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We consider the Dirac equation given by

, p Atc+v1 Y1
= = 0
V= (Lol e 0= () oo

with initial condition y1(0) cos a 4+ y2(0)sina = 0, a € [0, 7) and suppose the
equation is in the limit-point case at infinity. Using p/, (1) to denote the derivative of
the corresponding spectral function, a formula for pj (1) is given when pg, (1) is
known and positive for three distinct values of . In general, if p/, (1) is known and
positive for only two distinct values of «, then pz,(u) is shown to be one of two
possibilities. However, in special cases of the Dirac equation, pz, (p) can be uniquely
determined given p/, (1) for only two values of a.

1. Introduction

We consider the spectral derivative functions p/, (1), u € R, associated with the
Dirac equation given by

—c+v9) —p
together with the initial condition
y1(0) cosa + y2(0) sina = 0, (1.2)

where a € [0,7). In this notation, ¢ > 0 is a constant, A = u + ie is the complex
spectral parameter and vy, vz and p are real-valued members of L'[0,00). The
purpose of this paper is to show how the spectral derivatives p/ (p) of (1.1), (1.2)
for distinct initial conditions are related. The assumptions are minimal: the equation
must be in the limit-point case at infinity and p must be such that 0 < p,, (u) < oo.
Hinton and Shaw [6] prove these assumptions are met when, for example, p, v1 and
vy are integrable and |u| > c.

To each parameter o € [0,7), we define 0, and ¢, as solutions of (1.1) that
satisfy, for all A,

6 (0, \) = (COS O‘) L al(0,0) = (_Smo‘> . (1.3)

sin av cos o
Then the Titchmarsh-Weyl m, () function is defined by
Vo (2, 0) = 00 (2, N) + ma(N)pa(z,\) € L2[0,00). (1.4)
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Since we assume that (1.1) is in the limit-point case at infinity, m,(\) is well
defined and unique for Im{A} > 0. Also, in the limit-point case, the L?[0,00)
solution of (1.1) is unique up to constant multiples. Thus it follows that ¥, (x, \)
and ¥g(x,A) are linearly dependent. Following Hille [5], the Wronskian of 14,(0, A)
and ¥g(0, A) is 0, that is,

cosa —mq(A)sina  cosff —mg(A)sinF|

sina + mq(A) cosa sin3+mg(A)cos 3| (1.5)
This gives the m connection formula
~ ma(A)cos(B — a) —sin(f — a)
ms(A) = ma(N)sin(8 — a) + cos(8 — a) (1.6)

The spectral derivative functions may then be defined in terms of these m,(\)
functions through the Titchmarsh-Kodaira formula

P () = 2 lim Im{mq(p +1i€)}, (1.7)

T e—0t

where the limit exists [1,5,9].

Clearly, spectral functions are related to m,(A) functions and, for different initial
conditions, these m functions are connected by (1.6). Furthermore, for special cases
of the Dirac equation, it is possible to relate the spectral functions to solutions of a
Riccati equation (see [11]). As in the work of Gilbert and Harris [3], the motivation
to seek connection formulae for p/, (u) arose since it is known that the cross ratio
of four solutions of a Riccati equation is constant [8].

The connection formulae presented here are analogous to those previously estab-
lished for limit-point Sturm-Liouville problems (see [2,3,10]). That the formulae
are similar is perhaps not surprising, since the Sturm-Liouville problem can be
considered a special case of the Dirac problem. (Set p = 0, A+ c+v; = 1 and
—(A=c+wv2) = ¢— Ain (1.1).) On the other hand, one connection formula in
each problem is proved using the asymptotic behaviour of the respective spectral
derivative functions-and this is markedly different for the two problems.

The results are given in §2 and proved in § 3. Examples are given in §4.

2. The connection formulae

THEOREM 2.1. Let pl, () denote spectral derivatives associated with (1.1), (1.2).
For almost all p, if there is an o € [0, ) such that pl,(p) exists with 0 < pl,(p) < oo,
then the following hold.

(1) pi(p) ewists with 0 < pjz(p) < oo for all B € [0, 7).
(ii) For distinct o, 3,7,d € [0,7), the spectral derivatives satisfy
sin(8 — v) sin(y — ) sin(6 — B)  sin(y — d) sin(6 — o) sin(a — 7)
ph (1) P
+sin(6 —a)sin(a — B)sin(8 —0) sin(a — B)sin(8 — ) sin(y — @) '
b (1) P (1)

0:

(2.1)
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As in the Sturm-Liouville equation case, if p/ (1) and p'B(u) exist and satisfy
0 < pg(p) <00, 0 < pih(p) < oo for distinct a, 8 € [0,7), then pf (1) exists and
satisfies 0 < pf, () < oo for all € [0, 7) (see [3, remark 5.2]).

THEOREM 2.2. If there are distinct o, 3 € [0,7) such that pg, (1), pjs(1) exist with
0 < pl(p) < 00,0 < pls(p) < 00, then, for any v € [0,7), the spectral derivatives
associated with (1.1) satisfy

sin(B—a) sin*(B—y) sin®(y— a)}2
P, (1) Pl (1t) (1)
1

= 4sin?(3 — v)sin’(y — a) | ————
— 4sin®(8 — ) sin®(y >(pfa<u>p'g<u)

— m?sin?(f — a)). (2.2)

Thus sin®(3 — @)/ p’, () must be one of the two choices

—m2sin?(8 — a).

sin?(3 =) _sin(y —a)
+ + 2sin(B8 —y)sin(y — )y | —————
DI S A mrAm
(2.3)
COROLLARY 2.3. If0 < p,(n) < 00, 0 < pj(p) < 0o for distinct o, B € [0,7), then

/ ! 1
P ()P (1) < Tt (=)

(2.4)

Theorem 2.1 is the analogue of theorem 2.1 in [3] in the form given by Eastham [2].
Similarly, theorem 2.2 is comparable with theorem 2.2 in [3], where there need be
no special relationship among the three initial conditions. The analogue to the
corollary is corollary 1.2 of [10].

In [2], Eastham obtains several relationships among the spectral derivatives asso-
ciated with Sturm-Liouville equation for special values of «, 3, v, . Analogous
corollaries are valid for the Dirac equation (1.1) and are listed here.

COROLLARY 2.4. Suppose that pl, (1) exists and satisfies 0 < pl (1) < oo for all
a € [0,7). Then

( — >
l( :1(/*") l( :1+7r/2(/“L)
dOeS ’/me depend on «.

COROLLARY 2.5. Suppose that pl, (1) exists and satisfies 0 < pl (1) < oo for all
a € [0,7). Then, for any fized 7,

1 1 >
— csc2a
(p;+a(u) Pro—a ()

does not depend on a (a0 # 0, %w)

We adopt the convention of using mod 7 values if the parameter falls outside
the interval [0, 7). As in [2], the proofs of these corollaries follow quickly from (2.1)
with a + 8 =~ + 9.
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Theorem 2.2 states that, given p/ () for fixed p and two distinct values of «, a
third derivative must be one of two choices. The next theorem refines this result
for cases when additional information is known about the asymptotic behaviour of
the spectral derivative. Additional hypotheses are required.

HYPOTHESIS 2.6. There is a Ag € R such that, for all |u| = Ao, p, (1) is continuous
and 0 < pl,(p) < o0 for all o € [0, ).

HYPOTHESIS 2.7. There exist real-valued functions S(u) and T(u) such that, for
|/J’| 2 AO;

T (1)
(S(p)2 4 T(p)?) sin? o + S(p) sin 2cx + cos? o’

o) = = (25)

with S(p) — 0 and T(p) — /(1 —¢)/(k+c) as |u| — oo.

These hypotheses are met, for example, by Dirac equations where there exists a
decreasing L1[0, o0) function a(z) such that

o0 i = () (A = € B L [A—c > o a(x)
/ e ()\—i—cvl(t) va(t) — 2i >\+Cp(t) dt\—|m|,

0 <o <oo,

x

and the coefficient functions p, vy, ve are small enough (see [11] for details).

From (2.5), we note that p/ (u) — 1/7 for all « € [0, 7). This is key in being
able to distinguish the correct value of p/, (1) from the two possibilities given by
theorem 2.2. The result is as follows.

THEOREM 2.8. For the Dirac problem (1.1), (1.2) satisfying hypotheses 2.6, 2.7,
distinct o, B,y € [0,7) and |u| = Ag > ¢, we have the following.

(i) If cos(B — a) > 0,

sin?(8 — a) _ sin?(8 —v) n sin?(y — a)
b (1) Pa(p) P(1)

+2sin (8 — ) sin (y — a)\/m — 72sin? (8 — a).
(2.6)
(i) If cos(B — a) < 0,
sin?(8 — «) _ sin?(8 — ) n sin?(y — a)
P4 (1) Pa(1t) Pl (1)
. . 1 .
—2sin (B — ) sin (y — a)\/m — m2sin® (8 — a).
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Theorem 2.8 omits the case where a and 3 differ by %w, for then the two choices
are asymptotically indistinguishable. However, if additional information is available
on S(u), the theorem can be extended to this case.

Theorem 2.8 has an analogue in the Sturm-Liouville case. In [4], the spectral
derivative for certain Sturm-Liouville problems is written in a form comparable
with (2.5). But there p/, (1) tends to oo or 0, depending on whether « is zero or
non-zero, and this behaviour is used to establish theorem 1.3 in [10].

3. Proofs

Proof of theorem 2.1. (i) The proof of this is the same as the proof of the corre-
sponding statement in the Sturm-Liouville equation case (see [3, theorem 2.1i]).
The properties of Herglotz functions and (1.7) imply that, for almost all 4 € R, if
ol (p) exists with 0 < p/ (p) < oo, then m, (v + i€) converges to a finite non-real
limit as e — 07, in which case, by (1.6), mg(p+ie) also converges to a finite non-real
limit as ¢ — 0T. It then follows from (1.7) that p’B(u) exists and has the required
properties, for all 5 € [0, 7).

(ii) mq (1 + i€) converges to a finite non-real limit as ¢ — 0 for almost all y
for which pl,(u) exists with 0 < pl,(u) < oo for some « € [0,). For such a u, we
denote

ma (i) = lim ma (p+i€) = Xa(p) +impo (1), (3.1)

where X, is real valued and the imaginary part follows from the Titchmarsh—
Kodaira formula. Then, by (1.7) and (1.6),

(Xa(p) + impl (1)) cos(8 — a) — sin(3 — ) }
(Xa(p) + 17, (1)) S5 — ) + cos(B — a)

() = Im{

_ Tpo (1)
| X0 (1) sin(8 — a) + cos(B — a) + impl, (1) sin(8 — «)|?
_ p0 (1)
(X2(p) + m2p2 (1)) sin® (8 — ) + Xo (1) sin2(8 — a) + cos?(f — a)

(3.2)

Hence

Lall) 4 (x2() 4 x20/2(n) — 1)sin?(3 — a) + Xa(u)sin2(3 — o). (3.3)
pg(ﬂ)

The coefficients of sin?(f — a) and sin2(8 — a) depend on a and p, not 8. So
replacing § in turn by v and § in (3.3) gives three equations in two variables, which
must therefore be linearly dependent. Thus

A — sin?(f — ) sin2(8—a
o )— sin?(y —a) sin2(y—a) | =
det %( ) 1 ( ) 2( ) 0. (3.4)
A — sin?(§ — ) sin -
am) 1 (6 ) 2(6 )
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Formula (2.1) follows upon expanding about the first column and using trigono-
metric identities. This completes the proof of theorem 2.1. O

Proof of theorem 2.2. As in the proof of theorem 2.1, p/ (u), p’B(u) and X, (p) =
Re{m,(u)} are related by equation (3.2). Rearranging yields an equation quadratic

in Xg,
0= X2(p)sin? (8 — ) + Xo(p) sin (26 — 2a)
/
T eos? (8 — a) + 722 (u)sin? (5 — o) — 22U,
pg(ﬂ)
So X4 () is one of
—cos (8= a) & /ol () /ply (1) — 7292 (1) sin® (8 — )
- (3.5)
sin(f — «)

Equation (3.2) remains valid when [ is replaced by . Replacing X, (1) by (3.5) in
this expression and rearranging gives formulae (2.2) and (2.3). O

Proof of corollary 2.3. If 0 < pl,(u) < 00, 0 < pj(p) < oo, then, by theorem 2.2,
P, (u) exists for all v € [0,7). So the radicand in (2.3) must be non-negative and
the result follows. O

Proof of theorem 2.8. The two possible values for p/ (1) are given in theorem 2.2.
These expressions may be written in terms of S(u), T'(x) using (2.5). That is, the
two choices for sin?(3 — a)/pl,(p) are

%{((52 + T?)sin® a + S sin 2a + cos® a) sin® (3 — )
+ (82 + T?)sin? B + Ssin 23 + cos? 3) sin?(y — a)
+ 2sin(f — ) sin(y — @)[(S% + T?) sin asin 8
+ Ssin(a + B) + cosacos G| }. (3.6)

We assume, for the present, that the expression within absolute value is non-
negative and consider the choice using the positive sign. Then we have

{(S? + T?)(sinasin(B — ) + sin Bsin(y — a))?
+ S(sin 2asin®(8 — 7) + sin 26 sin?(y — a)
+ 2sin(8 — ) sin(y — ) sin(a + 3))
+ (cosasin(3 — 7) + cos Bsin(y — a))?},

T
T

which, upon applying trigonometric identities, simplifies to

msin?(6 — a)

T {(S? + T?)sin®y + S'sin 2y + cos? v}. (3.7)

This is identically sin®(8 — a)/p;(u). If the expression within absolute value is
negative, then the choice using the negative sign is the one that simplifies as above.
By hypothesis 2.6, the spectral derivatives p;(u) are continuous on u = Ay and
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on u < —Ay. Therefore, p;(u) for two p on the same half-line are both given by
either the choice using the positive sign or the choice using the negative sign. We
can thus use the asymptotic behaviour of S(u) and T'(1) to choose the correct sign
for p with large absolute value and be assured the choice is correct for all ;1 on the
same half-line with |u| > Ap. In fact, since

|(S?(p) + T?(p)) sinasin B + S(p) sin(a + ) + cos accos B| — |cos(B — a)l,

formulae (2.6) and (2.7) are established. But, if |3 — a| = 4, then the quantity
within absolute value tends to 0 and more information on the size and sign of S(u)
is required to determine whether the approach is from above or below. In general,
we may only conclude that
2 1 . 2
,1 _, sin (al+ ST — ) +SI? (v — @) as || — oo.
P4 (1) Po 1) Poyin 2 (1)

4. Examples

If the coefficient functions p, vy and vy € L1[0,00), then 0 < p/ (u) < oo for all
|u| > cand o € [0,7) (see [6,7]). Hence the connection formulae of this paper hold.
As a particular example, we take p = v; = v9 = 0. Then the spectral derivatives
can be computed directly from (1.7) and (1.4) and

12— 2
—7 > )
, m(p + ccos2a) pr=c
Pa(p) = (4.1)
—ViE—c2
—7 < - )
m(p + ccos2a) K ¢

for @ € [0, 7). Further, hypotheses 2.6, 2.7 are satisfied and S(u), T'(u) are given

by
S(p)=0,  T(p)= \/Z;Z-

To illustrate theorem 2.2, we take a = iw, B = %w and compute the choices for
po(1). Since, for p > c,

1/ 2 — c2
and  pr 5(p) = P

1
P;r/4(/i) -7 7

theorem 2.2 yields

and the choices for pj(u), p > ¢, are

14/ 2 —c? d 1/ 2 — c2
———— and -
T S5u— 3¢ T pu+c

https://doi.org/10.1017/5S0308210500003176 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500003176

222 S. M. Riehl
If a third derivative is known, say, p/ 4 ( sal) =/ p? — c2/(p — 5c¢), the ambiguity

is resolved and
14/ p2 —c2

/ _
PO(N)—W Lt c

for ;1 > ¢ by theorem 2.1. Note that the chosen value of p{(11) tends to 1/7 as
1 — 0o, but the rejected value does not have the correct asymptotic behaviour. As
expected, theorem 2.8 also identifies the correct value of p((p). The calculation for
1 < —c is similar.

Suppose now that «, g differ by =7, so theorem 2.8 does not apply. Writing
B=a+ 7r and neglecting the absolute value, both expressions in (3.6) simplify
and are s1n2( —a)/pl,(p) and sin 26— @)/pho— (). In other words, both the
positive and negative branches of the square root yield valid expressions for spectral
derivatives. As a specific example (with p = v; = vy =0), we set a = 47r 8= 7r
Then, if v = 0, the choices for sin®(3 — a)/pf(p) for pu > c are

—==2(3) (BN =]
p|l e 2 = ) (= )\ = |.
[ p? —c? (\/5 V2 )V P =
That is, for u > ¢, p{(p) is either
/12 — 2 o /2 — 2
m(p = c) m(p+c)

The expression that is not po(u) is phe_ (1) = p;/Q(u). Asymptotically, these are
indistinguishable. Here, however, since S(un) and T'(u) are explicitly known, the
expression within absolute value in (3.6) can be evaluated. In fact,

(S + T?) sinasin(a + 37) + Ssin(2a + 37) + cosa cos(a + 37)]

w—c . .
= sin & cos a — sin a.cos
n+c

_‘—20
B u+c

sin v cos a|.

Since ¢ is non-negative and « is in the first quadrant, the quantity within absolute
value is non-positive for p > ¢ and so (2.7) is used and yields

12— 2

pO(/J‘) = 7T(/J,+C) .

For p < —¢, the quantity is non-negative and so (2.6) must be used and

() = M= VI
0 m(—p—c)  w(u+to)

is easily calculated.
Finally, in this simple example with p = v; = vy = 0, equality in corollary 2.3 is
attained when a =0, g = 27r
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