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The antimalarial action of FK506 and rapamycin: evidence

for a direct effect on FK506-binding protein PFFKBP35
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SUMMARY

FKS506 and rapamycin (Rap) are immunosuppressive drugs that act principally on T-lymphocytes. The receptors for both
drugs are FK506-binding proteins (FKBPs), but the molecular mechanisms of immunosuppression differ. An FK506—
FKBP complex inhibits the protein phosphatase calcineurin, blocking a key step in T-cell activation, while the Rap —
FKBP complex binds to the protein kinase target of rapamycin (‘TOR), which is involved in a subsequent signalling
pathway. Both drugs, and certain non-immunosuppressive compounds related to FK506, have potent antimalarial activ-
ity. There is however conflicting evidence on the involvement of Plasmodium calcineurin in the action of FK506, and the
parasite lacks an apparent TOR homologue. We therefore set out to establish whether inhibition of the Plasmodium fal-
ciparum FKBP PfFKBP35 itself might be responsible for the antimalarial effects of FK506 and Rap. Similarities in the
antiparasitic actions of FK506 and Rap would constitute indirect evidence for this hypothesis. FK506 and Rap acted indis-
tinguishably on: (i) specificity for different intra-erythrocytic stages in culture, (ii) kinetics of killing or irreversible growth
arrest of parasites and (ii1) interactions with other antimalarial agents. Furthermore, PEFKBP35’s inhibitory effect on cal-
cineurin was independent of FK506 under a range of conditions, suggesting that calcineurin is unlikely to be involved in
the antimalarial action of FK506.
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INTRODUCTION Bell, 2005), we lack transgenic parasite data, but in
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the most lethal human malarial parasite Plasmodium
falciparum, perhaps several hundred have been sug-

of whether inhibitors of this protein should make
good antimalarial drugs.
FK506-binding proteins (FKBPs) were discov-

ested to be potential chemotherapeutic targets; yet . . .
& P P g Y ered in 1989 as the major receptors of the immuno-

the number of fully validated targets remains much
smaller (Flannery et al. 2013). Even when known
inhibitors of a given protein have demonstrated anti-

suppressive macrolactones FK506 (tacrolimus) and
rapamycin (Rap, sirolimus) (Siekierka et al. 1989;
Bierer et al. 1990). They have since been found

malarial activity, this observation is insufficient basis . . . .
widely in biology and attributed numerous func-

for concluding that it is the effect on that protein
that leads to the death of the parasite or the arrest of
its growth or development. Full validation is usually
achieved only when it has been shown that genetic
ablation of the proposed target achieves the same
effect as the inhibitor (e.g. knock-out is lethal) and
that mutations giving rise to changes in amino acid

tional roles related to protein folding, regulation
and signal transduction (Galat, 2003). FK506 and
Rap block the characteristic peptidyl-prolyl cis—
trans isomerase (PPlase) activity displayed by
most FKBPs, but their immunosuppressive effects
are not a direct result of this inhibition; rather, the
sequence of the proposed target are (in an otherwise .drungKBP .com[.)lexes target scparate prOteH.lS
identical genetic background) sufficient to confer involved in signalling, namely the phosphoprotein
resistance to the inhibitor. The limited number of

well-validated targets is to some extent a consequence

phosphatase calcineurin (PPP3) in the case of
FK506 and the protein kinase mammalian target
of rapamycin (mTOR) in the case of Rap (Bierer
et al. 1990; Galat, 2003). Uncannily, the lipophilic,
cyclic undecapeptide cyclosporin A (CsA) affects

of the time consuming and difficult nature of carrying
out the necessary genetic manipulations in
Plasmodium parasites. In the case of the P. falciparum

FK5306-binding protein PEFKBP35 (Monaghan & the same target as FK506, also in the form of a

complex with its receptor, cyclophilin, which in
spite of being unrelated in structure to the FKBPs
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therefore commonly referred to as calcineurin inhi-
bitors, but in some cases their pharmacological

Parasitology (2017), 144, 869-876. © Cambridge University Press 2017
doi:10.1017/50031182017000245

https://doi.org/10.1017/50031182017000245 Published online by Cambridge University Press


mailto:angus.bell@icr.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0031182017000245&domain=pdf
https://doi.org/10.1017/S0031182017000245

Paul Monaghan and others

non-immunosuppressive congeners of FK506 and
CsA have been under investigation as potential ther-
apies for diseases as diverse as cancer, neurodegen-
eration, hepatitis C infection and malaria (Bell
et al. 2000; Cao & Konsolaki, 2011; Gaali et al.
2011; Frausto et al. 2013; Harikishore & Yoon,
2015).

FK506, Rap and CsA, all of which were originally
discovered as antimicrobial agents, have high nano-
to low micromolar potency against cultured blood-
stage P. falciparum parasites (Bell et al. 1994). The
parasite possesses an FKBP (PfFKBP35) (Braun
et al. 2003; Kumar et al. 2005; Monaghan & Bell,
2005), a number of cyclophilins and cyclophilin-
like proteins (Hirtzlin et al. 1995; Reddy, 1995;
Berriman & Fairlamb, 1998; Gavigan et al. 2003;
Marin-Menéndez & Bell, 2011), and a calcineurin
(Dobson et al. 1999; Kumar et al. 2004). Some
researchers have assumed that these drugs exert
their antimalarial actions via calcineurin (Kotaka
et al. 2008; Singh et al. 2014). This appears to be
the case for certain other antimicrobial activities
such as that on Cryptococcus neoformans (Juvvadi
et al. 2016). There are however several problems
with this idea, including (i) the potent antimalarial
activities of non-immunosuppressive and non-calci-
neurin-binding congeners of FK506 and CsA (Bell
et al. 1994; Monaghan et al. 2005) and (ii) the
unusual, FK506-independent calcineurin-binding
property of PfFKBP35 (Kumar et al. 2005;
Monaghan & Bell, 2005) (not found by Yoon et al.
(2007)). Moreover, Plasmodium lacks an obvious
mTOR homologue (although it does have related
kinases), suggesting that macrolactones target this
parasite by another route.

In view of these reservations, and of recent articles
describing the design and evaluation of non-
immunosuppressive, non-macrolactone PFFKBP35
inhibitors with potent activity on blood-stage para-
sites (Harikishore et al. 2013a, b), we decided to
explore a simpler hypothesis — namely that the rele-
vant target of FK506, Rap, and other FKBP ligands
is PFFKBP35 itself. We reasoned that if PFFKBP35
were the antimalarial target, the pharmacological
actions of these two drugs on cultured parasites
should be similar, relative to their potencies. If on
the other hand calcineurin were the target of
FK506 and a hitherto unknown protein (e.g.
kinase) the target of Rap, then it should be possible
to distinguish the effects of the two drugs. In
assays of specificity for different developmental
stages, kinetics of killing (or irreversible growth
arrest), and interaction with other antimalarial
agents, we found it impossible to differentiate
between FK506 and Rap. Our data are therefore
consistent with the notion of PfFKBP35 as the
primary mediator of antimalarial action and under-
score the need for genetic validation of this possible
drug target.
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MATERIALS AND METHODS
Drugs, experimental compounds and reagents

Drugs and chemicals were obtained from Sigma
Aldrich (Dublin) unless otherwise stated.

Calcineurin phosphatase assay

Binding of PfFKBP35 to calcineurin was measured
via protein serine/threoine phosphatase assay of the
latter, basically as described by Monaghan & Bell
(2005) except that the concentrations of some of the
reagents were varied as described under ‘Results’.
Calcineurin (recombinant human) was supplied by
Enzo Life Sciences (Exeter, U.K.) and the assay kit
by Promega (MyBio Ltd., Kilkenny, Ireland). The
recombinant FK506-binding domain of
PfFKBP35, PIFKBD, was produced in Escherichia
coli as described in Monaghan & Bell (2005) with
the following modifications. After overexpression,
E. coli lysis and binding steps performed as described
previously, the nickel chelate affinity chromatog-
raphy column (HisTrap® HP 5mL, GE Life
Sciences) was washed with metal chelate affinity
chromatography (MCAC) buffer (25 mMm sodium
phosphate, 500 mm NaCl, pH 7-4) supplemented
with 75 mM imidazole and recombinant protein
was eluted with MCAC buffer supplemented with
200 mm imidazole.

Parasite culture and susceptibility testing

Plasmodium falciparum line 3D7 was cultured in
human erythrocytes using standard methods as pre-
viously described (Fennell et al. 2006). Drug suscep-
tibility measurement using the parasite lactate
dehydrogenase (pLLDH) method was done as by
Cunningham et al. (2008) and drug combinations
tested using a chequerboard arrangement according
to Gavigan et al. (2007). At least two to three repli-
cate determinations were made. Combination data
analysis was generated by the Horizon Chalice™
Analyzer software, available online at http://cwr.
horizondiscovery.com. For assays of specificity for
different stages, cultures were age-selected by two
treatments with sorbitol (Lambros & Vanderberg,
1979) 36 h apart then grown to the appropriate age
range before measuring drug susceptibility. To
assess whether the inhibitory effects of the drugs
were reversible and to examine the kinetics of
killing (or irreversible arrest of growth), mature
trophozoite [24-30 h post-invasion (p.i.)] cultures
of starting parasitaemia 0-8% were grown with 30
um FK506, 30 um Rap or drug-free solvent at an
equivalent concentration. After different time
periods the cultures were centrifuged, washed
twice with pre-warmed wash medium (growth
medium lacking serum substitute and antibiotic)
and recultured. After 48 h of drug-free culture,
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Fig. 1. Effects of different reagent ratios on calcineurin (CaN) binding by PFFKBD in the presence and absence of FK506.
Activity of calcineurin was measured by the fluorescence of a rhodamine-conjugated peptide substrate that, upon
dephosphorylation by calcineurin, is digested by a protease, releasing highly fluorescent rhodamine. The fluorescence
attributable to 40 nm calcineurin was set as 100%. The effects of increasing molar ratio of PFFKBD to calcineurin (x-axis)
and of PFFKBD to FK506 (circles, no FK506; triangles, 1:1 ratio; squares, 1 PFFKBD:10 FK506) on the activity of
calcineurin were assessed. Bars show the SEM of values from three replicate experiments. To ensure that reduced
fluorescence was not due to inhibition of the protease, a control peptide whose fluorescence is independent of
phosphorylated state was incorporated into each reaction. No inhibition of protease occurred (data not shown).

Giemsa-stained thin blood smears were counted
microscopically.

RESULTS

Calcineurin binding by PfFKBP35 in the absence of
FK506

The classical molecular model of immunosuppres-
sive action of FK506 involves the modulation of a
protein—protein interaction. FKBP has low or no
affinity for the phosphatase calcineurin unless the
small-molecule modulator FK506 is present, in
which case a complex forms in which the phosphat-
ase activity is inhibited (Galat, 2003). This effect is
highly specific because it does not occur with Rap
or with certain FK506 congeners with minor chem-
ical modifications. The unusual finding of
Monaghan & Bell (2005) that PfFKBP35 could
interact with calcineurin irrespective of the presence
or absence of FK506 therefore suggested that inhib-
ition of calcineurin was unlikely to be the source of
antimalarial activity of FK506. This finding was
independently confirmed by Kumar et al. (2005)
using the related compound ascomycin (FK520).
Yoon et al. (2007) by contrast found calcineurin
inhibition by PfFKBP35 to be somewhat FK506-
dependent. Consideration of the different experi-
mental conditions in the three papers suggested
that the discrepancy could not be accounted for by
the type of recombinant PfFKBP, the sources of
the calcineurin and other reagents, or the type of
phosphatase assay employed. There were however
differences in the relative concentrations of the
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major reagents that might have accounted for the
different results. We therefore repeated the experi-
ment of Monaghan & Bell (2005), varying the
ratios of PfFKBP35:calcineurin and FK506:
PfFKBP35 to cover all those used in the three
studies. Since it gave the same effect as PFFKBP35,
the recombinant protein containing the PfFKBD
alone was used (Monaghan & Bell, 2005). The
PfFKBP35:calcineurin ratio was varied from 20:1
to 1000:1 in the absence of FK506 or with FK506
added at an equimolar or 10-fold higher concentra-
tion relative to PEFKBD (Fig. 1). As expected, calci-
neurin was inhibited more at higher PfFKBP35:
calcineurin ratios, though the degree of inhibition
was less than recorded previously. The presence of
FK506 had no effect, even at a 10-fold molar
excess (relative to PfFKBD). We therefore con-
cluded that the FK506-independent interaction of
PfFKBP35 with calcineurin is maintained over a
range of experimental conditions.

Antimalarial action of FK506 and Rap on different
blood stages

Different drugs active on asexual, blood-stage malar-
ial parasites often differ in the part of the intraery-
throcytic cycle that they most affect (LLe Manach
et al. 2013). For example, drugs that disrupt haemo-
globin digestion tend to affect mainly the trophozo-
ite stage, during which the rate of this process is
maximal, while those affecting cell division tend to
be most potent on schizonts. In an attempt to differ-
entiate the actions of FK506 and Rap, parasites were
age selected, grown to different stages, and tested for
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Fig. 2. Stage-dependent effects of FK506 and rapamycin on cultured blood-stage P. falciparum. Parasite cultures were age-
selected by sorbitol treatment and grown to early rings (Rg, 0—6 h p.i.), late rings/early trophozoites (R /T, 12-18 h p.i.),
mature trophozoites (T, 24-30 h p.i.) or schizonts (S, 3642 h p.i.). Median inhibitory concentrations (ICs() were
determined for cultures commencing at Rg (stage 1), Ry /T (stage 2), T (stage 3) and S (stage 4) over periods of 12, 24, 36
and 48 h using the pLDH method. ICsq values indicated in blue (FK506) and red (rapamycin) are averages of two
determinations, each titrated in duplicate. The arrows indicate the progression of untreated parasites in the same
experiment. ¥ ICsq values are higher than those from preceding time points, presumably because surviving parasites
multiplied on entering a second intra-erythrocytic cycle (dotted red line).

susceptibility by a standard, microplate-based anti-
malarial test after 12h (Fig. 2). Of four 12-h
stages, only stage 3, in which control parasites devel-
oped from trophozoite forms with an average age
around 27 h p.i. to early schizonts (~39 h p.i.), was
susceptible to FK506 with an ICsg of 30 um. All
other stages were resistant up to 128 um. When the
period was extended to 24, 36 or 48 h, the results
also indicated that parasites passing through the
trophozoite stage were most susceptible, though it
was necessary to account for multiplication of sur-
viving parasites during the assay and the fact that
the amount of LDH per parasite increases through
the cycle from ring to schizont. The results for
Rap were broadly very similar to those for FK506
except that Rap appeared to be slightly more
potent on average.

Kinetics of killing (or irreversible growth arrest) by
FK506 and Rap

Antimicrobial (including antimalarial) agents with
different mechanisms of action also commonly
differ in whether they are static or cidal and the
time taken for their effects to become irreversible.
FK506 and Rap (both at 30 um) were >90% cidal
(or at least had effects that could not be reversed
by washing the drug away and reculturing for 48
h) to trophozoites within 6-9 h (Fig. 3). The surviv-
ing parasites in the FK506 or Rap treated cultures
contained higher proportions of rings, indicating

https://doi.org/10.1017/50031182017000245 Published online by Cambridge University Press

that either there was some delay to development in
survivors or that trophozites were killed more
rapidly than rings. As with the stage-dependent sus-
ceptibility experiment, there was no clear difference
between FK506 and Rap except that the latter was
slightly more potent.

Antimalarial interactions of FK506 and Rap with
other compounds

Antimicrobial drugs are said to interact when the
potency of two or more drugs combined in an
assay of antimicrobial activity is either higher (syner-
gism) or lower (antagonism) than would be expected
from the individual activities simply added together
(additivity) (Greco et al. 1995; Bell, 2005). The
activity of a drug A is affected by drug B and/or
vice versa usually as a result of some connectivity
between the components and pathways of the cell
that are targetted by the drugs (Zimmermann et al.
2007). Drugs with similar mechanisms of action
should therefore have similar profiles of (pharmaco-
dynamic) interaction with other drugs, and drugs
with different mechanisms should have distinct
interaction profiles; this prediction has been
confirmed, for example in E. coli (Yeh et al. 2006).
We therefore compared the interactions of FK506
and Rap with other antimalarial compounds using
a chequerboard arrangement and a pLDH read-out
as described before (Gavigan et al. 2007). We have

previously used this method to demonstrate
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Fig. 3. Kinetics of killing or irreversible growth arrest of
trophozoite-stage P. falciparum by FK506 and rapamycin.
Cultures were age selected (24-30 h post-invasion) by
sorbitol treatment and exposed for 0, 3, 6 or 9 h to 30 um
FK506, rapamycin or to an equivalent concentration of
solvent as a control. Parasitized erythrocytes were then
washed free of drug and recultured for 48 h before
counting on Giemsa-stained thin smears. Experiments
were done in duplicate with >1000 erythrocytes counted
on each slide; vertical bars show SEM.

synergistic and antagonistic interactions among
various drugs, including CsA, quinolines and pep-
tidase inhibitors (Gavigan et al. 2001, 2007). The
compounds chosen included CsA, the standard anti-
malarial drugs artemisinin and chloroquine, the
Hsp90 inhibitor geldanamycin and the Hsp70
inhibitor pifithrin-u. We choose the last two
because both heat-shock proteins interact with
PfFKBP35 (Kumar et al. 2005; Leneghan & Bell,
2015) and there was a possibility that this might
lead to interactions of Hsp90 or Hsp70 inhibitors
with FK506 and/or Rap. Pifithrin-u4 had not previ-
ously been tested on Plasmodium but we found it
to be antimalarial in culture with an 1Csg of 15 um.

FK506 and Rap were first tested in combination
(Fig. 4 panels A—D). Based on the negligible devi-
ation (‘Loewe volume’ = —0-263: see Fig. 4 legend)
of the observed parasite growth inhibition from
that predicted for no interaction [LLoewe additivity
(Greco et al. 1995)] (Fig. 4D) it was clear that there
was no interaction between these two. By contrast,
some of the combinations of FK506 and Rap with
other compounds indicated substantial deviation
from additivity: for example, FK506 and geldana-
mycin (Loewe volume =—4-53, Fig. 4H) appeared
antagonistic. Looking at the pattern of interaction
(Loewe volume values, Table 1), the data for
FK506 and Rap were essentially indistinguishable:
both showed apparent antagonism with chloroquine,
geldanamycin, pifithrin-u and (to a lesser extent)
with CsA, and apparent (marginal) synergism with
artemisinin. By contrast, CsA had some apparent
interactions that were similar to those of FK506
and Rap and some that were different [e.g. (marginal)
antagonism to artemisinin]. This analysis does not
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determine the statistical significance of the deviation
from additivity, which is a separate (and highly spe-
cialized) analysis (Greco ef al. 1995) that we have not
attempted here. As a point of comparison, the com-
bination of CsA and chloroquine (Loewe volume =
—4:02 in the present study) was previously shown
to be antagonistic at a significance level of
P <0-001 using the same parasite line and experi-
mental conditions (Gavigan et al. 2007). Taken
together, the data indicate that the interactions of
FK506 and Rap with a limited number of antimalar-
ial compounds were very similar.

DISCUSSION

PfFKBP35 and its Plasmodium vivax homologue
PvFKBP35 have received attention as potential anti-
malarial drug targets, with reports of ligands with
potent antimalarial activity (Monaghan et al. 2005;
Harikishore et al. 2013a, b) and atomic-level struc-
tures in complex with ligands (Kotaka et al. 2008;
Alag et al. 2009; Bianchin et al. 2015). Our under-
standing of the function of the protein in the parasite
has however lagged behind. The gene is conserved
among several Plasmodium strains and species
whose genomes have been sequenced (www.plas-
modb.org) but we do not yet know the consequences
of genetic ablation. The function of PFFKBP35 can
be guessed at based on data from FKBPs of other
organisms (Bell et al. 2006) — we expect it to be
involved in folding, transport and/or regulation of
other proteins and perhaps in the response to stresses
such as the temperature shocks encountered on
transfer between hosts (Acharya et al. 2007). Its
interacting partner proteins are now known to
include  heat-shock  proteins and  histones
(Leneghan & Bell, 2015) but the physiological/bio-
chemical consequences of these molecular interac-
tions have not yet been extensively investigated. In
this paper, we have shown that the pharmacody-
namic actions of two PfFKBP35 ligands, FK506
and Rap, were essentially indistinguishable. They
had similar stage-dependent effects (Fig. 2), kinetics
of killing or irreversible growth arrest (Fig. 3), and
interaction with other antimalarial agents (Fig. 4,
Table 1). Given that the downstream effects of
FKBP-FK506 and FKBP-Rap complexes in other
systems are utterly different, our data are consistent
with the idea that it is the action of these ligands on
PfFKBP35 itself that is likely to be relevant to anti-
malarial activity. To be confident of this conclusion
however it will be necessary to provide further evi-
dence, such as large-scale comparisons of the phar-
macodynamic properties of FK506 and Rap with
numerous other inhibitors or analysis of the pheno-
types of transgenic PFFKBP35 knock-out and/or
knock-down parasites.

An alternative hypothesis for the antimalarial
activity of FK506 suggests that (by analogy with
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Fig. 4. Examples of antimalarial drug interaction analysis using the Horizon Chalice™ Analyzer software. (A-D)
combination of FK506 and Rap; E-H: combination of FK506 and geldanamycin. (A, E) Isobolograms showing 50%
inhibitory concentrations (ICsg) of the two compounds alone and in the presence of the other. Each compound was titrated
in 8 2-fold steps alone and in combination. Susceptibility was measured on parasite line 3D7 after 72 h using the pLDH
method and at least three independent determinations were done. Concentrations are shown on a relative scale where 1Cs
=1. Points around the diagonal line are suggestive of additivity; points below left suggest synergism, and above right,
antagonism. (B, F) ‘Observed’ inhibition of parasite growth (%) by each compound. For the purposes of the analysis,
concentrations are shown on a relative scale (starting at around 4 X ICs). (C, G) ‘Expected’ inhibition of parasite growth
by the various combinations based on inhibition determined using the compounds alone and assuming no interaction (i.e.
Loewe additivity). (D, H) ‘Deviation’ of the observed inhibition values from those expected from the Loewe additivity
model. Positive values (blue) indicate that inhibition was more than expected and negative values (purple) less than
expected. The volume (Vol.) is a measure of the overall deviation of the data from those expected under Loewe additivity: a

large positive value indicates synergism, a large negative value indicates antagonism, and values close to 0 indicate

additivity.

its immunosuppressive and certain other pharmaco-
logical actions) the drug works via inhibition (in a
complex with PFFKBP35) of the parasite calcineurin
(Bell et al. 2006). One observation that appears to
support this notion is that the patterns of gene tran-
scription in parasites exposed to FK506 and CsA
(also, in complex with cyclophilin, a known calci-
neurin inhibitor) were virtually identical (Kotaka
et al. 2008). Since the only known common target
of the chemically dissimilar FK506 and CsA is calci-
neurin, this finding suggests a role for calcineurin in
global gene regulation in parasites. It does not
however show that the effect on this regulatory pro-
gramme is responsible for the lethality of FK506
and/or CsA. Moreover, the experiment was per-
formed in schizonts, which in our study were not
the stage most susceptible to the action of FK506
(Fig. 2). Recently published studies by Paul et al.
(2015) and Philip & Waters (2015) provide evidence
that calcineurin mediates attachment of Plasmodium
merozoites to host erythrocytes, in addition to
having other roles across the life cycle. These

findings suggest that an inhibitor targetting
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calcineurin should be most effective when applied
at the very end of the intraerythrocytic cycle, in con-
trast to what was found with FK506 in this study, in
the study of Kotaka et al. (2008) and by Paul et al.
(2015).

Also arguing against the calcineurin hypothesis
was the observation that PFFKBP35 or its FKBD
alone could bind to calcineurin in the absence of
FK506 in wvitro (Monaghan et al. 2005; Kumar
et al. 2005). In view of the conflicting result reported
by Yoon et al. (2007), we explored the effect of
different experimental conditions on this outcome.
FK506-independent
PfFKBD was consistent across a range of reagent
ratios (Fig. 1). The reason for this difference from
human FKBP12, which requires FK506 for calci-
neurin binding, may be related to one or more
regions in which the two FKBD sequences diverge
substantially; one possibility is that the N-terminal

calcineurin inhibition by

‘extension’ of PFTFKBP35 is somehow responsible.
Whether this interaction is relevant in intact para-
sites 1s not known, but our observations make it
hard to imagine a scenario in which FK506 targets
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Table 1. Interactions between FK506, Rap and
CsA based on analysis using the Horizon Chalice™
Analyzer software (see Fig. 4)

‘Volume’ of deviation

from additivity” FK506 Rap CsA
Rap —0-263

CsA -2-85 -2-51
Artemisinin 1-22 1-84 -1-31
Chloroquine —4-63 —3-58 —4-02
Geldanamycin —4-53 -5-07 -5-27
Pifithrin-u -3-34 -3-82 —4-24

? Positive values indicate a positive interaction (syner-
gism) and negative values a negative interaction (antagon-
ism). Larger ‘volumes’ indicate greater deviation from
additivity, but the software does not test the statistical
significance of the deviation.

Plasmodium calcineurin to produce its antimalarial
effect.

Yet, another argument against calcineurin and in
favour of PfFKBP35 as the target of the FKBP
ligands is that non-immunosuppressive, non-calci-
neurin binding congeners of FK506 retained anti-
malarial activity (Monaghan et al. 2005). Non-
macrolactone PfFKBP35 ligands designed using
structure-aided methods have achieved even
greater antimalarial potency (Harikishore et al.
2013a, b). These observations suggest that designing
or discovering potent PFFKBP35 ligands that have
low binding to mammalian FKBPs (Blackburn &
Walkinshaw, 2011; Bianchin et al. 2016) may be a
productive approach to antimalarial chemotherapy.
Before devoting large resources to this enterprise,
it would however be wise to obtain genetic evidence
of the validity of PFEFKBP35 as a therapeutic target.
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