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Abstract
Who values life annuities more? Is it the healthy retiree who expects to live long and might become a cen-
tenarian, or is the unhealthy retiree with a short life expectancy more likely to appreciate the pooling of
longevity risk? What if the unhealthy retiree is pooled with someone who is much healthier and forced to
pay an implicit loading? To answer these and related questions this paper examines the empirical condi-
tions under which retirees benefit (or may not) from longevity risk pooling by linking the economics of
annuity equivalent wealth to actuarially models of aging. I focus attention on the Compensation Law of
Mortality which implies that individuals with higher relative mortality (e.g., lower income) age more
slowly and experience greater longevity uncertainty. Ergo, they place higher utility value on the annuity.
The impetus for this research today is the increasing evidence on the growing disparity in longevity expec-
tations between rich and poor.
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There’s nothing serious in mortality,
all is but toys, renown and grace is dead.
Macbeth, Act II, Scene III

1 Background and motivation

The noted Princeton economist and Nobel laureate Angus Deaton recently wrote that ‘The finding
that income predicts mortality has a long history,’ having been noted as far back as the 19th century
by Friedrich Engels in Manchester, England. According to Deaton (2016), commenting on similar
findings by Chetty et al. (2016), ‘There is little surprising in yet another study that shows that
those with higher income can expect to live as much as 15 years more than those with lower income.’
It simply isn’t news. Indeed, the focus among those (economists) who study mortality and its inequal-
ity, using a phrase coined by Peltzman (2009), has shifted to the causes and consequences as opposed
to proving its existence. The question en vogue is:Why is the mortality gradient steepening? andWhy is
it worse in some countries versus others?

What has received less attention from economists – and in fact may be surprising to many – is that
not only is the longevity of those at the lowest income percentiles in the USA lower, the uncertainty or
variability of their remaining lifetime is higher as well. It is the exact opposite of the well-known rela-
tionship in portfolio theory. If one thinks of the remaining lifetime random variable Tx in terms of
return (i.e., expected length) and risk (i.e., dispersion), then generally speaking the mean value is
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lower but the standard deviation (SD) is higher for individuals with lower income (i.e., poorer), but at
the same chronological age (CA). And, when these two numbers are expressed as a ratio (a.k.a. the
coefficient of variation of longevity, or CoVoL) the difference is even more pronounced.

The positive (cor)relation between mortality rates and the volatility of longevity (as well as SD) for
individuals follows from the Compensation Law of Mortality (CLaM). This theory was introduced in
1978 (in Russian) and expanded on (in English) by Gavrilov and Gavrilova (1991) in their textbook.
I’ll elaborate on this later on, but to be clear, it’s a theory and remains somewhat controversial. At this
point all I’ll say is that if you are unfortunate enough to have high mortality you also face higher lon-
gevity uncertainty.

Now, more than a statistical curiosity or something to idly puzzle over, nowhere is the natural link
between life expectancy and its volatility more pertinent than in the area of pensions, retirement plan-
ning and (subjective) annuity valuation.

1.1 Pension subsidies

For the sake of a wider readership (but at the acknowledged risk of alienating an academic audience)
I’ll dispense with tradition and motivate this paper with a very simple example. Assume that Mrs.
Heather is about to retire at the age of 65 and is now entitled to a pension annuity, a.k.a. social secur-
ity, or guaranteed lifetime income of exactly $25,000 per year, paid monthly. For the record, this is the
legislated maximum she can receive after having worked the requisite number of years. In other words,
she has also contributed to the maximum, perhaps explicitly by having a fraction of her paycheck
withheld or implicitly via the income tax system. The pension annuity payments are adjusted for
the cost of living or price inflation as measured by some national index, but the income will cease
upon her death. The pension annuity contains no cash value or liquidity provisions, nor can she
bequeath the income to her children, grandchildren or loved ones. I’m not describing any one specific
country or government plan, but rather a generic, no-frills defined benefit (DB) pension scheme man-
aged by any large sponsor.

Coincidentally, her next-door neighbor Mr. Simon was born in the same year, is also about to retire
at 65 and is entitled to the same annuity of $25,000 per year. He, too, has contributed the maximum to
the scheme. The exact details of how Simon and Heather paid for their pension annuity are unimport-
ant at this juncture. The key is that over his working life – and in particular by the time he retires –
both Simon and Heather have contributed fully to the pension system.

There is one important difference between the two, though. Regrettably, Simon has a medical life
expectancy of 10 years and is rather sickly, whereas Heather is in perfect health with a corresponding
life expectancy of 30 years – and they both know it. Heather is expected live to age 95 (from her cur-
rent age of 65) and outlive Simon who will only make it to 75. Stated differently, although their CAs
are both 65, Heather’s biological age (BA) is much lower than Simon’s BA. In actuarial terms, his mor-
tality hazard rate is substantially higher than Heather’s.

And yet, despite Simon’s poor health and the financial fact he contributed the exact same
amount to the retirement program or pension scheme, he isn’t entitled to any more income from
his pension scheme’s annuity than Heather. In the language of insurance, retirement programs
aren’t underwritten or adjusted for individual health status. Instead, all government social security
programs around the world are unisex or gender neutral. If you contribute (the same amount) into
the system, you receive the same benefit regardless of your sex, health status or any other bio-marker
for longevity.

Obviously, Simon’s shorter life expectancy of 10 years implies that he will be receiving (much) less
money back compared to Heather. Moreover, if the retirement program or scheme is designed to nei-
ther make nor lose money in the long run, a.k.a. it is actuarially balanced, then the (sick) Simons of the
world are subsidizing the (healthy) Heathers. Economists know this very well and it is the nature of all
government pension programs. In fact, in most of the Europe today, insurance companies are prohib-
ited from using gender to price any type of retail policy, whether it be life, health, home or even car
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insurance. (In other words, Heather has to pay a bit more for car insurance, in Europe, relative to
Simon.)

My objective in introducing this very simple framework is to quantify the magnitude of the finan-
cial subsidy from Simon to Heather, one that will form the basis and intuition for what follows later.
Of course, despite the large dollar value of the transfer, the entire point of this paper is to argue why
(and quantify how) Simon might still benefit from being a member of a pension scheme due to the fact
that his longevity risk is greater.

To properly analyze the subsidy from a financial perspective, the natural next step is as follows: how
much would Simon have to pay in the open (a.k.a. retail) market to acquire a pension annuity of
$25,000 per year, and how much would Heather have to pay? That price or cost should give a
rough sense of the magnitude of the transfer provided by Simon to Heather.

In practice, the market price will depend on many loading factors and, more importantly, the mag-
nitude of the uncertainty around Simon and Heather’s life expectancy. But to keep things very simple
(at this early intuitive stage) I’ll assume that Simon will live for exactly 10 years and Heather will live
for exactly 30 years. In other words, remaining lifetimes are deterministic and Simon would be charged
$212,750 at the CA of 65 and Heather would be charged $487,250 for the same exact (term-certain)
annuity.

These numbers are based on a 3% effective (real) annual interest rate but do not require much else
in terms of assumptions or parameters. Stated differently, the present value of $25,000 per year for 10
years is exactly $212,750, for 30 years of cash flows, the present value is $487,250. Moreover, the mar-
ket cost of their combined pension annuity entitlement is $212,750 + $487,250 = $700,000, a very
important number from a funding and pension solvency perspective. So, if – and this is a big if –
the pension scheme is actuarially balanced, it should have exactly $700,000 set aside in reserves to
pay pension annuities when Heather and Simon both retire.1

To be clear, real-world insurance companies will not charge $212,750 and $487,250 to Simon and
Heather for these annuities. First and foremost, these companies have to make profits, so they would
mark up or ‘load’ the price, just like the retail vs. wholesale cost of coffee. More importantly, insurance
companies have to budget and provision for uncertainty, including the risk of how long their annui-
tants will live. I’ll get to more refined mortality models in Section 3.

The relevant upshot is as follows: Simon is transferring $137,250 to Heather – a subsidy amounting
to 64.5% of the hypothetical value of Simon’s pension pot. Where did this number come from? Again,
the entire system should have $700,000 set aside for both of them, of which $487,250 is needed for
Heather and only $212,750 is required for Simon. And yet, by construction they both contributed
the same amount of money to the pension scheme, which presumably is a total of $350,000 × 2 =
$700,000 over the course of their lives. To repeat, Simon contributed $350,000 and is getting some-
thing worth $137,250 less in the open market. Heather contributed $350,000 and is getting something
worth $137,250 more in the open market. See Table 1.

The numbers assume a simplistic pension system with no survivor benefits and an (extreme)
20-year gap in life horizon between the two (and only two) participants. More importantly I assumed
Simon and Heather die precisely at their life expectancy, which presumes the absence of any longevity
uncertainty – which is the driver of insurance utility.

In fact, Simon might live beyond age 75 (or he may die even earlier) and Heather might not make it
to age 95 (or she may live even longer). Under these ex-post outcomes the cross subsidy will be smaller
(or perhaps even larger) and hints at the insurance aspects of these schemes, something I’ll return to in
a moment.

But, the ex-ante reality is that there is a large gap between the expected present value of the benefits
they receive even though they have paid similar amounts to the retirement program. In fact whenever
you mix (a.k.a. pool) heterogeneous people with different longevity prospects into one scheme in

1Note: Few schemes have anywhere near $700,000 set aside to pay all the guaranteed pension annuities under reasonable
discount rates. For the most prominent voice in this area, see Joshua Rauh.
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which everyone gets a pension annuity for the rest of their life, there will be winners and losers ex ante
as well as ex post. This outcome is well-known in the pension and insurance economics literature,2 but
it is often surprising to non-specialists.

1.2 Enter longevity risk

What happens if we incorporate longevity risk or horizon uncertainty? Well, as I noted earlier there is
a small probability that Simon lives for more than 10 years beyond age 75 and/or that Heather dies
before age 95. Nobody really knows exactly how long they are going to live ex ante. In that case
the ex-post transfer of wealth from Simon to Heather was less than 65% of the value of his pension
annuity. At the extreme edge there is a (very) small probability that Simon actually outlives
Heather and the ex-post transfer goes in reverse; she subsidizes him. We won’t know until all the
Heathers and Simons are dead.

Here is the main economic point. The pension annuity they are entitled to for the rest of their life
provides them with more than just a periodic cash flow or income, it provides longevity insurance.
Moreover, the value or benefit of any type of insurance can’t be quantified in terms of what might
happen on average. It must account for the tails of the distribution, which is best measured via
(some sort of) discounted expected utility.

Back to Heather and Simon. As mentioned, their annuity entitles them to more than a term-certain
annuity for 30 and 10 years, respectively – they have acquired longevity insurance that protects them
in the event they live longer. Simon would rather be pooled with people like him who share the same
risk profile, as he would then expect a ‘more equal’ distribution. But even Simon is willing to be pooled
with Heather if the alternative is no pooling at all.

So, who values this insurance more? Heather or Simon? Or is the insurance benefit symmetric?
Stated differently, could Simon be gaining more (in utility) from pooling with Heather, even if he
is losing on an expected present value basis? The answer is yes, Simon could be winning (economic
utility) even if he appears to be losing (dollars and cents). Why? Because his volatility of longevity is
greater. Simon has a short life expectancy, but relatively speaking the range of how long he might actu-
ally live, both expressed in (i) years: SD[Tx], as well as (ii) a fraction: SD[Tx]/E[Tx], is actually greater
than Heather’s.

Intuitively, if Simon lives 30 years instead of 10 years, that is equal to a 300% (of mean lifetime)
shock. It’s unlikely, but in the realm of possibility. In contrast, Heather who is expected to live 30
years will never experience a 300% shock. This would imply she lives 90 more years (from age 65)
to the age of 155. It simply won’t happen. The odds are zero. Ergo, Simon’s individual volatility of
longevity is higher than Heather’s. That’s displayed in Figure 1 and will be explained later.

From an insurance economics point of view, it implies that Simon values the risk pooling benefits
of the pension more than Heather does. The volatility of which I speak (and model) is more subtle

Table 1. Intuition for pension subsidies

Simon Heather

Current age 65 65
Earned pension credits Maximum Maximum
Annual pension income $25,000 $25,000
Life expectancy (horizon) 10 years 30 years
Term annuity PV at 3% $212,750 $487,250
Funded system assets $700,000 $700,000
Total pension contributions $350,000 $350,000
Transfer and subsidy −$137,250 +$137,250

Note. See the text and in particular the Introduction for details and context.

2In fact this is a concern with en vogue Notional Defined Contribution (NDC) schemes, as noted recently by Holzman
et al. (2017)
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than the likelihood of living 300% longer than her current life expectancy. It will be defined precisely
in Section 3. Most pension economists know that the transfer from Simon to Heather isn’t as large as
the expected dollars indicate, because (using my term) Simon’s uncertainty or risk is larger than
Heather’s. He places greater value on the insurance component. More importantly, he is willing to
swim in a pool with Heather, rather than taking his longevity chances.

Of course, Simon is a euphemism for unhealthy individuals who retire and aren’t expected to live
very long, whereas Heather represents retirees with long life expectancies. At this point I should make
it clear that this isn’t a matter of gender, race or nationality. There is a growing body of evidence that
we can identify the Simons of the world ex ante based on the size of their wallets and magnitude of
their income, not only via health or genetic testing. Nevertheless, forced risk pooling can (still) benefit
everyone when measured in units of utility, and this is well known to pension and insurance econo-
mists, as the gap in life expectancy isn’t too large and gap in uncertainty isn’t too small. That’s an
empirical question.

The main contribution of this article is to leverage the data in Chetty et al. (2016), which docu-
ments an increasing gap in life expectancy based on income, to test if longevity pooling is still valuable
to Simon and Heather in the USA today, versus a few decades ago.3

We know today that at the CA of 50, taxpayers in the lowest income percentile (have much higher
mortality rates and) are expected to live 10–15 years less than taxpayers in the highest income percent-
ile. And yet, they are all forced to participate in the same (mandatory) social security program. Again,
this paper uses the Chetty et al. (2016) mortality data (which I’ll explain) to calibrate the extent of the
transfer via the so-called annuity equivalent wealth (AEW) in a Gompertz framework. To pre-empt
my results, I show that even the lowest income percentiles in the USA, still benefit from pooling
because their volatility of longevity is large enough to overcome the implicit loading that comes
from pooling. That is for the time being (today) and assuming they don’t have any other sources
of guaranteed lifetime income. More on this later.

1.3 Outline of the paper

The remainder of this paper is organized (and presented in a more academic tradition) as follows. In
Section 2 I provide a proper literature review, linking the current paper to prior work in the field.

Figure 1. Remaining lifetime, dispersion and CoVoL.
Note: Both curves are based on the Gompertz law of mortality, conditional on age x = 65. The right curve represents a retiree with a
higher life expectancy (m = 98) and lower dispersion parameter (b = 8.7), leading to a CoVoL of 33.7%. The left curve represents a retiree
with lower life expectancy (m = 78) and higher dispersion (b = 18.2), whose CoVoL is double, at 61.9%.

3The same gap exists in Canada, per Milligan and Schirle (2018) but apparently isn’t growing over time.
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Then, in Section 3, I provide analytic context to the volatility or risk of longevity, by introducing the
Gompertz law of mortality as well as the so-called CLaM. Section 4 provides an expression for the
AEW, which is another way of presenting the willingness to pay (WtP) for longevity insurance. I illus-
trate how it’s a function of mortality characteristics and provide some examples. Section 5, which is the
main empirical contribution of this paper, displays and discusses the AEW as a function of income
percentiles in the USA. Section 6 concludes the paper with the main takeaways. Technical derivations
are relegated to an appendix.

2 Scholarly literature review

This paper sits within the so-called annuity economics literature, which attempts to explain the
demand, or lack thereof, for insurance products that hedge personal longevity risk. Life annuities
are an important form of retirement income insurance, very similar to DB pensions, as explained
and advocated by Bodie (1990) for example. This literature began close to 50 years ago with the
1965 article by Menahem Yaari, in which he extended the standard lifecycle model to include actuarial
notes. Yaari (1965) proved that for those consumers with no bequest motive, the optimal lifecycle
strategy is to annuitize 100% of assets. Clearly, few people have 100% of their wealth annuitized (or
‘pensionized’) and even fewer actively purchase annuities, as pointed out by Franco Modigliani in
his 1986 Nobel Prize address.

The restrictive conditions in the original Yaari (1965) model were relaxed by Davidoff et al. (2005),
and still the important role of annuities prevails. In fact, to quote the recent paper by Reichling
and Smetters (2015), ‘The case for 100% annuitization of wealth is even more robust than commonly
appreciated’ and it takes quite a bit of modeling effort to ‘break’ (in their words) the Yaari (1965)
result. Of course, including bequest and altruistic motives will reduce the 100% annuitization result
because annuity income dies with the annuitant and there is no legacy value. In a comprehensive
review and modeling effort, Pashchenko (2013) pinpoints the extent to which bequest motives,
pre-annuitized wealth and impediments to small annuity purchases can deter the full annuitization
result. The (negative) impact of bequest motives is also echoed in work by Inkman et al. (2010),
who interestingly find a positive relationship between annuity market participation and financial
education.

Reichling and Smetters (2015) succeed in cracking the 50-year-old model by introducing stochastic
mortality rates, in which the present value of the annuity is correlated with medical costs. According to
them, although the annuity helps in protecting against the impact of longevity risk, its economic value
is reduced in states of nature that are most costly to the retiree – namely in the case of medical emer-
gencies. In that state of nature annuities aren’t as desirable; and as a result fewer people (than previ-
ously thought) should be acquiring any more annuities.

Other attempts to ‘break’ the Yaari (1965) model revolve around the underlying (additive) lifecycle
model and moving-away from the implied risk neutrality over the length of life, toward a model with
recursive preferences. See also Bommier (2006). To be clear, I don’t aim for another crack in the Yaari
(1965) model, or provide reasons for why consumers don’t annuitize.

The recent work in behavioral economics, specifically the article by Brown et al. (2008), provides a
rather convincing explanation for why consumers dislike annuities; having to do with framing,
anchoring and loss aversion. The current paper stays well within the neoclassical paradigm, assuming
that consumers are rational, risk-averse and maximizing an additive utility of consumption over a sto-
chastic life horizon.

This is the approach taken by Levhari and Mirman (1977), Davies (1981), Sheshinski (2007) or
more recently Hosseini (2015), to name just a few. Moreover, I assume the consumer values annuities
using the AEW metric introduced by Kotlikoff and Spivak (1981), also used by Brown (2001) and
others who have calibrated these numbers around the world. The AEW is just another (reciprocal)
way of presenting the WtP metric, which is widely used in economics and recently reviewed in
Barseghyan et al. (2018). Brown (2001) showed that an increase in the individual’s AEW leads to
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an increase in the propensity to annuitize. It partially predicts who is likely to buy an annuity,4 which
is yet another reason to dig deeper in the structure of AEW.

That said, the main focus of attention in the current paper has to do with mortality heterogeneity
and the subjective or personal value of annuities when everyone is forced to pay the same price, i.e.,
they all must swim in the same pool.

Evidence of increasingmortality inequality continues to accumulate, and in particular the recent work
by Chetty et al. (2016) indicates that the gap in expected longevity between the highest and lowest income
percentiles in the USA can be as much as 15 years. These numbers are greater than (say) the 10 years
reported by De Nardi et al. (2009), or the 5-year gap noted in Poterba (2014, Table 4) within the context
of pensions and social security. Peltzman (2009) notes that in the year 2002US life expectancy (by county)
at the highest decile was 79.83 years, and at the lowest decile was 73.17 years, a gap of less than 7 years.

In contrast, Chetty et al. (2016) indicate that the measurable gap can extend to as much as 15 years.
Echoing the same trend, within the context of social security, Goldman and Orszag (2014) discuss and
confirm the ‘growing mortality gradient by income’ and report a life expectancy gap of 13 years
between those in the lowest versus highest average indexed monthly earning. It’s worth noting that
the correlation between (lower) income and (higher) mortality isn’t only a US phenomenon.

Outside of the US market, there is a similar discussion. Andersson et al. (2015) focus on Sweden,
for example, where one wouldn’t expect to observe such a mortality gradient. Milligan and Schirle
(2018) provide recent evidence for the mortality income gradient in Canada. Nevertheless, the ques-
tion motivating this paper is: how does this growing heterogeneity in mortality and longevity affect the
value of annuitization?

Using numbers available in the late 20th century, Brown (2003) manufactures annuity prices and
mortality tables based on race and education and concludes that ‘complete annuitization is welfare
enhancing even for those with higher than average mortality, provided administrative costs are suffi-
ciently low.’ This result was echoed (and cited by) Diamond (2004) in his presidential address to the
American Economics Association. He starts by noting that ‘uniform annuitization would favor those
with longer expected lives [such as] high earners relative to low earners’ but concludes that Brown
(2003) ‘shows much less diversity in the utility value of annuitization than previous comparisons.’

And yet, the range of life expectancy between healthy and unhealthy in the Brown (2003) analysis
(Table 1, to be specific) was 3.8 years at the age of 67. He assumed a conditional life expectancy of 81.0
years (lowest) for black males with less than a high school diploma vs. 84.8 years (highest) for male
Hispanics in the USA. Contrast these differences with the more recent and granular numbers provided
by Chetty et al. (2016), or even Goldman and Orszag (2014), where the gap in life expectancy between
the highest and lowest income percentile (calibrated to the same age of 67) is between 10 and 15 years.
It’s unclear whether the uniformly positive WtP for insurance values, i.e., AEW values greater than
one, can survive such a large gap in longevity expectations. The AEW might be lower than endowed
wealth and the value of longevity risk pooling might be negative when retirees with low life expectancy
are forcefully pooled, that is required to swim with individuals who are expected to live much longer.

Can one say unequivocally that no matter how high Simon’s mortality rate is, relative to Heather’s,
that he is willing to be pooled (with Heather) and benefits from annuitization? Surely there must be a
point at which the answer is no, and he would rather self-annuitize because the implicit loading, by
having to subsidize Heather, is (too) high.

My point here isn’t only to argue for an update or revision of possibly stale numbers to reflect the
increasing heterogeneity of mortality, although that is certainly the motivation for the paper. Rather,
my objective is also to focus attention on the mortality growth rate (and its inverse the longevity dis-
persion) as the driver of the value of annuitization. I illustrate this by utilizing a simple (closed-form)
analytic expression for the AEW and then calibrating to mortality rates by percentile, from the Chetty
et al. (2016) data.

4See also Bütler et al. (2013), Finkelstein and Poterba (2004), Gan et al. (2015), Brown, Mitchell, Poterba and Warshawsky
(2001) and the link to money’s worth ratio.
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Conceptually the main argument of this paper can be summarized as follows. Although recent data
indicate the heterogeneity of mortality is increasing and the gap in life expectancy is increasing, the
same data confirm that individuals with higher mortality experience a higher volatility of longevity,
as per the CLaM. This then serves to increase the value of longevity insurance. In other words, it
isn’t the shorter expected longevity (or higher mortality rate) that makes annuities appealing.
Rather, it’s the volatility of longevity that drives its value. More on this will be provided in the text.

To be clear, there are a number of other authors and papers that have focused attention and made
the link between the SD of lifespans and optimal lifecycle behavior. Most prominent in this category
would be Edwards (2013), building on the work of Tuljapurkar and Edwards (2011), who document a
15 year SD at the age of x = 10. Edwards (2013) builds on the Yaari (1965) model and arrives at esti-
mates for the increased longevity that a rational lifecycle consumer would demand in exchange for
being exposed to a higher variance of life. Although much of Edwards (2013) is based on normally
distributed lifespans, and I operate within a Gompertz framework, he shows that one additional
year of SD (in years) is ‘worth’ about 6 months of life. Nevertheless, as far as the literature review
is concerned, Edwards (2013) is one of the few papers to focus economists’ attention on the second
(versus the first) moment of life and show how exactly it affects optimal behavior. From that perspec-
tive, this paper builds on the idea that the link between these two moments has an economic inter-
pretation and implication.

3 Matters of life and death

3.1 Mortality by gender and income

Tables 2 and 3 display mortality rates for males and females in the USA as a function of various ages
and income percentile. These represent realized mortality rates per 1,000 people during the period
2001–2014 and are based on the data collected by Chetty et al. (2016). The numbers provided are
the actual ratio of observed deaths at a given age (say age 50) divided by the total number of people
at that age (say 50). These rates aren’t actuarial projections and are based on over 1.4 billion person-
year observations and close to 6.7 million deaths.

The methodology is described in the article by Chetty et al. (2016), and the entire dataset of mor-
tality rates as a function of income percentile is available online. Their (lagged 2-year income) num-
bers are for ages 40 to 63, and one must employ forecasting procedures (a.k.a. Gompertz) to obtain
values in later life, which is something I’ll return to in a moment.

These mortality rates contain various insights or takeaways, some immediately obvious and intui-
tive and some (much) less so. Focus first on the middle row, with the so-called median mortality rates.
At the age of 40, a total of 1.2 per 1,000 (median income) males died, whereas for (median income)
females the rate was only 0.8 per 1,000 individuals. Stated differently, the 1-year mortality rate for
(median income) males at the age of 40 is 50% higher than it is for females, which naturally leads
to a lower life expectancy for (median income) males. Continuing along the same row, at the age
of 50 the male mortality rate is now higher at 2.9 per 1,000 and for females it is 2.0, where I have
dispensed with the phrases 1-year and median income for the sake of brevity. At the age of 60, the
rates are 7.3 (males) and 4.5 (females) respectively. This is simply the effect of aging, which affects
both males and females. There is nothing surprising quite yet, but notice how the excess of
male-to-female mortality shrinks from 150% (=1.2/0.8) at the age of 40, to 145% (=2.9/2.0) at the
age of 50. This isn’t quite a downward trend (at least in the table), since at the age of 60 the excess
death is back to 162% (=6.3/4.5).

Moving on to the (more interesting) rows, we now have the opportunity to measure the impact of
income percentile on mortality rates.

Notice that for a US male in the lowest income percentile (north of the median), the mortality rate
at the age of 50 is over four times higher at 12.5 deaths per 1,000, versus 2.9 at the median income. In
stark contrast, a 50-year-old male at the highest income percentile (south of the median) experiences a
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mortality rate of only 1.1 per 1,000. This is less than half the median (income) rate. Stated differently,
the range in mortality rates between the first percentile and 100th percentile is (12.5/1.1) or over eleven
to one. To those who haven’t seen such numbers before they might seem extreme, but they are by no
means original. As noted by Deaton (2016) and quoted in the first paragraph of this paper, the link
between mortality and income is well-established in the economics literature.

Chetty et al. (2016), upon which these numbers are based, is simply one of the most recent and
comprehensive documentations of the mortality to income gradient. In fact, Goldman and Orszag

Table 2. US death rates per 1,000 individuals

Male Female

Income group Age = 40 Age = 50 Age = 60 Age = 40 Age = 50 Age = 60

Lowest (1st pct.) 5.8 12.5 22.1 4.3 8.0 12.8
25th percentile 2.0 4.5 10.9 1.2 2.7 5.9
Median (50th pct.) 1.2 2.9 7.3 0.8 2.0 4.5
75th percentile 0.8 1.8 4.9 0.5 1.3 3.5
Highest (100th pct.) 0.6 1.1 2.8 0.3 0.8 2.2

Table 3. Mortality growth rate and projections

Income group
Male Female

g := ln qx+T

ln qx
/T, % 1000q̃100 g := ln qx+T

ln qx
/T, % 1000q̃100

Lowest (1st pct.) 5.63 208.5 4.81 89.2
25th percentile 8.74 355.2 8.32 171.1
Median (50th pct.) 9.21 285.7 8.68 158.9
75th percentile 10.22 302.1 10.21 211.4
Highest (100th pct.) 10.00 163.2 9.97 115.0

Note: The source is Chetty et al. (2016) with Mortality over the period 2001–2014 using an income lag of 2 years. Calculation (by author) of g
in the second panel was based on growth from age x = 50 to x = 63. Each percentile’s g value was used to forecast: q̃100. Note that by age x =
100, projected mortality rates are within a multiple of two of each other. According to theory they should converge.

Table 4. Coefficient of variation of longevity (CoVoL): wx

…when modal value of life (m) is: years

Mortality Disp. Mean StDev. CoVoL Hazard Mean StDev. CoVoL
Growth, % b E[T0] SD[T0] w0, % λ65, % E[T65] SD[T65] w65, %

m = 98
11.5 (rich) 8.696 92.98 11.15 12.0 0.2586 28.82 9.70 33.7
10.5 9.524 92.51 12.20 13.2 0.3284 28.68 10.29 35.9
9.5 10.526 91.93 13.47 14.7 0.4132 28.59 10.95 38.3
8.5 11.765 91.23 15.00 16.4 0.5143 28.59 11.69 40.9
7.5 13.333 90.37 16.90 18.7 0.6312 28.72 12.55 43.7
6.5 15.385 89.30 19.26 21.6 0.7609 29.08 13.58 46.7
5.5 18.182 87.99 22.21 25.2 0.8956 29.83 14.89 49.9

m = 78
11.5 8.696 72.99 11.11 15.2 2.5789 12.30 6.55 53.3
10.5 9.524 72.53 12.14 16.7 2.6815 12.64 6.90 54.6
9.5 10.526 71.97 13.35 18.5 2.7629 13.08 7.33 56.0
8.5 11.765 71.32 14.79 20.7 2.8153 13.66 7.85 57.5
7.5 13.333 70.55 16.51 23.4 2.8289 14.43 8.51 59.0
6.5 15.385 69.65 18.57 26.7 2.7921 15.49 9.36 60.4
5.5 (poor) 18.182 68.69 21.07 30.7 2.6906 17.00 10.53 61.9

Note: These numbers (and ranges) are for illustrative purposes and based on theoretical Gompertz values and do not correspond to any
specific income percentile or group. Note that the SD of longevity and the CoVoL are both higher when the mortality growth rate g increases.
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(2014) offer similar evidence and their data seem to indicate an even wider gap (i.e., greater than 15
years) in life expectancy based on income and wealth factors.

Digging a bit deeper, notice how the ratio of mortality rates between the lowest-income percentile
(top of table) and the highest-income percentile (bottom of table) shrink or decline over time. For
example, for males at the age of 40 the ratio of worst-to-best is 9.67 (=5.8/0.6), whereas at the age
of 60 the ratio falls to 7.89 (=22.1/2.8). The same decline (in relative rates) is observed for females.
At the age of 40 the ratio of worst to best is 14 (=4.2/0.3), but by the age of 60 it shrinks to a multiple
of 5.8 (12.8/2.2). Stated differently, heterogeneous mortality rates appear to converge with age.

3.2 Trends by age: a glimpse of Gompertz

Table 3 is constructed based on the numbers contained in Table 2 and displays the annual rate at
which 1-year death rates themselves increase with age, as a function of income percentile. For example,
the increase in one death-rate at the median income level (using a baseline age of 50) was 9.21% per
year for males and 8.64% for females. The number in the right-most column in Table 3 is the projected
mortality rate at the age of 100 assuming the exponential growth continues at the same constant rate
for 50 years, and is denoted by q̃100 in the actuarial literature.

To be precise, this growth number is expressed in continuous time. It is computed by solving for g
in the relationship: q63 = q50e

g13, or equivalently: g = (ln q63/ln q50)/13 where q63 denotes the mortality
rate (for either males or females) at age x = 63 and q50 is the corresponding number at age x = 50. The
upper age of 63 isn’t arbitrary, but in fact is the highest age for which Chetty et al. (2016) report rea-
lized mortality rates as a function of (lagged 2-years) income.

The mortality growth rates of 9.21% for males and 8.64% for females (or approximately 9% on a
unisex basis) at the median income level aren’t restricted to the age range of 50 to 63 and are not
an artifact of this particular dataset. The (approximate) 9% rate growth in mortality is observed in
most human species from the age of 35 to the age of 95. It is known as the Gompertz (1825) law
of mortality, named after Benjamin Gompertz.

Back to the topic of mortality inequality, notice though how the growth (rate) of mortality (rates)
for individuals at the lowest income percentile is only 5.63% for males and 4.81% for females, which is
close to half of the corresponding rate at the median income level. Perhaps this can be interpreted as
some modicum of good news for the less economically fortunate. Their mortality rates don’t grow or
increase as fast. Of course, they have started off (at the age of 50) from a much higher base. In contrast,
those fortunate to live in the highest income percentile experience a 10% growth in mortality as they
age. Stated differently, they age faster than the median person in the population and much faster than
those at the lowest income percentile. In fact, the difference between males (10%) and females (9.97%)
is almost negligible. Notice how by age x = 100 the mortality rates are much closer to each other. I’ll get
back to this.

The disparity in mortality growth rates between high and low-income individuals leads to a corre-
sponding gap in the dispersion of the remaining lifetime random variable Tx. I’ll define this variable
formally and precisely, but there is in fact an inverse mathematical relationship between the mortality
growth rate and the SD[Tx]. The lower growth rate is synonymous with an increase in CoVoL which is
defined as the ratio of the SD of remaining lifetime SD[Tx] to the mean remaining lifetime E[Tx]. The
demand for longevity insurance is relatively higher – and ceteris paribus they are willing to pay more
for insurance – compared to those at the lowest income percentile. A formal discussion is presented in
Section 4.

3.3 Compensation law of mortality (CLaM)

Figure 2 is a visualization of the so-called CLaM, which explains (and is consistent with) the data dis-
played in Tables 2 and 3.
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The convergence of the mortality rate curves (or regression lines when plotted against ln qx), was to
this author’s knowledge first identified by L.A. Gavrilov and N.S. Gavrilova and fully explained in the
book by Gavrilov and Gavrilova (1991, page #148) using what they call a reliability theory of aging.5

I follow Gavrilov and Gavrilova (1991, 2001) and assume Gompertz to (more) advanced ages than
assumed by Chetty et al. (2016), although whether or not mortality plateaus at age 100 or perhaps
105 isn’t quite pertinent to the discounted value of a life annuity at age 65. I assume constant at 105.

Without drifting too far from the script of this particular article, although the CLaM and the nega-
tive relationship between (i) middle-age death rates and (ii) growth rates in any sub-group of species is
known to biologists, it remains controversial because it’s difficult to reconcile with popular theories of
aging and longevity. Nonetheless, a framework that can explain this compensation law is the so-called
reliability theory of aging, which also explains why organisms prefer to die according to the Gompertz
law of mortality. I refer readers to Gavrilov and Gavrilova (2001) for more on the underlying biology of
lifespan and return to (the safety of) economic risk and return.

Figure 2. Visualizing the CLaM.
Note: The CLaM in its strong form implies that (log) mortality rates converge at some mortality plateau (and age) which then leads to a
linear and negative relationship between intercept: ln h, and slope: g, in the Gompertz regression. The bottom panel illustrates that
relationship using the Chetty et al. (2016) data.

5The negative relationship (between C0 and C1) is occasionally referred to as the Strehler–Mildvan correlation but isn’t
quite the nature of the link described above. See also the interesting and related paper by Marmot and Shipley (1996),
which suggests that mortality rates may not converge as fast at advanced ages.
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3.4 Review of the Gompertz Law of mortality

To analyze the impact of the longevity variability on the demand for insurance one requires a parsi-
monious model for mortality rates over the lifecycle, and not only a few discrete age data points. Recall
from the earlier subsection that mortality rates qx, increase exponentially in age x, and ln qx increases
linearly in x. This suggests that in continuous time, a suitable model for the log hazard rate is:

lx+t = hxe
gt = 1

b
e(x+t−m)/b = e(x−m)/b

b

( )
et/b (1)

This is the formal Gompertz law of mortality mentioned earlier. The (m, b) parameterization is com-
mon in the actuarial finance literature. The simpler (h, g) formulation is more common in demograph-
ics, statistics and economics. I will use both of them interchangeably, depending on context and need.

Under the (m, b) formulation, two free (or governing) parameters have a more intuitive probabil-
istic interpretation. They are labeled the modal value m, and the dispersion parameter b, both in units
of years. Different groups within a species or population have different (m, b) values, in particular
those with lower incomes will be characterized by low values of m and high values of b. Or, stated
in terms of (h, g), at any given age, the hazard rate h for low income groups is higher, but the growth
rate g is lower.

The intuition behind the (m, b) perspective – and why they are labeled modal and dispersion – only
becomes evident once the remaining lifetime random variable Tx, is defined via the hazard rate with a
corresponding density function. Formally:

Pr [Tx ≥ t] := p(x, t,m, b) = e−
�t

0
lx+sds = exp {e(x−m)/b(1− et/b)}, (2)

where going from the third to the fourth term in equation (2) follows from the definition of the hazard
rate in equation (1). The expected value of the remaining lifetime random variable E[Tx], as well as any
higher moment can be computed via the cumulative distribution function induced by
F(x, t,m, b) := 1− Pr [Tx ≥ t], or more commonly using the probability density function (PDF)
defined by f(x, t, m, b) =−(∂/∂t)p(x, t, m, b). One can re-write the density function in terms of hazard
rate and growth rate, or (h, g) as well.

The CoVoL measures the relative uncertainty of the individual’s longevity or retirement horizon. In
this paper I will occasionally refer to this ratio as the volatility of longevity, since it is frequently used in
this context within the financial services industry as a common measure of longevity risk. Regardless
of its exact name, I’ll denote it by the symbol wx and make sure to index by current age x, because it
can obviously change over the lifecycle. It is defined equal to the SD of the ratio of Tx to its expect-
ation: E[Tx]. Formally it can be computed as follows:

wx = SD
Tx

E[Tx]

( )
= SD[Tx]

E[Tx]
=

������������������������������1
0 t2f (t)dt − �1

0 t f (t)dt
( )2√

�1
0 t f (t)dt

. (3)

Note that the abbreviated f(t) is shorthand notation for the full PDF under a Gompertz law of mor-
tality. Figure 1, which I mentioned earlier in the introduction when comparing Heather to Simon, is
essentially a plot of f(t) under two sets of Gompertz (m, b) values. I’ll present a number of examples
and explicitly compute values of E[Tx], SD[Tx] and wx, in the next sub-section.

Before I get to numbers, I would like to help readers develop some intuition for the wx function by
examining its properties under the simplest of (non-Gompertzian) mortality laws, namely when λx =
λ and is constant at all ages. Humans age over time and their hazard rate increase, but there are actually
a few species that never age. In our language, their hazard rate remains constant regardless of howold they
are. They die (obviously) but the rate at which this occurs never changes. In fact, a constant hazard rate is
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associated with an exponential remaining lifetime and Pr [Tx ≥ t] = e−lt . The probability of survival
declines with t, but the rate doesn’t change. Under this non-Gompertz law, the expected value: E[Tx]
= λ−1 and the SD is (also) SD[Tx] = λ−1; both are well-known properties of exponential lifetimes.

Back to the volatility; according to the general definition presented in equation (3), but applied to
the exponentially distributed lifetimes; w = 1, at all ages and under all parameter values. In other
words, the CoVoL is invariant to λ. In the common parlance, longevity risk is always 100% when
the mortality rate is constant. Indeed, this is more than a nice coincidence and is in fact the reason
I chose to focus on the CoVoL. Back to the Gompertz law of mortality, the CoVoL is (i) always
less than 100%, (ii) increases with age over the lifecycle and (iii) higher for those with higher mortality
rates at the same CA, e.g., Simon versus Heather. So, to be crystal clear, both the SD of Tx and the
CoVoL of Tx are higher for Simon versus Heather.

3.5 CoVoL numbers and intuition

Table 4 offers a range of numerical values for the function: wx, at the age of x, under an assortment of
parameter values for m (the mode of the Gompertz distribution) and b (the dispersion coefficient.)
Note that by fixing (m, b) the hazard rate at any age x, is simply λx = (1/b)e(x−m)/b, as per the definition
of the Gompertz mortality hazard rate.

For example, the values in the first row are computed assuming thatm = 98 and the mortality growth
rate is 1/b = 11.5% per year, which implies that the dispersion coefficient is: b = 8.696 years. For reasons
that should by now be obvious, I refer to this combination of (m, b) as rich (i.e., highest income percent-
ile), and the life expectancy at birth:E[T0] = 92.98 years. The SDof the lifetime randomvariable at birth is:
SD[T0] = 11.15 years, which is higher than the dispersion coefficient b = 8.696 by slightly more than 2
years. At birth, the SD: SD[T0] = bp/

��
6

√
, which is 28% greater than b.

To be clear, computing the mean and SD at birth under a Gompertz assumption for the evolution
of the hazard rate λx, x = 0…ω, is somewhat artificial (or disingenuous). After all, even in the most
developed countries mortality rates are relatively high in the first few years of life, reaching a minimum
around the age of 10 and only starting to ‘behave’ in a Gompertz-like manner between the age of x =
30 to x = 95. I’m not saying all mortality tables at all ages are Gompertz. Rather, the point here in
Table 4 is to provide some intuition for the moments of the Gompertz random variable as opposed
to accurately modeling the earliest ages in the lifecycle. Needless to say, infants and children aren’t
purchasing life annuities or pooling longevity risk.

Moving along the first row of the table, the CoVoL is a mere w0(98, 8.686) = 12% at birth, then
increases over the lifecycle to reach w65(98, 8.696) = 33.7% at the age of x = 65. Note – for the sake of
replicability – that although they can in theory be derived analytically the CoVoL numbers at x≫ 0 are
computed numerically. The denominator of wx, that is the mean of the remaining lifetime, is available
in closed form (see Appendix A.3 with r = 0), while the numerator requires a numerical procedure. In
sum, the rich woman’s CoVoL at the age of retirement age of x = 65 is 33.7%. Again, the m = 98 and b
= 8.696 parameters are representative of the highest income percentiles in the Chetty et al. (2016) data.
This 65-year-old has a mortality hazard rate of l65 = 0.2586% at the age of x = 65.

Now, as I move down the rows within the first panel and artificially reduce the mortality growth
rate from 11.5% to 5.5%, while holding the modal value of life fixed at 98 years, the CoVoL values
increase. To be clear, holding m fixed and reducing g: = 1/b induces a corresponding increase in λx
as per the sixth column in the table. Although these parameter combinations don’t correspond to
any particular income percentile the point here is to develop intuition for the link between age, para-
meters (m, b), hazard rates λx and CoVoL.

Notice how reducing the mortality growth rate (remember this is g = 1/b), that is increasing b, uni-
formly reduces the life expectancy at birth E[T0] and increases the SD[T0] at birth. The numerator goes
up, the denominator goes down and so the CoVoL increases with higher values of b.

The situation becomes less obvious or clear-cut at the age of 65. Notice how the mean E[T65] starts-
off at 28.82 years (when b = 8.696) and then declines as one would expect at higher values of b, but
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then flattens-out at 28.59 years and starts to increase. It seems the increased dispersion b then serves to
increase the mean value, as often happens with highly skewed distributions. This is also driven by the
fact the initial hazard rate at age 65 is higher. All in all, the SD[T65] does in fact increase monotonically
with b and the net effect is that the coefficient of variation does in fact increase in b.

Moving from rich to poor, in the bottom panel of Table 4 in which the modal value of life is m = 78
years, the corresponding life expectancy values are (much) lower. The hazard rates are higher as well.
At the very bottom row, where b = 18.182 years (i.e., the slowest aging), the life expectancy at retire-
ment age x = 65 is now 17 years (vs. 28 years). The poor man’s CoVoL is 61.9%, which is almost dou-
ble the top row, compared to the rich woman’s 33.7%.

The artificial numbers in Table 4 and the underlying intuition are quite important for understand-
ing the comparative statics in the next section. Notice how the CoVoL is subtly affected by the inter-
play between age x, modal value m and dispersion value b. As x→m the CoVoL increases purely as a
result of the underlying Gompertz law, even when b is unchanged. In other words, aging increases the
relative riskiness of your remaining lifetime. From an economic point of view – as I will show in the
next section – the demand for longevity insurance and risk pooling increases in age, a.k.a. with higher
mortality rates. Just as importantly, fixing both x and m, and (only) increasing the value of b also
increases CoVoL. At any given age x, your CoVoL is higher with higher m and/or with higher b.
Figure 3 displays CoVoL numbers over the entire lifecycle for two sets of (m, b) parameters. Notice
how it plateaus at higher ages and never exceeds 100%. One can think of it as the expected value
of the Gompertz remaining lifetime: E[Tx] converging to SD[Tx], as x→ ω. In probabilistic terms,
at very advanced ages the amount of time you will actually live (yes, it’s random) is very close to
what you expect to live. See Figure 3.

For clarity, the variability is unrelated to notions of stochastic mortality models, or aggregate
changes in population q65 values over time. I am not using volatility to forecast mortality in (say)
50 years and the models in this paper are entirely deterministic. That said, if one graduates from a
deterministic model of hazard rates λx, and postulates a stochastic model: l̃x , the wx metric
would still be defined as the ratio of moments and should converge to a value of one at very advanced
ages.

4 Annuity equivalent wealth and willingness to pay

We now arrive at the main tool I will use to measure whether Simon with the higher CoVoL, benefits –
in utility terms – from being forced to purchase loaded pension annuities.

4.1 Pricing annuities

I use the symbol a(.) to denote the market price of a life annuity at age x. In words, paying a(.) to an
insurance company or pension fund, obligates the issuer to return $1 of income per year (or $1dt in
continuous time) for the life of the buyer, a.k.a. retiree or annuitant. The items inside the bracket (.)
are the conditional factors, which could be age, gender, health, etc. For example, a retiree might pay:
a(65) = $20 to purchase a life annuity providing $1 per year for life starting at the age of x = 65, but
the price might be a(75) = $14 if purchased at age x = 70, etc. Both are completely arbitrary numbers,
although throughout the paper for the sake of this discussion I’ll assume life annuities scale and the
price of $100,000 of annual income is exactly $100,000a(.). There are no bulk (economies of scale)
discounts or (adverse selection-induced) penalties. Moreover, the only loading or frictions will
come (implicitly) from being pooled with healthier and longer lived individuals, as opposed to profits
or other institutional features. Now, in the above example market prices are differentiated by age x. In
practice (most) companies and issuers differentiate by gender, while some go even further and underwrite
annuities, that is price based on the health status of the annuitant. When needed, I will augment notation
to include biological characteristics, namely the two Gompertz parameters (hx, g) at the relevant age x.

Thus, a(hx, g) denotes the market price of a $1 per year life annuity, purchased at age x when the
hazard rate is h = hx, for an individual whose remaining lifetime random variable is modeled in
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Gompertz (hx, g) space. These were all explained in Section 3. The point I make here is that these two
bio-demographic characteristics are easily observable and can be used for underwriting in some jur-
isdictions, or at least for modeling purposes.

As far as finance and markets are concerned, interest rates (obviously) impact the price of pension
and life annuities, so in the event I must draw attention to the underlying pricing rate: r, assuming it is
constant, I will append a third parameter to the very beginning of the expression and write the annuity
factor as: a(r, h, g) for completeness. Notice the absence of any age (x) in the expression, since this is
already contained and included within the hazard rate (hx). Occasionally the expression a(r, x, m, b)
will make an appearance when I want to draw specific attention to the impact of a modal value (m) or
global dispersion parameter (b), on the annuity valuation factor at an explicit age denoted by (x).

Notice that up to now I have only mentioned market prices as opposed to say theoretical model or
economic values, which naturally might differ from each other. To link these two numbers, I refer to
what actuaries might call the fundamental law of pricing mortality-contingent claims, or what finan-
cial economists might simply call No Arbitrage valuation. Either way, the market price: a(x) under a
Gompertz law of mortality should be equal to the following value:

a(r, hx, g) :=
∫v−x

0

e−rt p(t, hx, g)dt, (4)

where ω denotes the last possible age to which people are assumed to live and p(t, hx, g) is the con-
ditional (at age x and mortality rate hx) survival probability. The underlying economic assumption is
that if a large enough group of known (hx, g)-types are pooled together they will – by the law of large
numbers – eliminate any idiosyncratic mortality risk and the valuation is easily conducted by dis-
counted cash-flow expectations. Another embedded assumption in equation (4) is that the interest
rate is a constant r, although that really isn’t critical. By assuming a constant rate r, equation (4)
can be solved analytically using the Gamma function. See the technical appendix for more on this.
Equation (4) is often used discretely, for example in Poterba et al. (2011). From this point onward
I will refrain from using market price or value and refer to a(.) as the annuity factor.

Before I proceed to the economics of the matter, it’s important to focus attention on the sign of the
partial derivatives of a(r, hx, g), with respect to the three explicitly listed arguments. First, the annuity
factor declines with increasing age and hazard rate hx. Intuitively (and unlike a perpetuity) the cost of a

Figure 3. The CoVoL over the lifecycle.
Note: The y-axis (CoVoL) is defined as the ratio of the SD of expected lifetime SD[Tx] to mean lifetime E[Tx] at age x. The vertical line is at
age x = 65, with exact values noted in Table 4. The Gompertz parameters are m = 98, b = 8.696 (rich) andm = 78, b = 18.182 (poor.) Notice
how both curves and the CoVoL converge to a value of w = 1 at advanced ages independently of whether there is a mortality plateau.
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constant $1 of lifetime income declines as you get older (and closer to death). Likewise, the factor
declines at higher valuation rates r, after all it’s just a present value. Just as importantly, at any con-
ditional age x and hazard rate hx, the annuity factor declines as the growth rate g is increased, which is
synonymous with individuals who have a lower remaining life horizon. These insights don’t require
much calculus and are discussed at greater length in the technical appendix.

Back to the economics of the matter. Let (ĥx, ĝ) denote the Gompertz parameters that best fit popu-
lation (group) mortality while (hix, g

i) denotes the parameters that best fit individual (sub-group) mor-
tality. In particular, using ideas introduced in Section 3, I let (h1x, g

1) denote the Gompertz parameters
of individuals (i.e., sub-group) in the lowest income percentile, whereas (h100x , g100) denotes the
Gompertz parameters of individuals in the highest income percentile. Therefore, the population
modal and dispersion parameters would be the median values: ĥ = h50x , and ĝx = g50, respectively
(albeit with a bit of hand waving).6 As mentioned earlier, on the occasion that I want to draw attention
to population averages for (mi) and (bi) parameters, I’ll use the obvious: (m̂) and (b̂).

4.2 Measuring utility

Let U**(w) denote the value function (maximal utility) of the individual who annuitizes their wealth
w, and U*(w) the value function of the individual who decides to self-insure (i.e., not own any annu-
ities at all) and instead decides to fund retirement with a systematic withdrawal program, then:

U
∗∗
(w) ≥ U

∗
(w). (5)

This is the well-known result in annuity economics, noted and cited in Section 2. There exists a
constant δ≥ 0 such that:

U
∗∗
(w) = U

∗
(w(1+ d)). (6)

A retiree who doesn’t annuitize would require the δ percent increase in their wealth w to induce the
same level of utility as someone who does annuitize. Given that we are operating with constant relative
risk aversion (CRRA) utility and no pre-existing annuity income, I will set w = 1 and refer to the AEW
by (1 + δ), and the value of longevity risk pooling by δ. To close the loop on all these (utility based)
definitions, note that if my subjective value of risk pooling is: d = 25%, and the AEW is $1.25, then
someone with w = $125 of initial wealth would be willing to pay $25 or $100δ/(1 + δ) to have access to
the annuity. The WtP is then δ/(1 + δ).

Whether it be AEW, WtP or simply the value of pooling δ, all essentially measure the same thing
and will be used interchangeably in the paper, unless the numbers themselves are important. Either
way, the δ is a function of the individual Gompertz parameters (hix, g

i), the market pricing parameters
(ĥx, ĝ), and the utility-based preferences involving risk γ and discounting ρ = r.

Moving on, assume an individual (denoted by i) and their force of mortality are individually
Gompertz parameters and the population is also (approximated as) Gompertz, upon which annuity
factors are based. The individual’s AEW can be expressed as:

1+ dix =
a(r, x,mi, bi)1/(1−g)a(r, x, m̂, b̂)−1

a(r, x − bi ln [g],mi, bi)g/(1−g) = a(r, hix, gi, )1/(1−g)a(r, ĥx, ĝ)−1

a(r, hix/g, gi)g/(1−g) (7)

where γ denotes the coefficient of relative risk aversion within CRRA utility, and assuming the sub-
jective discount rate is (also) equal to r.

6Note: The weighted average of Gompertz variables isn’t Gompertz. Second, even if I select the best fitting average line, the
hx and g values will not be linear averages. So, this is an approximation, but precisely what Chetty et al. (2016) assumed as
well.
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I have deliberately expressed the annuity factor using both (m, b) and (hx, g) formulations, mainly
so that δ can be (easily) computed when either set of parameters are available. Note that when annuity
prices are fair (i.e., pooling with equal risks) the value of hix = ĥx , and as well the value of gi = ĝ. So,
the expression in equation (7) can be simplified further, which I will do in a moment.

The value of longevity risk pooling δ is an increasing function of the CoVoL for the individual. The
precise mechanism by which this operates is via the higher mortality hazard rate hx. To be clear, even if
g is held constant, a higher value of hx induces a higher (CoVoL and) value of δ. This, again, is when
annuities are fairly priced so that hx = ĥx and g = ĝ in equation (7). Supporting proofs and compara-
tive statics are presented in the technical appendix. I also refer to Milevsky and Huang (2018) for add-
itional supporting material. Note that my interest in this paper is to use the expression for AEW, a.k.a.
(1 + δ) not to derive it, which is fully developed in Milevsky and Huang (2018).

Finally, in the homogeneous case everyone in the sub-group experiences the exact same Gompertz
force of mortality, that is hx = ĥx and g = ĝ . The AEW is:

1+ dx = a(r, x,m, b)

a(r, x − b̂ ln g,m, b)

( )g/(1−g)
= a(r, hx, g)

a(r, hx/g, g)

( )g/(1−g)
. (8)

It is a simple function of the ratio of two actuarial annuity factors and easily computed in either
discrete or continuous form.

In particular, notice that the respective annuity factors in equation (8) are computed at two distinct
ages (or hazard rates). The numerator is computed at the BA: x (or hazard rate hx), and the denom-
inator is computed at a modified (risk-adjusted) age: x − b̂ ln g (or hazard rate hx/γ). The modified
age in the denominator’s factor is under (younger than) x whenever γ > 1. The lower modified age
increases the annuity factor and the AEW. Nevertheless, even when γ < 1, the value of δx > 0 provided
γ > 0. Here are some numerical examples and intuition for the AEW.

4.3 A simple numerical example: two hypothetical groups

Assume the remaining life expectancy at the age of 65 of a hypothetically constructed Group A is 11.95
years and the underlying Gompertz mortality parameters are m = 75.02 and b = 11.87. The CoVoL at
age 65 is 60.4%. Now, assume the remaining life expectancy for a hypothetical Group B is: E[T65] =
23.64 years and Gompertz parameters are m = 91.72 and b = 12.87, for a CoVoL of 47.4%. As this is
only a numerical example, I’ll assume that the (subjective discount rate and) valuation rate are r = 3%,
and the coefficient of relative risk aversion is γ = 3 in the CRRA utility.

Under these parameter values a representative Group A (65 year old, retiree) would value the lon-
gevity insurance at d = 89.32% if they could pool this risk with other similar Group A members, by
acquiring fairly priced life annuities based on their own population: m = 75.02 and b = 11.87 para-
meters. This AEW is in line with the (generally) large benefits from annuitization reported in
(many) other studies over the last 30 years, noted in the literature review of Section 2.

Now, let’s examine the representative Group B retiree, assuming the same r = 3% valuation rate
and γ = 3, coefficient of risk aversion. If they are pooled with homogeneous risks from Group B,
their δ value at the age of x = 65 is lower than their Group A counterparts. Intuitively, their CoVoL
is also lower at age 65. In particular, using the m = 91.72, b = 12.87 values, equation (8) leads to a
value of d = 48.39% which is lower than what a Group A member would be willing to pay.
Indeed, what drives the δ for (fair) longevity insurance is the volatility of longevity (via the m and
b) and not the demographic fact that the Group B retirees live longer.

Moving on to a larger heterogeneous pool, imagine Group A and Group B, both at CA 65, are
mixed together in equal amounts. To keep the system fair, the pension annuities are priced based
on the mixed population mortality. With a bit of hand waving, assume the resulting Gompertz para-
meters upon which the group annuities are priced are m = 85.45 and b = 12.41. Intuitively, the Group
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A member is presented with a relatively worse annuity price and the Group B member is getting a
relatively better price.

This assumes both groups are forced to purchase annuities at the same price in a compulsory sys-
tem. The AEW is based on the group population (for market pricing) and individual (for lifecycle
utility) mortality. See equation (7). The group annuity factor – or price they both pay – is now
a(r = 3%, 65, m̂ = 85.45, b̂ = 12.41) = 13.583, which isn’t actuarially fair to either of them. It’s
advantageous to the Group B member (who would have had to pay 15.97) and disadvantageous to
the Group A member (who would only have to pay 9.493).

Here is the main point. The Group B member now experiences: δ = 74.48, which is higher than the
prior (homogeneous case of): d = 48.39%. In contrast, the Group A member is faced with loaded
prices (13.583 vs. 9.493) and they are only valuing the annuity at d = 32.32%. In fact, if the Group
A member had a life expectancy that was (even) lower, but still paid the same group price, it’s con-
ceivable the δ in equation (7) might actually be negative. They would rather take their chances and
self-insure longevity.

Figure 4 illustrates this relationship graphically over a spectrum of possible m values. On the left are
individuals (think Group A) with low life expectancy (proxied by m) values and a correspondingly
higher volatility of longevity at retirement. To the right are individuals (think Group B) with higher
life expectancy and lower volatility of longevity. The Gompertz dispersion of longevity – in contrast to
the volatility of longevity – for the purposes of computing equation (7), is held constant at 1/g = b = 12
years. The upper range is based on γ = 5, that is higher levels of risk aversion, whereas the lower range
is for γ = 1, albeit with slight modifications in equation (7) to account for logarithmic utility.

Notice that as m increases, the value of longevity risk pooling and WtP declines – when the pooling
is homogeneous. A Group B retiree (paying fair prices) experiences a δ that is lower than a Group A
(paying fair prices); but when they are mixed together and both pay the same group price, the curve is
reversed. Intrinsically the Group A values longevity insurance more, due to his/her higher volatility of
longevity, but the positive loading reduces its appeal. In contrast, the Group B member who is now
willing to pay more for a relatively cheap life annuity. With that intuition out of the way, we
can back to our main empirical question. What happens in the USA across different income
percentiles?

5 AEW by income percentile in the USA

I now use the main equation (7) for the value of longevity risk pooling, a.k.a. the AEW, with plausible
values for the coefficient of relative risk aversion, γ = 1…5, and actual values for the Gompertz para-
meters (mi, bi) as a function of income percentile.

As per the CLaM which was explained and introduced earlier, Figure 5 displays the relationship
between (h) and (g) as a function of income percentile, based on the earlier-mentioned data contained
in Chetty et al. (2016).7 Note that the same negative relationship between initial mortality rate and the
mortality growth rate is observed with Canadian data, as per Milligan and Schirle (2018). It is illu-
strated is Figure 6. So, this is not a spurious relationship that only holds in the USA.

Table 5 displays results using the mid-point of γ = 3, with additional (tables of values) available
upon request. First, I estimate the relevant Gompertz mi and bi (or hi and gi) values, then I compute
the remaining lifetime expected value: E[Tx] and SD[Tx]. With those numbers in hand, I can show the
individual volatility of longevity and finally the two AEW values. Notice how both the Gompertz b
value, which measures the random variable’s intrinsic dispersion, and the volatility of longevity decline

7As far as measuring risk aversion is concerned, I’m aware of the ongoing debate and well known problems in calibrating γ
and refer the interested reader to recent work by O’Donoghue and Somerville (2018), or Schildberg-Hörisch (2018) and rely
on Andersen et al. (2008), for example, for the justification in using such values. Likewise, while making comparison across
different percentiles, I’ll assume that γ remains constant and doesn’t depend on the particular choice of (mi, bi) or (h

i, gi)
values. In fact, an argument could be made that individuals with higher mortality might actually have lower levels or risk
aversion. See Cohen and Einav (2007) for a possible link between risk exposure and demand for insurance.
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at higher income percentiles. Again, the CoVoL is lower due to the decline in b and the intrinsic
increase of CoVoL as age x edges closer to the value m.

The last two columns in Table 5 are computed using equations (7) and (8), for individuals and
groups respectively. To be clear, the column labeled AEW for Individual, assumes that at any percent-
ile, these 65-year-olds are pooled with individuals who share their same mi, bi and are identical risk
types. They pay fair actuarial prices for their annuity. Moving down the panels, higher-income percen-
tiles are associated with (lower CoVoL) and lower values of AEW under individual pricing. The

Figure 4. AEW under a range of values for m.
Note: Figure is based on a valuation rate r = 3% and coefficient of relative risk aversion from γ = 5 (top) to γ = 1 (bottom). When annuities
are priced based on individual mortality (mi, b = 12), the value of AEW declines in mi. But when annuities are priced based on group
mortality (m̂, b = 12), the value of AEW increases in mi, due to the implicit loading.

Figure 5. Estimated Gompertz parameter values versus income percentiles.
Note: Using data from Chetty et al. (2016), average mortality rates during the 2001–2014 period are converted into Gompertz (h, g) para-
meters for various income percentiles. Each percentile point noted in the figure (left panel for females and right for males) is placed at
the co-ordinate for the relevant value. Generally speaking higher (wealthier) income percentiles (numbers) are located at the bottom
right and lower percentiles are at the top left. Wealthier retirees have lower mortality rates, but age faster.
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Figure 6. Canadian evidence on the CLaM.
Note: The Gompertz regression values (ln h, g) were provided by Kevin Milligan, based on Canadian pension plan (CPP) data described
and analyzed in Milligan and Schirle (2018). Similar to the Chetty et al. (2016) data, note the negative relationship between the age-zero
(log) hazard rate and the mortality growth rate.

Table 5. Annuity equivalent wealth (AEW) and value of risk pooling

Demographics Risk aversion: γ = 3

Income
percentile Gompertz (h65, g)

E[T65],
years

w65 CoVoL,
%

Annuity
factor, $

δ65: = AEW-1
individual, %

δ65: = AEW-1
group , %

Female
Lowest (1.64%, 5.29%) 22.75 56.73 15.23 62.18 46.52
5th (1.22%, 6.68%) 23.36 51.05 15.72 53.59 43.18
10th (1.15%, 8.08%) 21.52 48.63 14.97 52.45 35.39
20th (1.00%, 8.9%) 21.58 46.33 15.08 49.20 33.46
30th (0.86%, 8.61%) 23.41 45.24 15.96 45.87 38.06
40th (0.78%, 8.84%) 23.94 44.11 16.23 43.93 38.57
50th (0.69%, 8.73%) 25.31 43.10 16.86 41.46 41.46
60th (0.69%, 10.06%) 23.13 41.91 15.94 41.89 34.20
70th (0.55%, 9.08%) 26.68 40.95 17.51 37.82 43.18
80th (0.50%, 10.35%) 25.30 39.15 17.00 36.81 37.97
90th (0.45%, 10.49%) 26.05 38.15 17.36 35.12 39.12
95th (0.38%, 9.74%) 28.89 37.46 18.53 32.44 45.61
Highest (0.34%, 9.89%) 29.72 36.46 18.89 30.89 46.66

Male
Lowest (3.02%, 6.56%) 14.76 61.24 11.15 84.26 38.25
5th (2.10%, 6.63%) 17.93 56.97 12.96 70.29 48.52
10th (2.00%, 7.46%) 17.37 55.13 12.72 68.20 43.96
20th (1.75%, 8.31%) 17.55 52.56 12.89 63.64 41.90
30th (1.50%, 8.78%) 18.29 50.41 13.33 59.15 42.76
40th (1.18%, 8.43%) 20.82 48.41 14.65 52.95 50.76
50th (1.06%, 8.83%) 21.16 46.97 14.86 50.53 50.53
60th (0.89%, 8.68%) 23.01 45.45 15.77 46.54 55.47
70th (0.82%, 9.31%) 22.75 44.08 15.70 45.01 53.18
80th (0.70%, 9.49%) 23.81 42.58 16.23 42.14 55.20
90th (0.60%, 9.8%) 24.68 40.98 16.67 39.45 56.39
95th (0.51%, 9.68%) 26.26 39.83 17.38 36.87 60.09
Highest (0.42%, 8.74%) 30.13 39.01 18.93 33.24 69.77

Assumes r = 3%. No explicit insurance loading, other than when paying group rates.
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intuition for this result was presented in Section 4.1 and displayed in Figure 4. Notice how much more
annuities are worth to the poor vs. rich, when they are fairly priced.

Moving on to mandatory annuities pricing, the right-most column, is based on loaded pricing
which is obviously disadvantageous for some (poor) and beneficial for others (rich.) As noted
many times in the paper, if you are healthier than some people in the annuity pricing pool – and
you aren’t paying the fair rate for your risk – group pricing offers a higher annuity equivalent
worth. The group value of AEW increases with income percentile for males, because they get better
relative discounts. This pattern (and one that was illustrated hypothetically in Figure 4) is not observed
for females. The reason for this discrepancy, or lack of uniformity, is that even though the annuity is
loaded and relatively unappealing to the lowest income group, the loading isn’t high enough to gen-
erate a lower AEW for the lowest income compared to the higher income. In some sense the uniformly
increasing pattern of the (group) δ value for males is the surprising result. Either way, the important
point here is that all values of δ>0, for the γ = 3 case. They all benefit (as far as utility is concerned)
from swimming together.

Again, the key (policy) takeaway from this table is that even at the lowest income percentile, where
the Gompertz hazard rate is higher and life expectancy at retirement is a mere decade or so, the value
of δ is positive even at the group pricing rate. Of course, this assumes that prices are purely based on
group mortality, that is determined by the 50-percentile parameters. If there are additional loadings or
costs added-on, the δ might become negative. I should note that in my extensive analysis (not all dis-
played) at low income percentiles, large amounts of pre-existing pension annuity income and lower
levels of risk aversion γ, the δ value is barely positive.

6 Summary and conclusion

In a mandatory pension system participants with shorter lifetimes ex ante subsidize those expected to
live longer. Moreover, since individuals with higher incomes tend to have lower mortality, the poor
end-up subsidizing the rich. To quote Brown (2003), ‘When measured on a financial basis, these trans-
fers can be quite large, and often away from economically disadvantaged groups and towards groups
that are better off financially.’ This uncomfortable fact is well established in the literature and occa-
sionally touted as a (social) justification for transitioning to defined contribution schemes. And yet,
Brown (2003) goes on to write that ‘the insurance value of annuitization is sufficiently large that rela-
tive to a world with no annuities, all groups can be made better off through mandatory annuitization.’

The question motivating this paper is: at what point does the gap in longevity expectations become
such that the value of annuitization is actually negative for the ones who are expected to live the least?
This is an empirical question and quite relevant to the growing disparity in US mortality as a function
of income. Against this background, this paper focuses attention on the heterogeneity of the second
moment of remaining lifetimes, something that has not received much interest in the economics lit-
erature. I build on the fact that at any given CA the CoVoL for low-income earners is larger relative to
high-income earners. In some sense, life (financially) is both relatively and absolutely riskier for the
poor. This then implies that their WtP for longevity insurance and the AEW is greater, relative to
high-income earners.

Ergo, in a mandatory DB pension system there are two competing or opposite effects. On the one
hand there is a clear and expected transfer of wealth from poor (i.e., higher mortality) to rich (i.e.,
lower mortality). On the other hand, economically disadvantaged participants benefit more from
risk pooling due to the higher risk. This paper – and in particular the main equation for δ – helps
locate the cut-off point.

If I can summarize with the characters I introduced at the very beginning, both Heather and Simon
benefit from longevity risk pooling, that is owning life annuities, regardless of whether they are pooled
(and swim) with people like themselves or forced to pool with others. When annuities are fairly priced,
that is tailored to their own risk-type and we swim in small segregated pools, Simon derives relatively
higher benefit from pooling longevity risk and holding annuities. Mother nature endows him with a
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higher mortality rate together with a slower mortality growth rate. This then is synonymous with (or
leads to) a higher volatility of longevity and risk averse retirees are willing to pay (dearly) to mitigate
the higher longevity risk.

In some sense, nature’s CLaM leads to a higher demand for longevity insurance from those with the
highest mortality rate. In contrast, Heather’s relative benefit from annuitization might be (much) smal-
ler than Simon’s because her life expectancy is (much) higher, which means her mortality rate is lower
and her individual volatility of longevity is lower.

In the real world individuals will likely move around the income distribution and it therefore might
be overly harsh to assume that someone in the lowest (or highest) income percentile will remain on the
same Gompertz curve forever. In that case – if they swap Gompertz parameters – their subjective value
of pooling might decline (increase), but it will still be positive. More importantly, regardless of whether
they remain on the same Gompertz curve, after adding a relatively small insurance profit loading – and
perhaps some pre-existing annuity income to her portfolio – it is conceivable that neither group will
value additional annuitization. Heather didn’t value pooling as much to begin with, and Simon is now
over-paying. Either way, whether the value of pooling remains positive is an empirical question. For
now the data presented indicate that it is still the case at all levels of income, although this can only be
stated conclusively for those without pre-existing pension annuities.
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Technical appendix
The purposes of this technical appendix is first: (A1) carefully describe how to calibrate the Benjamin Gompertz (1825) law of
mortality to any set of discrete mortality rates (or tables) via a linear least-squares methodology and then use a second
least-squares to calibrate the ‘compensation’ relationship; and then (A2) formally derive the annuity factor a(x) under a
Gompertz law of mortality; then (A3) sketch the derivation for the analytic expression for the AEW as a function of the
above noted Gompertz parameters and wrap-up in (A4).

A.1 Calibrating the Gompertz and CLaM model
The CLaM postulates that for a heterogeneous group within a given species at a fixed CA, relatively healthy members with
lower death rates (for example those with higher income) age faster, while those with higher death rates, who are sicker than
average, age more slowly. The extreme form of the CLaM suggests that instantaneous mortality hazard rates converge to a
constant at some advantaged age. See Gavrilov and Gavrilova (1991).
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To properly model this effect, I begin with a homogeneous sub-group of the population under which each member is
identified by two parameters: h[i], g[i], where i = 1…N, is the number of sub-groups. In our context, i represents income
percentiles (N = 100) as in Chetty et al. (2016). Note that h[i] represents a hypothetical age-zero biological hazard rate
and g[i] is the corresponding mortality growth rate, assuming no restrictions at this early stage other than: h[i] > 0 and
g[i]≥ 0. Also, despite the phrase age zero, I’m not modeling the early years of life (and I’m ignoring infant mortality.)

So, practically speaking, at any CA: x≫ 0, the total mortality hazard rate: λx[i], of members in sub-group i, obeys the
so-called Gompertz–Makeham (GM) relationship up to some advanced age, after which it flattens out. Formally:

lx[i] = l+ h[i]eg[i]x x , x
∗
[i]

l
∗
[i] x ≥ x

∗
[i]

{
(A.9)

Note that the non-biological (and non-time dependent) hazard rate: λ≥ 0, is constant for all members of the population,
but λ*[i]≫ λ and corresponding x*, is group specific.

Equation (A.9) is quite general. First, the plateau could depend on i, that is λ*[i]≠ λ*[ j], for i≠ j. Furthermore, for
some i, it’s conceivable x*[i]→∞, and there is no (finite) mortality plateau. Rearranging equation (A.9), the GM model
can also be expressed as:

ln(lx[i] − l)
︷�������︸︸�������︷Qx

= ln h[i]
︷��︸︸��︷C0

+ g[i]
︷︸︸︷C1

x, ∀ x , x
∗
[i], (A.10)

which is the standard linear representation of (log) biological mortality rates for all ages in the ‘Gompertzian’ regime. Note
that I deliberately use Qx, and not the standard 1-year death rate: qx, on the left-hand side, since they are not quite the same
thing. More on this later. Chetty et al. (2016) assume that Qx = qx and report estimated values for C0 (the intercept) and C1

(the slope), assuming that λ = 0, based on US mortality rates during the period 2001–2014, for ages x up to 63. Milligan and
Schirle (2018) do the same for Canadian data and have also obtained estimates for C0 and C1, with a similar structure. The
values of C0 and C1 are then used to project or forecast 1-year death rates at middle and higher ages (for which data is not
available in their sample.) Generally speaking, they all find that the best fitting values of C0 have a negative relationship with
the values of C1. Figures 5 and 6 illustrate this.

To get back to the distinction between Qx and qx, in the GM framework the 1-year death rate qx, at any given CA x, is
related to the continuous mortality rate, via:

1− qx = e−
�x+1

x
lydy. (A.11)

When λx = λ is constant (i.e., h = 0), the survival rate to any time t is s(t) = e−λt, and then qx = 1− e−λ, for any 1 year. In this
(simplistic, clearly non-Gompertz) case, the parameter λx is synonymous with a continuously compounded mortality rate and
qx is the effective annual (1 year) death rate. In the full GM (h >0) case, we have the following relationship between qx, and the
model parameters (λ, h, g) for any sub-group:

− ln [1− qx] =
∫1
0

(l+ heg(x+s))ds

=
∫1
0

lds+ hegx
∫1
0

egsds

=l+ hegx(eg − 1)/g

(A.12)

By definition − ln [1− qx] > λ≥ 0, so we can subtract λ from both sides, take logs (again) and obtain a linear relationship
between the 1-year death rate (on the LHS) and age x (on the RHS), via the GM parameters:

ln ln
1

1− qx

( )
− l

( )
= ln[h] + ln [(eg − 1)/g]

︷�������������︸︸�������������︷K

+g x, (A.13)

where the new constant K is defined for convenience and suggests the proper regression (or least squares) methodology for
calibrating: λ, h, g. The objective is to estimate (λ, h, g) values from a vector of (empirical) q̃x values. To that end, we define a
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new variable:

y := ln ln
1

1− q̃x

( )
− l

( )
, (A.14)

with the understanding that λ≥ 0, is known and fixed in advance. For now, this leads to the (basic) Gompertz regression
equation:

yj = K + gxj + ej, (A.15)

where xj is a vector of ages, for example x1 = 35, x2 = 36, x3 = 37, etc., and the z̃i are computed from the 1-year death rates q̃xi .
Running the regression formulated in equation (A.15) leads to the best-fitting intercept and slope parameters K̃ and g̃, which
based on equation (A.13), trivially result in unbiased estimates for the Gompertz parameters:

g = g̃

ln[h] = K̃ − ln [(eg̃ − 1)/g̃]

h = eK̃
g̃

eg̃ − 1

( )
. (A.16)

These, respectively, are the mortality growth rate, the log (biological) hazard rate and the actual (biological) hazard rate at
age zero. In fact, knowing the Gompertz model leads to (extremely) high and significant coefficients, one is tempted to skip
the formal regression (tests) and estimate (h, g) via the equation for the least-squares line:

C1 =
∑N

1 (xj − �x)(yj − �y)∑N
1 (xj − x)2 , C0 = �y − C1�x, (A.17)

where �y and �x are the arithmetic mean of y, and x respectively. And, since the age variable is a linear sequence:
�x = (xmin + xmax)/2. In sum, regardless of the exact calibration methodology, the above procedure leads to a pair of values
(h, g) for every sub-group i, in the population.

Now, the weak-form CLaM states that groups with relatively higher biological hazard rates h[i] > h[ j], experience rela-
tively lower growth rates g[i] < g[ j], and vice versa. See Gavrilov & Gavrilova (original article in Russian 1979, book 1991) for
more. In other words, the CLaM posits a formal analytic relationship between h[i] and g[i], denoted by h = h(g), within a
range of gmin≤ g≤ gmax. To be clear, the weak form CLaM (only) stipulates that ∂h(g)/∂g <0, if one thinks of h as a function
of g.

A strong-form CLaM begins at the very end of the lifecycle by postulating that x∗[i] = x∗,∀i, and the mortality plateau is
identical for all sub-groups. This actually places much tighter restrictions on the function h(g), and by equation (A.10)
implies:

L := ln(l∗ − l) = ln h(g)+ gx
∗
, (A.18)

where L is a (new) convenient constant. Rearranging equation (A.18) leads to a linear representation for the function ln h(g),
and can be expressed as:

ln h(g) = L− x
∗
g, (A.19)

I will refer to and label: ln h(g), as the CLaM function. Exponentiating equation (A.18), the actual age-zero biological
hazard rate h(g) can be expressed as:

h(g) = (l
∗ − l)e−x

∗
g , (A.20)

which (at g = 0) recovers the mortality plateau: λ* = h(0) + λ. So, under the strong CLaM, I can rewrite equation (A.9) as:

lx(g) = l+ (l
∗ − l)eg(x−x

∗
) x , x

∗

l
∗

x ≥ x
∗

{
(A.21)
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On to estimation. Recall that I have access to a set of 100 values of {ln h[i], g[i]}, and assuming they are consistent with the
strong form of the CLM, I can estimate the (intercept) L, and (slope) x* via regression. In particular, as per equation (A.19),
the relationship is:

ln h[i]
︷��︸︸��︷yj

= L
︷︸︸︷C0

+ (−x
∗
)

︷�︸︸�︷C1

g[i]
︷︸︸︷zj

+ej (A.22)

Note that this second regression procedure shouldn’t be confused with the first regression procedure that is used to extract
or estimate the original Gompertz parameters in equation (A.10). The first regression doesn’t impose the CLaM on the rela-
tionship, and is what leads to the ln h[i] and g[i] values, as in Chetty et al. (2016) or Milligan and Schirle (2018).

To be clear, once we actually have the (h, g) parameters, which will be used to price annuities and value pooling, the point
of the second procedure is to confirm the existence of a CLaM-effect, which implies higher CoVoL for lower incomes and vice
versa.

In sum, Table 6 displays the results of what I call the second regression which (in a sense) tests for the presence of a strong
CLaM in the data. Indeed, the relationship between ln h[i] and g[i] is linear with R2 values close to 98%, providing support
for a strong version CLaM within the US population segmented by income. The estimated L = ln(λ*− λ), reveals or locates
the plateau. And, the slope (− x*) is the age at which it’s achieved, a.k.a. the species specific lifespan, per Gavrilov and
Gavrilova (1991).

As a final side note, there is theoretical support for L≈ ln(ln 2), so that 1 year survival and mortality rates at the plateau
are e−l∗ = 0.5 = e−eL , assuming the accidental mortality rate (a.k.a. the Makeham constant) is zero. The Chetty et al. (2016)
indicate lower values for L, and so do the Milligan and Schirle (2018) data.

A.2 Closed-form annuity factors and moments
Note that within each population sub-group, and up to the mortality plateau, one can express the continuous-time hazard
rate function as:

lx+t = hx e
gt = 1

b
e(x+t−m)/b, (A.23)

where hx is the hazard rate at (an arbitrary baseline) age x, and g is the hazard growth rate. Recall that the parameter g repre-
sents the slope in a regression of log hazard rates (as an independent variable) on age (the dependent variable), as done in the
prior sub-section. Note again that b = 1/g, which measures the dispersion of the remaining lifetime random variable denoted
by Tx in the (m, b) formulation.

For what follows here I work with the (hx, g) formulation, where hx is the mortality hazard rate at the current age x, which
leads to a cleaner and more intuitive relationship with the AEW δ. One can easily move from (m, b)-space to (hx, g)-space. For
example, fixing the hazard rate at age 65: h65 = 0.5% and assuming a growth rate of g = 10%, the modal value of the lifetime
is m = 94.957 = 65− ln[0.005/0.1]/0.1 years and the dispersion value is b = 1/g = 10. Likewise, if h65 = 0.5%, but the growth
rate is g = 8%, the m = 98.761 years and b = 12.5 years.

Moving on, under the (hx, g) hazard rate formulation, the conditional survival probability, denoted by p(t, hx, g) is equal
to:

p(t, hx, g) = exp −
∫t
0

hx+sds

⎧⎨
⎩

⎫⎬
⎭ = exp {(hx/g)(1− egt)}. (A.24)

Recall that any immediate life annuity factor can be expressed as:

a(r, hx, g) =
∫1
0

e−rt p(t, hx, g) dt

=
∫1
0

e−rt exp {(hx/g)(1− egt)}dt

=ehx/g
∫1
0

e−rt exp {−(hx/g)e
gt}dt

(A.25)
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I can simplify the integral using a change of variables: s = (hx/g)e
gt, therefore

s = hx
g
egt � t = ln

sg
hx

[ ]
/g � dt = 1

sg
ds (A.26)

Using the new variable s, instead of (hx/g)e
gt, we can simplify the integrand:

ehx/g
∫1
0

e−rt exp {−(hx/g)e
gt}dt = ehx/g

∫1
0

e−rte−sdt (A.27)

We can now replace the t with ln [sg/hx]/g to obtain:

ehx/g
∫1
0

e−rte−sdt = ehx/g
∫1
0

e−r(ln[sg/hx ]/g)e−sdt = ehx/g
∫1
0

e−s sg
hx

( )−r/g

dt (A.28)

Replacing dt with (1/sg)ds and moving all non-s terms outside the integral:

a(r, hx, g) = ehx/g
∫1
0

e−s sg
hx

( )(−r/g) 1
sg
ds = ehx/g

g
hx

( )(−r/g)1
g

∫1
hx/g

e−ss(−r/g)−1ds (A.29)

The terms outside and to the left the integral can be simplified to:

ehx/g
g
hx

( )−r/g1
g
= 1

g
exp

1
g
(hx + r ln[hx/g])

{ }
= 1

g exp{(−1/g) (hx + r ln[hx/g])} (A.30)

The Gompertz (albeit without the Makeham constant) life annuity factor can now be re-written formally as:

a(r, hx, g) = 1
g exp{(−1/g)(hx + r ln[hx/g])}

∫1
hx/g

e−ss(−r/g)−1ds (A.31)

From the messy looking equation (A.31) it might not appear as if I have improved matters, but the integral can actually be
identified as the incomplete Gamma (IG) function:

G(a,b) =
∫1
b

e−s sa−1ds. (A.32)

Table 6. CLaM regression with all income percentiles

Variable

Male Female

Coeff. Std. Er t-val. Coeff. Std. Er t-val.

Intercept (L) −1.234 0.119 −10.4 −2.038 0.129 −15.8
Slope (− x*) −99.98 1.284 −77.9 −95.19 1.359 −70.1

Adj. R2 98.39% 98.02%
Plateau λ*∈ [0.2585, 0.3278] λ*∈ [0.1145, 0.1482]
Range g[i] (5.961%, 10.491%) (5.454%, 10.621%)
Mean g[i] 9.181% 9.415%

Note: As described in the appendix, these are the results from regressing the (male and female) Gompertz mortality intercepts on the
mortality growth rates from the Chetty et al. (2016) dataset. Practically speaking, as the mortality growth rate g increases, the implied
age-zero mortality rate h declines, reducing the value of homogeneous pooling.
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When the lower bound of integration β = 0 the IG function collapses to the basic Gamma function and when α is an integer
then Γ(α, 0) = (α− 1)(α− 2)… etc., a.k.a. (α− 1) factorial, with the understanding that both Γ(1, 0) = 1 and Γ(2, 0) = 1.

For general values of α and β the IG function is readily available in most business and scientific software packages (as well
as R, of course), similar to the error function or the normal distribution. For example, the value of Γ(− 0.5, 1) = 0.178148 to
five digits and the value of: Γ(− 0.5, 0.3678) = 0.89635. I do caution that for non-positive values of α there are some numer-
ical stability issues. Merging equations (A.32) and (A.31), I can write the annuity factor using a closed-form expression:

a(r, hx, g) = G(−r/g, hx/g)
g exp{(−1/g) (hx + r ln[hx/g])} , (A.33)

This is our basic annuity factor. Here are some numerical examples. Let’s arbitrarily set the interest rate r = 3%. If we
keep g constant at 0.08, here is what happens when hx takes values 0.1 , 0.2 and 0.3, respectively. a(0.03, 0.1, 0.08) = 5.552432,
a(0.03, 0.2, 0.08) = 3.464195 and a(0.03, 0.3, 0.08) = 2.543422 Note that as hx increases, the value of the annuity factor
declines. This should be intuitive because the force of mortality (or hazard rate) kills you, so if it increases you will live a
shorter life and thus receive less income, making the annuity factor cheaper. Likewise, if we fix hx = 0.1 and change g to
take values 0.09, 0.12, 0.15, respectively. Then, a(0.03, 0.1, 0.09) = 5.392625, and a(0.03, 0.1, 0.12) = 4.981276, and finally
a(0.03, 0.1, 0.15) = 4.646376, all in dollars. So, as g increases, the value of the annuity factor declines, while holding hx
constant.

Figure 7 shows this graphically. The x-axis represents the current (or initial) hazard rate h, ranging from hx = 0.005 to
hx = 0.5 in equal increments. This happens to correspond to a range of x = 64 to x = 101, assuming m = 90 and b = 8, in
the alternate (m, b) specification. The x-axis is labeled with both a rate (top) and an age (below). And, while the former
(top row) increases linearly, the latter (bottom row) does not, since x: = b ln[hb] +m under the Gompertz law. The y-axis
in Figure 7 are presents the annuity factor corresponding to that particular (x-axis) hazard rate and age, assuming:
g = 12.5% in the above (h, g) formula. Notice how the annuity factor declines, as we move from left to right and the hazard
rate (as well as the age) increases. Panel b plots the value of the annuity factor over the same range of hx = 0.005 to hx = 0.5,
assuming a reduced: g = 8%.3

The annuity factor is higher at every value (as one can see from the few points that are highlighted), although it also
declines in hazard rate and/or age. Note that in this case the corresponding b = 1/g = 12.5 years, and the corresponding
(second) x-axis values range from x = 55 to 113. Finally, recall that under the Gompertz (m, b) formulation, common in
the actuarial finance, the mortality hazard rate is expressed as: λx+t = (1/b)e(x+t−m)/b. In that case, the immediate annuity fac-
tor a can be derived in terms of (x, m, b) by substituting: hx with (1/b)exp{(x−m)/b} and replacing g with 1/b. For complete-
ness I present:

a(r, x,m, b) =
bG −rb, exp

x −m
b

{ }( )
exp r(m− x)− exp

x −m
b

{ }{ } . (A.34)

A.3 Deriving the annuity equivalent wealth or δ
I sketch a quick proof of the expression for the AEW: 1 + δ, under the assumption the individual has no pre-existing annuity
income. This is based on the derivation in Milevsky and Huang (2018), who provide various closed-form expressions for the
AEW under alternate mortality assumptions and more general (non-zero) pension income. See also Cannon and Tonks
(2008). Let u(c) denote a CRRA utility (a.k.a. felicity) function parameterized by risk aversion γ, and a subjective discount
rate ρ = r. Formally, u(c) = c1−γ/(1− γ). The maximal utility without annuities is:

U
∗
(w) = max

ct

∫v−x

0

e−rt p(t, hi, gi) u(ct) dt, (A.35)

where (hi, gi) are the Gompertz parameters at the relevant income percentiles, and the budget constraint is:

dWt = (rWt − ct) dt, W0 = w. (A.36)

The optimal consumption function is denoted by c∗t , and do not allow any borrowing so that wealth Wt≥ 0 at all times.
The only reason to prefer early vs. late consumption, is due to mortality beliefs and the inter-temporal elasticity of substi-
tution, 1/γ. Now, since there is no pre-existing pension income, the relevant consumption rate must be sufficient to last all the
way to ω, so that:

w = c
∗
0

∫v−x

0

e−rtp(t, hi, gi)1/gdt, (A.37)
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which leads to the corresponding:

c
∗
t =

w�1
0 e−rtp(t, hi, gi)1/gdt

( )
p(t, hi, gi)1/g. (A.38)

The integral in the denominator of equation (A.38) is an annuity factor (of sorts) assuming the survival probability p(t, hi,
gi) is shifted by 1/γ. For example, when γ = 1, the optimal consumption function c∗t in equation (A.38) collapses to the hypo-
thetical annuity: w/a(r, hi, gi) times the survival probability p(t, hi, gi), which is less than what a life annuity would have
provided. The individual who converts all liquid wealth w into the annuity would consume w/a, but the non-annuitizer
reduces consumption in proportion to survival probabilities. In contrast to U*(w), let U**(w) denote discounted lifetime util-
ity of wealth, assuming wealth w is entirely annuitized or pooled at age x. Discounted utility is:

U
∗∗
(w) =

∫1
0

e−rt p(t, hi, gi) u(w/a(r, ĥ, ĝ)) dt, (A.39)

where the optimized consumption path is trivially c∗t = w/a(r, ĥ, ĝ), for all t. The next (and essentially final) step is to note
that δ will satisfy the following equation:

U
∗
((1+ di)w) = U

∗∗
(w), (A.40)

as per the definition of AEW. We refer the interested reader to Milevsky and Huang (2018) for the algebra that extracts: δi
from the above equation.

A.4 Comparative statics for δ
Figure 8 shows the entire technical appendix together in one summary picture. It plots the equation for the value of longevity
risk pooling: δx, for a range of mortality growth rates g, assuming four different hypothetical mortality hazard rates hx. The
top row (red) dots fixes the initial mortality rate at 3%, the second row (blue) assumes it’s 2%, the third row (purple) is based
on 1% and the bottom row (black) is for 0.5%. These four mortality hazard rates are comparable with (although not exactly
equal to) the range of numbers for high-income versus low-income displayed in Table 5, assuming r = 3%, γ = 3.

Notice that at any specific value of mortality growth rate g on the x-axis, the so-called high mortality δ values sit uni-
formly on top of the low mortality δx values. But, as one moves from left to right and increases the value of g, all else

Figure 7. The annuity factor in (h, g)-space.
Note: The cost of $1 lifetime income is cheaper (and the annuity valuation factor is lower) when the current hazard rate (hx = h) is higher
and/or the hazard growth rate (g) is higher. Both are equivalent to increasing the discount rate (r) in the present value factor.
Technically, ∂a(r, h, g)/∂r≤ 0, ∂a(r, h, g)/∂h≤ 0 and ∂a(r, h, g)/∂g≤ 0.
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being equal, the impact on δx is non-monotonic. Indeed, ∂δx/∂g can’t be signed. At low mortality rates it actually increases (in
g) and at high mortality it declines (in g). However, if I superimpose the suitably-calibrated CLaM line on this plot, and only
focus or use biologically realistic combinations of hx and g, i.e., where the arrow pierces the dots, a clear pattern emerges.
Increasing the mortality growth rate g, forces down the initial mortality rate hx itself (per CLaM). The value of longevity
risk pooling declines in g and therefore increases in 1/g. Hence, I conclude that the value of δx increases in both the coefficient
of variability of longevity (CoVoL) as well as the SD of longevity, thanks to CLaM. Q.E.D.

Figure 8. Comparative statics: the value of δx as a function of g on the CLaM line.
Note: This assumes r = 3% and the coefficient of relative risk aversion: γ = 3.
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