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Accurate prediction of the spatial evolution of turbulent wake flows under pressure
gradient conditions is required in some engineering applications such as the design of
high-lift devices and wind farms over topography. In this paper, we aim to develop an
analytical model to predict the evolution of a turbulent planar wake under an arbitrary
pressure gradient condition. The model is based on the cross-stream integration of
the streamwise momentum equation and uses the self-similarity of the mean flow. We
have also made an experimentally supported assumption that the ratio of the maximum
velocity deficit to the wake width is independent of the imposed pressure gradient.
The asymptotic response of the wake to the pressure gradient is also investigated.
After its derivation, the model is successfully validated against experimental data
by comparing the evolution of the wake width and maximum velocity deficit. The
inputs of the model are the imposed pressure gradient and the wake width under zero
pressure gradient. The model does not require any parameter tuning and is deemed
to be practical, computationally fast, accurate enough, and therefore useful for the
scientific and engineering communities.
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1. Introduction

A better understanding of turbulent wakes under different pressure gradient
scenarios is beneficial from both an engineering and a pure fluid mechanics point of
view. As examples of engineering domains in which this phenomenon is involved,
one can mention the aerodynamics of high-lift devices and also the wake structure
and recovery in wind farms over hilly terrain. In high-lift devices, which are used
in modern airliners, the wing is composed of several components, around which the
air flows. The wake of the upstream components (e.g. the leading edge slat) has a
crucial effect on the performance of the downstream components (e.g. the main wing
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and the flap(s)). These wakes are typically under strong (mainly adverse) pressure
gradient conditions (Smith 1975; Rumsey & Ying 2002). Therefore, accounting for
the pressure gradient effects for such wakes is decisive in the design of such systems.
Wind-turbine wakes over hilly terrain (unlike flat terrain) also undergo non-zero
pressure gradients and this affects their recovery rate and, consequently, the optimum
design of modern wind farms over topography.

Several interesting studies have been performed on the subject at hand. Nakayama
(1987) studied the effects of both pressure gradient and streamline curvature on mean
flow and turbulence statistics of turbulent planar small-defect wakes. Liu, Thomas
& Nelson (2002) performed a systematic and rigorous experimental investigation
on the effect of pressure gradient on turbulent planar wakes. They observed that
the wake velocity deficit recovers faster in the favourable pressure gradient case,
and slower in the adverse pressure gradient case. They also conducted a detailed
analysis on how and why the pressure gradient affects the wake flow in such a
manner. The same group carried out a similar experimental investigation, but this
time for asymmetric wakes in Thomas & Liu (2004). An interesting finding in both
experiments is the fact that the ratio of the maximum velocity deficit to the wake
width was ‘virtually identical for each pressure gradient case’, i.e. this ratio was
invariant under different pressure gradient values. Rogers (2002) performed direct
numerical simulations (DNS) of temporally strained planar wakes and did a thorough
analysis of the self-similarity behaviour of the wake flow in strained conditions. He
concluded that classical self-similarity leads to results which do not match those of
DNS, and he developed a modified similarity formulation for strained wakes, which
is mainly based on the fact that the growth of the wake width is determined by the
straining. In that study, different rates and geometries (planar and axisymmetric) of
strain are studied. One conclusion of his work was that the shape of the velocity
deficit profile is universal in all strain geometries and values, and this shape is the
same as that of an unstrained wake.

The objective that we pursue in this paper is to develop an analytical model to
predict the evolution of a turbulent planar wake under an arbitrary pressure gradient
condition. Specifically, we aim to predict how a turbulent planar wake in zero pressure
gradient, which has a well-established behaviour, is perturbed by imposing a non-
zero pressure gradient. The model is based on the cross-stream integration of the
streamwise momentum equation and uses the self-similarity of the mean flow. The
model proves to be computationally fast and easy to use for engineering and scientific
purposes.

This article is structured as follows: the proposed model, with all its variants,
is derived in § 2. The model is then validated against experimental data in § 3.
A discussion about the effect of pressure gradient on turbulent planar wakes in a
broader perspective is given in § 4, and the paper is concluded with § 5.

2. Analytical model for wakes under pressure gradient

2.1. Problem formulation
It is accepted that turbulent wakes behave in a self-similar manner under zero
pressure gradient conditions (Tennekes & Lumley 1972; Wygnanski, Champagne &
Marasli 1986; Pope 2000). It has also been shown that turbulent wakes preserve
their self-similar behaviour in the mean streamwise velocity under non-zero pressure
gradient (or strained) conditions (Liu et al. 2002; Rogers 2002; Thomas & Liu
2004). A schematic of key variables in a turbulent planar wake is shown in figure 1.
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Turbulent planar wakes under pressure gradient conditions

yy

x

FIGURE 1. Schematic of the velocity profile of a typical turbulent planar wake.

As it can be seen, x is the streamwise direction, y is the lateral direction, the x-axis
is coincident with the centreline of the wake, u(x, y) is the velocity (hereafter, by
velocity, we imply the mean streamwise velocity, unless otherwise stated) of the wake
flow, Ub(x) is the velocity of the base flow, i.e. the velocity of the flow assuming
there is no wake (in other words, Ub(x) = lim|y|→∞ u(x, y)). We can express the
velocity self-similarity of the wake as:

Ub − u
Ub

=C(x)f (y/δ), (2.1)

where C(x) is a function determining the maximum velocity deficit at each x-position,
δ(x) is a length scale in the y-direction and f (y/δ) is a shape function that describes
the shape of the velocity profile. It is also already shown that the shape function for
turbulent wakes under zero (Wygnanski et al. 1986; Pope 2000) and non-zero (Liu
et al. 2002; Rogers 2002) pressure gradients can be expressed by a Gaussian function.
Thus, for a planar wake we have:

Ub − u
Ub

≡C(x)e−y2/2δ2
. (2.2)

In fact, the profile proposed by Wygnanski et al. (1986) has also a term involving
exp(y4), which can be, to a good accuracy, neglected (Rogers 2002).

With this representation of the wake velocity, δ(x) can be regarded as the wake
width. The wake width for the zero pressure gradient case δ0(x) is determined by the
geometry of the wake-generating object and the incoming turbulence level of the flow.
For example, it is known that for a planar wake and a laminar inflow δ0(x) ∼ x1/2.
Depending on the turbulence level of the inflow and the geometry of the object, this
relation is subject to change.

We now state the problem that we want to solve. The problem is: assuming the
wake width for the zero pressure gradient case is given, it is desired to find the
maximum deficit function C(x) (including C0) and δ(x) under any given pressure
gradient. In other words, we want to be able to analytically predict how the wake
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flow changes, with respect to the zero pressure gradient one, for different pressure
gradient conditions.

In the above formulation, the pressure gradient (dp/dx) shows itself in the way
the base flow velocity Ub varies with x, i.e. if we have a base flow acceleration
(dUb/dx> 0) then dp/dx< 0, and we have the so-called favourable pressure gradient
(FPG) condition; alternatively, if we have a base flow deceleration (dUb/dx< 0) then
dp/dx> 0, and we have the so-called adverse pressure gradient (APG) condition. For
the zero pressure gradient (ZPG) case, we have Ub(x)=Ub0 = const.

2.2. Model derivation
We start with the mean momentum conservation equation in the x-direction for a two-
dimensional planar turbulent flow:

u
∂u
∂x
+ v̄

∂u
∂y
=−

1
ρ

∂p
∂x
−
∂u′v′

∂y
−
∂u′2

∂x
, (2.3)

where u and v are the streamwise and lateral components of velocity, p is the pressure,
ρ is the fluid density, the overbar indicates a mean quantity and the prime shows
the fluctuation quantities (e.g. u′ = u − u). Here, we have already neglected viscous
effects as the Reynolds number is taken to be sufficiently high. As the variation of
the turbulent fluxes in the streamwise direction is negligible, the last term on the
right-hand side of the above equation can also be neglected. The pressure gradient
term can be written as Ub(dUb/dx). With these considerations and adding the term
−u dUb/dx to both sides of (2.3), we can rewrite this equation in the following form:

u
∂(Ub − u)

∂x
+ v̄

∂(Ub − u)
∂y

=
∂u′v′

∂y
−Ub

dUb

dx
+ u

dUb

dx
. (2.4)

Using continuity, we obtain:

∂u(Ub − u)
∂x

+
∂v̄(Ub − u)

∂y
=
∂u′v′

∂y
−

dUb

dx
(Ub − u). (2.5)

Now, we integrate the above equation in the y-direction. As both (Ub− u) and u′v′
vanish far from the wake centre, the following equation is yielded:

d
dx

∫
∞

−∞

u(Ub − u) dy+
∫
∞

−∞

dUb

dx
(Ub − u) dy= 0. (2.6)

As can be noticed, the second term on the left-hand side of the equation is
responsible for the pressure gradient effect. In the special case of the zero pressure
gradient case, the second term will be equal to zero, and the above equation is
reduced to the well-known momentum defect equation for turbulent wakes (Tennekes
& Lumley 1972). Plugging (2.2) into (2.6), and using

∫
∞

−∞
exp[−y2/(2δ2)] dy=

√
2πδ,

we obtain the following:

d
dx

[√
πU2

b(x)δ(x)(
√

2C(x)−C2(x))
]
+

1
2

√
2π

dU2
b

dx
δ(x)C(x)= 0. (2.7)

As can be seen, in a zero pressure gradient case, the second term vanishes and we
are left with an algebraic equation for C(x) (the same as Bastankhah & Porté-Agel
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(2014) for an axisymmetric wake). However, in the case of non-zero pressure gradient
we encounter a nonlinear ordinary differential equation (ODE). We first solve the
above equation for the ZPG case, as its solution will be useful later in our derivation.
In the ZPG case, equation (2.7) reduces to:[√

πU2
b0δ0(x)(

√
2C0(x)−C2

0(x))
]
=M, (2.8)

where the 0 subscript indicates the ZPG case. The term on the left-hand side of the
above equation is the net momentum deficit flux per unit density per unit spanwise
(normal to the xy-plane) depth, and is equal to a constant (Tennekes & Lumley 1972).
The value of this constant is related to the momentum flux removal by the wake-
generating object, and it is equal to M= (CDDU2

b0)/2, where CD is the drag coefficient
of the wake-generating object and D is its width. Therefore, C0(x) is found to be:

C0(x)=

√
2

2
−

√√√√1
2
−

CD

2
√

π
δ0(x)

D

(x > xi). (2.9)

Note that δ0(x) is treated as a known function, so with the above equation, C0(x) is
fully determined. The condition x> xi is only to ensure that the expression under the
square root is non-negative. Thus, xi is equal to the minimum non-negative value of
x, for which the expression under the square root remains non-negative.

We now turn back to (2.7), in which we have one equation and two unknowns (i.e.
C(x) and δ(x)). Therefore, to be able to solve the problem we need another equation
that relates C(x) and δ(x). For this purpose, we define λ(x) as:

λ(x)≡
Ud

δ
, (2.10)

where Ud(x) ≡ C(x)Ub(x) is the maximum velocity deficit at a given streamwise
position. Although both Ud(x) and δ(x) vary with pressure gradient, it has been
experimentally shown by Liu et al. (2002) and Thomas & Liu (2004) that λ(x)
is virtually invariant under pressure gradient changes. To explain this finding, they
have argued that λ(x) is proportional to the maximum of ∂u/∂y and, hence, to the
maximum of the mean normal-to-plane vorticity ωz. As in the vorticity equation for
ωz, the imposed pressure gradient does not appear (∇×∇p= 0), the imposed pressure
gradient does not have a direct effect on the evolution of the maximum of ωz. We
take advantage of this, and further our derivation, by equating λ for any pressure
gradient to the value of λ for the ZPG case, i.e. λ0:

λ(x)= λ0(x)=
Ub0C0(x)
δ0(x)

, (2.11)

which, considering (2.9), is regarded as a known function. δ(x) can then be expressed
as:

δ(x)=
Ub(x)
λ0(x)

C(x). (2.12)

Plugging (2.12) into (2.7), the following ODE is obtained for C(x):

dC(x)
dx
=

−1(
U3

b

λ0

)
(2
√

2C− 3C2)

[√
2

3
dU3

b

dx
C2

λ0
+ (
√

2C2
−C3)

d
dx

(
U3

b

λ0

)]
. (2.13)
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The boundary condition for the above ODE is:

C(xi)=C0(xi). (2.14)

In fact, by (2.14), we have assumed that C(x) has the same initial value for both the
ZPG and non-zero pressure gradient cases. In other words, in the immediate vicinity
of the wake-generating object, the effect of pressure gradient on C(x) is assumed to be
negligible. This notion is fully accurate in cases where the imposed pressure gradient
starts to be non-zero after some distance from the object (e.g. see the validation case
of § 3).

Equation (2.13), which is nonlinear in C(x), enables us to explicitly express
dC(x)/dx as a function of Ub, λ0 and C(x), i.e. dC(x)/dx = f (Ub, λ0, C). This form
of the ODE is suitable for common numerical ODE solvers, and it can be solved
very easily and fast. Hence, with (2.13) and (2.14), the solution of the initially stated
problem (§ 2.1) is fully achieved. In the remainder of this section, we approach the
problem from two other different angles, which we believe can shed more light on
the problem at hand.

2.3. Solving the problem for a given δ(x)
Herein, we consider the problem as such: δ(x) is given for a desired pressure gradient,
and the objective is to find C(x). This approach is beneficial because it disentangles
(2.7) from (2.11), and we can isolate the behaviour of these two equations, and
consequently assess them individually. This may be particularly useful for the insight
it provides.

For this purpose, we proceed by defining a dummy variable h(x) such that h(x)≡
δ(x)(
√

2C(x)−C2(x)). Then, equation (2.7) becomes:

dh(x)
dx
=−h(x)

1
U2

b

dU2
b

dx
−

√
2

2
1

U2
b

dU2
b

dx
δ

(√
2

2
−

√
1
2
−

h
δ

)
, (2.15)

with the boundary condition being:

h(0)= h0(x)=
1

2
√

π
DCD. (2.16)

The above ODE is nonlinear in h(x) and has the explicit form dh(x)/dx= f (Ub, δ,h).
Equation (2.15) can again be easily solved in a fast way by numerical techniques,
which are available in common commercial softwares. Finally, C(x) is recovered as:

C(x)=

√
2

2
−

√
1
2
−

h
δ

(x > xi). (2.17)

Note that h(x) becomes independent of x in the ZPG case (2.16). Notice also that in
the derivations of this section, wherever one of the two roots of a quadratic equation
was needed ((2.9), (2.15) and (2.17)), the physically acceptable one was chosen,
and the unacceptable one was ignored. The unacceptable root leads to negative flow
velocity and an amplifying deficit in the x-direction instead of an attenuating one for
the ZPG case.
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2.4. Asymptotic solution of the problem
Here, we try to find an asymptotic solution for the problem at hand for sufficiently
large x. To this end, we consider that 0 < C(x) < 1, and thus C2(x) < C(x). We
know that C(x)→ 0 as x→∞ (at least for ZPG and FPG cases, as we will see
in § 3, this assumption does not necessarily hold for the APG case). Hence, in the
far wake, where x is sufficiently large, we have C2(x)� C(x). Therefore, here we
can consider the term involving C2(x) as negligible with respect to the term involving
C(x). Neglecting the C2(x), amounts to an important change in (2.7), that is to say,
converting the nonlinear ODE to a linear one:

d
dx

[√
2πU2

b(x)δC̃(x)
]
+

√
2π

2
dU2

b

dx
δC̃(x)= 0, (2.18)

where C̃ is the asymptotic solution of C. After some manipulation, we obtain the
following equation:

√
2π

1
Ub

d
dx
[δ(x)C̃(x)U3

b] = 0. (2.19)

The coefficient
√

2π is maintained deliberately, so that the constant of integration for
the above equation for the ZPG case will be equal to M in (2.8). The solution to
the above equation can be obtained with the proper determination of the constant of
integration. Thus, C̃(x) can be written as:

C̃(x)=
1

2
√

2π

CD(
δ

D

) ( Ub0

Ub(x)

)3

. (2.20)

It is noteworthy to mention that the above expression in the case of ZPG (i.e. C̃0(x)=
1/(2
√

2π)DCD/δ0) is, in fact, equal to the first-order Taylor expansion of the full
solution of C0(x), i.e. (2.9).

Now, using (2.11), we can find the final asymptotic solution for C(x) as:

C̃(x)= C̃0(x)
(

Ub0

Ub(x)

)2

. (2.21)

3. Validation of the model

In this section, we aim to validate the above-derived model by comparing its
predictions with experimental measurements. The experiment that we choose is the
one performed by Liu et al. (2002), in which the wake generated by a flat splitter
plate under different constant pressure gradient conditions is measured. The pressure
gradient along the streamwise direction has the following distribution:

dCp

dx
≡

1
1
2ρU2

b0

dp
dx
=−

d
dx

(
Ub

Ub0

)2

=

{
0, x 6 xp
α, x> xp,

(3.1)

where Cp is the pressure coefficient. It is clear from the above distribution that the
wake is initially under zero pressure gradient and, after a certain position xp (xp/θ0=

40), it undergoes a constant pressure gradient which is dictated by the parameter α.
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0.8

FIGURE 2. Normalized maximum velocity deficit as a function of the streamwise distance
for ZPG (black), FPG (red) and APG (green) cases. The circles indicate measurements of
Liu et al. (2002), the solid lines are the full solution obtained from (2.13), and the dashed
lines are the asymptotic solution of (2.21).

θ0 is the initial momentum thickness of the wake, which is equal to 7.2 mm for all
the cases considered here. Three cases of ZPG, FPG and APG are considered, such
that:

α =

−0.6 m−1, FPG
0, ZPG
+0.338 m−1, APG.

(3.2)

We here apply the model described in § 2 to these three cases. Note that in the
model one can use the wake half-width δh=

√
2 ln(2)δ instead of δ, as (2.7) is linear

in δ. The lengths are normalized by θ0. Using the curve of C0(x) in the experiment,
the value of the DCD in (2.9) can be obtained, and this equation eventually takes the
following form:

C0(x)=

√
2

2
−

√√√√√1
2
−

2.2

2
√

π

(
δh,0(x)
θ0

) , (3.3)

where δh,0 is the wake half-width for the ZPG case.
Figure 2 shows C(x) = Ud(x)/Ub(x) for the different pressure gradient cases both

from the measurements and from the model. Along with the full solution of the model
(i.e. (2.13)), the asymptotic solution is also shown. Note that, all ODEs in this paper
are solved with ‘ode45’ routine of MATLAB, which uses an explicit Runge–Kutta
(4, 5) algorithm, namely, the Dormand–Prince method. The agreement between the
model and the experimental data is remarkable. It is also clear how the asymptotic
solution converges to the full solution for the ZPG and FPG cases. For the APG case,
as the condition limx→∞C(x)=0 does not hold, we see that no convergence to the full
solution is achieved. It is also worth mentioning that the asymptotic solution performs
best for the FPG case, and this is because the value of C(x) is the smallest for
this case, and consequently, the error caused by neglecting C2(x) is also the smallest.
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0 50 100 150 200 250
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FIGURE 3. Normalized wake half-width as a function of the streamwise distance. For the
legend, refer to the caption of figure 2.

It can be observed that the recovery of the maximum velocity deficit is fastest for the
FPG case and slowest for the APG case. In fact, for the APG case, after a certain
x, C(x) even starts to increase. This is also reported by Liu et al. (2002), and it is
well predicted by our model. Moreover, figure 3 shows the modelled and experimental
δh(x) functions. Again, it can be seen that the agreement between the model and
measurements is good. Note that the black line in this figure is the input of the model.
This curve, as also reported by Liu et al. (2002), grows proportional to x1/2.

4. Discussion

After validation of the model, we aim to employ the model to give us more insight
about the response of planar wakes to pressure gradient conditions. To this end, we
use the set-up presented in the previous section, and examine the behaviour of the
wake with varying pressure gradients. To do this, we vary the parameter α and obtain
the solutions of C(x) and δh(x), as can be seen in figures 4 and 5, respectively. First
of all, we see in these figures that, for the APG cases, there is a certain value of
x/θ0 beyond which the solution becomes unstable. We hypothesize that one possible
reason for this behaviour can be the separation of the flow, which is reported broadly
in literature as a characteristic of APG wakes. It is worth noting that Liu et al. (2002)
have mentioned for α= 0.468 m−1 the flow undergoes separation ‘near the aft portion
of the diffuser wall’, i.e. x/θ0≈ 250; interestingly, we observe in figures 4 and 5 that
this agrees well with the point where the model becomes unstable. Moreover, for the
case of constant adverse pressure gradient (α>0), the existence of a certain x at which
the model becomes unstable does not depend on the magnitude of α. In the above
figures, also for α= 0.1 m−1 the model becomes unstable, but at x/θ0 ≈ 1000, which
is not within the range of the shown plots. We emphasize that linking the instability of
the model to flow separation is only a hypothesis, and investigation of the separation
is not within the scope of this study. Another interesting point about this figure is the
fact that wakes under APG are more sensitive to pressure gradient than wakes under
FPG; in contrast to FPG cases, the wake responds to a small APG relatively strongly.
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FIGURE 4. Normalized maximum velocity deficit as a function of the streamwise distance
for different pressure gradient cases. The value of α is written on each curve with the unit
of (m−1). The red line indicates the ZPG case. The curves are the solution of (2.13).
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FIGURE 5. Normalized wake half-width as a function of the streamwise distance for
different pressure gradient cases. For the legend, refer to the caption of figure 4.

Finally, we see that when the magnitude of the favourable pressure gradient is larger
than a certain value (i.e. α<αcr < 0), δ varies only slightly with x, i.e. δ≈ const. This
means that the flow becomes close to a parallel flow. This behaviour is also mentioned
by Liu et al. (2002) and Rogers (2002).

5. Concluding remarks

In this paper, we pursue the objective of developing an analytical model to predict
the evolution of a turbulent planar wake under an arbitrary pressure gradient condition.
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Specifically, we aim to predict how a turbulent planar wake in zero pressure gradient,
which has a well-established behaviour, is perturbed by imposing a non-zero pressure
gradient. The model is based on the cross-stream integration of the streamwise
momentum equation and uses the self-similarity of the mean flow.

The inputs of the model are: (i) the ZPG wake width evolution function δ0(x), and
(ii) the imposed pressure gradient, or equivalently, the streamwise distribution of the
base flow velocity Ub(x). Both input functions can be data-driven or analytical. The
outputs of the model are the maximum deficit function C(x) and the wake width
function δ(x). The model amounts to solving a nonlinear ODE for C(x), which can
be easily solved in a fast way with common commercial ODE solvers. An asymptotic
variant of the model (mainly applicable for ZPG and FPG cases) is also developed
which leads to an algebraic equation for C(x). The asymptotic method was found
to have no computational advantage over the exact method, but it can help to give
a clearer insight about the problem. The model is successfully validated against
experimental data by comparing the evolution of the wake width and maximum
velocity deficit for both FPG and APG cases. The model is shown to be useful to
predict a broad range of pressure gradients.

Finally, as mentioned in § 1, apart from high-lift devices, wind-turbine wakes can
also involve pressure gradient effects. The main characteristic difference between these
two cases is that the wake in high-lift devices is planar, but the wake of wind turbines
is axisymmetric. The approach described here for planar wakes can easily be extended
to axisymmetric wakes. Although this can be accomplished using a similar general
approach, the results will be different and, therefore, a proper separate investigation
of axisymmetric wakes under pressure gradient conditions is required. We are planning
to undertake this challenge in our future research.
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