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A static rivulet is subject to disturbances in shape, velocity and pressure fields.
Disturbances to interfacial shape accommodate a contact line that is either (i) fixed
(pinned) or (ii) fully mobile (free) and preserves the static contact angle. The
governing hydrodynamic equations for this inviscid, incompressible fluid are derived
and then reduced to a functional eigenvalue problem on linear operators, which are
parametrized by axial wavenumber and base-state volume. Solutions are decomposed
according to their symmetry (varicose) or anti-symmetry (sinuous) about the vertical
mid-plane. Dispersion relations are then computed. Static stability is obtained by
setting growth rate to zero and recovers existing literature results. Critical growth
rates and wavenumbers for the varicose and sinuous modes are reported. For the
varicose mode, typical capillary break-up persists and the role of the liquid/solid
interaction on the critical disturbance is illustrated. There exists a range of parameters
for which the sinuous mode is the dominant instability mode. The sinuous instability
mechanism is shown to correlate with horizontal centre-of-mass motion and illustrated
using a toy model.

Key words: capillary flows, contact lines, liquid bridges

1. Introduction

A rivulet is a narrow stream of liquid flowing down a solid surface and held by
surface tension on its interface. The stream of water seen on an automobile windshield
is the canonical example of a rivulet commonly encountered in everyday life. Rivulets
have two distinct contact lines whose motion, or lack thereof, can generate a number
of geometric configurations. For example, the straight rivulet has parallel contact lines,
steady fully developed flow and a cylindrical meniscus (Towell & Rothfeld 1966). This
base state exhibits a number of instabilities, such as droplet formation from capillary
break-up (Schmuki & Laso 1990), braiding (Mertens, Putkaradze & Vorobieff 2005),
rivulet meandering (Nakagawa & Scott 1984; Birnir et al. 2008a,b), rivulet splitting
(Myers, Liang & Wetton 2004; Wilson & Duffy 2005; Wilson, Sullivan & Duffy 2011)
and the development of surface waves (Schmuki & Laso 1990). Gravity affects the
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base-state flow field of a rivulet that wets an inclined plane (Wilson & Duffy 2005)
or the outside of a solid cylinder (Paterson, Wilson & Duffy 2013).

A static rivulet is characterized by the absence of an axial component to the
base-state velocity field. In the absence of a base flow, the rivulet is susceptible to
Plateau–Rayleigh break-up (capillary instability), whereby the interface evolves into
a series of individual droplets in an attempt to minimize its surface area. Plateau
(1863) showed the free liquid cylinder is unstable to lengths longer than its base-state
circumference using a thermostatic approach and incorrectly interpreted the final
drop size from this limit. Lord Rayleigh (1879) was able to sharpen Plateau’s
interpretation by computing the dispersion relation from the governing hydrodynamic
equations, showing the maximal growth rate and corresponding wavenumber gave
a characteristic time and size for drop formation, respectively. Davis (1980) has
computed static stability bounds for the static rivulet, with cylindrical cap base state,
under a number of contact-line conditions. In this paper, we extend the work of
Davis in the same way that Rayleigh extended the work of Plateau by computing
dispersion relations from which static stability is inferred and the critical wavenumber
and growth rate are identified.

We consider the linear stability of the static rivulet to small disturbances that either
(i) preserve the static contact angle (free) or (ii) have a fixed contact line (pinned).
The static contact angle describes the wetting properties of the solid substrate and is
defined through the Young–Dupré equation (Young 1805; Dupré 1869), σsg − σls =

σlg cos α, which relates the liquid/gas σlg, liquid/solid σls and solid/gas σsg surface
tensions to the static contact angle α. The liquid/solid interaction, as controlled by
the wetting properties and disturbance class, can affect capillary break-up in the static
rivulet. We analyse these interactions in the present work. Our work is distinguished
by the ability to predict the dynamics for the large contact-angle case.

Many authors have studied the stability of cylindrical interfaces under various
wetting geometries. For example, Brown & Scriven (1980) use a variational approach
to study the pinned cylindrical fillet protruding from an infinite slot for both constant
pressure and constant volume disturbances. Their static stability limit is in agreement
with Davis (1980) in the common limit of the constant volume disturbance. Sekimoto,
Oguma & Kawasaki (1987) use variational methods to report static instabilities
on horizontal substrates in two partially wetting morphologies with non-pinned
contact lines, which they call ridges and holes. Alternatively, Benilov (2009) uses
the lubrication approximation to show that a shallow rivulet with pinned contact
lines that wets the underside of a plate (pendant) is unstable to a range of axial
wavenumbers. Langbein (1990) studies the interior or exterior wetting of a V-groove,
Roy & Schwartz (1999) analyse a number of cross-sectional containers, such as
planar, V-groove, circular and elliptical, and Bostwick & Steen (2010) consider the
cylindrical-cup support. For pinned disturbances, static stability is unaffected by the
geometry of the solid support. In contrast, for free disturbances the curvature of the
solid support affects stability in a manner which is known a priori (Bostwick &
Steen 2015a).

The mobility of the contact line is known to affect both the base flow and stability
of rivulets. Paterson et al. (2013) focus on the de-pinning transition to a mobile
contact line for a rivulet wetting the outside of cylinder. The presence of a streaming
flow applied transversely to a rivulet on an inclined plan affects the de-pinning
transition and supports the rivulet (Paterson, Wilson & Duffy 2015). For moving
contact lines, one typically introduces a constitutive law that either (i) preserves
the static contact angle (Davis 1980; Hocking 1992; Bostwick & Steen 2015b) or
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(ii) relates the contact angle to the contact-line speed (Dussan 1979; Oron, Davis &
Bankoff 1997; Bonn et al. 2009). Alternative models of thin film flows account for the
liquid/solid interactions through a disjoining pressure that necessitate the introduction
of a precursor film. Thiele & Knobloch (2003) study transverse instabilities of rivulets
on inclined substrate in the thin film limit showing the disjoining pressure is critical
in understanding the localized instability near the front and back contact lines. The
role of disjoining pressure, or van der Waals (vdW) forces, is further highlighted
by Diez, González & Kondic (2009), who use simulations of the thin film evolution
equations to show that for micro- and nano-sized rivulets, the length scale for vdW
forces yields a relationship for the critical wavenumber, as it depends upon the
cross-sectional geometry. Diez, González & Kondic (2012) verify these predictions
with experiments using polydimethylsiloxane (PDMS) oils on inclined substrates.

A rivulet with an axial base flow is susceptible to kinematic-wave instabilities
characteristic of thin film flows and particularly so if the rivulet is relatively flat.
In a series of papers, Davis et al. study the long wavelength instabilities of the
rivulet with unidirectional gravity-driven flow down a vertical plane (Weiland &
Davis 1981; Young & Davis 1987). They report kinematic-wave instabilities for
wide rivulets with immobile contact lines and capillary instability of narrow rivulets.
Although their analysis is able to handle a wide range of effects and predict the
varicose instability, they do not consider rivulet meandering or the sinuous instability.
Alekseenko, Markovich & Shtork (1996) have shown that perturbations to the base
flow of a rivulet that wets the outside of a cylinder result in stationary excited waves
that depend upon both the applied flow rate and frequency of excitation. Numerical
simulations of the integral boundary layer model do a reasonable job of predicting
the shape and dispersion relationship of these nonlinear forced waves (Aktershev &
Alekseenko 2015; Alekseenko et al. 2015).

For the static rivulet, we show the varicose mode is unstable to a broader range
of axial wavenumbers than the sinuous mode for the contact-line disturbances we
consider here. Our static stability results agree well with Davis (1980). The dispersion
relations we compute show that the relevant instability mechanism is capillary
break-up; there exists a critical disturbance of maximum growth that is distinguished
by a non-trivial axial wavenumber. The properties of the critical disturbance are
greatly influenced by the liquid/solid interaction, as controlled by the static contact
angle and mobile/immobile nature of the contact line. The pinned disturbance is
relatively stabilizing compared to the free disturbance. Support geometries of a
cylindrical nature, like the circular-cylinder cup and planar plate, are consistent with
a quiescent cylindrical base-state interface. We show the planar support has a larger
critical growth rate than the cylindrical-cup support (Bostwick & Steen 2010).

Relative to capillary break-up in rivulets, rivulet meandering is less well understood
but benefits from a number of experimental studies (e.g. Nakagawa & Scott 1984;
Schmuki & Laso 1990; Nakagawa & Scott 1992; Nakagawa & Nakagawa 1996).
Recent experiments by Daerr et al. (2011) and Couvreur & Daerr (2012) demonstrate
that meandering is enhanced by inertial effects from the base flow provided
contact-line defects (deemed anisotropic substrate friction) can be overcome. With
respect to theoretical considerations, Culkin & Davis (1983) derive a stability index to
measure the stabilizing effects of surface tension and de-stabilizing effects of inertia
under dynamic wetting conditions. Unable to account for contact-angle hysteresis,
the stability index was only marginally effective at capturing the meandering
instability mechanism observed in their experiments. Kim, Kim & Kang (2004) use
a perturbation analysis to capture the meandering instability for a rivulet base-state
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subject to plug flow. By balancing pressures at the contact line, they are able to derive
a dispersion relation that depends upon the base-state geometry, a Weber number and
wetting conditions on the contact line. The response of the fluid in terms of the
disturbed interface shape is precluded from their analysis. Similarly, Grand-Piteira,
Daerr & Limat (2006) derive a rivulet meandering criteria from a force balance
on the contact line that incorporates contact-angle hysteresis, capillary effects and
inertia from a gravity-driven base flow. They find, among other results, that the base
flow is also hysteretic and thus the shape of the meandering rivulet varies only with
increasing flow rate.

We report that, for free contact lines, the sinuous mode destabilizes the static rivulet
with super-circular base state (90◦<α<180◦) and for a range of axial wavenumbers is
the dominant instability mode. This result is new, as far as we are aware. The features
of this instability are not characteristic of typical capillary break-up. Specifically,
the disturbance of maximum growth rate is long wave, distinguished by an axial
wavenumber km = 0, for a range of contact angles 90◦ < α < 150◦. Outside this
interval, rivulet meandering km 6= 0 occurs. We show that the sinuous instability is
related to the walking droplet instability (Bostwick & Steen 2014). The instability
mechanism is illustrated through a toy problem that shows the configurational energy
is lowered by decreasing both the liquid/gas and liquid/solid surface areas. We show
the sinuous instability correlates with horizontal centre-of-mass motion and, thereby,
suggest that the toy problem can be used to interpret rivulet meandering.

We begin this paper by defining the hydrodynamic equations that govern the motion
of the rivulet interface. A normal mode expansion reduces the governing equations
to a functional eigenvalue problem on linear operators, which are parametrized by
the volume of the base state through the static contact angle α, and the boundary
conditions at the three-phase contact line. We reduce the functional equation to a
standard algebraic eigenvalue problem using a Rayleigh–Ritz procedure and compute
dispersion relations. We recover the static stability limit obtained by Davis (1980)
and report critical growth rates and wavenumbers for the varicose and sinuous modes.
The sinuous instability mechanism is illustrated through a toy problem. Lastly, some
concluding remarks are offered.

2. Mathematical formulation
A cylindrical interface held by uniform surface tension σ contacting a planar

support is referred to as a rivulet. The static rivulet is a constant mean curvature H
surface that satisfies the Young–Laplace equation,

p/σ = 2H ≡ κ1 + κ2, (2.1)

which relates the principal curvatures κ1, κ2 to the pressure p there. When gravitational
effects are neglected, the static base state is a circular arc in the x–y plane extending
to infinity in the axial (z) direction, as shown in figure 1(a). The equilibrium surface
Γ is defined parametrically,

X(s, z; α)=
1

sin(α)
sin(s), Y(s, z; α)=

1
sin(α)

(cos(s)− cos(α)),

Z(s, z; α)= z,

 (2.2)

where s ∈ [−α, α] and z ∈ [−∞, ∞] are the arclength-like and axial coordinates,
respectively. Here lengths have been scaled with respect to the base radius r and the
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(a) (b)

FIGURE 1. Definition sketch of the rivulet in (a) polar and (b) three-dimensional
perspective views.

equilibrium surface is characterized by principal curvatures κ1 ≡ sin α, κ2 ≡ 0. The
interface is given a small disturbance η(s, z, t), such that x= x0(1+ εη) with x0 the
base state (2.2) (cf. figure 1). No domain perturbation is needed for linear problems,
thus the fluid domain

D≡ {(x, y, z) | 0 6 x 6 X(s, ϕ; α), 0 6 y 6 Y(s, ϕ; α),−∞6 z 6∞} (2.3)

is bounded by a free surface ∂D f and a planar surface of support ∂Ds:

∂D f
≡ {(x, y, z) | x= X(s, z; α), y= Y(s, z; α), z= z}, (2.4a)

∂Ds
≡ {(x, y, z) | y= 0}. (2.4b)

The fluid is immersed in a passive gas and the effect of gravity is neglected. In what
follows we derive the governing equations for our linear stability analysis, wherein the
pressure p and velocity fields v will be associated with the disturbance fields.

2.1. Hydrodynamic field equations
The fluid is incompressible and the flow is assumed to be irrotational. Therefore, the
velocity field may be described as v=−∇Ψ , where the velocity potential Ψ satisfies
Laplace’s equation

∇
2Ψ = 0 (2.5)

on the fluid domain D. Additionally, the velocity potential satisfies the no-penetration
condition

∇Ψ · ŷ= 0 (2.6)

on the surface of support ∂Ds (with n̂= ŷ) and a kinematic condition

∂Ψ

∂n
=−

∂η

∂t
(2.7)

on the free surface ∂D f , which relates the normal velocity to the perturbation
amplitude there. The pressure field in D for small interface disturbance is given by
the linearized Bernoulli equation

p= %
∂Ψ

∂t
, (2.8)
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where % is the fluid density. Finally, deviations from the equilibrium surface Γ
generate pressure gradients on ∂D f , and thereby flows, according to the linearized
Young–Laplace equation

p/σ =−∆Γ η− (κ
2
1 + κ

2
2 )η, (2.9)

which is valid for small disturbances |η| � 1 and their derivatives |ηss| � 1, etc. The
Laplace–Beltrami operator ∆Γ , introduced in (2.9), is defined by functions η on the
equilibrium surface (e.g. Kreyszig 1991),

∆Γ η≡
1
√

g
∂

∂uµ

(
√

ggµν
∂η

∂uν

)
, (2.10)

with the surface metric given by

gµν ≡ xµ · xν =
(

csc2(α) 0
0 1

)
, g= csc2(α). (2.11)

Equations (2.5)–(2.9) are the linearized disturbance equations governing the motion
of this inviscid fluid. To form a well-posed system of partial differential equations, the
field equations are supplemented with a boundary condition on the three-phase contact
line, which we discuss later.

2.2. Normal mode reduction
The following dimensionless variables are introduced:

x̄= x/r, η̄= η/r, t̄= t
√

σ

%r3
, Ψ̄ =Ψ

√
%

σ r
, p̄= p

( r
σ

)
. (2.12a−e)

Here lengths are scaled by the base radius r, time with the capillary time scale√
%r3/σ and pressure with the capillary pressure σ/r.
Normal modes with axial wavenumber k are written in mixed coordinates for

efficiency in presentation,

Ψ (x, t)= φ(ρ, θ)eγ teikz, η(s, z, t)= f (s)eγ teikz, (2.13a,b)

where (ρ, θ) are cylindrical coordinates. Equations (2.12) and (2.13) are then applied
to the hydrodynamic field equations (2.5)–(2.9) to give

1
ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1
ρ2

∂2φ

∂θ 2
− k2φ = 0 [D], (2.14a)

∂φ

∂n
= 0 [∂Ds

], (2.14b)

∂φ

∂n
=−λf [∂D f

], (2.14c)

f ′′ + (1− k2)f =−λ(csc2 α)φ[∂D f
]. (2.14d)

Equation (2.14) is recognized as an eigenvalue problem for the scaled growth rate
λ ≡ γ

√
%r3/σ , which is parametrized by the axial wavenumber k and base-state

volume via the static contact angle α. Equation (2.14a) is Laplace’s equation
written in cylindrical coordinates, equation (2.14b) is the no-penetration condition
and (2.14c) is the kinematic condition. The dynamic pressure balance at the free
surface is represented by (2.14d), where differentiation is with respect to the arclength
coordinate, ′ = d/ds.
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3. Reduction to operator equation
The dynamic pressure balance (2.14d) can be simplified using the kinematic

condition (2.14c) to give(
∂φ

∂n

)′′
+ (1− k2)

(
∂φ

∂n

)
=
λ2

sin2 α
φ, [∂D f

], (3.1)

which is recognized as an integro-differential equation that governs the motion of the
interface. The solution of this inhomogeneous differential equation is parametrized by
axial wavenumber k and given by

∂φ

∂n
(s)= λ̂2

∫ α

−α

G(s, τ ; k)φ(τ) dτ , (3.2)

where λ̂≡ λ/ sin α and G(s, τ ; k) is the Green’s function or fundamental solution of
the differential operator, the left-hand side of (3.1). Alternatively, one may view (3.2)
as a functional eigenvalue problem for λ̂ and φ on linear operators,

M−1
[φ] = λ̂2K−1

[φ], (3.3)

with
M−1
[φ] ≡

∂φ

∂n
, K−1

[φ] ≡

∫ α

−α

G(s, τ ; k)φ(τ) dτ . (3.4a,b)

3.1. Green’s function
To compute the eigenvalue spectrum of (3.2) using the operator formalism, one
must construct the Green’s function or integral operator K−1. We use the following
representation of the Green’s function,

G(s, τ ; k)=


U(τ ; k)V(s; k)

W(s; k)
0< s< τ < α

U(s; k)V(τ ; k)
W(s; k)

0< τ < s<α,
(3.5)

because it is amenable to a symmetric decomposition. Here U and V are the
homogeneous solutions of (3.1) that satisfy the boundary conditions on the vertical
mid-plane s= 0 and the contact line s=α, respectively. Likewise, W is the Wronskian
of the solutions U and V .

3.1.1. Symmetric decomposition
We decompose the solutions of (3.2) according to their symmetry about the axis of

symmetry (s= 0). The varicose modes are symmetric and satisfy(
∂φ

∂n

)′ ∣∣∣∣
s=0

= 0, (3.6)

while the sinuous modes are anti-symmetric and satisfy the following condition:(
∂φ

∂n

) ∣∣∣∣
s=0

= 0. (3.7)

For reference, typical varicose and sinuous modes are illustrated in figure 2.
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x

z

x

z(a) (b)

FIGURE 2. Top view of a three-dimensional varicose (a) and sinuous (b) mode shape.

3.1.2. Contact-line conditions
We consider two boundary conditions at the three-phase contact line, whose

origin is discussed in detail in Bostwick & Steen (2015b) and are valid for small
disturbances |η|� 1. The first type has a mobile contact line that preserves the static
contact angle α, (

∂

∂s

(
∂φ

∂n

)
+ cos(α)

∂φ

∂n

) ∣∣∣∣
s=α

= 0, (3.8)

and is termed the ‘free’ disturbance. The second has immobile or ‘pinned’ contact
lines, (

∂φ

∂n

) ∣∣∣∣
s=α

= 0. (3.9)

3.1.3. U and V solutions
To distinguish between disturbances, superscripts f and p will denote the free

and pinned contact-line disturbances, respectively. Similarly, a subscript v or s will
distinguish the varicose from the sinuous modes.

With regards to the decomposition by symmetry, the U solutions are independent
of the contact-line conditions. The varicose modes satisfy (3.6) with solution

Uf ,p
v (s)= cos(βs), (3.10)

with
β ≡

√
1− k2. (3.11)
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Similarly, the sinuous modes satisfy (3.7) with solution given by

Uf ,p
s (s)=

sin(βs)
β

. (3.12)

The V solutions are independent of the symmetry about the mid-plane. Disturbances
that satisfy the free boundary condition (3.8) have the following solution,

V f
v,s(s)= cos(βs)+ A sin(βs), (3.13)

with

A=
β sin βα − cos α cos βα
β cos βα + cos α sin βα

. (3.14)

Similarly, solutions that respect the pinned contact-line condition (3.9) are expressed
as

Vp
v,s(s)= sin β(s− α). (3.15)

Lastly, the Wronskians for the free ( f ) and pinned (p) disturbances are given by

W f
v (s)= Aβ, Wp

v (s)= β cos(βα), (3.16a,b)

for the varicose modes, and

W f
s (s)=−1, Wp

s (s)= sin(βα), (3.17a,b)

for the sinuous modes, respectively.
The inverse operator K−1 is readily expressed by applying the appropriate solutions

(U, V,W) to the Green’s function (3.5).

4. Solution of operator equation

To compute the eigenvalue spectrum of (3.3), the operator equation is reduced to a
truncated set of linear algebraic equations using the variational procedure of Rayleigh–
Ritz. Stationary values of the functional

λ̂2
=
(M−1
[φ], φ)

(K−1[φ], φ)
, φ ∈ S, (4.1)

are the characteristic growth rates, where S is a predetermined function space. We
choose this function space to satisfy Laplace’s equation (2.14a) and the no-penetration
condition (2.14b). In this case, the minimizers of (4.1) are also solutions to the
eigenvalue problem (2.14). We sketch the method here, while a more thorough
illustration can be found in Bostwick & Steen (2009, 2013).

4.1. Rayleigh–Ritz method
To begin, a solution series

φ =

N∑
j=1

ajφj, (4.2)
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constructed from properly chosen basis functions φj, is applied to the operator
equation (3.3) and inner products are taken to generate the following algebraic
eigenvalue problem,

N∑
j=1

(mij − λ̂
2κij)aj = 0i, (4.3)

with

mij ≡ (M−1
[φi], φj)=

∫ α

0

∂φi

∂n
φj ds, (4.4a)

κij ≡ (K−1
[φi], φj)=

∫ α

0

∫ α

0
K−1
[φi]φj dτ ds, (4.4b)

where

κij =

(∫ α

0

U(s)
W(s)

φj(s) ds
)(∫ α

0
V(τ )φi(τ ) dτ

)
+

∫ α

0

V(s)
W(s)

φj(s)
∫ s

0
U(τ )φi(τ ) dτ ds

−

∫ α

0

U(s)
W(s)

φj(s)
∫ s

0
V(τ )φi(τ ) dτ ds. (4.5)

4.2. Function space
Allowable solutions of (3.3) necessarily satisfy the hydrodynamic equations (2.14).
Accordingly, we choose basis functions φi which span a function space that satisfies
Laplace’s equation (2.14a) on the fluid domain and the no-penetration condition
(2.14b) on the surface of support.

4.2.1. Varicose modes
For the varicose modes, the following basis functions span such a function space:

φj = I2( j−1)(kρ) cos(2( j− 1)θ). (4.6)

Here In is the modified Bessel function (Arfken & Weber 2001). For reference, we
also provide the normal derivatives of the basis functions φj,

∂

∂n
(I2j(kρ) cos(2jθ))

=
k
2
[I2j+1(kρ)+ I2j−1(kρ)] cos(2jθ)(− sin(s) cos(θ)+ cos(s) sin(θ))

−
k
2
[I2j−1(kρ)− I2j+1(kρ)] sin(2jθ)(sin(s) sin(θ)+ cos(s) cos(θ)), (4.7)

because they are needed to compute the matrix element (4.4a). Here the normal
derivative of the potential function is given in mixed coordinates for efficiency in
presentation. As required by (4.4b), the functions (4.6) and (4.7) are evaluated on the
equilibrium surface through the coordinate transformations,

ρ =
√

X2 + Y2, cos θ =
X

√
X2 + Y2

, sin θ =
Y

√
X2 + Y2

, (4.8a−c)

with X = X(s; α) and Y = Y(s; α) defined in (2.2).
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4.2.2. Sinuous modes
For the sinuous modes, we use the following basis functions,

φj = I2j−1(kρ) sin((2j− 1)θ), (4.9)

with normal derivatives given by

∂

∂n
(I2j(kρ) sin(2jθ))

=
k
2
[I2j+1(kρ)+ I2j−1(kρ)] sin(2jθ)(− sin(s) cos(θ)+ cos(s) sin(θ))

+
k
2
[I2j−1(kρ)− I2j+1(kρ)] cos(2jθ)(sin(s) sin(θ)+ cos(s) cos(θ)). (4.10)

Once again, to compute the matrix elements (4.4b), one evaluates the functions (4.9)
and (4.10) on the equilibrium surface using the coordinate transformation (4.8).

5. Results
The eigenvalues of the matrix equation (4.3) are computed using a truncation

of N = 8 terms in the solution series (4.2), which is sufficient to generate relative
eigenvalue convergence of 0.1 % for the results presented here. The convergence
properties of eigenvalues and eigenvectors using the Ritz method are discussed in
Segel (1987). Unstable growth rates (λ2> 0) and stable oscillation frequencies (λ2< 0)
are reported as they depend upon the axial wavenumber k. For a given eigenvalue
λ(l) with associated eigenvector a(l)j , the corresponding eigenfunction is the velocity
potential

φ =

N∑
j=1

a(l)j φj, (5.1)

which is related to the interface disturbance

f =
N∑

j=1

a(l)j
∂φj

∂n
. (5.2)

For a fixed mode type (varicose or sinuous), equation (4.3) has a discrete spectrum
of eigenvalues λ2 ordered in decreasing numerical value. This work is focused
on hydrodynamic stability and, accordingly, we are primarily concerned with the
eigenmode associated with the largest eigenvalue l= 1, as this mode possibly exhibits
instability λ2 > 0. The rest of the spectrum l> 1 displays oscillatory behaviour λ2 < 0.
In what follows, we present results for both the varicose and sinuous modes and
illustrate the differences between free and pinned disturbances.

5.1. Dispersion relations

The dependence of axial wavenumber k on the growth rate λ2 is illustrated in the
typical dispersion curves in figures 3 and 4. Note the free varicose mode with α= 90◦
can be extended via symmetry operation to the full cylinder and thus recovers the
Plateau–Rayleigh result (cf. figure 3). For a given disturbance, there are a number of
wavenumbers k ∈ [0, ks] that destabilize the base state with ks the static stability limit.
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FIGURE 3. (Colour online) Free dispersion relations: growth rate λ2 against axial
wavenumber k for varicose (a) and sinuous (b) modes, parametrized by contact angle α.
Note the Rayleigh dispersion for the liquid cylinder is recovered from the varicose mode
(a) for the contact angle α = 90◦.
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FIGURE 4. (Colour online) Pinned dispersion relations: growth rate λ2 against axial
wavenumber k for varicose (a) and sinuous (b) modes, parametrized by contact angle α.
The sinuous mode is always stable λ2 < 0 and exhibits oscillations.

The sinuous modes with pinned contact lines shown in figure 4 are the exception,
as oscillatory behaviour persists for all wavenumbers. Each dispersion curve exhibits
a fastest growing mode distinguished by wavenumber km and growth rate λ2

m. To
summarize, the static stability limit ks, critical wavenumber km and associated growth
rate λ2

m are effective metrics to characterize the dispersion relation.

5.2. Static instability
The varicose modes are more unstable than the sinuous modes. Figure 5 plots the
static stability limit ks against contact angle α showing the varicose modes are
unstable to a larger number of axial wavenumbers than the sinuous mode for both
free and pinned disturbances. For reference, the free liquid cylinder is unstable to
wavenumbers below the Plateau–Rayleigh limit ks= 1. Static stability for the varicose
mode can be directly compared to that computed by Davis (1980). The agreement
is excellent. For the free disturbance, the rivulet is unstable over the entire range of
contact angles 0◦ < α < 180◦ and the instability window shrinks (enlarges) relative
to the free cylinder for super-circular α > 90◦ (sub-circular α < 90◦) base states. The
limiting case α → 180◦ is the most similar to the free cylinder and highlights the
role of the liquid/solid interaction; the interface must deform in a non-axisymmetric
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FIGURE 5. (Colour online) Free (F) and pinned (P) static stability window: critical
wavenumber ks, as it depends upon contact angle α, separates stable (S) from unstable
(U) regions for the varicose (a) and sinuous (b) modes. Note the different vertical scales
between (a) and (b) panels. The Plateau–Rayleigh (PR) limit is shown for reference.
(Panel (a) reproduced from Bostwick & Steen (2015b, figure 9b)).

manner to satisfy the contact-line boundary condition (3.8), thus giving a stabilization
ks < 1 relative to the free cylinder. The pinned contact-line disturbance is stabilizing
relative to both the free disturbance and the free cylinder, as witnessed by the smaller
instability window shown in figure 5. For pinned contact lines, the varicose mode
destabilizes the super-circular 90◦ < α < 180◦ base states, while the sinuous mode is
always stable. Although the varicose mode is the dominant instability, the sinuous
mode does exhibit instability to free disturbances when the cylindrical base state is
super-circular 90◦ < α < 180◦. The features of this instability will be discussed in a
subsequent section.

5.3. Fastest growing mode
A characteristic feature of the Plateau–Rayleigh instability is the existence of a fastest
growing mode shape distinguished by its axial wavenumber km and growth rate λ2

m. For
the unconstrained Rayleigh jet (liquid cylinder), disturbances have maximum growth
rate λ2

m= 0.37 at wavenumber km= 0.69. Typical Plateau–Rayleigh break-up (capillary
instability) characterizes the varicose modes. The critical wavenumber and growth
rate are modified according to the type of disturbance and base-state geometry, as
shown in figure 6. Typical varicose instability mode shapes are shown in figure 7(a,b)
for free and pinned disturbances. In the limit α→ 180◦, where the rivulet contacts
a planar support along a generating line, the stability results for the free and pinned
disturbance are indistinguishable (cf. figures 5 and 6). Here the free disturbance
has a relatively immobile contact line that degenerates into the pinned disturbance.
Hence, the coincident stability results. Note the scaling length r vanishes in the limit
α→ 0◦, 180◦.

5.4. Effect of support geometry
Bostwick & Steen (2010) considered the linear stability of the circular segment base
state with pinned contact lines in contact with a partial cylindrical-cup support. Their
equilibrium configuration is similar to the one analysed here; the free surface shapes
are identical but the concave support geometry differs from the planar geometry used
here. For pinned disturbances, static stability is unaffected by the support geometry
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FIGURE 6. (Colour online) Fastest growing varicose mode for free and pinned
disturbances: (a) growth rate λ2

m and (b) wavenumber km against contact angle α. The
free disturbance degenerates into the pinned disturbance in the limit α→ 180◦.

(a) (b) (c) (d ) (e)

FIGURE 7. Typical mode shapes. (a,b) Varicose modes for (a) free k=3/4 and (b) pinned
k= 1/2 disturbances. (c–e) Sinuous modes for free (c) k= 0 and (d) k= 1 and (e) pinned
k= 1/2 disturbances.

(Bostwick & Steen 2015b) and figure 5 encompasses both support geometries. In
contrast, the growth dynamics is affected by the support geometry. Figure 8 plots
the maximum instability growth rate and associated wavenumber against contact
angle for the cylindrical interface with pinned contact lines in contact with a planar
or cylindrical-cup support. As shown, the maximal growth rate for the interface
constrained by a cylindrical-cup support, reported by Bostwick & Steen (2010), is
always larger than the corresponding interface in contact with a planar support. The
critical wavenumber km is unaffected by the support geometry.

5.5. Sinuous instability
The features of the sinuous instability are unlike those for the varicose instability,
where typical Plateau–Rayleigh break-up dominates. Figure 9(b) shows that the critical
disturbance is independent of the axial coordinate km = 0 for a range of base states
with contact angle 90◦<α< 150◦. Figure 7(c) plots the critical instability mode shape
from this regime. Outside this interval (150◦ < α < 180◦), rivulet meandering occurs
as shown in figure 7(d). Recall that in Plateau–Rayleigh break-up, the instability
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FIGURE 8. (Colour online) (a) Maximum growth rate λ2
m and (b) corresponding

wavenumber km against contact angle α for the varicose mode with pinned contact lines,
as it depends upon the support geometry. Rivulets on a (concave) cylindrical-cup support
break up faster than a planar support.
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FIGURE 9. (Colour online) Free sinuous mode: (a) maximum growth rate λ2
m and

(b) wavenumber km against contact angle α. Pinned disturbances are always stable.

mechanism consists of a cylindrical interface that breaks up into spherical drops in
an attempt to minimize liquid/gas surface area (energy), as occurs for the varicose
instability. In contrast, the sinuous instability mechanism is related to the walking
droplet instability, whereby the energy is lowered by decreasing both the (i) liquid/gas
and (ii) liquid/solid area (Bostwick & Steen 2014). We illustrate the sinuous instability
mechanism by constructing an interface shape with energy lower than that of the
base-state configuration.

5.6. Mechanism of sinuous instability: toy problem
We begin with the two-dimensional drop of incompressible fluid on a solid substrate
shown in figure 10(a). This is the limiting case of an interface disturbance with no
axial (z) dependence. The potential energy E (per unit length) of the configuration is

E= LG− cos(α)LS, (5.3)

where LG and LS are the liquid/gas and liquid/solid surface areas (per unit length),
and α is the static contact angle.
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FIGURE 10. (Colour online) Sinuous instability toy model: (a) interface shape for α =
120◦ (ε = 0.29), and (b) decomposition of the disturbance energy E2 into contributions
from liquid/solid LS2 and liquid/gas LG2 surface areas against contact angle α.

Consider the following perturbation to the circular segment with base-state radius
of unity r= (x(s), y(s)):

x(s)= sin(s)(1+ ε sin(s)+ ε2x2(s)),
y(s)= (cos(s)− cos(α))(1+ ε sin(s))+ ε2y2(s),

}
(5.4)

with

x2(s)= const.=
(

12 (1− cos(α)+ cos(3α))− 8 sin(2α)+ sin(4α)
12(sin(2α)− 2α)

)
, (5.5)

and
y2(s)= const.=− cos(α) sin(α). (5.6)

The surface is parametrized by the arclength-like coordinate s ∈ [−α+ ε2 cos(α), α−
ε2 cos(α)] and the static contact angle α. Note that the circular segment base state
(hereafter denoted 0) is recovered by setting the perturbation amplitude ε = 0. For
this incompressible fluid, the volume (per unit length) enclosed by the interface is

V = V0 +O(ε3), V0 ≡ α − cos(α) sin(α), (5.7)

with x2, y2 determined to maintain volume to O(ε3). The liquid/gas surface area is
given by

LG= LG0 + ε
2LG2, LG0 ≡ 2α, (5.8)

while the liquid/solid surface area is written as

LS= LS0 + ε
2LS2, LS0 ≡ 2 sin(α). (5.9)

Finally, we apply the liquid/gas (5.8) and liquid/solid (5.9) surface areas to the energy
functional (5.3) to show that the configurational energy relative to the base state is

E− E0
= ε2E2. (5.10)

Figure 10(b) plots the disturbance energy E2 against contact angle α showing the
disturbed state has lower energy than that of the circular segment for the range of
contact angles 90◦ <α < 180◦. This result is consistent with the stability diagram for
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FIGURE 11. (Colour online) Dominant mode: (a) free dispersion relationship λ2 against
k with α = 135◦ shows that the sinuous mode has larger instability growth rate than the
varicose mode for low wavenumber k < k∗ disturbances. (b) The boundary shown in the
k− α plane separates regions where varicose and sinuous modes are dominant.

the sinuous mode shown in figure 5. The decomposition of the disturbance energy E2
shows that the reduction of liquid/solid LS2 surface area overwhelms the increase in
liquid/gas LG2 surface area to lower the total configurational energy. This instability
mechanism highlights the energy competitors, LG and LS, inherent in wetting
problems. Note the disturbance shape shown in figure 10(a) is asymmetric about the
axis of symmetry (y-axis) and tends to displace the centre-of-mass horizontally. The
resulting motion is similar to what is observed with the walking droplet instability.

In regard to our hydrodynamic stability results, the aforementioned instability
mechanism certainly applies to the range of base states 90◦<α < 150◦ whose critical
disturbance is polar km = 0 (cf. figure 9a). For the rivulet with base state defined by
contact angle α > 150◦, the critical disturbance km 6= 0 involves some combination of
the instability mechanism discussed in this section and traditional capillary break-up
leading to rivulet meandering.

5.7. Dominant mode
For fixed axial wavenumber k, the dominant mode (largest instability growth rate)
can be either the varicose or sinuous mode, despite the fact that the varicose mode
always has a larger stability limit ks (cf. figure 5). For example, figure 11(a) plots
the free dispersion relationship λ2 against k for the varicose and sinuous modes with
α = 135◦ and shows the sinuous mode is the dominant mode for wavenumbers less
than a critical value k< k∗, while the varicose mode is the dominant mode for k> k∗.
The critical wavenumber k∗ is plotted against the contact angle α in figure 11(b).
For α > 90◦, note that the sinuous mode is the dominant mode for low wavenumber
disturbances, consistent with observations of rivulet meandering.

6. Concluding remarks
A number of authors have investigated the series of instabilities exhibited by

fluid rivulets. In the absence of a base flow, the static rivulet is susceptible to
capillary instability (Plateau–Rayleigh break-up), which can be greatly affected by the
wetting conditions on the three-phase contact line. In the present work, we derive the
hydrodynamic equations for static rivulets with either (i) free or (ii) pinned contact
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lines and report dispersion relations, as they depend upon the static contact angle.
Our hydrodynamic analysis extends the static stability results of Davis (1980) in a
manner similar to how Lord Rayleigh extended the work of Plateau on the stability
of liquid cylinders. We report rates of fastest growing modes and mode shapes. We
also report critical wavenumbers and stability windows – how stability limits depend
on contact angle.

Solutions to the governing equations are decomposed according to their symmetry
about the axis of symmetry. Using standard terminology, symmetric shapes are
referred to as varicose modes and anti-symmetric shapes as sinuous modes. Static
stability of the varicose modes agrees with Davis (1980), who considers varicose
modes, since they are the more unstable of the two mode types. This is confirmed by
our results. Critical disturbances and growth rates are reported for the varicose modes
in figure 6, which indicate rivulets with free contact lines break up faster than those
with pinned contact lines. For mobile contact lines, the instability window widens
(shrinks) for rivulets with contact angle α < 90◦ (α > 90◦) illustrating how the wetting
properties of the solid substrate affect stability.

We report that the sinuous mode destabilizes the rivulet with free contact lines
for super-circular base states 90◦ < α < 180◦ and is the dominant instability for a
range of low axial wavenumbers. The features of this instability are not characteristic
of typical capillary break-up, as long waves grow for a range of contact angles
90◦ < α < 150◦. For α > 150◦, km 6= 0 and rivulet meandering occurs. The instability
mechanism highlights the energy competitors (LG, LS) involved in partial wetting and
lowers the configurational energy by decreasing liquid/solid surface area, while the
fluid response correlates with horizontal centre-of-mass motion. Hence, cataloguing
the sinuous instability is important in understanding the phenomenon of rivulet
meandering. Rivulet meandering can only occur for mobile contact lines. The
window of instability closes for pinned contact lines (cf. figure 5). Although we
do not consider a base-state flow in our analysis, we would expect the fluid inertia
to widen the instability window (destabilize) and enhance the sinuous instability
(rivulet meandering). Along similar lines, viscous effects could be expected to shift
the dominant modes to smaller wavenumbers consistent with bulk viscous dissipation.
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