Bulletin of Entomological Research (2009) 99, 445-455 doi:10.1017 /50007485308006421
© 2009 Cambridge University Press Printed in the United Kingdom
First published online 21 January 2009

A new modelling approach to insect
reproduction with same-shape
reproduction distribution and rate
summation: with particular reference
to Russian wheat aphid
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Abstract

Same-shape distribution model and rate summation approach are widely used
to describe the insect developmental process. In this approach, by integrating a
nonlinear deterministic developmental rate model and a probabilistic same-shape
distribution model, the proportion of the cohort completing development is
quantified as a function of accumulating developmental rates, which themselves
are temperature dependent. This method is considered to be more accurate in
modelling insect phenology because it can address a well-known biological fact,
individual variability, that insect individual developmental rates respond to
temperature differently, and because rate-summation essentially simulates
developmental rates under variable temperatures instead of constant tempera-
tures. By comparing insect development and reproduction with respect to their
responses to temperatures, we argue for the extension of the same-shape and rate-
summation approaches to modelling insect reproduction process under variable
temperatures. We justify our arguments by the fact that individual variation
universally exists in almost all biological characteristics, and the phenomenon that
insect development and reproduction respond to temperature very similarly,
which is supported by some endocrinological evidences reported in literature. In
addition, the approach for testing the applicability of the original same-shape
developmental modelling, experimentally verifying the sameness of the same-
shape curves or that the shape of the curves is invariant with respect to the
temperature regimes, equally applies to our extended version for reproduction
modelling. We successfully tested the extension and its applicability with our
experimental data of 1800 Russian wheat aphids’ (RWA) (Diuraphis noxia
(Mordvilko)) reproduction under various temperature and plant growth stage
regimes. We also extended Taylor’s (1981) nonlinear model for insect development
to describe RWA mean (median) nymphal production under different tempera-
tures and barley plant growth stages. Three same-shape distribution models,
Weibull distribution, Stinner’s model and logistic model, are used to construct the
same-shape reproduction distribution models for RWA. The extensions performed
in this paper contribute a new modelling approach for predicting insect
reproduction under field variable temperatures and plant growth stages. The
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prediction model can be parameterized with data from typical laboratory
demography experiments and further integrated into simulation models for insect
population dynamics. Finally, we discussed why the sameness test of the same-
shape distribution curves is sufficient in validating the approach and proposed a
strategy for dealing with exceptional cases where the sameness test fails.

Keywords: same-shape reproduction distribution, distribution model, rate
summation, reproduction model, Russian wheat aphid
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Introduction

That developmental rates of poikilothermic organisms
are temperature-dependent has been known for more than a
century (e.g. the day-degree summation model of Candolle
(1855) cited in Curry & Feldman (1978)). More recent is the
appreciation of variability in developmental times among
individuals or, in statistical terms, that insect development is
stochastic rather than deterministic (Stinner et al., 1975;
Curry & Feldman, 1978; Curry et al., 1978; Sharpe et al., 1977).
Recognition of these two essential characteristics, non-linear
temperature dependence and variability among individuals,
has lead to new approaches to modelling insect phenology
(Stinner ef al., 1975; Regniere, 1984; Wagner et al., 1984, 1985;
Logan, 1988; Logan & Weber, 1989). One is the ‘same-shape’
distribution approach pioneered by Sharpe et al. (1977),
Curry & Feldman (1978) and further described by Wagner
et al. (1984). This same-shape distribution method uses a
probability distribution function to predict the proportion of
individuals in a population that finish development under
variable temperatures or, in the terms of an individual, the
probability an individual will emerge from a particular
stage.

Like rates of development, rates of reproduction among
insects typically vary with both temperature and age (Curry
et al., 1978). The physiological age of poikilotherm largely
depends on temperature; variability in reproduction among
individuals is generally the rule rather than the exception. It
is these similarities between development and reproduction
that suggest the ‘same-shape” approach may also be appli-
cable to modelling insect reproductive rates and distribution.
Of course, the conjecture based on the similarities needs to
be tested with experimental data. We also further discuss the
testing standard and the strategy to deal with the exceptional
cases when testing fails, in the final section, ‘Conclusions
and perspective’.

Describing reproductive processes by using probability
distributions is not new. However, published models that
can describe reproduction distribution under variable
temperatures are rare with few exceptions (notably Regniere,
1983). Indeed, in the very same paper that discussed the
same-shape distribution of insect development, Curry et al.
(1978) also proposed a similar framework for modelling
reproduction. In that paper, Curry et al. (1978) assumed that
the expected rate of reproduction (R) at fractional develop-
ment x and temperature k takes the form

Rk, x) = h(k) g(x) @
where h(k) is the total expected lifetime reproduction

under constant temperature regime k and g(x)dx is the
proportion of reproduction per female during the fractional
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developmental interval (x, x+dx). However, Curry et al.
(1978) failed to elaborate the relationship between equation 1
and same-shape distribution approach. Although Wagner
et al. (1984, 1985) subsequently refined and applied same-
shape methods of modelling insect development, application
to insect reproduction never was revisited in literature.

The underlying idea of the same-shape approach is that
cumulative distributions of normalised developmental time
(or rates) under different temperatures have an identical
shape and so can be fitted with a single temperature-
independent distribution function, e.g. the Weibull dis-
tribution. Normalization is simply a transformation of
developmental time (or rate), performed by multiplying (or
dividing) the developmental time (or rate) measures under a
constant temperature by the expected median developmen-
tal rate under that same temperature regime. The tempera-
ture-invariant distribution then can be used to predict
developmental times of individuals under variable tempera-
tures by using a rate-summation approach (Wagner et al.,
1984). The process is as follows. First, the relationship
between mean (or median) developmental rate under con-
stant temperatures is fitted with a nonlinear model
Many nonlinear models have been proposed (see, for
example, Taylor (1981) and Logan (1988)). This tempera-
ture-dependent mean (median) developmental rate model
predicts the average rate of development at a certain
temperature, or the fraction of development completed per
unit time. These fractions are then accumulated under field
variable temperatures and are treated as independent vari-
ables in the normalised same-shape distribution model.
Thus, the fraction of the cohort that completes development
at each accumulated rate is given by the dependent variable
of the same-shape distribution function. This rate model
determines the speed of cohort development as a function of
temperature, while the same-shape distribution function
gives the proportion of the cohort completing development
as a function of accumulating rates. Integrating the two
models is the essence of the rate-summation approach for
predicting insect phenology. We believe that same-shape
and rate-summation approaches can be extended to model-
ling insect reproduction process under variable tempera-
tures. This paper explores same-shape and rate-summation
approaches to modelling RWA nymphal production.

Materials and methods

We extended Taylor’s (1981) model for insect develop-
ment to describe RWA mean (median) nymphal production
under different temperature and barley plant growth stages.
The original Taylor’s model only considers the effects of
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temperature. Our extended version of Taylor’s model also
incorporated the effects of barley plant growth stages on
RWA reproduction. Three same-shape distribution models,
Weibull distribution, Stinner’s model and logistic model, are
used to construct RWA same-shape reproduction distribu-
tion models. The results show that Stinner’s model success-
fully describes both reproduction rates and times (defined
later in the paper) and Weibull distribution succeeds in
reproduction times, while the Logistic model fails in both
reproduction rates and times modelling. The statistical
parameters and visual inspections for these model fittings
provide further evidence that the same-shape distribution
approach is feasible for describing RWA reproduction under
various environmental regimes, such as temperature and
plant growth stages. Unlike the insect development and
phenology modelling, few unified insect reproduction
models could be generally applied to insect reproduction
modelling. The same-shape reproduction distribution
approach we demonstrated with RWA may well be applied
to other insect species.

Laboratory experiments

We conducted laboratory experiments from 1994 to 1995
to collect required data to develop RWA population
development, reproduction and survival models. The
experiment investigated the influence of 25 different
temperature and barley plant growth stage regimes on RWA
development, survival and reproduction. For each of the 25
temperatures, plant-stage combinational treatment, we
recorded the developmental timing and nymphal produc-
tion of 72 RWA individuals through their entire lifetime
(1800 total RWA, 25 x 72). The experiment was conducted in
two growth chambers. Treatments were factorial combina-
tions of five temperatures and five barley plant growth
stages. Temperature regimes were 8-1°C, 17-10°C, 23-16°C,
28-21°C, 33-26°C, fluctuating on a 14:10h (light:dark)
rectangular-wave cycle (where the higher constant tempera-
ture coincided with the light phase and the lower tempera-
ture coincided with the dark phase). Hence, mean
temperatures weighted by photoperiod were 5.1, 14.1, 20.1,
25.1 and 30.1°C, respectively. Barley plant growth stages
were two-leaf, tillering, flag leaf, inflorescence and soft
dough; the corresponding Zadoks scale (Zadoks et al., 1974)
was 12, 23, 39, 59 and 85. Spring barley of the variety ‘Excel’
was sown in 6-cm diameter pots in the greenhouse. Every
two days, new barley plants were sown to continue the
supply of barley plant leaves of different growth stages.

Russian wheat aphids used in the experiment were from
a laboratory colony maintained in a growth chamber from
field collections near Moscow, Idaho. Each aphid was reared
in a Petri dish containing a clipped spring barley leaf placed
on a wetted filter paper secured at the leaf ends with small
pieces of filter paper. In a preparatory experiment, we found
that maintaining appropriate humidity inside the Petri dish
was critical, especially at high temperatures; hence, a
12 x 12cm? piece of parafilm® paper was inserted between
the dish and cover to prevent evaporation.

Experiments began with the preparation of newly-born
first-instar nymphs. At about 6 pm, approximately 200
female adults from the colony were transferred to 72 Petri
dishes prepared as previously described. These females were
left to reproduce under room temperature until approxi-
mately 11 pm. Then, dishes were examined and RWA
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nymphs transferred gently with a fine brush to establish one
nymph per dish. This procedure was finished at midnight
and day one of the experiment began with the 72 Petri dishes
moved into the growth chamber. These procedures con-
trolled age differences among individuals within a cohort
(treatment) to six hours. Survival, molting and nymphal
production of each aphid were recorded daily until death.
New progeny were removed daily; every other day, leaves
were replaced from plants which had just reached the
required growth stage.

Same-shape reproduction distribution and rate-summation
approaches

Here, we now compare and contrast the key concepts of
the same-shape method with respect to development and
reproduction of insects, using the Russian wheat aphid as an
example.

Developmental rate vs. reproduction rate

Whereas the inverse of RWA development time is
developmental rate, we define RWA reproduction rate as
daily nymphal production per female divided by her lifetime
expectancy of nymphal production. We expect that the same
nonlinear models used to describe developmental rate also
can be used to describe reproduction rate.

Developmental time vs. reproduction time (period)

The reproduction period (time), the counterpart of
developmental time (period), can be defined as the inverse
of reproduction rate, the lifetime expectancy of nymphal
production per female divided by daily nymphal produc-
tion. The same nonlinear models used to describe develop-
mental time also can be used to describe reproduction time.

Normalised developmental rates (or times) vs. normalised
reproduction rates (times)

Normalised reproduction rate (or time) is computed by
dividing (or multiplying) the reproduction rate (or time)
by the expected median reproduction rate under the same
temperature.

Same-shape developmental distribution vs. same-shape
reproduction distribution

As in the case of development, we expect that the
cumulative frequency distributions of reproduction rates (or
times) under different temperatures show same-shape and
could be described with a single temperature-invariant
distribution model, such as the Weibull distribution.

The underlying biological mechanism of the same-shape
developmental distribution is enzymatic control of insect
development (Sharpe et al., 1977; Curry & Feldman, 1978;
Curry et al., 1978). These authors hypothesised a single
enzyme that controls development is symmetrically distri-
buted around a genetically determined mean concentration.
Hence, the observed distribution of developmental rates
too should be symmetrical. Furthermore, if coefficients of
variation from these distributions are relatively temperature
independent, one can fit normalized developmental rates
(times) with a single temperature-invariant distribution func-
tion, the same-shape distribution.
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Fig. 1. Cumulative probability distribution of insect reproduction times under different temperature regimes (temperature decreases

from left to right).
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Fig. 2. The same-shape reproduction distribution, a temperature-invariant distribution curve of normalized reproduction times, which

was obtained from normalizations of curves in fig. 1.

There is evidence that temperature influences insect
reproductive rates in a similar way to insect development.
Ratte (1984) found that gonadal growth curves and differ-
entiation of eggs in some insect species show close similarity
to larval growth and differentiation. Further, the same hor-
mones are involved in controlling ovarian growth and
maturation. It is remarkable that environmental factors such
as temperature, photoperiod and thermoperiod cause
analogous changes in adult size and egg size. This strongly
indicates that temperature effects are mediated by the neuro-
endocrine system (i.e. the endocrine system may be temper-
ature sensitive) and that the mechanisms of temperature
effects on insect development and reproduction may be very
similar. The same-shape approach should also be applicable
for describing insect reproduction.

The same-shape distribution concept, as it applies to
reproduction, is explained in figs 1 and 2. Figure 1 is an
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assumed example of insect reproduction times under differ-
ent temperatures. The four curves in fig. 1 are cumulative
probability (frequency) distributions, under four different
temperature regimes, where temperature decreases from
left to right. Here, it is assumed that adults live a long time
under low temperatures. Although the reproduction times
vary with temperature, the shapes of the cumulative prob-
ability distributions of reproduction times are the same for
all temperature regimes. Normalization of reproduction
times (fig. 2) is graphically equivalent to shift the curves
in fig. 1 along the coordinate axis so that a single unified
curve (the same-shape curve) can be used to describe
reproduction times under any temperature regime. Figure 2
is the assumed same-shape curve from shifting of the curves
in fig. 1.

A probability distribution (the same-shape reproduction
distribution) then is chosen to describe the same-shape curve
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illustrated in fig. 2. The same-shape distribution is tempera-
ture-invariant, meaning that its form is not affected by
temperature theoretically. However, information about
temperature effects on reproduction is never lost in the
same-shape approach; it is captured in the normalized
reproduction times (rates). The normalised times (rates) at
time t are computed by summing mean reproduction rates
(times) since initiation of the reproduction through some
time t. Because mean reproduction rates (times) are tempera-
ture dependent (possibly also depend on other factors such
as plant growth stage), the effects of temperature on repro-
duction are considered neatly. This integrated process is
called rate-summation. Immediate benefits of indirectly
incorporating temperature influences on reproduction are
two-fold: (i) individual variation in reproduction capability
is captured because a probability distribution is used to
describe the distribution of normalized reproduction times
(rates); and (ii) the same-shape distribution can predict
reproduction under field variable temperatures because
the same-shape distribution itself is temperature-invariant.
Without establishing a same-shape distribution curve as
illustrated in fig. 2, we would need a distribution curve for
every possible temperature regime as illustrated in fig. 1 to
simultaneously consider individual reproduction variation
and temperature effects.

We believe that the success of the same-shape develop-
mental distribution approach is acknowledged in the liter-
ature largely by its good fits to experimental data. Therefore,
we will similarly test the applicability of same-shape to
insect reproduction by observing the results of fitting the
same-shape distributions to practical RWA nymphal produc-
tion data.

Nymphal production vs. temperature and plant growth stage

We adopted Taylor’s (1981) insect developmental model
to describe the relationship between daily mean, median or
lifetime nymphal production per female and temperature as
follows:

R(T) =R exp {~1/2[(T —Tw)/ To I’} @

To also consider the influence of barley plant growth stage,
the following slightly modified version of Taylor’s model
was fitted:

R(T,S) =Rm exp {—1/2[(T — Twm)/To*} + S ©)

In both equations, T and S are temperature and plant stage,
respectively, R(T, S) is either daily mean, daily median or
lifetime total production of nymphs per female. Ry, Tr,, T,
and o are model parameters with similar biological mean-
ings to the original Taylor (1981) model. Thus, Ry, is the
maximum achievable reproduction value (expressed as daily
mean, daily median or lifetime total production of nymphs)
under the optimum temperature Ty, The parameter T,
describes the rate at which reproduction falls away from T,.
Effects of the plant growth stage on RWA reproduction are
given by the parameter a.

Equation 2 is a normal distribution truncated to the right
of the mean. Similar to Taylor’s (1981) interpretation within
the context of insect development, the equation assumes that
reproductive rate increases with temperature and reaches a
maximum rate, Ry,, at the optimum temperature, Ty,. Above
this optimum temperature, reproduction declines. The curve
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must be truncated to the right of T,,, due to the lethal effects
of exposure to high temperatures. Equation 3 adds the item
aS to account for effects of plant stage on reproduction. More
complex expressions related to S, such as S, ST and exp(S),
also were considered in model fitting, but very little
improvement was achieved in model accountability. In
many situations, introducing more complex items lowers
the tolerance levels of parameter estimates very low such
that the model is not reliable. Equations 2 and 3 were fitted
to my experimental data by using the BMDP 3R procedure
(using modified Gauss-Newton algorithm) (BMDP, 1993).

Equations 2 and 3 describe daily or lifetime nymphal
production. As defined previously, the mean and median
reproduction rates (times) can be computed from the models
of daily and lifetime nymphal production. The computation
is straightforward and the formulae will be given directly in
the ‘Results and discussion’ section.

Same-shape distribution model of RWA reproduction

The algorithm for conducting same-shape analyses was
discussed in detail by Wagner et al. (1984, 1985) and Logan
(1988) and Logan & Weber (1989). We used the same-shape
distribution-model fitting components of the PMDS (Popu-
lation Model Design System) software (Logan, 1988), which
was originally designed to model insect development and
phenology. A same-shape model can be based either on the
cumulative distribution of reproduction rates, R(r), or on the
cumulative distribution of reproduction times, R(¢). Normal-
ization transforms either to their corresponding same-shape
distribution. Three distribution models can be fit to the
normalized cumulative distributions by using Logan’s (1988)
PMDS program: the Weibull distribution (Wagner et al.,
1984), the Stinner et al. (1975) hyper-power function and the
Regniere (1984) two-parameter logistic model. Let R(x) be
the probability an individual completes nymphal production
at normalized time (or rate), x, or, alternatively, the
percentage of the population that has finished producing
nymphs and contributes no more progeny to the population.
Note that R(x) can be explained in terms of individual and
population, respectively. The formulas for these distribution
models are as follows:

Weibull distribution
R(x)=1— exp (~[(x—v)/n])’ @
where £, v and 1 are parameters of the Weibull distribution

and correspond to p2, pl and p3 from PMDS, respectively.

Hyper-power function
R(x)=(1-2)" 5)

where z=(B—x)/(B—A) for A (the estimated minimum) and
B (the estimated maximum) for either the normalized
developmental time or the normalized developmental rates.
The parameters A, B, 0 and k correspond to p1, p2, p3 and p4
in PMDS, respectively.

Regniere’s two-parameter version of the logistic model
R(x) = {1+ exp [—kx(—1)](0.5" 9 —1)}~/2 (6)

where k and Q are two parameters of the logistic model,
corresponding to pl and p2 in PMDS, respectively.
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Table 1. Results of fitting models (equation 2) for daily mean, daily median and total lifetime
nymphs per RWA female.

Model Maximum Optimum To Residual
Dependent Reproduction Reproduction Mean Square
Variable Rate Ry, Temperature Ty, (RMS)
Daily Median 2.6158 20.1936 5.2456 0.7162
Nymphs per Female (0.0585) (0.1281) (0.1199)

Daily Mean 2.7171 19.9673 5.3777 0.6267
Nymphs per Female (0.0544) (0.1171) (0.1133)

Life Time 43.6958 16.0994 6.8677 309.415
Nymphs per Female (0.9855) (0.2417) (0.2148)

Only temperature effects are included (n=1075).

Numbers inside parentheses are asymptotic standard deviations for model parameters.
The correlation coefficients (absolute values) among estimated parameters range from 0.08 to
0.58. The tolerances of the estimated parameters range from 0.64 to 0.99.

Table 2. Results of fitting models for daily mean, daily median and total lifetime nymphs per

RWA female.

Model Dependent Maximum Optimum To a Residual

Variables Reproduction =~ Temperature Mean
Rate R, T Square

Daily Median 2.9631 19.8719 6.3353 —0.0118 0.5956

Nymphs per Female (0.0550) (0.1178) (0.1550) (0.0008)

Daily Mean 3.0022 19.5183 6.5843 —0.0118 0.5299

Nymphs per Female (0.0512) (0.1160) (0.1545) (0.0008)

Life Time 53.1468 15.7340 8.5591 —0.2549 260.42

Nymphs per Female (1.0838) (0.2092) (0.2290) (0.01856)

Both temperature and barley plant growth stage are included (1 =1075).
Numbers inside parentheses are asymptotic standard deviations for model parameters.
The correlation coefficients (absolute values) among estimated parameters range from 0.004 to

0.62.

The tolerances of the estimated parameters range from 0.30 to 0.91.

Results and discussion
Mean and median reproduction rates (times)

Three variables were evaluated as dependent variables in
equations 2 and 3: mean daily nymphs produced per female,
median daily nymphs per female and total lifetime nymphs
per female. Tables 1 and 2 show the results of fitting Taylor’s
basic and modified models. Several criteria, including RMS
(Residual Mean Square), asymptotic standard deviation,
tolerance and correlation coefficients of estimated par-
ameters (see footnotes for tables 1 and 2), show that the
constructed models are reliable. Figures 3-5 illustrate the
three-dimensional graphs of modified Taylor’s models for
fitting daily median, daily mean and lifetime nymphal
productions, respectively. The values of T,, indicate that the
optimum temperature for the mean (or median) number of
nymphs produced by one female per day is about 20°C, but
the optimum temperature for RWA reproduction expressed
as the total number of nymphs produced by a female in her
life time is about 16°C. The differences in optimum tempera-
tures for daily vs. lifetime reproduction occur because the
Russian wheat aphid survives significantly longer at lower
temperatures. For example, average adult life span under
14.08°C ranges from 25-30 days and from 18 to 23 days
under 20.08°C (Ma, 1997). Under low temperatures, RWA
has more time to reproduce; the result is a greater lifetime
production of nymphs per female, even though daily
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nymphal production is less than under higher temperatures.
The R, values in table 2 state the maximum RWA
reproductive rates under optimum temperature conditions;
mean nymphs per day, median nymphs per day and total
lifetime nymphs per female can reach 3.00, 2.96 and 53.15,
respectively, under optimum conditions. When plant growth
stage factor is not considered (table 1), the mean and median
values for R, are only slightly smaller, while lifetime
nymphal production showed a bigger decline (18%). In
addition, after the crop growth stage was introduced in the
modified Taylor’s model (table 2), the residual mean square
(RMS) of model fitting decreased about 15%. This modest
reduction indicates that addition of a plant growth stage
variable does somewhat contribute to improving the model.

Figures 3, 4 and 5 show that the influences of temperature
and plant growth stage on daily median, daily mean and
lifetime nymphal productions per female are consistent
among the three models. Both low and high temperatures
negatively affect RWA reproduction. Younger plant growth
stages (small numeric values on the Zadoks scale) are always
favorable for RWA reproduction. The models predicted that
under conditions of extreme temperatures and very old
plant stages, RWA do not produce any nymphs. Unfor-
tunately, the graphs only visually can show the combination
of extremely low temperature and old plant stage. At
extreme conditions, these models can mathematically gener-
ate negative values for nymphal production, which is
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Fig. 3. Daily median nymphal production per RWA female vs.

Fig. 4. Daily mean nymphal production per RWA female vs.
temperature and barley plant growth stage, based on the model
in table 2.

temperature and barley plant growth stage, based on the model
in table 2.

biologically impossible. Therefore, a restriction of nymphal
production =0 was imposed on the models in tables 1 and 2.

As defined previously, the reproduction rate formally is
computed as the daily mean (or median) nymphal produc-
tion per female divided by total lifetime nymphal production
per female. When the barley plant stage is not included, rates

ale
(]
o

€
are as follows: Lg:)— 50
Mean reproduction rate -é f’””’ 77
_ 27171 exp (—l(T—19.9673)/5.3777]) @) El 40 ’ll”,’,”’l;l’l”’”
43.6958 exp {1—14[(T —16.0994) /6.8677]*} 69_ 3 ””’”’”
Mean reproduction rate _E;_
_ 26158 exp [~ 1A[(T ~20.1936)/5.2456 ) ®) £
43.6958 exp {—14[(T —16.0994)/6.8677]*} 2 10
When the plant stage is included, rates are as follows: 'Fq_.‘)
Mean reproduction rate E
_3.0022 exp {—1[(T —19.5183)/6.5843]*} —0.01185  (9)
53.1468 exp {—1A[(T —15.7340)/8.5591]*} —0.2549S
Median reproduction rate
29631 exp {—1A[(T —19.8719)/6.3353]*} —0.0118S  (10)

Fig. 5. Lifetime nymphal production per RWA female vs.
" 53.1468 exp {—1/2[(T—15.7340)/8.5591]2} —0.2549S

temperature and barley plant growth stage, based on the model
in table 2.

Reproduction times (duration of reproduction) are given by
the inverses of equations 7-10.

As to whether rate vs. time or mean vs. median should be
used, Wagner ef al. (1984) and Kramer et al. (1991) discussed

these questions with respect to insect development. Kramer
et al. (1991) indicated that when fitting developmental
models with least-square methods, minimizing the squared
error in the rate is not equivalent to minimizing the squared
errors in time. Wagner et al. (1984) argued for the use of
medians as the norming constant to obtain normalised
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developmental times or rates. Wagner et al. (1984) and Logan
& Weber (1989) seemed to support the use of median time
for describing insect development. There might be a practical
reason to use mean instead of median when the develop-
mental times are very short. For example, RWA nymphs
generally molt every 1-3 days under optimum temperatures.
If we calculate the median instar period instead of the mean
period, there might be little or no difference among
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Table 3. Parameters of the Weibull Function as RWA same-shape reproduction distribution.

Reproduction ¥ B n ? Ss Degree of RMS
Model Freedom

Rate Failed

Time —0.1510 1.6237 1.4044 0.9499 0.0366 67 0.0005
Table 4. Parameters of Stinner’s hyper-power function as RWA same-shape reproduction distribution.

Reproduction A B 0 k 2 ss df RMS
Model

Rate —3.7691 43.2776 754.3156 71.9538 0.917 0.0599 66 0.0009
Time —0.1762 6.9663 1.0972 6.0852 0.950 0.0365 66 0.0006

treatments because it is likely two will be median across all
treatments. The median only can be an integer, so the
precision of parameter estimation by using the median
might be poor. A similar situation may exist in insect
reproduction. For nymph-producing insect species (where
the number of daily nymphs produced usually is smaller
than the daily number of eggs laid by egg-laying insects) or
for insect species whose developmental duration are short,
the mean might be more useful than the median.

Same-shape distribution model of RWA reproduction

Regniere’s (1984) model failed to fit my RWA reproduc-
tion rate and time data; the parameter estimation process
diverged. The results from fitting the Weibull and Stinner
functions are listed in tables 3 and 4, respectively. The
Weibull distribution failed to describe the rate distribution,
but successfully described reproduction time, whereas the
Stinner’s hyper-power function fit both reproduction rate
and time distributions. The residual mean square in table 3
and 5.4 are quite small. These results support my conjecture
that the same-shape distribution approach can be applied to
modelling RWA reproduction. Based on RMS (residual
mean square), the Weibull reproduction-time model fits
my data best and is used to describe RWA reproduction in
the simulation model described in Ma (1997).

Figure 6 is the graph of the fitted Weibull distribution
function to normalized reproduction time; it depicts the
same-shape reproduction time distribution as described with
Weibull function. Figure 6 illustrates that the same-shape
distribution fitted the experimental data very well during the
intermediate period of normalized reproduction times. How-
ever, at both ends, especially at the ending period, the same-
shape distribution did not fit as well, and the residuals were
greater. The greater residuals occur at both ends because
reproductive heterogeneity at the time extremes was higher
than at the intermediate times so that the cumulative prob-
ability distributions did not overlap each other perfectly. The
same-shape distribution takes the average values at both
ends when the same-shape is not perfect. Reproductive
heterogeneity among individuals is a biological reality, and
it is not surprising that cumulative distributions for different
temperatures do not overlap one another exactly. Currently,
we do not have other methods that capture individual
heterogeneity and temperature effects simultaneously. The
same-shape distribution approach is probably the best
description now possible.
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Rate-summation simulation of RWA reproduction under
variable temperatures

The integration of the temperature-dependent mean
(or median) reproduction rate model with the temperature-
invariant same-shape reproduction distribution model con-
stitutes the rate-summation system for predicting RWA
reproduction of under variable temperatures, such as exist in
field. If one uses the reproduction rate (time) model that
incorporates barley plant stage, then both temperature and
crop stage are predictors of the reproduction process. We
emphasize that output from the temperature and plant-stage
dependent reproductive rate (time) model becomes the input
(independent variable) of the same-shape distribution
model. Perhaps more accurately stated, it is the accumulated
output from the rate (time) model over time-variable tempera-
tures that is the input for the same-shape distribution model.
In biological terms for an individual RWA, the same-shape
reproduction distribution model gives the probability an
aphid has reached her expected lifetime nymphal pro-
duction, given accumulated time (x). Alternatively, the
model expresses the percentage of nymphs produced up
to time x over the expected lifetime number of nymphs
the aphid can produce. For a population of RWA, model
output is the proportion of individuals in the population that
already has produced their lifetime nymphal output; it is the
proportion of RWA that will contribute no further progeny
to the population. The usefulness of the same-shape repro-
duction model and the rate-summation approach will be
clear from the perspective of a simulation model of the RWA
population dynamics as is described in our separate paper.

Conclusions and perspective

This study proposes and demonstrates a new modelling
approach to predict insect reproduction under variable tem-
peratures and plant growth stage by extending the same-
shape distribution model and rate-summation approach,
which have been used for modelling insect development
since the late 1980s. Besides the extension of the application
domain from insect development to reproduction, the paper
also extends the original same-shape and rate-summation
approach by allowing simultaneously consideration of both
temperature and plant growth stage. We argue that the ad-
vantages of the original same-shape distribution model
and rate-summation approach are preserved when they
are extended to the modelling and prediction of insect
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Fig. 6. Same-shape reproduction time model fitted with the Weibull distribution function in table 3.

reproduction. The verification and testing results with the
data from 1800 RWA under 25 combinatorial treatments of
temperature and barley plant growth stages show that the
extensions are very successful and well justified. In the
following, we present some additional discussion to argue
that the approach should also be applicable to the reproduc-
tion modelling of other insects in general.

The extension of Taylor’s (1981) model was straightfor-
ward, and we note the following two additional consider-
ations for why we chose this specific model. However, we
also think that other widely used non-linear models may
be equally or more appropriate, especially when tempera-
ture is the only factor to be considered. The two consider-
ations we had are as follows. (i) From our experience with
modelling of the RWA development (Ma & Bechinski,
2008a), all the major nonlinear models are sufficient in
fitting data, but the more complex ones (with more par-
ameters) could be less stable in parameter estimation. On the
other hand, all the nonlinear models for development are
univariate functions. We need to introduce the second vari-
able, plant growth stage. This is a significant complication,
even if we introduce the plant stage as a simple linear func-
tion a xS, S is plant stage, and a is the parameter (equation
3) because the change transforms the model from two-
dimensional to three-dimensional. Compared with other
models, Taylor's model is essentially a modified Gaussian
curve and is structurally very robust, which allows us to
introduce a second variable, plant stage, without ‘breaking’
the model representation capability of the temperature. (ii)
From our experiment observation (25 treatments, 72 x 25 =
1800 RWA), without even modelling, we were sure that
RWA prefers young plants; and the relationship is at least
monotonic, if not linear. So a xS is a very reasonable as-
sumption. The model fitting results and the predictions from
the models verified our assumption.

The extension of the same-shape from modelling devel-
opment to reproduction is relatively more complex than the
extension of Taylor's model. In the original same-shape
modelling for development (Wagner et al., 1984, 1985; Sharpe
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et al., 1977), it was suggested that the applicability of
the same-shape method should depend on the testing of the
sameness of the same-shape curves. In other words, the
shape of the curves (figs 1 and 2 in this article) is invariant
with respect to the temperature regimes, and they can be
obtained from each other by sliding along the x-axis. This is a
very practical testing method for the applicability and has
been widely used in the application of the same-shape
approach in insect developmental modelling. However,
there are relatively few discussions on why this testing
should be sufficient. We, therefore, offer the following discus-
sion on this modelling approach in the general context of
both development and reproduction domains.

The idea behind the same-shape distribution approach is
actually to smooth the difference between two different
temperature regimes, constant under laboratory conditions
vs. fluctuating in field, so that the developmental (reproduc-
tion) progression under natural conditions can be approxi-
mated with the model built from lab data under constant
temperatures. There are two key points. (i) By accumulation
or summation of rates or times, we obtain a monotonic
function, that is, the curves either increase monotonically or
just ‘pause’, but never jump down. The underlying mathe-
matical principle is the approximation of the integral of a
function with the step function, which is applicable to both
linear and nonlinear functions, and actually even to
discontinuous functions. (ii) Despite the difference between
individuals due to genetic differences and their responses to
temperature, the distribution of the developmental times
(reproduction amount) in a population should still follow
the same trend. The first key point guarantees that the
general trend at population-level is properly captured, and
the second key point ensures that the individual drift will
not affect the general trend. The original method, for
experimentally verifying the sameness of the same-shape
curves, essentially verifies that the above two key points are
satisfied. Obviously, as long as the testing is successful,
whether it is the summed-curve for the development or
reproduction makes no difference.
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We conjecture that there might be a potential difference
between reproduction and development in some insects.
Developmental rates might be more evenly distributed over
time, and the reproduction might be more like a Gaussian
distribution over time with middle-aged adults producing
more progenies. In other words, there might be a reproduc-
tion peak. It might also be the case that young adult insects
are more productive, so this curve may not be in the perfect
form of a Gaussian distribution. Of course, one may also
argue that the insect developmental process could also
follow a Gaussian distribution over time, with middle-aged
individuals developing fastest. Even if this difference indeed
exists, it does not invalidate the same-shape approach as
long as the sameness-testing of the same-shape curves
succeeds. This is because the accumulation or summation
process will always lead to the monotonically increasing
rates or times; it will never lead to the decrease of the ac-
cumulated values because negative developmental rates
or times are biologically impossible. The underlying curve
being accumulated may affect the shape of the summation
curve; but, as long as the resulting curves are of the same-
shape, which is verified by the sameness-testing, the same-
shape approach always applies, regardless of development
or reproduction.

One may wonder what can be done if the sameness-
testing fails. Although it has not been tested in insect
modelling, a possible solution is to perform a second-order
summation, i.e. summing up the rates or times again, which
should smooth the curve. Of course, a formal set of pro-
cedures has to be developed to implement the ‘second-order’
approach. The summation or accumulation as a general
operator in mathematical modelling has also been used in
other disciplines. One successful example is the Grey System
theory, where accumulation is used as a very general
approach to smooth up curves, which are said to reduce or
eliminate noise (errors) in data. In the Grey System theory,
the first-order accumulation is often sufficient, but the
second-order is also frequently used to improve the model
fitting. Grey System theory was pioneered by Deng (1982,
1989). The applications of the Grey System theory in insect
population dynamics were approached in Ma & Zhang
(1990) and Ma (1991). The Grey System theory was advanced
to study Grey systems, to which our understanding (in-
formation) is incomplete, or between completely known
(white box or system) and totally unknown (black box
system) (Deng, 1982, 1989). The high-order accumulation
approaches used in the Grey System theory should be of
general inspiration for devising similar procedure for
extending the rate-summation approach discussed in this
paper.

In perspective, the modelling approach developed in
this paper can be similarly applied to other insects. Its
advantages include: (i) a general framework for building
insect reproduction prediction model, which is applicable
under field variable temperature, based on the data obtained
from laboratory demographic research; and (ii) the incor-
poration of individual variability in reproduction. Further-
more, the same-shape reproduction distribution model and
rate-summation approach described in this article have been
used as the reproduction module in a survival-analysis-
based simulation model for RWA population dynamics (Ma
& Bechinski, 2008b). The latter application demonstrates the
practical significance of the approaches developed in this
article in modelling insect population dynamics.
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