φ(ā) = �0(ā) ∧ �1(ā), then φ(ā) is in the diagram iff both �0(ā) and �1(ā)
are in the diagram.

• If φ(ā) = (∀x)�(ā, x), then φ(ā) is in the diagram iff �(ā, ai ) is in the diagram
for every ai .
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But this is impossible by IΣ0
1 and the proof of Proposition 3.1. 	

Lemma 3.4 (RCA0).

(i) The 1-types of T correspond to paths in T in the following manner. If p(x)
is a 1-type of T , define a function fp : M → {0, 1} by fp(n) = 1 ⇐⇒
Un(x) ∈ p(x). The function fp is a path in T , and for every path f in T ,
there is a unique 1-type p(x) such that f = fp.

(ii) An n-type p(x0, . . . , xn−1) is uniquely determined by the 1-types induced
on its entries. In particular, the correspondence from (i) can be extended
to a correspondence between n-types and coded n-tuples 〈f0, . . . , fn−1〉
of paths in T .

Proof.

(i) By construction and the fact that T has quantifier elimination.
(ii) By construction, since the language L consists only of unary relations. 	
3.3. Applications. Recall from Subsection 2.1 the statements:

(S3) T has only finitely many n-types, for each n.
(S4) T is ℵ0-categorical.
The construction given in Subsection 3.1 is enough to show one direction of
Theorem 2.2(v):

Proposition 3.5. Over RCA0, the implication (S4 → S3) impliesWKL0.
Proof. We prove the contrapositive statement that, if WKL0 fails, there is a
theory T satisfying (S4) but not (S3). Let T0 be an infinite binary tree with no
infinite path. Let 〈�0, �1, . . .〉 be a one-to-one enumeration of all terminal nodes
in T0. Define a second tree T by

T = T0 ∪ {�î0j : i, j ∈M}.
Then T is an extendable tree. (Extendable is defined at the beginning of Section 3.)
Let T be the theory obtained from T using the construction of Subsection 3.1.
By Lemma 3.4, each path in T corresponds to a unique 1-type of T . Since T
has infinitely many paths, T has infinitely many distinct 1-types, and so does not
satisfy (S3).
On the other hand, each 1-type p of T corresponds to a pathfp in T of the form
fp = �î0M for some terminal node �i of T0. This �i , in turn, is associated with
a formula ∧

j<|�i |
�i (j)=0

¬Uj(x) ∧
∧
j<|�i |
�i (j)=1

Uj(x)

which generates p. Hence there is a procedure mapping every 1-type to a formula
which generates it. With Lemma 3.4(iii), this gives a procedure for mapping any
type of any arity to a formula generating it.
Now suppose that A and B are two models of T , with domains {a0, . . .}
and {b0, . . .}, respectively. We now produce an isomorphism fromA to B:
Stage 0. Let f0 be the empty function.
Odd stages 2s+1. Suppose thatf2s is a finite partial elementary map fromA into

B with domain of size 2s , enumerated 〈ak0 , . . . , ak2s−1〉. Let i be least such that
ai is not in the domain of f2s . Use the procedure outlined above to find a formula
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φ(x0, . . . , x2s ) generating tpA(ak0 , . . . , ak2s−1 , ai). Since f2s is a partial elementary
map, we know that

tpA(ak0 , . . . , ak2s−1 ) = tpB(f2s(ak0 ), . . . , f2s(ak2s−1 )),

and in particular that there exists a bj not in {f2s(ak0 ), . . . , f2s(ak2s−1 )} and such
that B |= φ(f2s(ak0 ), . . . , f2s (ak2s−1 ), bj). Let j be the least index of such a bj , and
define f2s+1 = f2s ∪ {(ai , bj)}.
Even stages 2s +2. Let 〈ak0 , . . . , ak2s 〉 be an enumeration of the domain of f2s+1.

Beginning with the least index j such that bj is not in the range of f2s+1,
perform a procedure similar to the one given for odd stages to find the least index
i such that ai is not in the domain of f2s+1 and such that tpA(ak0 , . . . , ak2s , ai) =
tpB(f2s+1(ak0 ), . . . , f2s+1(ak2s ), bj). Let f2s+2 = f2s+1 ∪ {(ai , bj)}.
Then Δ01 comprehension allows us to form the limit f =

⋃
s∈M fs . It is straight-

forward to check that f is an isomorphism. 	
The strategy we used to build f in the proof of Proposition 3.5 is called an effective
back-and-forth argument.

§4. A theory with infinitely many 1-types, whose every nonprincipal type
computes KZ . Recall that we work in a model (M,S) of RCA0. Fix a set Z ∈ S.
We begin by constructing an infinite ternary tree T ⊆ {0, 1, b}<M with infinitely
many isolated paths and whose every nonisolated path computes the Turing jump
KZ .We then convert T into a theoryT , and show thatT has infinitely many 1-types
and that KZ is Δ01 definable in each nonprincipal type of T . This allows us, in 4.3,
to prove some directions of Theorem 2.2. Our construction is similar to some in the
literature, for instance, Millar [16].

4.1. Construction. We define the set T ⊆ 2<M as follows. Suppose that � is any
string in {0, 1, b}<M not beginning with b. Then � can be written uniquely in the
form

� = i0̂bt0̂i1̂ · · ·̂btm−1̂im̂bt∗ ,
with ik ∈ {0, 1}, tk ∈M for each k, and t∗ ∈M . We let � be in T if and only if the
following condition holds:

For each k < m, tk is the least number ≥ k s.t. i0̂ · · ·̂ik = KZtk � (k + 1). (1)
This completes the construction of T . Before constructing the theory T , we point

out that T is indeed a nonempty extendable tree:
Lemma 4.1 (RCA0).
(i) The empty string ∅ is in T .
(ii) If � ⊆ � and � ∈ T , then � ∈ T .
(iii) If � ∈ T , then �̂b ∈ T .
Proof. All three claims are immediate. 	
Now we code T as a binary tree T0 by defining a function F : {0, 1, b}<M →

{0, 1}<M :
F (∅) = ∅, F (�̂0) = F (�)̂0̂0, F (�̂1) = F (�)̂0̂1, F (�̂b) = F (�)̂1̂0,

and letting T0 = {� : � ⊆ F (�) for some � ∈ T }. Let T be the theory obtained
from T0 by the method of Subsection 3.1. This completes the construction.
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4.2. Verification. We claim that T has infinitely many 1-types, and we claim that
KZ is Δ01 definable in every nonprincipal type of T . By Lemma 3.4, the 1-types
of T correspond to paths in T0, which can be identified naturally with paths in T .
We may therefore rephrase the claim that T has infinitely many 1-types as part (ii)
of the following lemma.

Lemma 4.2 (RCA0).

(i) For every � ∈ T , we have �̂0 ∈ T ⇐⇒ �̂1 ∈ T .
(ii) The tree T has infinitely many paths.
Proof.

(i) Immediate from the definition.
(ii) Let 〈�0, �1, . . .〉 be a one-to-one enumeration of all strings in T that end

in a 1. (There are infinitely many such �i .) We know by Lemma 4.1(iii)
that T is extendable, so we may effectively extend every � ∈ T to the
leftmost path left(�) ∈ {0, 1, b}M of T extending �, using the ordering
0 < 1 < b. Then the coded sequence 〈left(�0), left(�1), . . .〉 is a sequence
of paths through T . Since the mapping from �i to left(�i) is effective, this
coded sequence exists in S by Δ01 comprehension. It is easy to see that
i �= j implies left(�i) �= left(�j), so 〈left(�0), . . .〉 is a list of infinitely many
distinct paths, as desired. 	

It remains to show that KZ is Δ01 definable in each nonprincipal type of T .
This requires a few more facts about T .
Lemma 4.3 (RCA0).

(i) A path f through T is isolated if and only if f is of the form f = �̂bM for
some finite string �.

(ii) KZ is Δ01 definable in each nonisolated path through T .
(iii) If 〈f0, . . . , fn−1〉 is a tuple of isolated paths through T , then there is a level

� ∈M above which every fi is isolated.
Proof.

(i) For the ‘if ’ direction, suppose that f = �̂bM , with � = i0̂bt0̂ · · ·̂btm−2̂im−1. If there is no t ≥ k such that i0̂i1̂ · · ·̂im−1 = KZt � m,
then f is isolated above �. If there is such a t, then f is isolated above
�̂bt+1.
For the ‘only if ’ direction, we show the contrapositive. Suppose that
f is a path through T such that f(m) ∈ {0, 1} for infinitely many m.
By Lemma 4.2(ii), for each such m, the string � = (f � m)̂(1 − f(m))
is in T , and hence there is a path gm �= f with gm � (m + 1) =
(f � m)̂(1 − f(m)). Since these m are cofinal in M , it follows that
f is not isolated.

(ii) Suppose that f is an infinite path through T not ending in a string of b’s.
Such an f may be written

f = i0̂bt0̂i1̂bt1̂ · · · ,
with ik ∈ {0, 1} for every k. For every s ∈ M , the initial segment �s ⊆ f
given by
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�s = i0̂bt0̂ · · ·̂bts−1̂is
is an element of T . It follows from the definition of T that, for all m ∈M :

(∀s > tm−1)
[
i0̂ · · ·̂im−1 = KZs � m

]
.

In other words, i0̂ · · ·̂im−1 = KZ � m. This gives a Δ01 definition for KZ .
(iii) Let 〈f0, . . . , fn−1〉 be a coded n-tuple of isolated paths in T . By part (i),

each fj can be written in the form:

fj = ij,0̂btj,0̂ · · ·̂btj,mj−1̂ij,mj−1̂bM .
The induction axioms of RCA0 are not strong enough, at least on their
face, to guarantee the existence of the tuple 〈mj : j < n〉. This adds to the
complexity of our proof.
Every fj , being isolated, falls into one or more of the following cases:
1. fj has an initial segment of the form ij,0̂btj,0̂ · · ·̂ij,m̂bs+1 with
s ≥ m and such that ij,0̂ · · ·̂ij,m = KZs � (m + 1).

2. There is a k such that ij,k = 0 while KZ(k) = 1.
3. There is a k such that ij,k = 1 while KZ(k) = 0.
Whether fj falls into case 1 is a Σ01 question, and case 2, also a Σ

0
1 question.

Use bounded Σ01 comprehension to partition the indices j < n along these
lines:

X1 = {j < n : fj falls into case 1},
X2 = {j < n : j �∈ X1 and fj falls into case 2},
X3 = {j < n : j �∈ X1 ∪ X2}.

Then every element of X3 falls into case 3. It suffices to show that for each
z ∈ {1, 2, 3} there is a level �z above which fj is isolated for all j ∈ Xz ,
and take � = max(�1, �2, �3). First consider z = 1. Assign to each j ∈ X1 a
string �j ⊆ fj as in the statement of case 1. Then fj is isolated above the
length |�j |. Let �1 be the maximum of |�j | as j ranges over X1.
Now consider z = 2. For each j ∈ X2, the formula (∃k∃s)[ij,k =
0 and KZs (k) = 1] holds. Use Σ

0
1 bounding to assign to each j ∈ X2 a

pair kj, sj witnessing this. Choose any �j ⊆ fj of the form
�j = ij,0̂btj,0̂ · · ·̂ij,kĵ�̂bsj+1,

where � is a string. Then fj is isolated above the length |�j |. Let �2 be the
maximum of |�j | as j ranges over X2.
Lastly, consider z = 3. Since it is a Π01 question to ask whether two paths
are equal, we may assume by bounded Π01 comprehension that the paths
fj are all distinct as j ranges over X3. Let j0, j1 ∈ X3 be distinct elements,
and consider the pathsfj0 , fj1 . Let k be least such that ij0,k �= ij1,k ; we may
assume by symmetry that ij0,k = 0 and ij1 ,k = 1. ThenK

Z(k) must equal 0,
since otherwise j0 would be an element ofX2. Let �j1 = ij1,0̂btj1 ,0̂ · · ·̂ij1,k .
It follows that fj1 is isolated above |�j1 |. Repeat this procedure on pairs
from X3 − {j1}, and so on, until there is a �j associated to all but one
element of X3, say j′. Let �j′ be such that fj′ is isolated above |�j′ |, and
let �3 be the maximum of |�j | as j ranges over X3.
Now � = max(�1, �2, �3) is the desired bound. 	
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This is enough to verify the last desired property:

Proposition 4.4 (RCA0). KZ is Δ01 definable in each nonprincipal type of T .

Proof. Let p(x0, . . . , xn−1) be a nonprincipal n-type for some n. Since the
language of T consists only of unary relations, p may be decomposed into 1-types
〈p0, . . . , pn−1〉:

p(x0, . . . , xn−1) ⇐⇒ p0(x0), . . . , pn−1(xn−1).

The 1-types 〈p0, . . . , pn−1〉 correspond to a tuple 〈f0, . . . , fn−1〉 of paths throughT .
Since p is nonprincipal, there is an i such that fi is nonisolated by Lemma 4.3(iii).
Therefore, KZ is Δ01 definable from fi , and hence from p, by Lemma 4.3(ii). 	

4.3. Applications. Recall from Subsection 2.1 the statements:

(S3) T has only finitely many n-types, for each n.
(S4) T is ℵ0-categorical.
(S5) All types of T are principal.

We use this section’s construction to prove two parts of Theorem 2.2, beginning
with part (iv):

Proposition 4.5. Over RCA0, the implication (S5 → S3) implies ACA0.

Proof. Suppose that (S5 → S3) holds, and fix any set Z ∈ S. Let T be the
theory constructed in Subsection 4.1. Since T has infinitely many 1-types, T sat-
isfies (¬(S3)). Then T satisfies (¬(S5)), that is, T has a nonprincipal type p.
By Proposition 4.4 above, KZ is Δ01 definable from p, and so K

Z exists by Δ01
comprehension. Since Z was arbitrary, we conclude by Lemma 1.2 that ACA0

holds. 	
Next, we prove Theorem 2.2(vi):

Proposition 4.6. Over RCA0, the implication (S5 → S4) implies ACA0.

Proof. Fix any setZ ∈ S, and letT be the theory constructed in 4.1. It is enough
to exhibit two models A,B of T such that KZ is Δ01 definable in any isomorphism
f : A → B. Let 〈�0, �1, . . .〉 be a one-to-one enumeration of all strings in the tree
T0. For each �i , let left(�i) be the leftmost path of T0 extending �i ; similarly, let
right(�i) be the rightmost path extending �i . We may form the coded sequences
〈left(�0), left(�1), . . .〉 and 〈right(�0), right(�1), . . .〉 by Δ01 comprehension.
First we build the model A, with domain {a0, a1, . . .}. For each i, k ∈ M ,
let Rk(ai) hold inA if and only if left(�i)(k) = 1. It is easy to check thatA satisfies
the axioms of Subsection 3.1 semantically. Fill in the rest of the diagram as in the
proof of Lemma 3.3 so thatA is a model ofT . Build a second model B with domain
{b0, b1, . . .} by a similar method: for each i, k ∈M , let Rk(bi) hold in B if and only
if right(�i)(k) = 1, and fill in the rest of the diagram.
Now, suppose that f : A → B is an isomorphism. Use f to define a function
g : M → M by g(i) = j whenever f(ai) = bj . Then left(�i) = right(�g(i)) for all
i ∈M . In particular either �i ⊆ �g(i) or �i ⊇ �g(i), and the longer of the two, which
we denote by �i ∪ �g(i), is isolated in T0. It follows that �i is isolated if and only if
there is no string � such that �i ⊆ � ⊆ �i ∪ �g(i), and such that both �̂0 and �̂1
are elements of T0. This gives a uniform procedure for deciding whether a given � is
isolated, and, in particular, allows us to define a nonisolated path of T0, and hence
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a nonisolated path of T . By Lemma 4.3(ii) and Δ01 comprehension, the Turing jump
KZ is an element of S. We conclude by Lemma 1.2 that ACA0 holds. 	

§5. Models from a tree of Henkin constructions. For the following informal
discussion, we reason in WKL0. Fix a set Z ∈ S, a language L, a complete
L-theory T with infinitely many n-types for some n, and a model A |= T with
domain A = {a0, a1, . . .}. We produce a second model B |= T with domain
B = {b0, b1, . . .} such that the Turing jump KZ is Δ01 definable in any elemen-
tary embedding f : B → A. We achieve this by making the function g : M → M
defined by g(m) = n ⇐⇒ f(bm) = an grow roughly as fast as the modulus
function of KZ , which is given by m �→ min{s > m : KZs � m = KZ � m}.
More specifically, we ensure that, ifm is an element ofKZat s , there is an n-ary formula
satisfied in B by an n-tuple taken from the initial segment {b0, b1, . . . , b2n(m+1)−1}
of B, but not in A by any n-tuple from the initial segment {a0, . . . , as−1}
of A. Then if f : B → A is an elementary embedding, the function given by
m �→ max

i<2n(m+1)
g(i) bounds the modulus function of KZ .

The model B itself is obtained by the following method. We construct a binary
tree H∗ such that any node � ∈ H∗ of length s represents the first s-many steps of
a Henkin-style construction, and such that the construction along any infinite path
of H∗ yields a model B with the property outlined above. We then show thatH∗ is
infinite, and apply Weak König’s Lemma to obtain B.

5.1. Construction. We begin with some definitions. Fix a language L and
a complete, consistent L-theory T .

Definition 5.1.

(i) Let L′ be the enriched languageL∪ {c0, c1, . . .}, where each ci is a constant
symbol not in L. Let 〈φs〉s be a one-to-one enumeration of all L′-sentences.
First, define a 2<M -indexed sequence 〈D�〉�∈2<M of sets of L′-sentences by

D� = {φs : s < |�| and �(s) = 1} ∪ {¬φs : s < |�| and �(s) = 0}.

Second, define a sequence 〈Ws 〉s∈M of sets of L′-sentences by recursion:

W0 = ∅

Ws+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ws ∪ {φs → �(c2k+1)} if φs is of the form (∃ x)�(x), where

2k + 1 is the least odd index such that
c2k+1 is not mentioned inWs or in any

D� with |�| ≤ s.
Ws if φs is not of this form.

Third, define a treeH ⊆ 2<M by

H = {� ∈ 2<M : T ∪D� ∪W|�| is consistent}.

We call H the full tree of odd Henkin diagrams. (‘Odd’ because we are using
only the odd-numbered constants to witness existential sentences.)

(ii) Given an infinite path 	 in H, let D	 =
⋃
s∈M D	�s . Then D	 is a complete,

consistent L′-theory. Define an equivalence relation E on the constants
{c0, c1, . . .} by ciEcj iff D	 
 ci = cj . Denote the E-equivalence class of
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ci by [ci ]E , and let 〈b0, b1, . . .〉 be the one-to-one listing of all E-equivalence
classes given by

bm = [cim ]E, where im is least s.t. cim �∈ bk for all k < m.
Let B be the L-structure such that, for any L-formula φ,

B |= φ(b0, . . . , bn−1) ⇐⇒ D	 
 φ(ci0 , . . . , cim−1 ).
Then B is a model of T . We say that B is the Henkin model encoded by 	 .

Now fix a model A of T . We define an infinite subtree H∗ ⊆ H of the full tree
of odd Henkin diagrams such that, if 	 is an infinite path of H∗ and B is the
Henkin model encoded by 	 , thenKZ is Δ01 definable in any elementary embedding
f : B → A. Then WKL0 ensures that such a path 	 exists, giving the desired
model B.
For each t ∈ M , choose an n-ary L-formula �t(x̄) such that T 
 (∃x̄)�t(x̄),
and such that �t is not satisfied by any tuple taken from {a0, . . . , at} in A.
(This is possible by Theorem 2.6(i), since T has infinitely many n-types.) For each
s ∈M , define a finite set D∗

s of L
′-sentences:

D∗
s = {�t(c2mn, c2mn+2, . . . , c2(m+1)n−2) : m, t < s and m ∈ KZat t}.

Note thatD∗
s ⊆ D∗

s+1 for each s . Define the subtreeH∗ ofH by:

H∗ =
{
� ∈ 2<M : T ∪D� ∪D∗

|�| ∪W|�| is consistent
}
. (2)

This completes the construction.

5.2. Verification. There are two facts to verify: first, that H∗ is infinite, and
second, if a model B is encoded by a path in H∗, then KZ is Δ01 definable in any
elementary embedding of B into A.
Lemma 5.2 (RCA0). The treeH∗ is infinite.
Proof. Fix any s ∈ M . It suffices to show that H∗ has an element of length s .
Wemay choose a finite tuple 〈cAi : i < N〉 of elements ofA such that (A, cAi : i < N)
is a model of T ∪ D∗

s ∪Ws . In particular, 〈cAi : i < N〉 contains all constants
mentioned in φ0, . . . , φs−1, where 〈φt〉t is the enumeration of all L′-sentences fixed
in Definition 5.1(i). Define a string � of length s by

�(t) =
{
1 if (A, cAi : i < N) |= φt,
0 otherwise

for all t < s . Then (A, cAi : i < N) is amodel ofT∪D�∪D∗
s ∪Ws , soT∪D�∪D∗

s ∪Ws
is consistent. Therefore, � is in H∗, as desired. 	
Lemma 5.3 (RCA0). If B is the model encoded by an infinite path 	 in H∗, and
f : B → A is an elementary embedding, then KZ is Δ01 definable from f.
Proof. Suppose that B is the model encoded by some path 	 in H∗, and that
f : B → A is an elementary embedding. Define a mapping h :M →M by

h(m) = greatest j s.t. f([c2mn+2i ]E) = aj for some i < n.

By the definition ofD∗
s , if there is a t such thatm ∈ KZt , thenm ∈ KZ

h(m). Hence we
havem ∈ KZ ⇐⇒ m ∈ KZ

h(m), which gives a Δ
0
1 definition for K

Z . 	
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5.3. Applications. Recall from Subsection 2.1 the statements:

(S3) T has only finitely many n-types for each n.
(S4) T is ℵ0-categorical.
We say that a model A of a theory T is elementary-universal if, for any model
B of T , there is an elementary embedding from B into A. The construction in
Subsection 5.1 above is tailored to give the following result.

Lemma 5.4. WKL0 + ¬ACA0 
 (‘T has an elementary-universal model’→ (S3)).
Proof. Suppose that (M,S) is amodel ofWKL0+¬ACA0. By Lemma 1.2, wemay

fix a set Z ∈ S whose Turing jump KZ is not in S. We show that the contrapositive
statement (¬(S3)→“T has no elementary-universal model”) holds in (M,S).
Fix a complete theory T ∈ S with infinitely many n-types, and fix a modelA ∈ S

of T . Use the construction of Subsection 4.1 and Lemma 5.3 to obtain a second
model B ∈ S of T such that KZ is Δ01 definable in every elementary embedding
from B intoA. This means, by our choice ofZ, that nof ∈ S can be an elementary
embedding from B into A. In particular, A is not elementary-universal. 	
Since any model of an ℵ0-categorical theory is elementary-universal, the following
is an immediate consequence of Lemma 5.4.

Lemma 5.5. WKL0 + ¬ACA0 
 (S4 → S3).

Weare ready to prove the remaining direction of Theorem 2.2(v), the other having
been proved in Proposition 3.5 above.

Proposition 5.6. WKL0 
 (S4 → S3).

Proof. We know from Lemma 5.5 thatWKL0 + ¬ACA0 
 (S4 → S3). On the
other hand, as noted in Subsection 2.1, ACA0 is sufficiently strong to carry out the
usual proof of equivalence of all the principles (S1) through (S5), and in particular
ACA0 
 (S4 → S3). Hence we conclude thatWKL0 
 (S4 → S3). 	
The construction from this section also justifies an assertion in Subsection 2.2.
The following proposition completes the proof of Theorem 2.12:

Proposition 5.7. OverWKL0, the following are equivalent:

(i) ACA0.
(ii) There is a complete theory with a nonprincipal type and only finitely many
models.

(iii) There is a complete theory with infinitely many n-types for some n, and only
finitely many models.

Proof. Reason in WKL0. The implication ((i) → (ii)) follows from the use of
a nonprincipal type in the proof of Ehrenfeucht’s Theorem 2.7 in the system ACA0.
The implication ((ii)→ (iii)) is immediate from the definitions.
We prove the final implication ((iii)→ (i)) by way of its contrapositive statement

(¬(i)→ ¬(iii)). Suppose thatWKL0+¬ACA0 holds, and let T be a complete theory
with infinitely many n-types for some n. Dovetail the proof of Lemma 5.4 to get a
coded sequence 〈A0,A1, . . .〉 of models of T such that no Aj embeds elementarily
into any Ai with i < j. (For each triple 〈i, j,m〉 where i < j, if m is in KZat s , use
the method of Subsection 5.1 to ensure that there is a formula realized by a tuple
from among the first 2n(〈i, j,m〉 + 1)-many elements of Aj but not by any tuple
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from among the first s-many elements of Ai .) We have produced an infinite list of
pairwise nonisomorphic models of T , so (iii) fails, as desired. 	

§6. Theories with only finitely many n-types for every n. The Ryll-Nardzewski
function for a theory T is the Σ02 partial function RNT :M →M given by:
RNT (n) = m ⇐⇒ T has exactly m different n-types

⇐⇒ there exists a sequence φ0, . . . , φm−1 of n-ary formulas
such that T 
 φ0 ∨ · · · ∨ φm−1 and T �
 φi → φj for each
i �= j, and for all n-ary � and all i s.t. T 
 � → φi we
have T 
 φi → �.

If RNT (n) has no value according to the above definition, we treat RNT (n) as
an infinite number. The properties (S1), (S2), and (S3) from Subsection 2.1 can all
be phrased in terms of RNT .
In this section, we prove several directions of Theorem 2.2 by constructing exam-
ples of a theory T for which RNT is finite-valued, but for which RCA0 cannot prove
the existence of RNT . One of these examples, given in Proposition 6.12, has a RNT
so fast-growing that ACA0 is needed to prove even that RNT is dominated by a
function in the second-order part of (M,S). A second example, given in the proof
of Proposition 6.11 and used again in that of Proposition 6.13, has a RNT that is
slow-growing, but whose existence nonetheless implies ACA0. Our theories are built
using a simple common framework, given in Subsection 6.1 below, which takes as
a parameter a coded sequence 〈X1, X2, . . .〉 of sets. By varying this parameter, we
control RNT .
In effective model theory, similar constructions have been done before to control
the Turing degree of RNT for a decidable ℵ0-categorical theory with infinitely many
predicates (Palyutin [18] and Venning [24, Ch. 2]) and with a single binary predicate
(Herrmann [11], Schmerl [21], and Venning [24, Ch. 3]). Both our construction and
our verification are very similar to Palyutin’s, when done carefully in second-order
arithmetic.2 Our construction is also similar toVenning’s [Ch. 2], but the verification
more elementary.

6.1. Construction. Let L be the language L = 〈Rns 〉s∈M,n≥1, with each Rns an
n-ary relation. Let 〈X1, X2, . . .〉 be a coded sequence of sets. We introduce three
axiom schemes:

Ax I. Rns (x0, . . . , xn−1) → xi �= xj , for each n, s and each pair i, j < n with
i �= j.

Ax II. ¬Rns (x̄), for each n, s such that s �∈ Xn.
Ax III. �(x̄) → (∃y)φ(x̄ , y) for every pair φ,� of formulas with the following

properties:
• φ and � are conjunctions of L′-literals, where L′ = {Rns : n, s < �} for
some � > |x̄|+ 1;

• For every atomic L′-formula � with variables in x̄, either � or ¬�
appears as a conjunct in �;

• φ(x̄, y) is consistent with Ax I and II;
• Every conjunct in � is a conjunct in φ.

2We thank the referee for bringing this paper to our attention.
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Let T ∗ denote the collection of all sentences in Ax I–III, and let T be the deductive
closure of T ∗. This completes the construction. Notice that we have not yet proved
the existence either of T ∗ or of T in the second-order part of (M,S). For T ∗, this
follows from Lemma 6.2 below, where we prove that the consistency check in Ax III
can be performed effectively. For T , existence is proved in Proposition 6.5 using
quantifier elimination.
The intuition behind these axioms is as follows. Axiom I is an n-ary version of the

irreflexivity property for binary relations: Rns holds only of n-tuples whose entries
are all distinct. This limits the number of quantifier-free formulas that may hold of
an n-tuple. Axiom II relates the parameter 〈X1, X2, . . .〉 to the number of different
quantifier-free formulas that might hold of an n-tuple. Axiom III then binds this
number to RNT (n) by providing quantifier elimination.

6.2. Verification. Most of this section is devoted to checking that the T defined
in Subsection 6.1 is an element of S, is complete, and is consistent. The excep-
tion is Lemma 6.10, in which we relate the coded sequence 〈X1, X2, . . .〉 to the
Ryll-Nardzewski function RNT . The following technical lemma will be useful in
this section, and again in Section 7.

Lemma 6.1 (RCA0). Let L0 = 〈Qn〉n be a relational language. Let Ψ = {�s :
s ∈ M} be L0-theory where each �s is of the form (∀x̄, ȳ)[�s(x̄) ∨ �s(x̄, ȳ)] where
�s is quantifier-free and �s is either Qn(x̄) or ¬Qn(x̄), where n ≥ s and Qn is
not mentioned in any �t, t < s . Then there is a procedure that decides, given a
quantifier-free L-formula φ(z̄), whetherΨ ∪ {(∃z̄)φ(z̄)} is consistent.
Proof. Fix a quantifier-free formula φ(z0, . . . , zm−1). Let n be the greatest index

such thatQn is mentioned in φ, and consider the set Ψn = {�s : s ≤ n}. Recall that
a theory is consistent if does not entail a contradiction.We claim thatΨ∪{(∃z̄)φ(x̄)}
is consistent if and only if Ψn ∪ {(∃z̄)φ(x̄)} has anm-element model. We prove this
claim by a series of implications:

(a) If Ψ ∪ {(∃z̄)φ(z̄)} is consistent, then Ψn ∪ {(∃z̄)φ(z̄)} is consistent.
(b) If Ψn ∪ {(∃z̄)φ(z̄)} is consistent, then Ψn ∪ {(∃z̄)φ(z̄)} has an m-element
model.

(c) If Ψn ∪ {(∃z̄)φ(z̄)} has an m-element model, then Ψ ∪ {(∃z̄)φ(z̄)} has an
m-element model.

(d) IfΨ∪{(∃z̄)φ(z̄)} has anm-element model, thenΨ∪{(∃z̄)φ(z̄)} is consistent.
Item (a) is immediate. For item (b), notice that it is possible to construct a proposi-
tional formula P such that if Ψn ∪{(∃z̄)φ(z̄)} is consistent then P is consistent, and
if P is satisfiable then Ψn ∪ {(∃z̄)φ(z̄)} has anm-element model. (Use one proposi-
tional variable to represent the truth value of each relevant �s on each tuple taken
from z̄.) Item (c) holds because, given an m-element model of Ψn ∪ {(∃z̄)φ(z̄)},
we can effectively transform it into a model of Ψ ∪ {(∃z̄)φ(z̄)} by reassigning the
truth values of �s to satisfy �s for each s > n. Item (d) follows from the Soundness
Theorem, which is provable in RCA0—see Simpson [22, Theorem II.8.8].
Our procedure works as follows:Given a formulaφ(z0, . . . , zm−1), find n as above,

and construct the propositional formula P used in (b). Test all truth valuations to
seewhetherP is consistent. If so,Ψ∪{(∃z̄)φ(z̄)} is consistent. If not,Ψ∪{(∃z̄)φ(z̄)}
is inconsistent. 	
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Lemma 6.2 (RCA0). There is a procedure to check whether a quantifier-free
L-formula φ is consistent with Axioms I and II.
Proof. We may rewrite Axiom I by replacing the→ with an equivalent ∨, and
restricting the parameters n, s so as not to conflict with Axiom II:

¬Rns (x0, . . . , xn−1) ∨ xi �= xj, for each n, s ∈M such that s ∈ Xn and
each pair i, j < n such that i �= j.

Then, after an appropriate reindexing of the relations Rns , our axioms meet the
hypothesis of Lemma 6.1. The result follows. 	
Recall that T ∗ denotes the collection of all sentences in Ax I–III. We are ready to
begin dealing with T ∗ directly.
Lemma 6.3 (RCA0). T ∗ is an element of S.
Proof. We can easily tell whether a given formula is in Ax I or Ax II. Lemma 6.2
gives a method for deciding whether or not a formula is in Ax III. 	
Lemma 6.4 (RCA0). The theory T ∗ has effective quantifier elimination.
Proof. By Lemma 1.7, it is enough to give an effective procedure that takes as
input any conjunction of literals φ(x̄, y) and returns a quantifier-free formula �(x̄)
such that T ∗ 
 (∃y)φ(x̄, y)↔ �(x̄). By performing the appropriate substitutions,
we may assume that no literal in φ is of the form (z0 = z1). First use the effective
procedure given by Lemma 6.2 to see whether φ is consistent with Axioms I and II.
If it is not, we conclude that T ∗ 
 (∃y)φ(x̄, y)↔ Fa.
If it is consistent, let �(x̄) be the formula produced from φ by substituting Tr for
each conjunct mentioning the variable y. Let L′ = {Rns : n, s < �}, where � is a
number greater than any n or s such that Rns is mentioned in �. Use Lemma 6.2
to find all conjunctions�0, �1, . . . , �m ofL′-literals without repetitions such that
• �i ∧ φ is consistent with Ax I and II.
• Every conjunct of � is a conjunct of �i .
• For every atomic L′-formula � with variables in x̄, either � or ¬� appears as
a conjunct in �i .

ThenT ∗ 
 (∃y)φ → (�0∨· · ·∨�m). The converse directionT ∗ 
 (�0∨· · ·∨�m)→
(∃y)φ follows from Ax III applied to each pair φ, φ ∧�i . 	
Recall that T denotes the deductive closure of T ∗.
Proposition 6.5 (RCA0).

(i) For every L-sentence φ, either φ is provable from T ∗, or ¬φ is provable
from T ∗.

(ii) T is an element of S.
(iii) T has quantifier elimination. T is a complete theory.
Proof. Similar to the proof of Proposition 3.2. 	
Next, we verify that T is consistent. It suffices to show that T has a model. This
is achieved in Proposition 6.9 below, using an effective version of the Fraı̈ssé limit
construction. This argument is both clean and reusable—we use it again in the
proof of Proposition 6.13 and later in Section 7—but requires some definitions and
lemmas. The following definitions are based on those given by Csima, Harizanov,
Miller, and Montalbán [2] for Fraı̈ssé limits in recursive mathematics.
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Definition 6.6. Fix a language L0 of relation symbols. Let K = 〈A0,A1, . . .〉
be a sequence of finite L0-structures.

(i) We say thatK has the effective hereditary property (EHP) if there is a function
that, given an index i and a finite set F of elements fromAi , returns an index
j and an isomorphism from Aj to the induced substructureAi � F .

(ii) We say that K has the effective joint embedding property (EJEP) if there is a
function that, given indices 〈i, j〉, returns an index k and a pair of embeddings
Ai ↪→ Ak and Aj ↪→ Ak .

(iii) We say that K has the effective amalgamation property (EAP) if there is
a functions that, given indices 〈i, j, k〉 and injections f : Ai → Aj and
g : Ai → Ak , returns an index � , an embedding e : Aj ↪→ A� , and an
injection h : Ak → A� such that h ◦f = e ◦g and, iff and g are embeddings,
h is an embedding as well.

(iv) LetA be a countably infinite L0-structure with domainA. Suppose that there
is a pair of functions h0, h1 such that h0 maps finite subsets F ⊆ A surjectively
onto the indices {0, 1, . . .} ofK, and h1 maps finite subsets F ⊆ A to isomor-
phisms from the induced substructureA � F toAh0(F ). Suppose further that,
for every choice of a finite F ⊆ A, a pair of indices 〈i, j〉, an isomorphism
f from A � F to Ai , and an embedding g : Ai ↪→ Aj , there is a second finite
G ⊆ A containing F and an isomorphism from A � G to Aj which agrees
with g ◦ f on F . Then we say thatA is an effective Fraı̈ssé limit of K.

When interpreted in the standard model REC of RCA0, the definitions of EHP,
EJEP, and EAP agree with those of the computablehereditary, joint embedding, and
amalgamation properties in [2]. Our notion of effective Fraı̈ssé limit is essentially
the same, except that we require an explicit mapping from finite substructures of
A ontoK. (The same effect is achieved in [2] using what they call a canonical age.)
Lemma 6.7 (RCA0). Let L0 be a relational language, and let K = (Ai)i∈M be

a sequence of finite L0-structures. If K has the EHP, the EJEP, and the EAP, then
K has an effective Fraı̈ssé limit.

Proof. Similar to [2, Thm 3.9]. 	
Lemma 6.8 (RCA0). Let L0 be a relational language, and let T0 be an L0-theory

axiomatized by a set T ′
0 of ∀∃-sentences. Let K = 〈A0,A1, . . .〉 be a sequence of finite

models of the ∀ part of T0 with the EHP, the EJEP, and the EAP. Suppose that, for
any ∃ L0-formula φ(x̄) such that (∀x̄)φ(x̄) is in T ′

0 , and any (Ai , b̄) with b̄ having
the same length as x̄, there is an Aj and an embedding g : Ai ↪→ Aj such that
Aj |= φ(g(b̄)). Then any effective Fraı̈ssé limit ofK is a model of T0.
Proof. Suppose thatA is an effective Fraı̈ssé limit ofKwith domainA. It suffices

to show that A satisfies T ′
0. Let φ be an n-ary ∃ formula such that (∀x̄)φ(x̄) is in

T ′
0. Fix any n-tuple ā taken from A, and let F ⊆ A be a finite set containing all
entries of ā. Using the functions h0, h1 from the definition of effective Fraı̈ssé limit,
find an index i and an isomorphism f from the induced substructureA � F to Ai .
By assumption, there is an Aj and an embedding g : Ai ↪→ Aj such that Aj |=
φ(g(f(ā))). Use the definition of effective Fraı̈ssé limit to get a finite G ⊆ A
containing F such that A � G embeds into Aj by a mapping agreeing with g ◦ f
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on F . Then A � G |= φ(ā), and hence A |= φ(ā). Since φ and ā were arbitrary,
A satisfies T ′

0, as desired. 	
We are now ready to verify the consistency of the theory T .

Proposition 6.9 (RCA0). T is consistent.

Proof. Notice that the axioms for T given in Subsection 6.1 consist of ∀∃
sentences. To see that T has a model, it is enough to construct a sequence
K = 〈A0,A1, . . .〉meeting the hypotheses of Lemmas 6.7 and 6.8 with T in place of
T0. We begin by defining K, and then verify that K has the required properties.
Let Y be the set of all triples 〈n, s, �〉, where n is a natural number and
� is a function mapping each tuple taken from {0, . . . , n − 1}≤n to a value in
{0, 1}s+1, with the property that, if ȳ has a repeated entry, we have �(ȳ)(t) = 0
for all t ≤ s . This Y is an element of S by Δ01 comprehension. Let G be a surjection
G : M → Y . Each Ai is constructed as follows. Suppose that G(i) = 〈n, s, �〉.
Let Ai be the L-structure with domain {a0, . . . , an−1} such that, for all 1 ≤ k ≤ n,
all t ≤ s , and all k-tuples 〈j0, . . . , jk−1〉 taken from {0, . . . , n − 1}, we have

Ai |= Rkt (aj0 , . . . , ajk−1 ) ⇐⇒
(
t ∈ Xk and �(〈j0, . . . , jk−1〉)(t) = 1) ,

and Ai |= ¬Rkt (ā) for all other t, k, ā.
It is clear from the definition that K has the EHP, the EJEP, and the EAP,
and hence by Lemma 6.7 has an effective Fraı̈ssé limit A. It can be checked that
K satisfies the hypothesis of Lemma 6.8, and hence A is a model of T . 	
We now show how the coded sequence 〈X1, X2, . . .〉 relates to RNT (n).
Lemma 6.10 (RCA0). Define a function F on tuples ā = 〈a1, . . . , an〉 ∈M<M by:

F(∅) = 1,

F(ā) =
n∑
m=1

S(n,m)
m∏
k=1

2(
m!

(m−k)! )ak , whenever |ā| ≥ 1,

where S(n,m) is the number of ways to partition an n-element set into m nonempty
subsets.3 The following statements hold.

(i) If ā = 〈a1, . . . , an〉 and b̄ = 〈b1, . . . , bn〉 are n-tuples such that F(a1, . . . , ak) =
F(b1, . . . , bk) for all k ≤ n, then ā = b̄.

(ii) If the tuple 〈|X1|, . . . , |Xn|〉 exists inM , then RNT (n) = F(|X1|, . . . , |Xn |).
(iii) If RNT (n) is finite, then 〈|X1|, . . . , |Xn|〉 exists in S.
(iv) The Ryll-Nardzewski function RNT exists in S if and only if the function

n �→ |Xn| exists in S.
Proof.

(i) This is immediate when n = 0. If 〈a0, . . . , ak〉 = 〈b0, . . . , bk〉 and
F(a0, . . . , ak+1) = F(b0, . . . , bk+1), then it is clear from the definition of
F that ak+1 = bk+1. The result now follows by Δ01 induction.

(ii) If n = 0, then there is exactly one 0-type, namely T itself, so RNT (0) =
1 = F(∅). The case when n ≥ 1 follows by a straightforward induction.

3These S(n, m) are called Stirling numbers of the second kind.
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(iii) It is clear that, for all k ≤ n, we have |Xk| ≤ RNT (n). Using bounded
Σ01 comprehension we may form the set {〈k, i〉 : |Xk| ≥ i and k ≤ n},
from which 〈|X1|, . . . , |Xn |〉 is Δ01 definable.

(iv) The ‘if ’ direction is immediate from part 6.10. For the ‘only if ’ direction,
suppose RNT is in S, and fix n. We know by parts (i), (ii), and (iii) that
〈|X1|, . . . , |Xn |〉 is in S, and is the unique n-tuple satisfying that RNT (k) =
F(|X1|, . . . , |Xk|) for every k ≤ n. Thus we can find |Xn| by testing each
n-tuple for this property. 	

6.3. Applications. Recall from Subsection 2.1 the statements:
(S1) There is a function f such that, for all n, T has exactly f(n) distinct n-types.
(S2) There is a function f such that, for all n, T has no more than f(n) distinct

n-types.
(S3) T has only finitely many n-types, for each n.

We now use the construction of Subsection 6.1 to prove Theorem 2.2(i):

Proposition 6.11. Over RCA0, the implication (S2 → S1) implies ACA0.

Proof. Suppose that (S2 → S1) holds. Let Z be any set, and recall from
Definition 1.1 the Turing jump KZ and its enumeration 〈KZ0 , KZ1 , . . .〉. Define sets
X1, X2, . . . by, for each s, n,

s ∈ Xn+1 ⇐⇒ n ∈ KZat s .
The coded sequence 〈X1, . . .〉 exists by Δ01 comprehension. Let T be the theory con-
structed by the method of Subsection 6.1 using 〈X1, . . .〉 as its parameter. Since each
Xn has size ≤ 1, we can see by Lemma 6.10(ii) that RNT is dominated by the
function f(n) = F(1, 1, . . . , 1︸ ︷︷ ︸

n times

). Hence T satisfies (S1). Since (S2 → S1) holds,

T satisfies (S1) as well, that is, RNT is an element of S. By Lemma 6.10(iv), the
function n �→ |Xn+1| is in S as well. But this is the characteristic function of KZ .
We conclude by Lemma 1.2 that ACA0 holds. 	
Next, we verify Theorem 2.2(iii):

Proposition 6.12. Over RCA0, the implication (S3 → S2) implies ACA0.

Proof. Suppose that (S3 → S2) holds. Fix any set Z. Define sets X1, X2, . . . by,
for each s, n ∈M ,

s ∈ Xn+1 ⇐⇒ (∃t)[t ≤ s < 2t ∧ n ∈ KZat t].
If n ∈ KZat t for some t, then |Xn+1| = t; if there is no such t, then |Xn+1| = 0.
The coded sequence 〈X1, . . .〉 exists by Δ01 comprehension. Let T be the theory
constructed by the method of Subsection 6.1 using 〈X1, . . .〉 as its parameter.
For each n ≥ 1,K � n exists by bounded Σ01 comprehension, so waymay form the

tuple 〈|X1|, . . . , |Xn|〉. It follows by Lemma 6.10(ii) that RNT (n) is a finite number,
andKZ � n = KZRNT (n) � n. Thus T satisfies (S3). Since (S3 → S2) holds, T satisfies
(S2) as well. Let f be a function such that f(n) ≥ RNT (n) for all n. Then we have
KZ � n = KZ

f(n) � n for all n, so KZ is in S by Δ01 comprehension. We conclude by
Lemma 1.2 that ACA0 holds. 	
Finally, we prove Theorem 2.2(ii). In fact, we prove a stronger result.
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Proposition 6.13. Over RCA0, the implication (S2 → ‘T has a prime model’)
implies ACA0.

Proof. Fix any set Z. Define a coded sequence of sets 〈X1, . . .〉 and a theory
T as in the proof of Proposition 6.11 above. As we have seen, T satisfies (S2).
We construct two modelsA,B of T such that, if C is a third model, and e0 : C ↪→ A,
e1 : C ↪→ B are embeddings, then KZ is computable from e0 and e1. The models
A,B will be the effective Fraı̈ssé limits of sequences K0 and K1, respectively.
Let Y be the set of all pairs 〈n, �〉 such that n is a natural number, and � :

{0, . . . , n − 1}≤n → {0, 1} is a function such that �(x̄) = 0 whenever x̄ has a
repeated entry. This Y is a recursive set. Let G : M → Y be an infinite-to-one
surjection. We use G to define sequences K0 = 〈A0,A1, . . .〉 and K1 = 〈B0,B1, . . .〉
of finite structures. IfG(i) = 〈n, �〉, thenAi has domain {a0, . . . , an−1} and, for all
s and all tuples 〈j0, . . . , jk−1〉 ∈ {0, . . . , n − 1}≤n of length k ≥ 1,

Ai |= Rks (aj0 , . . . , ajk−1 ) ⇐⇒
(
s ∈ Xk and �(j0, . . . , jk−1) = 1 and i > s) ,

and, for all other s, k, ā, we have Ai |= ¬Rks (ā). The structure Bi has domain
{b0, . . . , bn−1} and, for all s and all tuples 〈j0, . . . , jk−1〉 ∈ {0, . . . , n − 1}≤n,

Bi |= Rks (bj0 , . . . , bjk−1 ) ⇐⇒
(
s ∈ Xk and

(
�(j0, . . . , jk−1) = 1 or i ≤ s)

)
,

and, for all other s, k, b̄, we have Bi |= ¬Rks (b̄). The coded sequences K0,K1 exist
by Δ01 comprehension. It can be checked that K0 and K1 each have the EHP,
the EJEP, and the EAP, and satisfy the hypotheses of Proposition 6.8. Hence, by
Propositions 6.7 and 6.8, K0 has an effective Fraı̈ssé limit A |= T and K1 has an
effective Fraı̈ssé limit B |= T .
Now suppose that C is a model of T with domain C , and e0 : C ↪→ A, e1 : C ↪→ B
are embeddings. Given a finite F ⊆ C , we may use e0 and the fact that A is an
effective Fraı̈ssé limit to find an index i and an isomorphism from the induced
substructure C � F to Ai . Likewise, we may use e1 to find an index j and an
isomorphism from C � F to Bj , giving an isomorphism from Ai to Bj .
Fix enumerations ā of the elements of Ai and b̄ of the elements of Bj such that
(Ai , ā) ∼= (Bj , b̄). Let n be the cardinality of F , and suppose that n ∈ KZ .
Then there is an s such that n ∈ KZs and Xn+1 = {s}. We claim that s ≤ max(i, j).
To see this, assume that j < s , so that Bj |= Rn+1s (b̄) by construction of Bj .
Then Ai |= Rn+1s (ā) as well, which implies by construction of Ai that i ≥ s .
Our claim now proven, we deduce that n is in KZ if and only if n is in KZmax(i,j).

Hence KZ exists by Δ01 comprehension. We conclude by Lemma 1.2 that ACA0

holds. 	
Corollary 6.14. Over RCA0, the implication (S2 → S4) implies ACA0.

§7. Theories with finitely many models. In this section, we present a construction
due to Millar [15]. Given any n ≥ 2, it builds a complete, decidable theory T with
exactly n decidable models, both up to classical isomorphism and up to recursive
isomorphism. We use this construction largely unchanged in the system RCA0 +
¬WKL0 to prove Theorem 2.10. The construction itself is given in Subsection 7.1
below. We begin with some definitions and an overview of our goals.
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Definition 7.1. A disjoint Σ01 pair is a coded sequence 〈Us,Vs 〉s∈M of pairs
Us,Vs ⊆M with the following properties:

• Each Us and Vs is finite, with max(Us ∪ Vs) < s .
• Us ∩ Vs = ∅ for every s .
• Us ⊆ Us+1 and Vs ⊆ Vs+1 for every s .

Given a disjoint Σ01 pair 〈Us,Vs 〉s , a setC ⊆M is called a separating set for 〈Us,Vs 〉s
if, for every s , we have Us ⊆ C ⊆ (M − Vs). If no such C exists, then 〈Us,Vs 〉s
is called an inseparable Σ01 pair. The Σ

0
1 separation principle is the statement: There is

no inseparable Σ01 pair.

In the standard model REC of RCA0, a disjoint Σ01 pair 〈Us,Vs 〉s can be written
as a pair of recursive approximations 〈Us 〉s , 〈Vs 〉s to disjoint r.e. sets U = lims Us
and V = lims Vs . If 〈Us,Vs〉s is an inseparable Σ01 pair in REC, then the limits
U and V are recursively inseparable in the sense of recursion theory.
We are interested in these pairs, first, because they figure in Millar’s construction,

and second, because of the following result of Friedman, Simpson, and Smith [7]
pinpointing the reverse-mathematical complexity of the Σ01 separation principle.

Lemma 7.2. RCA0 
 WKL0 ↔ (Σ01 separation).
Proof. See Simpson [22, Lemma IV.4.4]. 	

Fix a natural number n ≥ 2 and a disjoint Σ01 pair 〈Us,Vs〉s . Our construction in
Subsection 7.1 is of a complete, decidable theory T with the following properties:

1. T has exactly one nonprincipal 1-type p(x).
2. For every k < n, T has a decidable model A with exactly k distinct elements
realizing p.

3. For every k ∈M , ifA,B are models of T each with exactly k distinct elements
realizing p, then there is an isomorphism f : A ∼= B which is Δ01 definable in
A⊕ B.

4. If A is a model of T with at least n distinct elements realizing p, then there is
a separating set C for 〈Us,Vs〉s which is Δ01 definable in A.

If we are working within a model of RCA0+¬WKL0 and 〈Us,Vs 〉s is an inseparable
Σ01 pair as given by Lemma 7.2, then the properties above imply that T has exactly
n nonisomorphic models. (This is proved in Subsection 7.3 below.)

7.1. Construction. Fix a natural number n ≥ 2 and a disjoint Σ01 pair 〈Us,Vs〉s .
Let L = 〈Ps ,Rs 〉s∈M be a language with every Ps unary and every Rs n-ary.
Consider the following axiom schemes:

Ax I. Ps (x)→ Pt(x), whenever t ≤ s .
Ax II. Rk(x0, . . . , xn−1)→

∧
i<j<n(Pk(xi ) ∧ xi �= xj).

Ax III.
(∧

i<j<n(Ps (xi) ∧ xi �= xj)
)
→ Rk(x0, . . . , xn−1), whenever k ∈ Us .

Ax IV.
(∧

i<j<n(Ps (xi) ∧ xi �= xj)
)
→ ¬Rk(x0, . . . , xn−1), whenever k ∈ Vs .

Ax V. �(x̄) → (∃y)φ(x̄ , y) for every pair φ,� of formulas with the following
properties:
• φ and � are conjunctions of L′-literals, where L′ = {Ps ,Rs : s < �}
for some � ;
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• For every atomic L′-formula � with variables in x̄, y, either � or
¬� appears as a conjunct in �;

• φ(x̄, y) is consistent with Ax I–IV;
• Every conjunct in � is a conjunct in φ.

LetT ∗ be the collection of all sentences inAx I–V, and letT be the deductive closure
of T ∗. This completes the construction. Notice that we have not yet established that
either T ∗ or T is in S. The existence of T ∗ is a consequence of Lemma 7.3 below,
while that of T is part of Proposition 7.5.
The intuition behind these axioms is as follows. Given an element a of a model
and an index s , the statement Ps (a) is read as, ‘a is turned on at stage s ’. Axiom I
says that the stages at which an element is turned on form an initial segment of
M—possibly ∅ or all of M . Axiom II says that Rk can hold of a tuple ā only if
the entries of ā are all distinct and are all turned on at stage k. Axioms III and IV
together say that if ā is a tuple of distinct elements, all turned on at stage s , then
Us ⊆ {k : Rk(ā) holds} ⊆ M − Vs. As with the similar axiom in Subsection 6.1
above, Axiom V gives the theory effective quantifier elimination.

7.2. Verification.
Lemma 7.3 (RCA0). There is a procedure to decide whether a given L-formula φ is
consistent with Axioms I–IV.
Proof. Assume that k ∈ Us ∪Vs implies k < s . Combine Axioms I, III, and IV
into a single equivalent scheme of the form:

Ps (x0)→

⎛⎝∧
t≤s
Pt(x0) ∧

⎛⎝ ∧
i<j<n

Ps(xi ) ∧ xi �= xj

⎞⎠ →

⎛⎝ ∧
k∈Us
Rk(x0, . . . , xn−1)∧

∧
k∈Vs

¬Rk(x0, . . . , xn−1)

⎞⎠⎞⎠ .
As in the proof of Lemma 6.2, we may replace the initial → with ∨ in both this
scheme and Axiom II and perform an appropriate reindexing of the relations to get
a sequence of sentences satisfying the hypothesis of Lemma 6.1 above. The result
follows. 	
It follows that T ∗ is in S.
Lemma 7.4 (RCA0). The theory T ∗ has quantifier elimination.
Proof. Similar to the proof of Lemma 6.4. 	
Proposition 7.5. T is in S, is complete, and has quantifier elimination.
Proof. Similar to the proof of Proposition 3.2. 	
Lemma 7.6 (RCA0). The theory T is consistent.
Proof. It suffices by the Soundness Theorem to show that T has a model.
Suppose thatA is a finite L-structure, and suppose that there is an s0 such that, for
every s ≥ s0, every n-tuple ā of elements of A, and every entry ai of ā, we have
A |= ¬Ps (ai) and A |= ¬Rs (ā). Then there is a recursive procedure to check
whether A is a model of Axioms I–IV. Let K be an infinite-to-one enumeration
of all finite L-structures which have such an s0 and which are consistent with
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Axioms I–IV. This K satisfies the hypotheses of Lemma 6.8, and hence, by
Lemmas 6.7 and 6.8, has an effective Fraı̈ssé limit which is a model of T . 	
Lemma 7.7 (RCA0). T has exactly one nonprincipal 1-type p(x). Furthermore,

Ps (x) is in p(x) for every s , and if q(x) is a 1-type of T not equal to p(x), then there
is an s such that ¬Ps (x) ∈ q.
Proof. As in Harizanov [9, Lemma 10.7]. 	
Lemma 7.8 (RCA0). For every k < n, T has a decidable model A with exactly k

distinct elements realizing p.

Proof. Use a Fraı̈ssé construction similar to that in the proof of Lemma 7.6,
except, instead of just one, allow up to k distinct elements to realize p. 	
Lemma 7.9 (RCA0). Fix a number k < n and models A,B of T . If A and B each

have exactly k distinct elements realizing p, then A ∼= B.
Proof. An effective back-and-forth argument. 	
Lemma 7.10 (RCA0). IfA is a model ofT with at least n distinct elements realizing

p, then there is a separating set C for 〈Us,Vs 〉s . In particular, 〈Us,Vs〉s is not an
inseparable Σ01 pair.

Proof. Suppose A is such a model, and let ā be a tuple of distinct elements all
realizing p. Define C = {k : A |= Rk(ā)}. Then Ax III ensures that Us ⊆ C for
all s , and Ax IV ensures Vs ⊆M − C for all s . Therefore, C is a separating set for
〈Us,Vs 〉s . 	

7.3. Application. We now prove the remaining theorem from 2.2.

Proof of Theorem 2.10. AssumeWKL0 fails.When n = 1, use theℵ0-categorical
theory constructed in the proof of Proposition 3.5. (Alternatively, we could use an
effectively ℵ0-categorical theory such as the theory of dense linear orders without
endpoints.) Now suppose n ≥ 2. Lemma 7.2 tells us that there is an inseparable
Σ01 pair 〈Us,Vs〉s . Let T be the theory constructed by the method of 7.1 using
〈Us,Vs 〉s and the given n. Lemmas 7.8, 7.9, and 7.10 together imply that T has
exactly n models up to isomorphism. 	
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