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Energetic scales in a bluff body shear layer
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A detailed experimental campaign into separated shear layers stemming from
rectangular sections (having aspect ratios of 5 : 1, 3 : 1 and 1 : 1) was carried out
at Reynolds numbers range between 1.34 × 104 and 1.18 × 105 based on the body
thickness. Particle image velocimetry was used to locate the highest concentration
of fluctuations in the velocity field and subsequent hot-wire measurements at those
locations provided adequate spectral resolution to follow the evolution of various
instabilities that are active within the separated shear layer. Similar to recent findings
by this same group, the shear layer behaviour is observed to contain a combination
of Reynolds invariant characteristics, including its time-averaged position, while other
properties demonstrate clear Reynolds number dependency, including the spatial
amplification of turbulent kinetic energy. Additional results here show that the ratio
of side lengths of the body is a key parameter in revealing these effects. One reason
for this is the level of coupling between modes of instability, which is evaluated
using two-point correlation methods. These findings indicate that the separated shear
layer on a bluff body is highly nonlinear. A specific set of scales responsible for
these unique behaviours is identified and discussed, along with their relationship to
other scales in the flow.

Key words: shear layers, transition to turbulence, vortex shedding

1. Introduction
Transitioning and turbulent flows often use the idea of characteristic scales to

approach the physical mechanisms dominating the flow. For flow around a circular
prism, the drag crisis has been analysed at great length from the point of view of
the local boundary layer behaviour, e.g. the boundary layer thickness, δ (Achenbach
1971). For Strouhal number formulations in the wake, it was suggested by Roshko
(1954) to use the wake width and velocity at separation instead of the body diameter
and free-stream velocity as a way to universalize Strouhal numbers for various bluff
body geometries. In these instances, the scale(s) of interest are directly tied to the
motivating physical changes in the flow. Others, including Unal & Rockwell (1988)
simultaneously studied two scales where one seemingly dominates the other, noting
that the respective size and authority over one another introduce nonlinearities that
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I II III

FIGURE 1. Schematic demonstrating three flow regimes along the side of a rectangular
section. (I) Initial development, (II) nonlinear interactions and (III) wake influenced. Flow
is left to right.

encumber any attempts to reduce the problem to a single scale. They further pointed
out that a physical interpretation of these multiscale flows is necessary to appreciate
the fluid dynamics in full detail. Of particular interest here are flows where multiple
scaling arguments may be appropriate to describe the same flow field, for example;
where a boundary layer and a wake region are in close proximity behind a bluff
body. The adjacent shear layer could then be described in terms of boundary layer
thicknesses, or in wake diameters. The question then becomes, which set of scales
most appropriately represents the responsible physical mechanisms. One archetype
geometry that illustrates this behaviour is the rectangular prism with a varying side
length ratio.

Rectangular prisms represent a subset of bluff body geometry exhibiting sharp
corners. The corners introduce surface discontinuities and force separation regardless
of the local pressure gradients. Figure 1 highlights the main flow regimes that are
typically analysed using individual scales in the flow field around a two-dimensional
rectangular body of arbitrary length. In order to outline these physical scales involved
in the bluff body flow field, a brief description of the velocity and accompanying
vorticity fields follows. For a steady irrotational approaching flow, one observes
the development of a laminar boundary layer on the front face. Its properties can
be quantified through the Thwaites method as carried out by Sigurdson (1986).
Here, vorticity is generated instantaneously inside the boundary layer as the pressure
gradient accelerates the flow toward the corner (Morton 1984). At the leading edge
corner, the flow experiences laminar separation and the newly separated boundary
layer becomes a separated shear layer. This separated shear layer (referred to simply
as the shear layer) has a mean velocity profile containing an inflection point
suggesting a vulnerability to the Kelvin–Helmholtz (KH) instability, where small
perturbations grow in an unbounded manner, (Schmid & Henningson 2001). While
the generation of vorticity is instantaneous on the front face, it is the shear layer
that governs the rate of vorticity diffusion, which can be described by the vorticity
transport equation. If the body is long enough in the streamwise direction, the shear
layer eventually reattaches to the body surface as it undergoes turbulent transition and
forms a secondary boundary layer downstream of the reattachment point. Ultimately,
the flow passes beyond the trailing edge yielding another shear layer in the near wake
region. This second shear layer forms one half of a wake profile, where the second
half comes from the opposite side of the body.

In terms of vortex development, there are two places where coherent structures are
likely to be detected and thus amenable to scaling analysis. The first are the KH
vortical structures, which are born out of the roll up of the separated shear layer,
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with a frequency fKH . Region I in figure 1 highlights the initial development region
where the growth rate of a shear layer perturbation may be considered as a linear
mechanism. Beyond that region the growth rate becomes nonlinear and the supply of
circulation stemming from the front face is periodically severed as the shear layer rolls
up onto itself. It is at this point, in Region II, that multiple coherent structures with
similarly signed vorticity are able to interact with one another via pairing as they are
convected downstream. Region III represents an area where the dominant structures
found are wake vortices, formed due to the communication across the centreline of
the body with a second shear layer of oppositely signed vorticity (Matsumoto 1999).
The resulting vortical structures are referred to here as von Kármán (VK) vortices.
Depending on the ratio of side lengths of the body these three regions are in varying
proximity to each other, exhibiting differing levels of influence over one another. The
resulting interactions and energy transfers between these two vortical systems ( fVK and
fKH) under a changing Reynolds number is a primary focus in this work.

As individual flow fields, each of these regimes has received significant attention.
Planar mixing layers, perhaps most famously documented by Brown & Roshko (1974),
are attractive because of their composition of coherent motion at both large and small
scales. The quantification of the spatial growth of the mixing layer showed two
distinct rates according to Winant & Browand (1974). Depending on whether or not
the shear layer was laminar or turbulent, the growth rates via momentum thickness,
obeyed a logarithmic or linear trend, respectively. Nevertheless, the length scale of
choice for mixing layers is typically that describing the thickness of the sheared
region; a momentum thickness or vorticity thickness. In the event of recirculating
flow, the definition written in Fiedler (1991) accounts for the additional thickness of
the layer, a point that will be addressed in subsequent sections. Predictions about the
properties of the most unstable waves within the mixing layer using the analytical
treatments of Michalke (1965) and later Monkewitz (1982) have shown to give
reliable estimations for plane mixing layer behaviour in laminar and surprisingly,
some turbulent mixing layers. However, as emphasized in Ho & Huerre (1984), a
large disparity between large and small scales within the planar mixing layer may be
one reason why a linear assumption is able to remain competitive in a nonlinear flow.
In either case, the compatibility of linear theory and experimental data was described
with a velocity ratio across the shear layer rather than a free-stream Reynolds number
formulation. This is a logical choice when considering the inviscid mechanisms
associated with the onset of turbulence within the mixing layer.

Under certain settings, such as a significant afterbody, and/or a favourable local
pressure gradient, the separated shear layer will reattach to the surface of the body.
The nature of the shear layer bounding the recirculation region has been studied by
many, including Castro & Haque (1987) who showed that the reattaching shear layer
from a bluff body is unique, demonstrating high initial growth rates and sustained
accumulation of turbulent kinetic energy. In that work, the primary scale of choice
was that of the recirculation bubble’s length rather than a mixing layer thickness as
in the planar mixing layer scenario. More recently, under atmospheric boundary layer
conditions, Akon & Kopp (2018) attempted to characterize the recirculation bubble
over a bluff body by collapsing a series of normal and Reynolds stress profiles using
a variety of scaling lengths. Their conclusions found that those extracted from the
bubble’s topology, such at its wall-normal thickness, yielded the best collapse of the
data.

The bubble thickness and reattachment position of the recirculation region help
define the level of curvature sustained by the shear layer. The curvature itself was
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observed by Shimada & Ishihara (2002) to increase with decreasing side length ratios,
another point to be considered. In addition, changing the angle of attack effectively
changes the pressure gradient at separation, which also forces changes in the level
of curvature exhibited by the shear layer. Schewe (2013) found that under increasing
angles of attack, the shear layer on the pressure side of a 5 : 1 section reattached
sooner than its orthogonal baseline case. The reduced mean reattachment length
further responded nonlinearly to an increasing Reynolds number, suggesting that the
reattachment, and subsequently the mean lift coefficient, is a nonlinear function of
both the pressure gradient at separation as well as the free-stream Reynolds number.

Many of the published findings around bluff body shear layers exercise unique test
parameters and/or focus their analyses in various directions within the flow, although
there have also been standardized attempts to understand and describe these shear
flows. An international benchmark study was launched at the Sixth International
Colloquium on Bluff Body Aerodynamics and Applications in an effort to deepen
the knowledge around many of the phenomena related to a rectangular section. The
study focused on the fundamentals of the turbulent flow and aerodynamic loading
of a two-dimensional (2-D) rectangle having an in-wind length to depth ratio (i.e.
side aspect ratio) of 5 : 1 both experimentally as well as numerically (Bartoli et al.
2008). A successful benchmark campaign would help to reconcile many of the scaling
scenarios described above. Yet while more than a dozen investigations surrounding
this benchmark surfaced in the following three years, it appears that only mean
flow statistics show encouraging levels of agreement among data sets. Unsteady
measurements, including surface pressures, showed wide levels of disparity both
within the numerical community as well as within the experimental groups (Bruno,
Salvetti & Ricciardelli 2014). Moreover, the self-generated unsteadiness within the
bluff body shear layer continues to confound fluid dynamicists after several decades
of study, which is strong evidence of the complexity associated with describing the
flow field.

Perhaps one such reason for this complexity is the close proximity of multiple
sources of instability. To further appreciate this notion, the physical signatures of
various hydrodynamic instabilities are briefly reiterated here. In the event that the
shear layer instability is purely convective, its evolution may only be detected
downstream of an origin. The origin at present is deemed to be the leading edge
corner of the section. On the other hand, the global nature of wake instabilities
broadcasts its presence throughout the domain, both within the wake, as well as
upstream. Distinctions between these two types of instability can be a valuable tool
for understanding and scaling flow fields.

Practically speaking, one may probe a velocity field and quickly distinguish
between these two types of instabilities. A convective instability will only be
detected downstream of its source, making the source relatively easy to define while
global instabilities are detectable everywhere in the velocity field, both upstream and
downstream. Thus, its origin is more experimentally obscure. For example, many
planar mixing layers have been shown to match well with a spatial treatment and
yield a final result of a convective instability (Monkewitz 1982). Wake flows, such
as a Gaussian profile for parallel flows, as discussed in Hultgren & Aggarwal (1987),
have been shown to be absolutely unstable, while globally unstable behaviour is
reserved for spatially developing profiles (Huerre & Monkewitz 1990). In both of
these instances, the signature of vortex shedding in the wake can be detected by
probing the velocity field upstream or downstream of the body itself. An interesting
situation arises when a convective disturbance is nearby a global one, such as along

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.480


Energetic scales in a bluff body shear layer 547

a rectangular section. As will be shown in subsequent sections, the signature from
the KH instability is detected only after some finite distance downstream of the
leading edge corner, along the shear layer trajectory. In contrast, the wake frequency
is detected at all locations of interest and exhibits globally unstable behaviour. The
shear layer’s power spectrum then appears bimodal, containing competing levels
of influence from both instabilities, KH and VK. The former is associated with
scales much smaller than the height of the section, while the latter is of a similar
order to the section height. Changing the Reynolds number and/or spatial proximity
between leading and trailing edges through the modification of side lengths are thus
mechanisms for evaluating the relative influence of either instability mechanism.

Investigating the individual contributions from specific large and small scales
is similar to other available literature in the community. Targeting homogeneous
turbulence, Carter & Coletti (2018) experimentally investigated the correlation of the
smaller scales with larger velocity gradients and found that a positive correlation
yielded the result that small scales, associated with dissipation, are not entirely
independent of the largest eddies in the flow, challenging the traditional Kolmogorov
turbulence hypothesis of a universal equilibrium range. Similar conclusions were
found in shear flows. Bandyopadhyay & Hussain (1984) investigated the interactions
between two broadband ranges of high and low frequencies in turbulent mixing layers
using a single hot-wire probe. Through extensive autocorrelations they showed that
smaller scales became most active when the velocity related to the larger scales
changes sign. Conversely, when the large scales reach their peak amplitudes the
smaller scales were less apparent, demonstrating a convincing phase dependency
between scales. In wall-bounded flows, Hutchins & Marusic (2007) found a bimodal
spectrum by probing a turbulent boundary layer with a hot-wire. They showed that the
(higher frequency) inner mode scaled with viscous units while the (lower frequency)
outer mode was more appropriately described using the boundary layer thickness. One
primary finding from their work was that the larger scales modulated the amplitude
of smaller-scale fluctuations. Amplitude modulation has since been extended to
increasingly higher Reynolds numbers to describe the relationship between modes
in turbulent boundary layers (Mathis, Hutchins & Marusic 2009). The present study
extends the approach of these earlier cases, although external flows around bluff
bodies are neither homogeneous nor entirely wall-bounded. Furthermore, it will be
shown that the shear layer experiences turbulent transition that extends a significant
distance downstream, consistently operating on the budgets of turbulent kinetic energy
and vorticity. Thus, the flow does not yet have access to the necessary set of scaling
tools (Kolmogorov scales for homogeneous turbulence, viscous units in boundary
layers, etc.) to compare to the available literature. By combining relevant queries,
methods and metrics from various bodies of literature it is our goal to explore,
in detail, the unsteady flow field around a rectangular section and elucidate the
fundamental fluid physics associated with this ubiquitous geometry.

In the following sections, the findings from this investigation are explored. Details
of the experimental set-up are given in § 2. An uncertainty analysis is included in § 3
to address the accuracy of the experimental methods. Main results are presented and
discussed in § 4 and subsequent conclusions are offered in § 5.

2. Experimental set-up

A modular rectangular prism was fabricated at Rensselaer Polytechnic Institute
(RPI). The modules themselves were machined from aluminium square tubes, with
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FIGURE 2. Side view of wind tunnel models showing the individually acquired FOVs for
each model (from left to right, 5 : 1, 3 : 1 and 1 : 1). Flow is left to right. Origin exists at
the lower left corner of each section.

final dimensions of L= h= 50.8 mm and a span of w= 508 mm. Five modules were
then aligned parallel to one another and bolted together to allow for configurations
including L/h = 1 : 1, 3 : 1 and 5 : 1. However, the span of the assembly remained
constant. To ensure adequate surface quality and integrity of the corners, the
assembled model was machined once more to produce satisfactory surface finish
and reduce any discontinuities between modules. The model assembly was mounted
on a circular shaft between end plates that allowed the model to change its inclination
angle relative to the oncoming wind. A schematic of the models surface geometry
shown in figure 2. The end plates extended approximately 14h upstream and 20h
downstream of the model’s rotational axis. The distance between the leading/trailing
edges and the leading/trailing edges of the end plates then depended on the model’s
configuration. The test rig, including the model along with end plates, was installed
in the Large Subsonic Wind Tunnel on at RPI’s Center for Flow Physics and Control
(CeFPaC).

The wind tunnel is a blow-down type with two centrifugal fans powered by
a 100 hp motor. A large settling chamber houses a honeycomb and a series of
screens with decreasing grid size, which act to break up larger turbulent eddies and
distribute the flow uniformly before the flow is accelerated through the contraction
into the test section. The contraction has an area reduction ratio of 9 : 1 with the
test section having dimensions of height, width and length of 0.8 m, 0.8 m and
5.0 m, respectively, with a maximum wind speed of 50 m s−1. In the empty tunnel
the uniformity of the mean flow across the middle 0.5 m of the tunnel is better than
0.1 %, with lower velocities in regions close to the walls. Over the range of wind
speeds used for testing, the longitudinal turbulence intensity was measured to be
less than 0.25 %. Tests were carried out at a range of Reynolds numbers varying
between 1.34 × 104 and 1.18 × 105 by changing the speeds, U∞. The Reynolds
number in this case is based on the constant dimension of the model’s height, the
free-stream velocity and the kinematic viscosity of the air in the tunnel, Reh=U∞h/ν.
Components of the velocity in the streamwise and vertical direction are described
using U and V , respectively. A standard Reynolds decomposition is used to calculate
fluctuating quantities such as the streamwise fluctuations, u′2 = U2 − U2, where U
is the mean value of the signal. Fluctuations in the vertical direction are referenced
with a similar expression using the variable v′.

Figure 2 shows the test set-up including the coordinate system as well as the
characteristic dimensions of the model. In order to support a high level of spatial
accuracy using particle image velocimetery (PIV), a grid of fields of view (FOVs)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.480


Energetic scales in a bluff body shear layer 549

Aspect ratio FOVs Reynolds number Tunnel speed dt
L/h (−) U∞h/ν (m s−1) (ms)

5 28 1.34× 104 4 26.0
3 16 3.04× 104 9 11.7
1 6 5.04× 104 15 7.00

7.06× 104 21 5.00
9.08× 104 27 3.85
1.18× 105 35 3.00

TABLE 1. Summary of the parameters explored.

was individually acquired and then stitched together in post-processing to construct a
high resolution picture of time-averaged flow parameters. Depending on the model’s
aspect ratio, anywhere from 6 to 28 FOVs were recorded to reconstruct the flow fields.
Each FOV was investigated using 2C-2 Camera PIV. The cameras were positioned
next to one another. Both cameras were LaVision Imager LX cameras, each having
2 MPx resolution and were calibrated using the same target with 10 % of their images
overlapping. The flow was illuminated with a New Wave Solo PIV 120 mJ pulse−1

per frame Nd-YAG (532 µm) dual-head laser. The timing of the system allowed
sampling at approximately 15 Hz and in all cases convergence of turbulent statistics
was satisfied by acquiring 1000 image pairs. Vector fields were calculated using
sequential cross-correlations of the image pairs. A multipass processing algorithm was
implemented through LaVision software, where the first pass used a 64 px × 64 px
interrogation window, while the secondary and final passes used a 32 px × 32 px,
each with a 50 % overlap. The resulting vector fields had a spatial resolution of 5.45
vectors per millimetre. This meant that each FOV corresponded to a physical domain
of 0.35h× 0.88h or a total of 279.4 vectors per body height.

Additional point measurements were carried out using two single hot-wire probes
from Dantec Dynamics A/S, type 55P11, sampled using an AN-1005 Anemometry
System from A.A. Labs Ltd. Each hot-wire was individually calibrated over the same
range of velocities, approximately 1–40 m s−1, and mounted on its own traverse
system such that the two probes existed on the same streamwise plane. The orientation
of the wires with respect to the model was such that the wires axis was parallel to
the leading edge corner of the model. This set-up ensured that the probe was equally
sensitive to both vertical and streamwise velocities while also allowing the probe
to approach the leading edge corner as close as possible without making contact.
The traverses themselves had a repeatability of 0.005 mm in both streamwise and
vertical coordinates. The probes were simultaneously sampled at 40 kHz for 30 s
and were placed at locations determined by the results of the PIV. Special care was
taken to ensure that no more than 0.2 % of the data exceeded the calibration range
of the wires. The procedure to locate the upstream hot-wire involved identifying
the origin (at the leading edge corner) and using the topology of the reconstructed
PIV field to get a series of target location in the coordinates of the PIV. A linear
transformation converted the target locations to physical distances that were digitally
controlled using the traverses. The only change to the wind tunnel set-up was a
modified floor in the test section beneath the model that contained a narrow slot
through which the hot-wire probe protruded. A summary of the parameters explored
and their dimensional quantities is given in table 1.
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3. Uncertainties

Inherent to the analysis of any experiment is the notion of random errors occurring
in the measurement process and their propagation into a final result. This work focuses
specifically on flows that typically challenge flow measurement techniques and with
that in mind, the major sources of error are identified and quantified here. Primary
focus is devoted toward the PIV measurements, which have received significant
attention recently in regards to uncertainty quantification (UQ) (Christensen & Scarano
2015), with additional consideration towards the hot-wire measurements that follow.
PIV is non-invasive in that there is no blockage effect from the measurement device,
an attractive feature for many experimental set-ups. However, as shown in the database
from Neal et al. (2015), standard laboratory PIV systems typically overestimate the
fluctuation intensity of unsteady shear flows. If the error is truly random, that is to say
the bias errors do not contribute to the total measurement error, then the uncertainty
of the mean asymptotes toward zero with an infinitely large sample size proportional
to σu/

√
N, where σu is the standard deviation of the sample set of u measurements

and N is the number of independent samples. The variable U is traditionally given to
describe the uncertainty, for example, the uncertainty of the mean streamwise velocity,
UU. Avoiding confusion with the velocity field definitions, the notation ζ U is used to
describe the same parameter here. The symbol ζ represents the uncertainty variable.

A single FOV is chosen to represent the uncertainty of the results presented
herein. Table 10 in Neal et al. (2015) displays the relative error of traditional PIV
systems in various locations traversing away from a laminar/turbulent jet. In the
region where vortex roll up occurs the error magnitude of the normal stresses was
nearly 4.1 %. Beyond that point, in a fully developed turbulent region, the error rose
slightly to just under 5 %. These results suggest that the fluctuations associated with
vortex roll up, in combination with substantial mean shear, determine a significant
portion of the relative error. As such, a similar location in the current study should
give a conservative estimate of the PIV uncertainty data. The analogous location
in the current study is the area where the KH vortices are first observed, or the
FOV nearest the leading edge corner. Furthermore, as will be shown later, the peak
turbulent fluctuations move upstream with Reynolds number. Thus, UQ is considered
for each of the normal stresses at the highest Reynolds number tested at the leading
edge corner.

Following the derivations in Sciacchitano & Wieneke (2016), a good estimate for
the uncertainty for the normal streamwise stress fields is given as

ζ u′u′ = u′u′
√

2
N
. (3.1)

A similar expression to (3.1) can also be written for the normal stresses in the
perpendicular direction. To demonstrate the magnitude of errors contributing to
the analysis herein, figure 3 is presented. Figures 3(a) and 3(b) present the scalar
fields of the stresses u′u′ and v′v′, respectively, where figures 3(c) and 3(d) are
the results of the corresponding versions of (3.1). Figures 3(c) and 3(d) show that
the uncertainty of the stress field scales with the magnitude of the signal, with the
maximum uncertainty level occurring approximately at the same location as the peak
stress. For both u′u′ and v′v′ components, the uncertainty varies between 1 % and
4 % of the corresponding stress value based on a single standard deviation. As such,
constructing a 95 % confidence interval at each point necessitates a factor 2 applied
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FIGURE 3. (Colour online) Uncertainty calculations. (a,b) Normal stresses, (c,d)
uncertainties of normal stresses. All fields are normalized by U2

∞. Reh = 1.18× 105.

to the uncertainties. In the following sections, uncertainty bands of a 95 % confidence
interval are included where relevant.

The second source of error considered relates to the positions of the hot-wire
probes. As will be discussed in subsequent sections, various hot-wire measurements
were carried out using specific points observed using the PIV data. There is some
level of human error in the relative positions of the origins between these two set-ups.
The origin according to PIV measurements is defined optically with a resolution of
the order of a pixel. Positional errors of the origin are assumed to be negligible.
On the other hand, the origin of the hot-wire traverse system was defined manually,
by eye. This process subjects the hot-wire position to a vertical bias of the order
of 0.1 mm. In the regions close to the leading edge corner, this bias may be of a
similar order of the shear layer thickness. In those cases, the probe bias means that
the probe is located on the high speed side of the shear layer (e.g. outside of any
recirculation region), and resulting spectral amplitudes likely contain some attenuation
as compared to those measured precisely on the centre of the shear layer. However,
the relative changes observed along the arclength of the shear layer are significant
enough that it is believed that this bias does not significantly change the overall
narrative of the shear layers’ behaviour.

4. Results

Before diving into the detailed physics of the flow around these bluff sections,
preliminary results are presented to show the major similarities and differences
between unattached and reattaching shear layers. Figure 4 shows the time-averaged
streamlines (shown on upper surface) as well as the vorticity contours (shown on
lower surface) on the 5 : 1, 3 : 1 and 1 : 1 sections, respectively. For all sections, the
vorticity distributions are concentrated at the leading edge and quickly diffuse into
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FIGURE 4. (Colour online) Time-averaged streamlines (top) and vorticity contours
(bottom) for (a) 5 : 1 section, and (b) 3 : 1 section and (c) 1 : 1. Reh = 3.04× 104.

wider bands, which eventually approach the noise floor of the PIV system. The
vorticity flux at the leading edge corner is similar for all sections, due mostly to the
fact that the front face geometry is unchanged and so time-averaged circulation is
generated almost exactly the same for each section. However, the intricate nature of
the diffusion of vorticity helps differentiate between sections. For example, examining
the trailing edge corner for all three sections quickly shows which of those experience
mean reattachment. Both the 3 : 1 and 1 : 1 sections contain a small but distinct region
of negative vorticity just upwind of the trailing edge. This results from flow near the
base of the model separating off the trailing edge corner before flowing upstream
as depicted in the recirculating streamlines. However, on the 5 : 1 section, no such
region exists. On the contrary, if the saturation levels are reduced one even finds
that there is a definitive region of positive vorticity in the analogous location that
weakly increases in the streamwise direction indicating flow is attached as streamlines
suggest.

Flow reattachment is seen through streamlines impinging on the surface of the
5 : 1 section at approximately x/h = 4.4, or just upstream of the trailing edge. This
reattachment point defines the downstream limit of a finite-sized recirculation bubble
on the surface. The topology of the recirculation region, similar to figure 4(a)
has been one way of comparing data sets among investigators for 5 : 1 sections,
especially in the numerical community. Table 10 in Bruno et al. (2014) compiles an
ensemble average of numerical data for similar Reynolds numbers to those tested
here. There, the average reattachment is at x/h = 4.7, which is in fair agreement
with the current experiments. Furthermore, the centre of recirculation is observed
here at (x/h, y/h) = (2.51, −0.36), which is well within one standard deviation of
the ensemble average of those data, (x/h, y/h) = (2.27, −0.304). Conversely, the
3 : 1 and 1 : 1 sections have no such reattachment point as observed by streamlines
bypassing the trailing edge and entering the wake. A lack of reattachment means that
any shedding in the wake directly affects the instantaneous streamlines as well as the
vorticity band in the lateral direction giving the square’s shear layer the notorious
flapping motion. While the 5 : 1 section still has trailing edge separation, the shear
layer bounding the recirculation bubble is less affected by the shedding in the wake.
Figure 4 shows that the shear layer and wake region are likely less coupled on the
5 : 1 section than on its bluffer counterparts. By first observing shear layer behaviour
on the 5 : 1 section, the influence of the wake can be further understood and applied
to more complicated flow topologies like those on the 3 : 1 and the 1 : 1 sections, in
particular.
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The rapid diffusion and dissipation of the vorticity first observed in figure 4
is concurrent with an equally rapid accumulation of unsteadiness. This is seen
quantitatively in figure 5(a) using the downstream evolution of the integrated spanwise
vorticity. The spanwise vorticity is integrated in the wall-normal direction in order
to show the total amount at a given streamwise location. This integral could also be
thought of as the circulation per unit width Γ ′. For all three bodies, the integrated
quantity is a maximum near the upstream corner, with the square having slightly
higher levels. Farther along the body Γ ′ decays until a distance equal to the body
height, x/h= 1, where the curves appear to collapse onto one another. The additional
integrated vorticity for the 1 : 1 section is due to the lack of reattachment. For infinitely
long sections, vorticity generation and the flux passing the leading edge corner is
a steady process. Increasingly bluff sections, with shedding in the wake, introduce
periodic accelerations of the shear layer at the leading edge corner. Although the
diffusion process of vorticity is much slower than its generation, the decaying nature
of vorticity makes it difficult to track over long distances. Vorticity is generated in
the presence of a wall, so it is natural to expect a separated flow, such as the one
considered here, to diffuse the accumulated amount. The current PIV measurements
maintain a relatively high level of accuracy at small scales (i.e. high spatial resolution)
and yet the discretized nature of the data introduces numerical error into the vorticity
fields and eventually the signal is lost to noise. Therefore, it is more instructive to
inspect two-dimensional turbulent kinetic energy (TKE) when analysing the shear
layer’s behaviour. Figure 5(b) shows a similar integration scheme applied to the
TKE,

Ẽ= 1
2(u
′u′ + v′v′), (4.1)

where u′ and v′ correspond to the fluctuating components of velocity in x and y
directions, respectively. While vorticity in this flow field is generated under a non-
uniform pressure gradient along the front face, Ẽ is generated anywhere there are
fluctuations in the presence of a mean velocity gradient, regardless of the proximity
of a wall surface. This can be shown by inspecting the production, P , of the turbulent
kinetic energy transport equation for an incompressible flow in two dimensions,

−P = u′u′
∂U
∂x
+ u′v′

(
∂U
∂y
+ ∂V
∂x

)
+ v′v′ ∂V

∂y
, (4.2)

where the sum of the four terms is total turbulent production, and is everywhere
greater than zero.

Equation (4.2) clearly shows that as long as there is mean shear sustained along
the body in addition to some level of fluctuations, turbulent kinetic energy will
be produced along the entire length of the shear layer. Figure 5(b) verifies this
by showing increasing levels of Ẽ for each section, indicating a high level of Ẽ
production. The growth rate of Ẽ for the 1 : 1 square is significantly higher than
the longer sections, indicating a much more unsteady flow field. The reasons for
this increased unsteadiness are similar to the increased levels of vorticity generation
discussed earlier. The steep decline in integrated vorticity concurrent with increasing
levels of Ẽ points to the rapid conversion of rotational energy housed within the front
face boundary layer toward unsteadiness in the shear layer. In recognition of this, as
well as an improved amplitude and signal to noise ratio using Ẽ, the remainder of
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FIGURE 5. Downstream evolution of (a) vertically averaged spanwise vorticity, and (b)
vertically averaged turbulent kinetic energy. Every fourth point is plotted.

this study makes use of turbulent kinetic energy in order to track the behaviour of
the shear layer, especially in areas near the leading edge corner.

The distributions of velocity components, along with distributions of vorticity are
shown in figures 6(a)–6(c), respectively, for the 5 : 1 section. Both mean shear and
unsteadiness support the production of turbulent kinetic energy. The velocity profiles
near the leading edge in figure 6(a) exhibit high velocity gradients near the wall
close to the leading edge corner. The location of the inflection point coincides with
the peaks of the spanwise vorticity in figure 6(b). Moreover, the vorticity profiles
indicate high concentrations near the corner, diffusing rapidly farther downstream.
Appealing to the stresses (figure 6c), the growth of Ẽ (shown previously in figure 5b)
is evident, whereas the vorticity is quick to diffuse and dissipate. The most drastic
accumulation of normal stresses appears to occur near the leading edge corner
(between 0 < x/h < 0.5 in figure 6c), consistent with the fact that the source of
the fluctuations is the corner itself. Once the peaks are observed, the amplitudes
increase only slightly between subsequent profiles, yet the wall-normal extent of
the distributions expands continuously. Reasons for this expansion in wall-normal
unsteadiness, as will be addressed in detail in later sections, relate to the entrainment
of the shear layer. Additional stress magnitudes point toward an unsteady shear layer
that consumes ambient fluid from both sides of the shear layer which erodes the
steep gradients seen in the mean velocity profiles as well as stresses. Distributions of
u′u′ are everywhere higher than v′v′, although the location of their maximum values
align well with each other. The Reynolds shear stress, u′v′, which is not shown here,
has magnitudes significantly less than the normal stress counterparts.

The role of the Reynolds stresses in turbulent production has been shown to
dominate over the normal stresses in the production of turbulent energy, most clearly
demonstrated by Cantwell & Coles (1983) in the near wake of a circular cylinder.
However, as shown in figure 7, it appears that the cross-terms associated with the
Reynolds stress are secondary in the production of Ẽ within the current coordinate
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FIGURE 6. Wall-normal profiles of (a) time-averaged streamwise velocity, (b) time-
averaged spanwise vorticity and (c) normal stresses for the 5 : 1 section. Reh= 3.04× 104.

system. Figure 7 shows profiles of each component of P at four different locations
between the first two profiles in figure 6, where the onset of unsteadiness occurs. At
the first position, x/h = 0.02, a small net-negative product is detected in figure 7(a)
and 7(c). This is seemingly balanced by figures 7(b) and 7(d) where the peak is in
the same location along the y-axis with opposing sign. The summed result in the
rightmost panel, figure 7(e), shows a negligible amount of turbulent production at
x/h= 0.02. This is consistent with the relative lack of peaks at the same location in
figure 6(c) or even integrated Ẽ as seen in figure 5. At greater downstream distances
(x/h= 0.1, x/h= 0.2), all four terms of P increase in amplitude before diffusing in
the wall-normal direction by x/h= 0.4. Among the four components across this range,
figure 7(a) appears to contribute the most to the overall amount of P , indicating that
terms associated with streamwise gradients and/or streamwise normal stresses are
most responsible for the initial production of Ẽ on the 5 : 1 section.

The average trajectory of the shear layer can be defined using any of the four
parameters discussed in figure 6 with only minor discrepancies among them. In the
current study, the average position of the shear layer is defined using maxima of
Ẽ as shown in figure 8. The figure shows the locus of maximum turbulent kinetic
energy values, Ẽmax, for all Reynolds numbers tested on all sections tested. It is
remarkable that a decade of Reynolds number data collapse onto thin bands for each
section, demonstrating an invariance of the shear layers’ average position. The data
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FIGURE 7. Turbulent production terms. (a–d) are profiles of each of the terms in (4.2)
respectively, where (e) represents the total production. Every third point plotted.
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FIGURE 8. Locus of maximum TKE, Ẽmax, over all Reynolds numbers and aspect ratios
tested. 1.34× 104 6 Reh 6 1.18× 105.

show the location for the 1 : 1 square, which is heavily curved throughout the entire
body length and enters the wake at a significant angle with respect to the mean flow.
The longer 5 : 1 section boasts a more extended shear layer trajectory (see labels in
the figure), which is initially curved but then relaxes to fall in line with the mean
flow as it passes the trailing edge. Moreover, it is worth pointing out that while
the streamlines in figure 4 show flow reattachment near the trailing edge, the shear
layer, as defined here, does not. It is hypothesized that sections much longer than
L/h = 5 will see the trajectory of Ẽmax approach and reside adjacent to the surface
inside the secondary boundary layer formed downstream of the reattachment point.
However, here, the influence from the wake appears to keep the locations of the most
unsteadiness some distance away from the surface. In any case, the collapse of all
Reynolds number data for each section enables a fit line to be generated and relayed
to the hot-wire traverse and measurement system.

4.1. Shear layer coupling

As mentioned above, the averaged trajectory of Ẽmax for each section was used to
define the locations where the hot-wire measurements were obtained. The hot-wire
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FIGURE 9. Power spectra taken at the leading edge corner (x/h, y/h) = (0, 0), and at
(x/h, y/h)= (a)(0.174,−0.190) for the 5 : 1, and (b) (0.081, −0.100) for the 1 : 1 sections.
Reh = 3.04× 104.

data from these trajectories reveal details about the spectral content within the shear
layer. For each case, the two hot-wire probes were mechanically traversed along
the mean shear layer trajectories. Figure 9 shows a sample of the power spectra
for both sections (5 : 1 and 1 : 1) at two different positions along the shear layer.
For both bodies, the lighter curve shows the power spectrum of the hot-wire probe
taken directly adjacent to the leading edge, where the origin is defined using the PIV
system as the leading edge corner. The hot-wire system thus is inherently offset in
order to avoid a collision of the probe. Near the leading edge, the spectra in both
cases appear to have most of their energy concentrated toward the low-frequency end
with a discrete concentration at the wake shedding frequency labelled fVK . Comparing
the two sections, the 1 : 1 section has much more energy at fVK due to the flapping
of the fully separated shear layer. The spectra of the 5 : 1 section have less energy at
the wake shedding frequency, which is a further evidence that the wake’s influence
is smaller for this section. At some small but finite distance along the shear layer,
at (x/h, y/h) = (0.174, −0.190) and (0.081, −0.100) for the 5 : 1 and 1 : 1 sections
respectively, the spectra change dramatically. In both cases a high frequency, with
a broad banded peak, rises up several orders of magnitude compared to the signals
taken upstream at the corner. This high-frequency content is labelled as fKH . Although
its precise spatial definition is not easily described, as will be discussed in later
sections, it is pointed out here qualitatively. One highlight is that, depending on the
area of interest, there may be multiple competing modes, and the relative amplitude
between fVK and fKH is one metric to evaluate the level of coupling between activity
occurring in the wake and the KH instability originating at the leading edge.

Another way to quantify the level of coupling between the wake and shear
layer regions is through cross-correlations using two hot-wire signals. Two-point
measurements have been used by investigators in incompressible flows to extract
details about features such as physical size, frequency and convective speed
(Tennekes & Lumley 1972). Traditionally, two probes are separated in space and
the cross-correlation function is calculated using the two simultaneously acquired
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FIGURE 10. Cross-correlation coefficients along the length of the three sections. Direction
of increasing 1x is indicated in the upper centre portion of the figure. Reh = 3.04× 104.

signals normalized by the product of their standard deviations,

ρ(1x, 1y, t)= u′mag, 1(x, y, t) u′mag, 2(x+1x, y+1y, t)√
u′2mag, 1

√
u′2mag, 2

. (4.3)

In this case, the two signals are velocity magnitudes measured by the hot-wires.
As seen in (4.3), the value of ρ is dimensionless, decaying with increasing separation
distance at zero time shift from ρ(0, 0, 0) = 1 according to Schwartz’s inequality
for stationary signals. Since the wires must maintain a small separation distance in
order to avoid collision, the resulting coefficient can only approach unity at small
distances 1x, 1y. Here, the two hot-wire probes were placed on the shear layers’
average trajectory with a single wire fixed in the plane of the trailing edge and the
other was traversed along the previously mentioned trajectory of maximum TKE,
in the direction upstream of the fixed probe. The cross-correlation coefficients were
found as a function of 1x/h or the distance upstream from the fixed probe, and are
presented in figure 10. As can be seen in the figure, the correlation coefficient for
each body is close to unity when the probes are very close to each other in the wake,
as one might expect since the probes are at their closest. As the travelling probe
was traverses upstream along the shear layer, i.e. increasing 1x/h, the correlation
coefficients decrease as the distance between probes increased. Note that here, the
sign of 1x is inverted in comparison to x, which is a necessary arrangement to
distinguish between convective and global instabilities. Aligning the two probes at
the trailing edge and moving one upstream tracks the upstream influence of global
instabilities only, since convective instabilities are directional and thus depend on
the convective speeds and times in the flow. Moving the travelling probe upstream
from that initial location and extracting the correlation value at zero time lag then
documents how far upstream the global behaviour of the VK instability extends at a
given instant in time.

For the 1 : 1 section, the correlation coefficient remains above 50 % everywhere
along the shear layer, indicating a relatively high level of correlation, suggesting
that the wake’s influence is significant all the way to the leading edge. Sections
with extended afterbodies such as the 3 : 1 and 5 : 1, show correlation coefficients
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FIGURE 11. Highpass and lowpass filtered correlations for (a) the 5 : 1 section, and (b)
the 1 : 1 square section. Sign conventions are same as figure 10.

continuing to decay with upstream distance for more than one body height upstream.
The 5 : 1 section in particular is nearly zero near the leading edge, demonstrating that
the two probes experience two independent and uncorrelated signals. As such, it may
be expected that the wake’s influence is significantly smaller for the 5 : 1 section than
for the 1 : 1 section.

Figure 11 presents the spatial correlations with hot-wire signals filtered before
the correlation coefficient was calculated. When the high pass filter (with a cutoff
frequency at fh/U∞ = 0.39, nearly 3.5 times the Strouhal number, St) was applied,
the coefficients reflect the correlation associated with shear layer content only. In the
case of the 1 : 1 square section (figure 11b), the high pass filter shows no correlation
between the signals at leading and trailing edges. Low pass filtering at the same cutoff
frequency has the opposite effect. Isolating low-frequency content associated with the
wake shedding raises coefficients, demonstrating an increased global coherence, a
direct result of the upstream propagation of instability waves associated with the
wake instability. This is most clearly seen with the 1 : 1 square. In addition to a
net offset of increased coherence for all measured locations, the differences between
leading and trailing edge are reduced for the low pass filtered data in comparison to
the highpass filtered data. Physically, this points toward the low-frequency dominance
associated with the global instability from wake shedding. In either case, it is clear
that there are two primary frequency components, the first being low frequencies that
appear to be coherent, meaning their correlation coefficients extend far upstream from
their source. The second component is the high frequency shear layer content, less
correlated over the length of the shear layer. Of these, the low and high-frequency
regimes appear to be less coupled for the 5 : 1 section, as shown by the lack of
correlation at the leading edge of the 5 : 1 section (figure 11a). Therefore, the
interactions between the two modes of instability are examined primarily through the
use of the 5 : 1 section as the two modes are more independent of one another. All
sections, however, display clearly that the shear layers’ frequency content is heavily
dependent on the spatial location. That spatial dependence also includes Reynolds
number effects as will be discussed in the next section.
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FIGURE 12. Variation of the Strouhal number with Reynolds number for the (a) 1 : 1,
(b) 3 : 1 and (c) 5 : 1 sections. (d) The dependence of fKH/fVK with Reynolds number.

4.2. Reynolds number dependency
Figure 12 shows the dependence of the shear layer frequency on Reynolds number for
the sections tested. Figure 12(a–c) presents the Strouhal number, St= fVKh/U∞ for the
1 : 1, 3 : 1 and 5 : 1 sections, respectively, over Reynolds numbers. For each section,
the Strouhal number is nearly constant over a wide range of Reynolds numbers. This
Reynolds number invariance is attributed to a linear correspondence between the
vortex shedding frequency in the wake, fVK , and the free-stream velocity, U∞. In
figure 12(d) the variation of the ratio of the shear layer’s frequency to the wake’s
frequency, fKH/fVK , with Reynolds number is shown along with data from relevant
literature. It is immediately obvious that the shear layer’s frequency does not vary
linearly with wind speed (assuming a common reference length for the Reynolds
numbers). Instead, the curves abide by a power law relationship, Ren, with exponents
ranging upwards from n= 0.5 as first noted by Bloor (1964). The best-fit value of n is
given a physical justification for a circular prism (n= 0.67) in Prasad & Williamson
(1997) and extended to the square prism (n = 0.60) in Lander et al. (2018). It is
interesting that all geometries fit well with a power law; however, both the exponent
and the coefficient are different for each prism geometry. These differences may be
explained by considering the dynamics at separation for each body. For any geometry,
the shedding frequency of the KH events near separation ought to scale inversely with
the thickness of the separating boundary layer. In zero or adverse pressure gradients,
such as the separation point on a circular prism, the thickness is larger than that
of a boundary layer separating under an highly favourable pressure gradient such as
the front face of a square prism. This reduction in boundary layer thickness may
explain the initial offset of each of the curves. It is precisely these intricacies of the
shear layer, with a shared dependence on spatial coordinate and free-stream Reynolds
number, that provoke the curiosity of the authors and warrant a deeper investigation
into their natural behaviour.

The data in previous sections have demonstrated the quantities of a separated
shear layer that change significantly in space as well as with respect to Reynolds
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E
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VK(a) (b)

FIGURE 13. An instantaneous vorticity field (a), and sample time histories and a reference
length equal to one period of fVK (b) around the leading edge corner of a 1 : 1 (square)
prism, Reh = 3.04× 104. Saturation level is set to ωz = 20.

number. These dependencies are important when analysing shear layer behaviour as
the relevant scales are not as predictable as those observed in the wake. Particular
attention is noted for the leading edge corner where the spatial dependence is critical
to understand the early stages of transition to turbulence. This region, which is
founded qualitatively on the regimes in figure 1, is partially summarized in figure 13.
Figure 13 shows the spatio-temporal dependence of the bluff body’s shear layer
using both PIV and hot-wire. On the left-hand side, an instantaneous normalized
spanwise vorticity field (ωz > 20) is displayed near the leading edge corner of the
1 : 1 square section as a way to visualize the transition process. As a reference for the
spatial extent of the image, the domain here is 0.84h and 0.34h in x and y directions,
respectively.

In the figure, a laminar shear layer is detected immediately after separation, near
point A, similar to the results in figure 4. The shear layer quickly bends into the
direction of the mean flow (left to right in the figure) and eventually rolls up in
a counter-clockwise direction forming a laminar vortex, which can be detected near
point E. Downstream of the vortex formation, vortex pairing can be detected, followed
by a breakdown of the organized structures to smaller turbulent eddies. On the right
hand side, five time traces are shown, one for each of the points labelled in the
vorticity field. Initially, at point A, only one frequency can be seen, namely the fVK .
This time trace is directly taken from time history used for the calculation of the
power spectra in figure 9. Note that the fKH frequency is not detected at this location,
suggesting either the disturbance amplitude is below the resolution of the probe, or
that the local Reynolds number is below the critical Reynolds number for transition
to initiate. At point B, a much higher frequency can be observed as a small bursting
event, intermittently spaced on the von Kármán signature. Point C shows the same
high-frequency content becoming less intermittent. These are the early stages of shear
layer transition (i.e. growth of disturbances) and the accumulation of energy at fKH .
Points B–D show the evolution of fKH as it grows in space along the shear layer
and culminating at point E, where formation of a vortex marks the end of the linear
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growth. In essence, this sequence demonstrates how short the region is where linear
growth of the shear layer instabilities is likely to be found.

With a physical intuition established, we now shift to focus on comparing metrics
and trends already established in the literature. The nonlinear Reynolds number
dependencies within the shear layer behaviour were discussed with regard to the
appropriate length scale in Bloor (1964), as well as the corresponding time scales
(Prasad & Williamson 1997) and the combination of scales was then satisfied using
the linear scaling in Lander et al. (2018) who also noted that a thinning boundary
layer on the front face of the section mirrors the behaviour of shear layer transition
lengths. In the following paragraphs it will further be shown that upon reducing the
wake’s influence, the spatial amplification of disturbances reveals its own Reynolds
number dependency. This is supportive of the idea that the shear layer behaves more
similar to what may be expected of a boundary layer on the front face of the section,
rather than an inviscid planar mixing layer alongside it. With these new details, a
more comprehensive view of the bluff body shear layer arises, encouraging a holistic
view of the bluff body flow field.

Unlike the planar mixing layer, the bluff body shear layer experiences external
influences including intense curvature, potential viscous effects due to the proximity
to a solid surface, and proximity to other instability modes. These factors serve to
elevate growth rates and obscure comparisons made with the planar mixing layer
literature. For example, the mixing layer behind a backward facing step was found
to grow at two different rates according to Sato (1956), as well as experiments
downstream of a splitter plate in Winant & Browand (1974). The junction between
the two growth rates marked a transition point for a free shear layer with infinite
boundary conditions. However, Lander et al. (2018) used a similar analysis for the
2-D square prism that showed a continuous distribution of momentum thickness both
upstream and downstream of what is later defined as the transition point for the square
prism. Extending that analysis, the shear layer width is defined in the current study
using the momentum thickness found in Fiedler (1991), whose definition accounts for
recirculating flows in local coordinates.

θ(s)=
∫ y′2

y′1

(
Us(s, y′)−Us,min

Us,max −Us,min

)(
1− Us(s, y′)−Us,min

Us,max −Us,min

)
dy′. (4.4)

Schematics and representative profiles illustrating this transformation are given in
Lander et al. (2018). The variable y′ corresponds to the direction normal to the shear
layer’s trajectory at each streamwise coordinate. The slope of that line is inversely
proportional to the tangent angle of the shear layer trajectory, and approaches a
Cartesian grid when the shear layer becomes aligned with the free stream. The
variable, s, is the arc-length distance along the shear layer, and Us is then the mean
velocity in the local direction of the shear layer axis. Limits y1 and y2 correspond
to the locations where Us,max and Us,min are found. The resulting local alignment
allows for the calculation of a host of lengths and velocities that are skewed when
described using traditional Cartesian coordinates. By aligning with streamlines or main
gradients in the flow, a curved shear layer can be geometrically unwrapped, ignoring
any effect of the pressure field. In doing so, it appears that the main functionality so
far has been to compare curved shear layers with the archetypal planar mixing layer
scenario. The result, as mentioned above, is that growth rates of shear layers born
from leading edge separation are substantially higher and continuous functions of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.480


Energetic scales in a bluff body shear layer 563

Section A B R2

5 : 1 0.07/0.04 2.63/0.95 0.996/0.999
3 : 1 0.07/0.04 2.39/1.08 0.985/0.999
1 : 1 0.08/0.07 2.08/1.39 0.998/0.998

TABLE 2. Curve fitting coefficients for momentum thickness of the separated shear layer.
Values are given as low/high where Relow/Rehigh corresponds to 1.34 × 104/1.18 × 105.
Values apply to 0< s/h< 0.5.

axial coordinate. The present study confirms the elevated growth rates for all sections
tested.

Figures 14(a) and 14(b) show the momentum thickness distributions for the 5 : 1
and 1 : 1 sections near the leading edge, respectively. In both cases, the coordinate
system is local to the time-averaged shear layer position. The use of local coordinates
is limited here to a single figure for comparison and validation purposes. In the figure,
the continuously increasing nature of θ is clear in all cases. Focusing on figure 14(b),
two curves from the present study are compared to similar Reynolds number cases
explored by Lander et al. (2018). Data with similar Reynolds numbers for the 1 : 1
section match reasonably well. At higher Reynolds numbers, the agreement is better
between the two data sets. At lower Reynolds numbers, there are differences in
the two experiments beyond s/h = 0.3, which may be due to the differences in
blockage ratios between the two experiments, 9.1 % and 6.3 %, the later of the two
corresponding to the current study. It is worth noting that, while not included here,
a similar treatment of direct numerical simulation (DNS) data shown in that work
at Reh = 2.2× 104 from Trias, Gorobets & Oliva (2015) falls between curves of the
present study at Reh = 1.34 × 104 and Lander’s data at Reh = 1.67 × 104. For the
5 : 1 section (figure 14a), the shear layer evolution with Reynolds numbers is more
compelling. As Reynolds number increases the magnitude of the exponent of a line
of best fit, θ ∝ A× (s/h)B, decreases bringing the growth of the momentum thickness
closer to a linear trend. Values extracted from a simple curve fitting procedure are
listed in table 2.

The differences in shear layer development are more easily differentiated in the
case of the 5 : 1 section. It appears that the reduced levels of coupling on the longer
section more easily distinguish the true growth of the shear layer instability rather than
the growth of a combination of instabilities as in the 1 : 1 body. This detail marks a
departure from Lander’s work on the square prism. Nevertheless, all distributions of
momentum thickness measured in the current study are continuous, meaning that they
lack the necessary change in slope needed to identify a transition point. However, the
apparent transition as seen through the hot-wire, and instantaneously through PIV, can
be properly tracked through a different parameter, namely the turbulent kinetic energy,
Ẽ. What is appealing about Ẽ, as initially reported in Lander et al. (2018), is that
while the locus of the maxima was shown in figure 8 to be invariant with respect
to Reynolds number, it will now be shown that the content of those points possess a
strong dependency on Reynolds number, strong enough to form the basis for transition
lengths of many rectangular sections.

The effect of Reynolds number on the distribution of Ẽmax along the 5 : 1 section
for three different Reynolds numbers is presented in figure 15. Each of the three
curves demonstrates qualitatively similar behaviour. Near the leading edge corner,
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Reh = 1.67 ÷ 104, Lander et al. (2018)

Reh = 1.49 ÷ 105, Lander et al. (2018)
Reh = 1.18 ÷ 105
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FIGURE 14. Variation of the momentum thickness with the normalized arc-length distance
along the shear layer axis for (a) 5 : 1 section, and (b) 1 : 1 section at two different
Reynolds numbers compared to data from Lander et al. (2018). Every other point is
plotted.

each of the curves begins from a low free-stream value and subsequently rises with
an exponential trend until it saturates. Beyond those saturation points the curves
decay slightly and change gradually beyond x/h = 1, where at the trailing edge the
curves converge. The increase near the leading edge is what is most convincing about
this particular data set. Increasing the Reynolds number has several important effects
on Ẽmax. The following observations are common to all section types and Reynolds
numbers tested but for brevity are plotted here only for the 5 : 1 section. First, the
initial values of Ẽmax climb approximately linearly with respect to increasing Reh.
Their magnitudes are of the order of 1 % of the energy of the free stream. Second,
the exponential rises of the turbulent kinetic energy are increasingly more aggressive,
a feature that becomes much more vivid for longer sections such as the one in
figure 15. While PIV cannot distinguish which frequencies grow faster than others,
steeper exponential curves with increasing Reh here are qualitatively synonymous with
elevated spatial growth rates of a band of unstable frequencies. Ultimately, the curves
of Ẽmax saturate of the order of 5 %–10 % of the energy of the free stream at which
point they have overstepped the notion of linear superposition on the mean flow. The
level at which Ẽmax saturates steadily decreases as Reynolds number increases, and
the saturation location moves upstream with diminishing gains. These features are
in line with those involving viscous instabilities where the distance to transition is
described using a local Reynolds number, Rex. As the free-stream Reynolds number
increases, the distance to the critical local Reynolds number is reduced, resulting in
shorter transition lengths.

A Reynolds-dependent transition process in a nominally separated flow raises
interesting questions as to the exact origins of the observed instability. Specifically,
one may question whether or not the observed trends are simply downstream artefacts
of front face boundary layer activity undergoing viscous instability, or if the presence
of the corner is close enough to contribute wall effects. Previous work on the square
prism by this same group found spatial amplification rates that appeared to be constant
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FIGURE 15. (Colour online) Downstream trajectories of Ẽmax. A 95 % confidence
interval is shown for Reh = 1.34× 104 only. Every tenth point is plotted.

over the Reynolds numbers tested; however, figure 15 indicates otherwise. Returning
to the time-averaged positions of the shear layers in figure 8, the trajectories over
the first half-body dimension are nearly the same suggesting that the proximity of
the wall cannot explain the apparent presence of such effects for the 5 : 1 section.
Nevertheless, these traits using Ẽmax constitute the beginnings of a transition length
for separated shear layers of rectangular sections. However, the extent of Reynolds
number dependency appears to be short lived. Beyond the saturation of Ẽmax the
curves slowly converge onto one another giving a hint of self-similarity near the
trailing edge.

Figure 16 show profiles of Ẽ on a normalized vertical coordinate, y∗= y− y|Ẽmax
for

the same three Reynolds numbers, demonstrating a lack of similarity near the leading
edge but a convincing self-similar profile near the trailing edge. In figure 16(a), the
profiles are presented at x/h = 0.15, which is beyond the saturation point for high
Reynolds numbers and upstream of the saturation for the lower Reynolds numbers. As
a result, the profiles’ peak magnitudes are not easily sorted by Reynolds number at
first glance. At the highest Reynolds number of Reh= 1.18× 105, the maximum Ẽ is
between the lower two Reynolds number curves, a feature that is easily distinguished
in figure 15. As can be seen in figure 16(b), at x/h= 4.5 all three profiles collapse
on top of one other, suggesting Reynolds number independence near the trailing edge.
This independence might be due to the proximity to the wake, which is governed by
an inviscid mechanism, as seen by the Strouhal number behaviour. Figures 15, 16 and
13 indicate a rapid transition process, which can be quantified and verified through Ẽ.

Another way to visualize the spatial development of transition within the
separated shear layer is through analysis of instantaneous fields. Figure 17(a,c)
and figure 17(b,d) show contours of instantaneous spanwise vorticity, ωz, near the
leading edge of the 5 : 1 and 1 : 1 sections, respectively. Figure 17(a) shows a band
of vorticity stemming from the leading edge of the 5 : 1 section, similar to the
distribution in figure 13 where the Reynolds number is moderate, Reh = 1.34 × 104.
At an order of magnitude higher Reynolds number (Reh = 1.18 × 105, figure 17c),
the same pattern is visible although the downstream location where the first vortex
is detected is substantially closer to the leading edge and the size of the resulting
structure is smaller. Similarly, the 1 : 1 section show the same main features, where
at the lower Reynolds number (figure 17b) there is a significant distance to the roll
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FIGURE 16. (a) Wall-normal profiles of Ẽ at (a) x/h= 0.15, and (b) at x/h= 4.5. Every
fifth point plotted.

up event, while at the higher Reynolds number case (figure 17d) the roll up of the
first vortex is very close to the leading edge. In contrast to much of the mean flow
parameters discussed earlier, there is a striking dependence on the Reynolds number.
Indeed, the vorticity fields displayed here are common to the tens of thousands of
instantaneous fields captured over the course of the experimental campaign, indicating
that this behaviour is predictable although its exact coordinates vary slightly in space.
Furthermore, it is shown here that while the position of the separated shear layer is
nearly Reynolds number independent, its unsteady content is not. This notion can
be observed by aligning these vorticity fields with the corresponding magnitudes
of Ẽmax as done in figure 17(e) for the 5 : 1 section and figure 17( f ) for the 1 : 1
square section. This pattern in the instantaneous fields in figure 17 is similar to that
highlighted in Lander (2017), who used the Q criterion to identify the first coherent
structure in the shear layer and noted their alignment with an integrated kinetic energy
parameter for the square prism. Here it is shown that a similar analysis can readily
be extended to other rectangular sections with improving resolution as the influence
of the wake is diminished with increasing aspect ratio. While earlier discussions
appealed to the position of the maximum TKE, its magnitude is now shown to be
a useful tool to detect the location of discrete vortex formation and the end of the
linear growth of the instability. In fact, the instantaneous vorticity plots show that the
roll up of the vortex coincides nicely with the saturation of Ẽmax along the x axis for
the 5 : 1 section. A similar pattern applies for the 1 : 1 square section in figure 17( f ),
although the initial levels of Ẽmax are higher, the slopes apparently similar to one
another, and instead of a saturation the distributions experience a slope reduction that
coincides in space with the location of the first vortex. Note that since the shear
layer associated with the 1 : 1 section is significantly affected by the proximity to the
wake, Ẽmax continues to increase. Appealing once again to linear theory, one might
expect to see exponential growth regions of the shear layer where the growth rates
are best described using linear methods. The slope reduction in 17( f ) is likely where
the disturbance growth is at first linear but quickly goes nonlinear and is dominated
by the growth of another instability in the flow, namely the instability in the wake.
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FIGURE 17. Instantaneous vorticity fields. (a,c) 5 : 1 section, and (b,d) 1 : 1 section. (a,b)
At Reh= 1.34× 104, saturation level is set to ωz> 20; (c,d) at Reh= 1.18× 105, saturation
level is set to ωz > 50. Also included is Ẽmax for (e) 5 : 1 section, and ( f ) 1 : 1 section at
the two Reynolds numbers. Every fifth point is plotted. Arrows highlight the end of the
linear growth regime for each Reynolds number.

Changes in spatial amplification of turbulent kinetic energy between Reynolds
numbers is an important distinction when comparing longer bodies with shorter bodies.
For the less coupled section, the 5 : 1, the slope changes are easily distinguished. The
reason for this is the additional coherence of the presence of the von Kármán mode
at the leading edge of shorter sections, which elevates the observed increases in
total fluctuations, forming a likely combined growth rate and obscuring any Reynolds
number dependencies. Only by adding an afterbody (i.e. increasing the body’s length),
and displacing the wake farther downstream, can the effect of the VK mode be
reduced enough to showcase the natural KH growth. Even still, changes in slope
of Ẽmax maintain their use for monitoring transition of the shear layer. In the most
simple sense, figure 17 confirms the robustness with which turbulent kinetic energy
is able to predict the location of the first coherent vortex in the flow for rectangular
sections. It is this length, from leading edge corner to the location where the growth
rate saturates that is defined here to be a transition distance for rectangular sections,
xτ . It is noteworthy that similar behaviour was obtained for the 3 : 1 section although
not shown here for brevity.

As a final note on the comparisons across sections of different lengths, the Reynolds
number dependency of the normalized location of the transition and flow reattachment
over the body is presented in figures 18(a) and 18(b), respectively. The reattachment
point is also a metric for defining the streamwise length of the separation bubble.
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FIGURE 18. Variation of (a) the normalized transition lengths for the 5 : 1, 3 : 1 and
1 : 1 sections, and (b) normalized reattachment lengths for the 5 : 1 section with Reynolds
number.

Figure 18(a) displays normalized transition lengths for the 5 : 1, 3 : 1, and 1 : 1
sections. As can be seen, the normalized transition locations are similar for all
sections and the dependence on the Reynolds number is similar, where the transition
location varies as Re−0.6

h . The Reynolds number resolution here is not satisfactory to
establish a statistically robust curve fit of the exponent describing the diminishing
transition length. This point should be addressed in future work with additional data
over a wider range of Reynolds numbers in order to more accurately quantify this
trend. However, for the reattachment location for the 5 : 1 section (figure 18b) a
much weaker dependency on Reynolds number is visible. This is in contrast to the
combined numerical and experimental work from Mannini, Šoda & Schewe (2010)
and Schewe (2013) who observed a significant upstream trend of the reattachment
point with increasing Reh for a similar geometry. In those studies, the reattachment
was identified using surface pressure while in the current study, to calculate the
reattachment location, xR, the x coordinate with the sign reversal of the streamwise
velocity was identified using the PIV data. When normalized by the initial values, xR0 ,
the trend is apparently a weak function of Reynolds number with the reattachment
lengths changing only a few per cent. It is noteworthy that this lack of dependency
on Reynolds number has been recently confirmed in a three dimensional numerical
simulation of a 3-D rectangular prism conducted by Prosser & Smith (2016) indicating
that the two-dimensional nature of the current PIV data is still sufficient to capture
most of the important physical phenomena associated with the shear layer.

These combined results further support a strong Reynolds number dependence
of the shear layers’ turbulent content near the leading edge corner but a relatively
weak dependency near the trailing edge, a process that appears to be more drawn
out on long sections, and more compact on short sections. The metrics used to
monitor the onset of turbulent transition process are similar across all sections tested
here. However, we stop short of suggesting that the observed behaviour is exactly
the same. Contributions from the wake overwhelm the shear layer dynamics when
the two instabilities are close, and observations of the later are misleading if not
considered within the context described above.

4.3. Spectral migrations
In order to explore the spectral content of the shear layer and energy exchanges
between the shear layer and the wake, figure 19 is presented. Previous figures have
shown an exponential increases in fluctuating energy, Ẽmax, that is reminiscent of
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FIGURE 19. Power spectra measured along the 5 : 1 section. (a) Near the leading edge
(x/h, y/h); A (0,0), B (0.023, −0.097), C (0.073, −0.130), D (0.124, −0.161), E (0.174,
−0.190), F (0.225, −0.219); (b) downstream of the transition location: (0.326, −0.271),
(0.583, −0.384), (1.038, −0.527), (1.823, −0.659), (2.882, −0.722), (3.677, −0.764),
(4.736, −0.799). Reh = 3.04× 104.

linear stability theory, yet limited by the optical technique used. The spectral content
comprising the exponential growth in different locations in the flow field can only
be documented experimentally with adequate temporal resolution in combination with
precise spatial awareness. In the current study, this was done once again through the
combined use of PIV and hot-wire systems. By traversing a single hot-wire probe
along the shear layer trajectory, as defined previously, the frequency content can
be monitored in the streamwise direction. Such an example is shown in figure 19,
which shows a series of spectra measured at multiple locations along the shear layer
between the leading and trailing edges of the 5 : 1 section. Qualitatively, these points
in figure 19 represent those labelled in the spatio-temporal schematic of figure 13.
It may be noted that the location where the KH frequency is initially observed is
approximately 0.02h from the leading edge corner (i.e. not detected at the leading
edge itself). As the downstream distance increases there is a notable migration of the
KH frequency to lower values. For example, the spectrum at x/h= 0.023 contains a
peak at a reduced frequency of fh/U∞ = 8.24, whereas at x/h= 0.073, the spectrum
shows a much wider distribution with two local maxima, fh/U∞ = 4.38 and 8.14.
Farther downstream, at x/h = 0.124, the peak value exists between the two prior
peaks at fh/U∞= 5.20. At the final measurement shown in figure 19(a), x/h= 0.225,
the peak value is centred around fh/U∞ = 4.6. It is noteworthy that a factor of 2
exists in frequency between the initially observed KH peak, and peak measured at
the location where the first vortex is observed at that Reynolds number, xτ/h= 0.27.
Within that distance, the corresponding momentum thickness decreases by factor of
nearly 4.

Downstream of the transition location (x> xτ , figure 19b), there is a migration of
the high-frequency content toward the wake frequency as the downstream distance
increases. At these streamwise locations no further accumulation of spectral energy is
visible, especially in the area where the KH is initially observed. Previous discussions
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have highlighted the increasing nature of the turbulent kinetic energy as a whole along
the body; figure 19 indicates that the initial growth of Ẽ is apparently due to high
frequencies associated with the KH mode, while the latter is due to accumulation of,
and migration toward, energy at lower frequencies associated with the VK mode.

The division of the data set in figure 19 seeks to elucidate the transition of
energetic scales within the shear layer. Had the spectra remained constant in space,
or shifted in a consistent manner, the length and velocity scales needed to justify
the dominating frequencies, may be obtained from a linear scaling. However, the
current data show that a continuous scaling encapsulating the entire shear layer is
significantly more complicated. To illustrate this, consider the value of fKH at this
particular Reynolds number. It may be defined by the first observable peak along the
shear layer, as done in the past. Or, it may be the value found at the point where
vortices typically form, a much lower frequency. Further still, at any location between
these two stations, there may be multiple peaks on the spectra in the region beyond
fVK , injecting more confusion into the debate. One then expects that with increased
resolution in space, the movement of such peaks and the exchange of spectral energy
become a continuous surface with sensitivities along all three axes of frequency,
power, and space. Thus, before searching for the scaling that satisfies this flow field,
the frequencies and corresponding lengths ought to be identified and examined in
detail. Specifically, scales whose steep spectral gradients convert large amounts of
average kinetic energy to turbulent kinetic energy are the energetic ones. These, more
than others, are the range of scales driving turbulent transition within the shear layer,
facilitating the missing link between small wavenumber/high-frequency content at the
leading edge corner, and larger wavenumber/lower-frequency activity in the wake.

Selecting important scales for predicting flow behaviour around bluff bodies is not
a novel concept. The presence of turbulent fluctuations in shear layers has been a
major thrust of study in structural aerodynamics for decades. Melbourne’s small-scale
spectral density parameter describes the importance of small-scale, high-frequency
content in the spectrum of the free-stream turbulence from the point of view
of the maximum suction observed beneath the shear layer on the surface of the
body (Melbourne 1979). An opposing viewpoint was taken by Bearman & Morel
(1983) who suggested that scales of the order of h are the scales that dictate the
aerodynamic response of the body. Decades later Tieleman (2003) summarized the
problem of scales by suggesting that the combined presence of large and small scales
is necessary to produce the largest suction peaks. Recently, Morrison & Kopp (2018)
confirmed this by showing that the range of frequencies in free-stream turbulence
necessary for accurate aerodynamic modelling of structures was contained in the range
0.1< fh/U∞<10. This band of frequencies was subsequently defined as ‘active scales’
in the flow. Here, without the influence of elevated levels of free-stream turbulence,
the shear layer’s self-generating turbulent behaviour is evident. In regions between
the leading edge and the transition location, 0 < x < xτ , the smaller scales are of
most interest. However, the spectral amplitudes of the KH only surpass the larger
VK mode for certain bodies, namely those experiencing a reattaching shear layer
(e.g. the 5 : 1 section). In these instances, the energetic scales are the primary mode
responsible for converting mean flow energy to TKE. For shorter sections, such as the
1 : 1 section, the relative amplitude between the two modes is such that the smaller
scales, while still growing rapidly as the instability matures, are secondary to the
much larger fluctuations associated with the wake. Beyond transition, xτ < x<L, there
is a much more subtle migration of energy toward the larger scales, on the order
of the body. This relative nature of the two modes, separated on a power spectra

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.480


Energetic scales in a bluff body shear layer 571

0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

x/L

5:1
1:1

t
U m

ag
/h

FIGURE 20. Downstream variation of the integral time scales (measured along the
trajectory of Ẽmax). Reh = 3.04× 104.

by multiple orders of magnitude on the power axis, contrasts with the scales in the
studies of Hutchins & Marusic (2007). In their work, the two modes of interest had
peak amplitudes of similar order of magnitude, O(1). The spectral amplitude ratios
in the current study range from SKH/SVK ≈ 10−6 at the leading edge to 10−2 at xτ for
the 1 : 1 section. The 5 : 1 section covers an even wider range from SKH/SVK ≈ 10−4

to 102 across a similar non-dimensional distance. That these two modes originate in
opposite corners of a power spectrum and converge during the course of a single
convection cycle is indeed impressive.

The boundary conditions of the velocity field at either end of the shear layer
complicate a continuous description. At the leading edge, there is a significant
dependency of TKE on Reynolds number. Near the trailing edge, the effect is
difficult to discern. The corresponding lengths to collapse mean and unsteady profiles
at either end are likely different. However, one continuous way to visualize the
energy transfer between scales is shown in figure 20 through the autocorrelation
function of the traversing hot-wire probe. Here, the dimensionless integral time scale
is shown as a function of the streamwise distance between leading and trailing edges
as well as the mean velocity magnitude obtained by the hot-wire. The integral time
scale is defined in Tennekes & Lumley (1972) as T = ∫∞0 ρ(τ) dτ where ρ is the
autocorrelation function and τ in this case is a time lag from the beginning of the
sample. Assuming that a finite T exists, integration is extended toward infinity. In
regards to this definition, two practical concessions must be made. The first is the
sample length, which is limited to 30 s at 40 kHz and therefore it is assumed that the
integral length scale is significantly less than this duration. Second, the nature of the
function ρ is sinusoidal, oscillating about the zero point. Thus, the upper integration
limit determines the magnitude of T . In regards to the second point, integrals were
carried out until the first zero crossing of the autocorrelation function. For the sections
represented here, several of the features mentioned above are reconciled. First, the
migration toward time scales of the order of the body dimension, h/U or the time
of flight, is clear in that both curves appear to reach levels approximately equal to
unity at their respective trailing edges. For shorter sections such as the 1 : 1 section,
the wake frequency fVK maintains its relative dominance at the leading edge. This is
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confirmed for the 1 : 1 section, which suggests relatively larger scales near the leading
edge corner. On the other hand, the 5 : 1 section indicates smaller scales initially. As
was proposed, longer sections are associated with reduced coupling between the wake
and the shear layer as the physical distance between these instabilities increases.
So too is the spectral amplitude ratio much higher for the 5 : 1 section, well above
unity, highlighting the dominance of energetic scales. That notion is confirmed by
showing the 5 : 1 section exhibiting time scales near the leading edge of the order
of T Umag/h = 0.1. This difference in integral time scales is likely a function of the
mean flow reattachment. The reattachment point provides a downstream limit for
the recirculation bubble, but does not completely eliminate local accelerations of the
shear layer at the leading edge. Without reattachment, as in the 1 : 1 section, the entire
length of the shear layer is forced by the wake instability at a large amplitude and
much lower frequency diminishing the role played by the energetic scales. Previous
work by Castro & Haque (1987) on reattaching shear layers reported a decreasing
time scale with increasing distance downstream. However, in that case, the body
was a flat plate aligned normally to the flow with a long splitter plate, eliminating
any shedding entirely. It would seem then that the integral time scales reported here
reflect the activity in the wake, as well as provide a convenient way to organize the
influence of the energetic scales housed within the shear layer.

5. Discussion and conclusions

This study documents a clear Reynolds number dependency of the rapidly growing
disturbances associated with instabilities of the shear layer emanating from a sharp
corner. These flow structures mature earlier and saturate more rapidly at increasingly
smaller scales and higher frequencies, all with increasing Reynolds number. With
mostly constant Strouhal numbers, the dynamic behaviour in the wake adheres
to typical scaling arguments stating that sections with sharp edges behave nearly
independent of Reynolds number, tempting us to apply a similar straightforward
scaling to the shear layer. Similarly, many of time-averaged parameters for the shear
layer including velocity and vorticity profiles show only weak Reynolds dependencies.
Critical inspection of unsteady parameters and instantaneous data near the leading
edge corner show more deeply the effect of Reynolds number.

As the shear layer transitions from its initial laminar origin to a turbulent shear
layer, the growing momentum thickness demonstrates the shift from small wavelengths
and high frequencies to longer wavelengths and lower frequencies. The observed
transition behaviour of the shear layer with respect to a changing Reynolds number
is similar across the range of sections tested herein. However, for shorter sections,
much of the shear layer’s nonlinear behaviour is obscured by the much larger wake
shedding patterns. The visibility of this is directly linked to the amplitudes of energetic
scales within the shear layer. Shorter sections, where flow does not reattach on the
body, experience such large amplitude oscillations from the wake that the relative
contribution from the energetic scales is secondary to the net accumulation of TKE.
On the other hand, if the section is long enough such that the time-averaged flow is
able to reattach to the surface, the wake’s influence is significantly attenuated; thus,
highlighting the role of the shear layer’s energetic scales at the leading edge. Only
then is it possible to observe the connection between smaller scales at the leading
edge and larger scales at the trailing edge.

The relationship between the front face boundary layer and the separated shear layer
remains a mystery for Reynolds numbers as high as those tested here. Experimental
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observations at that scale are limited, leaving any subsequent estimations to numerical
methods and classical theory. The link established between the thinning boundary
layer and the decreasing transition distance of a separated shear layer by Lander
et al. (2018), combined with the current findings on the 5 : 1 body, suggest that the
shear layer mirrors and magnifies at least some of the activity occurring on the
front face. Studying longer sections has systematically displaced the unsteady forcing
associated with the wake, leaving behind a more unobstructed view of the shear
layer’s behaviour. Using that advantage, it was pointed out that the initial values of
TKE seen at the leading edge corner increase with Reynolds number, similar to what
may be expected of disturbance activity within a boundary layer. So too does the
shear layer’s growth rate, gained through the maximum values of TKE, exhibit more
aggressive amplification rates. If there exists a critical Reynolds number based on a
boundary layer thickness along the front face Reδ, then that point moves closer to
the stagnation point as Reh increases, perhaps explaining the similar migration of the
transition points monitored in the shear layer. These trends also agree with the nature
of the transition behaviours discussed in the previous works (Sato 1956; Prasad &
Williamson 1997; Lander et al. 2018) demonstrating the ability of the separated shear
layer to adopt many behaviours of other ambient features in the flow field. Moreover,
if such a connection is made, it would then be possible to track the set of scales
that grows from those initially associated with a boundary layer on the front face,
to those in the wake, transcending the multiple-scale scenario considered by Unal &
Rockwell (1988) and extending the range of scales identified here.

Lastly, we note that the range of energetic frequencies relevant to the turbulent
transition around a bluff section cover a non-dimensional range from 0.16 fh/U∞610
at relatively low Reynolds numbers and approach fh/U∞ ≈ 102 at the upper end of
Reynolds numbers tested here. In turbulent conditions, it was Morrison & Kopp
(2018) who specified ‘active scales’ over a similar spectral range in looking at
pressure fluctuations under full scale Reynolds numbers. The findings here agree with
that study in the extent of spectral range, although the amplitudes of velocity spectra
between the two studies are substantially different, an artefact of the free-stream
turbulence conditions in the two studies. However, in pursuit of a deeper knowledge
of the shear layer on bluff bodies we recognize one more major commonality
between these two situations. In both laminar and turbulent flows, it is clear that the
conditions at or just downstream of the leading edge are the most critical in revealing
the characteristic phenomena and necessary clues needed to truly understand these
bluff body flows.
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