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Contrary to formal theories of induction, I argue that there are no universal inductive

inference schemas. The inductive inferences of science are grounded in matters of fact that

hold only in particular domains, so that all inductive inference is local. Some are so localized

as to defy familiar characterization. Since inductive inference schemas are underwritten by

facts, we can assess and control the inductive risk taken in an induction by investigating the

warrant for its underwriting facts. In learning more facts, we extend our inductive reach by

supplying more localized inductive inference schemes. Since a material theory no longer

separates the factual and schematic parts of an induction, it proves not to be vulnerable to

Hume’s problem of the justification of induction.

1. Introduction. There is a longstanding, unsolved problem associated
with inductive inference as it is practiced in science. After two millennia of
efforts, we have been unable to agree on the correct systematization of in-
duction. There have always been many contenders. Some variant of
Bayesianism now enjoys the leading position, although other schemes,
such as inference to the best explanation, retain a considerable following.
All this can change. In the late nineteenth century, some one hundred years
after Bayes made his formula known, the leading systematization was the
methods catalogued by Bacon, Herschel and, most precisely, Mill. This
instability stands in strong contrast to deductive logic. The deductive
syllogisms identified by Aristotle remain paradigms of deduction, with
their very dreariness a mark of their unchallenged security. A comparable
ancient contribution to inductive logic, induction by simple enumeration,
has been a favored target of vilification for millennia. The problem is
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deepened by the extraordinary success of science at learning about our
world through inductive inquiry. How is this success to be reconciled with
our continued failure to agree on an explicit systematization of inductive
inference?

It is high time for us to recognize that our failure to agree on a single
systemization of inductive inference is not merely a temporary lacuna. It is
here to stay. In this paper I will propose that we have failed, not because of
lack of effort or imagination, but because we seek a goal that in principle
cannot be found. My purpose is to develop an account of induction in
which the failure becomes explicable and inevitable; and it will do this
without denying the legitimacy of inductive inference. We have been
misled, I believe, by the model of deductive logic into seeking an account
of induction based on universal schemas. In its place I will develop an
account of induction with no universal schemas. Instead inductive infer-
ences will be seen as deriving their license from facts. These facts are the
material of the inductions; hence it is a ‘‘material theory of induction.’’
Particular facts in each domain license the inductive inferences admissible
in that domain—hence the slogan: ‘‘All induction is local.’’ My purpose is
not to advocate any particular system of inductive inference. Indeed I will
suggest that the competition between the well established systems is futile.
Each can be used along with their attendant maxims on the best use of
evidence, as long as we restrict their use to domains in which they are
licensed by prevailing facts.

In Section 2, I will lay out the basic notions of a material theory of
induction. Theories of induction must address an irresolvable tension
between the universality and the successful functioning of some formal
account of induction. The present literature favors universality over
function. I urge that we can only secure successful functioning by forgoing
universality and that this is achieved in a local, material theory of
induction. In Section 3, I will review briefly the principal approaches to
induction in the present literature in order to show that all depend
ultimately on local matters of fact. In Section 4, I will illustrate how the
imperfections of fit between existing schemas and actual inductions
become greater as the relevant domain becomes narrower and suggest
that some inductive inferences are best understood as individuals peculiar
to a particular domain. In Section 5, I will review how a material theory
directs that we control inductive risk by learning more facts since that both
adds to the premises for our inductions and augments the inductive
inference schemas locally applicable. In Section 6, I will argue that a
material theory of induction eludes The Problem of Induction, in so far as
the simple considerations that visit the problem on a formal theory fail to
generate comparable difficulties for a material theory. Finally Section 7
contains concluding remarks.

648 john d. norton

https://doi.org/10.1086/378858 Published online by Cambridge University Press

https://doi.org/10.1086/378858


2. The Material View.

2.1. The Problem of Enumerative Induction. Consider two formally
identical inductive inferences:

The first is so secure that chemistry texts routinely report the melting
points of elements on the basis of measurements on a few samples, relying
on inductive inferences of exactly this type. The second is quite fragile, for
reasons that are somewhat elusive, but certainly tied up with the fact that
‘‘wax’’ unlike ‘‘bismuth’’ is a generic name for a family of substances.
Why is there such a difference? Mill ([1872] 1916, 205–206) found this
question so troubling that he proclaimed ‘‘Whoever can answer this
question knows more of the philosophy of logic than the wisest of the
ancients and has solved the problem of induction.’’

2.2. Formal Theories of Induction. Let us look at attempts to answer the
question in the presently dominant approach to induction embodied by
what I call ‘‘formal theories.’’ In them, the licit inductions are generated by
supplying a universal template into whose slots factual content is inserted
to generate licit inductions. The two inductions above are generated by
suitable substitutions into the formal template of enumerative induction:

Some A’s are B’s.
Therefore, all A’s are B’s.

By formal theories, I intend something very broad. They are certainly not
limited to accounts of induction within some formalized language or logic.
The defining characteristic is just that the admissibility of an inductive
inference is ultimately grounded in some universal template. Bayesian
systems fall in this category. The probability calculus and Bayes’ theorem
provide a template into which degrees of belief are inserted.

Formal theories must respond to the problem of the melting points by
insisting that the original schema of enumerative induction is elliptic and
that extra conditions must be added to block misapplications. However it
soon proves to be an insurmountable difficulty to find an augmentation that
functions while still preserving the universality of the schema. For
example, we might require that enumerative induction can only be carried
out on A’s that belong to a uniform totality. But without being able to
mention particular facts about bismuth and wax, how are we to state a
general condition that gives a viable, independent meaning to ‘‘uniform’’?

Some samples of the element
bismuth melt at 271jC.
Therefore, all samples of the
element bismuth melt at 271jC.

Some samples of wax melt at
91jC.
Therefore, all samples of
wax melt at 91jC.
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We are reduced to the circularity of making them synonyms for ‘‘properties
for which the enumerative induction schema works.’’

The problem of the melting points is closely related to Goodman’s
(1983) celebrated problem of ‘‘grue,’’ where the same tension is revealed.
A green, examined emerald confirms that all emeralds are green; and it also
confirms that all emeralds are grue, where grue means green if examined
prior to some future time T and blue otherwise. To explain why only the
former confirmation is licit, Quine (1970) noted that green but not grue, is
a natural kind term. However we cannot augment the schema for
enumerative induction by requiring that A and B be natural kinds or
natural kind terms without compromising its universality. For we have no
universal account of natural kinds. In practice in science we determine
which are the natural kinds by looking for the central terms of our current
scientific theories. And even with that augmentation, we would still have
no criterion for determining when an enumerative inductions is weak or
strong; the strengths of the confirmation will still vary.

2.3. Material Theories of Induction. The natural solution to the problem
of the melting points would seem to require explicit discussion of the
differing properties of bismuth and wax. All samples of bismuth are
uniform just in the property that determines their melting point, their
elemental nature, but may well not be uniform in irrelevant properties such
as their shapes or locations. Wax samples lack this uniformity in the
relevant property, since ‘‘wax’’ is the generic name for various mixtures of
hydrocarbons. A material theory of induction allows us to use such facts
determine the differing strength of the inductions and rapidly resolves the
problem.

In a material theory, the admissibility of an induction is ultimately traced
back to a matter of fact, not to a universal schema. We are licensed to infer
from the melting point of some samples of an element to the melting point
of all samples by a fact about elements: their samples are generally uniform
in their physical properties. So if we know the physical properties of one
sample of the element, we have a license to infer that other samples will
most likely have the same properties. The license does not come from the
form of the inference, that we proceed from a ‘‘some . . .’’ to an ‘‘all. . . .’’ It
comes from a fact relevant to the material of the induction. There are no
corresponding facts for the induction on wax, so the formal similarity
between the two inductions is a distraction.

In advocating a material theory of induction, my principal contention is
that all induction is like this. All inductions ultimately derive their licenses
from facts pertinent to the matter of the induction. I shall call these
licensing facts the material postulate of the induction. They justify the
induction, whether the inducing scientist is aware of them or not, just as
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the scientist may effect a valid deduction without explicitly knowing that it
implements the disjunctive syllogism.

The material postulates determine the characters of the inductions in a
material theory. They may certainly be truth conducive, as opposed to
being merely pragmatically or instrumentally useful, as long as the
material postulates are strong enough to support it. How each induction
will be truth conducive will also depend on the material postulate and
may well suffer a vagueness inherited from the present induction
literature. Chemical elements are generally uniform in their physical
properties, so the conclusion of the above induction is most likely true.1

In this case, ‘‘most likely’’ denotes high frequency of truth among many
cases of elements tested. Such frequentist readings will not always be
possible.

2.4. All Induction is Local. There has been a long history of attempts to
identify facts about the world that could underwrite induction. Best known
is Mill’s ([1872] 1916, book 3, chap. 3) ‘‘axiom of the uniformity of the
course of nature.’’ Russell ([1912] 1932, chap. 6) defined the principle of
induction in terms of the probability of continuation of a repeated
association between ‘‘a thing of a certain sort A’’ and ‘‘a thing of certain
sort B.’’ Russell’s later (1948, part 6, chap. 9, 490–91) expansion has five
postulates that include a quite specific ‘‘postulate of spatio-temporal
continuity in causal lines’’ which ‘‘den[ies] ‘action at a distance’.2’’

All these efforts fall to the problem already seen, an irresolvable tension
between universality and successful functioning. On the one hand, if they
are general enough to be universal and still true, the axioms or principles
become vague, vacuous, or circular. A principle of uniformity must limit
the extent of the uniformity posited. For the world is simply not uniform in
all but a few specially selected aspects and those uniformities are generally
distinguished as laws of nature. So, unless it introduces these specific facts
or laws, an effort to formulate the limitation can only gesture vaguely that
such uniformities exist. Any attempt to characterize them further would
require introducing specific facts or laws that would violate universality.
On the other hand, if the axiom or principle is to serve its function of
licensing induction, it must introduce these specific facts and forfeit
universality. So Russell ends up denying action at a distance. If his account
is to cover all induction, we must conclude that induction is impossible in
any universe hosting action at a distance.

1. Why ‘‘generally’’? Some elements, such as sulfur, have different allotropic forms with

different melting points.

2. For another approach, see Keynes’ (1921, chap. 23) presumption of ‘‘independent

variety.’’
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Because of these difficulties, the present material theory of induction is
based on the supposition that the material postulates obtain only in specific
domains; that is, facts that obtain ‘‘locally.’’ As a result, inductive infer-
ence schemas will only ever be licensed locally.

The notion of a material theory has many precursors in the literature.
Perhaps the most important is Goodman’s ‘‘grue,’’ which induced Hempel
(see his 1964 Postscript in Hempel [1945] 1965, 51) to doubt the viability
of a fully syntactic account of induction (see also Stalker 1994). My own
path to the view is through the literature on demonstrative induction (see
Section 5 below), in which inductions are reconfigured as deductive
inferences with suppressed premises.

3. A Little Survey of Induction.

3.1. Universality Versus Successful Functioning. My principal argument
for a local material theory of induction is that no inductive inference
schema can be both universal and function successfully. As we saw in the
case of enumerative induction above, to secure successful functioning we
must forgo universality and adopt schemas that obtain only locally, under
the license of locally obtaining facts. My purpose in this section is to
complete the argument. I will try to show that this tension arises through-
out the induction literature and make plausible that there are no success-
fully functioning schemas or systems of induction that do not in turn
depend upon local matters of fact. While it will be impossible for me to
address every system in the literature, I believe I can give reasonable
coverage by recognizing that virtually all the systems can be fitted into one
of three broad families, with all members of the same family exploiting the
same inductive principle.

3.2. First Family: Inductive Generalization. All members of this family
are based on the principle that an instance confirms the generalization. The
best known and original form is enumerative induction, in which an
instance of an A that is B confirms the generalization that all A’s are B’s.
Hempel’s (1945) satisfaction criterion of confirmation provides a logically
robust definition of an instance in the context of first order predicate logic,
while still exploiting the same idea that the instance confirms the
generalization. A serious shortcoming of enumerative induction is that it
merely licenses inferences from ‘‘some . . .’’ to ‘‘all . . .’’ and that is far too
narrow for many applications in science. Augmented forms couple
enumerative induction to schemes for introducing theoretical terms. The
most important of these arise in Mill’s ([1872] 1916, book 3, chap. 7)
methods. For example, Mill’s ‘‘joint method of agreement and disagree-
ment’’ begins with our finding cases in which an antecedent always con-
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tains A if the consequent has B (necessity) and the antecedent always fails
to have A if the consequent fails to have B (sufficiency). The joint method
uses enumerative induction to infer that this necessity and sufficiency of A
for B obtains not just in the cases investigated, but in all cases; and it
licenses us to interpret this necessity and sufficiency as causation, so that A
is the cause of B or an indispensable part of it. Glymour’s (1980) bootstrap
confirmation relation allows far greater liberty in the rules that can be used
to introduce theoretical terms. The bootstrap confirmation relation requires
that an instance of the hypothesis being supported is to be deduced from the
evidence. In deducing it, we are free to use any part of the theory in question
to introduce theoretical terms. In the context of Newtonian mechanics, we
may use force = mass � acceleration to replace acceleration terms by force
terms, so that evidence concerning accelerations can yield an instance of
hypothesis pertaining to forces. In both these extensions, the basic inductive
principle remains the same: a ‘‘some . . .’’ is replaced by an ‘‘all. . . .’’

Since all these accounts still employ the same principle that the in-
stance confirms the generalization, there is little to add to the discussion of
Section 2 above. Whether an instance does confirm the generalization
depends on the material postulate of the relevant domain; it will also
determine the strength of the confirmation.

3.3. Second Family: Hypothetical Induction. Under the rubric of
hypothetico-deductive confirmation, the basic principle of this family is
that the ability of a theory, possibly with auxiliary assumptions, to entail
the evidence is a mark of its truth. Its use is venerable, tracing back at least
to the ‘‘saving of phenomena’’ in ancient astronomy. The basic principle
by itself is actually rarely used alone because it is quite indiscriminate.
According to it a trivial piece of evidence, that there is a triangle whose
angles sum to 180j, is not just evidence for the Euclidean geometry that
entails it but for the entire edifice of the science that may contain the
geometry, including all of modern biology, geology, and astrophysics.

Expanding on such problems, we can quickly see that anything but an
utterly trivial version of hypothetico-deductive confirmation requires
additional restrictions that are factual. For example it allows that A&B
is confirmed by A. The relation is non-trivial just in so far as it accords
support to B, the second conjunct of A&B. But it should only do that if
there is some relation of dependence between A and B. So A might be
the report that we have measured the sum of the angles of a particular
triangle and found it to be 180j; and B might be Freudian psychology.
We would certainly not expect this A to lend support to this B, even
though A&B does entail B. But it would support B if B were Euclid’s
fifth postulate of the parallels. For then A and B are related in that they
are both parts of Euclidean geometry. More carefully, the relevance might
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be recovered from the assumption that the geometry is homogeneous, that
is, of constant curvature. The presumption of a homogenous geometry
functions as a material postulate in so far as it licenses inference from the
value reported for the sum of the angles of a triangle, to the particular
geometry prevailing, and then to the properties of parallel lines. Since we
lack a general, formal account of the relation of dependence between A
and B, a material fact decides whether the relation obtains and whether A
confirms B.

There have been many attempts to tame the indiscriminateness of
hypothetico-deductivism. They provide an interesting study in the tension
between universality and successful functioning. In so far as they succeed
in bringing proper functioning to the scheme, they do so by making the
scheme dependent on particular facts, so that universality is compromised.
These attempts can be grouped according to their broad strategy.

3.3.1. Exclusionary Accounts. There are infinitely many competing
hypotheses able to entail the evidence. The most direct way to exclude
all but a favored one is to demonstrate additionally that the falsity of the
favored hypothesis entails the falsity of the evidence. That is rarely
possible, since this additional result is very strong. It is equivalent (by
contraposition) to the evidence deductively entailing the hypothesis.
However our inductive worries would be essentially eliminated if we
could show that the falsity of the hypothesis makes very likely the falsity
of the evidence; or more briefly, that if the hypothesis weren’t true we very
likely wouldn’t have gotten the evidence. Many accounts seek to augment
the hypothetico-deductive scheme by demonstrating this additional result.
As we shall see in the examples to follow, the demonstration of the
additional results depends upon particular facts prevailing in the relevant
domain. These facts function as the material postulate that licenses the
induction in accord with the material theory.

The most straightforward of these accounts is modeled after traditional
error statistical analysis; see Giere (1983) and, for a more thorough
account, Mayo (1996). In a controlled study, any systematic difference
in outcome between test and control group is attributed to the treatment
applied to the test group. Typical study designs randomize over the two
groups so that the only systematic difference in composition between the
two groups is, most probably, the treatment which is then most likely
responsible for differing outcomes. Generalizing these sorts of canonical
examples, Mayo (1996, chap. 6) calls a test severe if the procedure is very
unlikely to be passed if the hypothesis is false. Clearly passing a severe test
is a strong license for an hypothesis. The license derives directly from the
facts that make the test severe. These can be facts about the randomizing of
test and control group, so that the ‘‘very likely’’ will be given through the
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physical probabilities of the randomizer. Or they may be vaguer. Replacing
the bulb is a good test of the hypothesis that my lamp fails to operate
because of a burnt out bulb, since it is very unlikely for another defect to
be remedied by replacing the bulb. In this case, the probability judgments
are vaguer, but still grounded in common experience of the world. That
experience licenses the inference.

Facts that are far more difficult to identify underwrite another version
of this augmentation. In arguments to a common cause (Salmon 1984,
chap. 8) or in common origin inferences (Janssen manuscript) the hypoth-
esis is inferred from the evidence on the strength of our conviction that it
would be an astonishing coincidence if the evidence obtained without the
hypothesis also being true. So early last century Perrin showed that there
were roughly a dozen different methods of experimentally measuring
Avogadro’s number N, which gives the size of atoms.3 That they all gave
approximately the same value would be astonishing if there weren’t atoms.
Similarly, in developing his special theory of relativity, Einstein found it
remarkable that our physical theories required material processes to
contract, dilate, and more in just the perfect concert that made impossible
any determination of the aether’s presumed absolute state of rest. The
astonishing coincidence could be eradicated if we conclude that all these
processes are responding to the same background space and time that
lacked an absolute state of rest.

What underwrites these inferences are elusive but widely shared judg-
ments over what would happen if the relevant hypotheses were false. If
there weren’t atoms, we would expect some sort of continuum theory to
prevail and we generally agree that these sorts of theories would not
reproduce Perrin’s experimental results. Similarly if the structure of space
and time did harbor an absolute state of rest after all, we would expect that
some physical process in space and time would reveal it. These are factual
presumptions about the realm of possibility and they are the material
postulates that underwrite the inferences.4

3.3.2. Simplicity. The most obvious and perennially popular augmen-
tation of the hypothetico-deductive scheme uses the notion of simplicity

3. My contribution to this literature is to note this same inference form in Thomson’s

multiple measurements of the electron’s mass to charge ratio. These experiments would not

be expected to give the same value if his cathode rays did not in reality consist of discrete

electrons (Norton 2000).

4. A closely related approach is Whewell’s consilience of inductions. We are convinced of

the correctness of Newton’s physics since it does justice to both celestial and terrestrial

realms, a coincidence that would be astonishing were Newton’s physics false.
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(see for example, Foster and Martin 1966, part 3) While many hypotheses
or theories may deductively entail the evidence, in the augmented scheme
we are licensed to accord inductive support only to the simplest of them. In
my view, our decisions as to what is simple or simpler depend essentially
upon the facts or laws that we believe to prevail. These facts dictate which
theoretical structures may be used and the appeal to simplicity is really an
attempt to avoid introducing theoretical structures unsuited to the physical
reality governed by those facts or laws. That is, these facts or laws function
as material postulates that license what we may or may not infer. Appeals
to simplicity in the context of confirmation in science are really indirect
appeals to facts presumed prevailing in the relevant domain.

This can be seen quite clearly in the most popular example of the use of
simplicity in confirmation theory, curve fitting. When the evidence is
presented as finitely many points on a sheet of graph paper and we find that
a linear and a quadratic equation can be made to fit pretty much equally
well, we routinely infer to the linear equation on the grounds that it is
simpler. Our choice is licensed by facts tacitly assumed to obtain in the
relevant domain.

To see this, first note that the applicability of the procedure depends
upon getting certain assumptions right. An equation expressing a law is
linear only with certain choices of variables. We can create an equation for
the law that uses any function that strikes our fancy by the simple
expedient of rescaling one of the original variables by the inverse of that
function. Moreover there is nothing especially hallowed about the common
choice of linear, quadratic, cubic, quartic, etc. as the natural sequence of
functions of increasing complexity.

So picking the simplest curve can only make sense evidentially if we
make the right choices for the variables and family of functions. And we
make those choices correctly if we think that the variables and function
hierarchy selected somehow map onto the basic physical reality at hand.
So we plot observed planetary positions against the variable time and not
the day of the week or middle initial of the observing astronomer. If our
system is one describing growth, we would quickly look to fitting
exponential functions since they are the functions that figure in the laws
governing growth. In that case, we would certainly prefer an exponential
curve over, say, a quintic curve that fitted as well, even though the expo-
nential curve corresponds to a polynomial with infinitely many terms.
Similarly if our system represents any sort of cyclic process, we would
quickly look to sine and cosine functions, whose polynomial expansions
have infinitely many terms, even though a fifth order polynomial might
give us an equation with as many hills and valleys.

In short, we have no universal scheme or universal formal rules that
define what is simpler or simplest. In so far as we are able, we choose the
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variables and functions appropriate to the facts that we believe prevail.
These facts are the material postulates that license inference to the simplest
curve.

3.3.3. Abduction: Inference to the Best Explanation. In this approach,
we do not just require that the evidence be entailed by the hypothesis or
theory it confirms; the evidence must also be explained by it (Harman
1965; Lipton 1991). The practice of abduction is straightforward. In each
domain we are supplied with or may even create a repertoire of explana-
tory resources. We then choose among them for the one that explains the
evidence best. So Hubble in the late 1920s observed that light from distant
galaxies is shifted to the red, with the shift proportional to the distance.
Galactic physics supplies several candidate explanations. The red shift may
arise from a velocity of recession; or it may arise from the gravitational
slowing of the distant galaxy’s temporal processes, in accord with the
general theory of relativity. The explanatory repertoire is limited. One
might have expected it to include a process in which an interstellar medium
reddens the light, just as a red filter might color a spotlight. Such a resource
is not in the repertoire since chemistry supplies no medium that uniformly
slides the spectral lines of the galactic light along the frequency scale. We
routinely choose the velocity of recession as the explanation, since it
explains the best, accommodating the linear dependence of red shift on
distance to a uniform motion of expansion of the galaxies.

Examples in which the facts are uncertain underscore how the prevail-
ing facts determine what may be inferred. Consider, for example, a
controlled study of the healing efficacy of prayer. A theist would readily
accept divine intervention as the best explanation of a positive result in the
study. An atheist however would conjecture some as yet unnoticed flaw in
the experimental design as the best explanation and may even deny that
divine intervention would count as an explanation at all. The difference
depends fully on their differences over the facts that prevail. An analogous
example would be the differing appraisal of controlled studies on telepathy
by parapsychologists and skeptics. Or in another example, astronomers and
astrologers will differ markedly on how celestial bodies may figure as
explanations of terrestrial phenomena. And modern day astronomers
would no doubt not avail themselves of Newton’s explanatory repertoire.
He proposed ([1692] 1957, first letter) that the planets have just the right
velocities to produce stable orbits since they were ‘‘impressed by an
intelligent Agent.’’

The important point is that the facts prevailing in the relevant domain
dictate what can count as an explanation for the evidence. Indeed that
something explains at all is itself recovered by direct inspection of the case
at hand and not by demonstrating conformity to some externally supplied
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template for what counts as a good explanation. We recognized that a
velocity of recession is the best explanation of the galactic red shift without
any thought to precisely what we might mean by saying that it explains the
red shift. Did it explain by displaying causes, by subsumption under a
covering law, by unifying, or by displaying statistically relevant factors?

So inferences to the best explanation are licensed by facts pertinent to
the local domain that supply us explanatory resources. These facts express
our expectations about the processes prevailing with the better explana-
tions deemed more likely. The clearest case is when we take explanations
to be displaying causes. The pertinent facts state what causes we expect to
be active. We generally deem the better explanation to be the one that
invokes the more likely case of fewer independent causes. So we are
licensed to infer to the best explanation as the most likely.

3.3.4. Reliabilism. In a reliabilist account, we are licensed to believe
hypotheses or theories produced by a reliable method. We routinely accept,
for example, the diagnoses of expert car mechanics or physicians on the
principle that the method they have used to arrive at their diagnoses is
reliable, although we or even they may not understand the method. We
might denounce an hypothesis as ad hoc merely because it was not
produced by the right method. Reliabilists propose that science, properly
practiced, uses reliable methods and that is why we can believe its
products. I will consider such accounts as providing the augmentation
needed to tame the indiscriminateness of hypothetico-deductivism, for that
is a common use.5

We can see immediately that the material postulate that underwrites our
inference in accepting these results is just our belief that the method is
reliable. That belief is not only about the method. It is also about the world.
For it incorporates the belief that the world is such that these methods can
work reliably. In an uncooperative world, no method can succeed. We
would properly hold little hope for a method touted as reliably finding a
system to beat the house in a casino, for the casino sets up its games to
make this impossible. Or we should have little hope in the prognostications
of an entrail reader, no matter how expertly the best methods of entrail
reading have been followed. The real world does not admit prediction
through reading of entrails, except perhaps for the health of the flock from
which the sacrificed animal was drawn.

5. In principle, however, hypotheses conjectured as the method proceeds need not be strong

enough to entail the evidence and intermediate hypotheses need not even be consistent with

it. For a general development of reliabilism that extends well beyond the framework of

hypothetico-deductivism, in the context of formal learning theory, see Kelly 1996.
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The method used may be quite explicit, in which case its reliability
admits further analysis, either through other accounts of induction or
directly through the facts that underwrite them. Or the reliability may be
the practical end of the analysis, as is the case with expert diagnosticians.
They do use explicit methods, codified in manuals. However these are
supplemented by the experts’ experience and in ways that may not admit
explicit analysis.

The best known reliabilist account is Popper’s (1959) falsificationism.
According to it, scientists subject present theories and hypotheses to severe
test by comparing their predictions with experience. If they are falsified,
scientists are led to conjecture new theories or hypotheses and the latest
products of this process are regarded as ‘‘well corroborated.’’ While
Popper has vigorously insisted (e.g. 33) that this notion of corroboration
is not confirmation, I follow the tradition that holds that Popper’s account
simply fails to bear close enough resemblance to scientific practice if
corroboration does not contain a license for belief, with better corrobo-
ration yielding a stronger license (see Salmon 1981). Popper does not give
much account of the details of the method. The process of conceiving the
new hypothesis is explicitly relegated to psychology and the inclination to
take any philosophical interest in it disavowed as ‘‘psychologism’’ (31–
32). So we have only our confidence in the scientist’s creative powers to
assure us that the new hypothesis does not introduce more problems than it
solves. Lakatos (1970) gives a more elaborate accounting of a falsification
driven method in his ‘‘methodology of scientific research programs.’’
Decisions as to which research program a scientist ought to follow are
dictated by guidelines deriving from such considerations as success at
novel prediction. That we have any warrant to believe the products of such
methods is licensed by factual matters: Is the method reliable? Are
scientists actually following those methods properly? And more deeply:
Is the world such that these methods can eventually succeed if followed?

The methods described are incomplete—they fall far short of an
algorithm that can be followed mechanically. This once again reflects the
tension of universality and successful functioning in the facts that under-
write induction. Perhaps we can eventually construct a full and complete
account of a reliable method that works universally. Yet well before this
extraordinarily optimistic goal is achieved, if we are so lucky as to have any
complete methods at all, they will be narrowly specialized to quite
particular domains, sacrificing universality for successful functioning.

3.4. Third Family: Probabilistic Accounts. In these accounts, degrees of
belief are represented by magnitudes and the import of new evidence is to
rearrange these magnitudes according to a definite calculus, usually the
probability calculus. The inspiration for the family came from the dis-
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covery that the stochastic properties of physical systems could be repre-
sented by a calculus of probabilities. In Bayesian confirmation theory
(Howson and Urbach 1989), this calculus is used to represent and update
beliefs. Since it posits that our degrees of belief should conform to the
same calculus as governs stochastic processes in the physical world, Baye-
sianism’s least troublesome application arises when our beliefs pertain to
stochastic processes. So, if a coin toss has a physical probability of 1/2 of
yielding a head (henceforth a ‘‘chance’’ of 1/2), then our degree of belief in
the outcome of a head ought to be that same 1/2. In this case, the material
facts that license the ascribing of probabilistic degrees of belief are
obvious: they are simply the physical properties of the coin toss system
that generated the chances. They readily license truth conducive induction.
The chance of at least one head in a run of ten independent tosses is more
than 0.99. So if our degrees of belief conform to the chances, we will
assign probability of least 0.99 to what will be the true outcome in over
99% of runs.

What makes matters more complicated is that Bayesianism asserts that
the same notion of degrees of belief and the same calculus should be applied
in all cases, including those in which no stochastic processes deliver
convenient chances. So our prior beliefs in big bang and steady state
cosmologies are probabilities measured on the same scale as our belief that
a coin will come up heads or tails and they follow the same dynamics.

It is not too hard to conceive physical systems whose factual properties
would preclude degrees of belief conforming to the probability calculus.6

The steady state theory of cosmology posits that hydrogen atoms materi-
alize randomly and uniformly in an infinite space. How are we to conform
our beliefs to that fact for some hydrogen atom? We require a uniform
probability distribution over all space. Traditionally that is achieved with
an improper prior that assigns equal finite probability to equal finite
volumes of space, at the cost of giving up the axiom of probability theory
that requires the sum of all probabilities to be unity. In this case the sum is
infinite (see Jeffreys 1961, §3.1).7 In a slightly more complicated example,

6. We can also find systems for which our physical laws leave properties indeterminate and

provide no probabilities for the various possible values. The best known example is the

initial selection of matter density in the early universe within standard big bang cosmology.

A Newtonian supertask system can also spontaneously excite with the theory giving no

probabilities for the time or magnitude of the excitation. See Alper et al. 2000.

7. Or one might target another of the standard axioms of probability theory, countable

additivity. That axiom allows us to sum the zero probability of appearance in each of the

infinitely many individual cubic miles of space to recover a zero probability for appearance

somewhere in all of space. Give up this axiom and we can retain a zero probability for

appearance in any individual cubic mile of space, but a unit probability for appearance

somewhere.
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we might imagine the hydrogen atom constrained to materialize along
some unit interval of space, [0,1]. The chances of the appearance in any
subinterval would be given by the natural measure that, for example,
assigns to the interval [1/4, 3/4] chance 1/2 = 3/4 � 1/4. Consider any
subset of points in [0,1]. It is a reasonable question to ask what our belief is
that the hydrogen atom appears at a point in the subset. However, if we
require that our degrees of belief are probabilities conforming to the
chances, then there will be infinitely many subsets for which no probability
can be defined. These are the nonmeasurables of measure theory (Halmos
1950, §16).

There is another way in which we can see how material facts condition
the content of Bayesianism and it does not call up esoterica like non-
measurable sets. Bayesianism is vacuous until we ascribe some meaning to
the probabilities central to it. Until then, they are just mathematical
parameters. Each way of ascribing meaning brings factual presumptions
with it. One popular way is to interpret the probabilities in terms of actions
and recover their properties from our preferences. The best known of these
is the Dutch book argument (De Finetti [1937] 1964). It is presumed that a
degree of belief p in some outcome A makes us indifferent to which side of
a bet we take in which winning $(1-p) is gained if A obtains and $p is lost
if A fails. Given that we accept all bets of this form, it is quickly shown
that we would accept a combination of bets (a ‘‘Dutch book’’) that force a
sure loss, unless our degrees of belief p conform to the probability
calculus. The relevant material facts are the rules for how we choose to
convert degrees of belief into acceptable wagers, the existence of a
framework for realizing the wagers and our preference for avoiding Dutch
books. It is easy to see that these material facts would obtain in some
contexts, such as if we are making wagers on horses at a racetrack. Even
then, the details of the calculus that our degrees of belief would be
constrained to follow are quite sensitive to the details of the rules. For
example, if we decide that we are never indifferent to which side of a
wager we accept, the avoidance of a Dutch book can no longer force
additivity of our degrees of belief. There will be other contexts in which it
is hard to see how these material facts could be made to obtain. How might
our beliefs in big bang versus steady state cosmology be converted into the
relevant sorts of wagers? Perhaps if one is a scientist choosing a research
career, that choice might have the flavor of a wager. But one can still have
beliefs on the theories when one has no personal stake at all in which is
true and no interest in betting on it.

To the extent that the facts prevailing in a domain do not support
realization of degrees of belief in bets, then avoidance of a Dutch book
fails to constrain those degrees of belief. The obtaining of these facts,
however, does not comprise a material postulate strong enough to support
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truth conducive induction (unlike the earlier case of material facts
pertaining to stochastic processes). Rather they merely license inductions
that are pragmatically useful in so far as they generate beliefs that will not
support actions that may bring sure losses.

Nevertheless Bayesian confirmation theory seems to be the most
general of all the systems currently in favor. The reason is that it is a
rather weak system. We get very little from it until we specify what
might need to be a quite large number of conditional probabilities (the
likelihoods) and these are determined by the factual properties of the
relevant system. Each such specification yields a mini-inductive logic
adapted to the facts of the relevant domain. So we might ask if the
hypothesis H that all swans are white is confirmed by the evidence E
that this swan is white in the natural sense that P(HjE) > P(H). Even
though we already know the likelihood P(EjH) = 1, we cannot answer at
all until we specify the likelihood P(Ej-H), which requires us to judge
how likely it is to find a white swan if not all swans are white. These
likelihoods, which determine the mini-inductive logic, are in turn fixed
by our prior probability distribution, since, for example, P(Ej-H) =
P(E&-H)/P(-H). So we have the curious result that a mythical prior
probability distribution, formed in advance of the incorporation of any
evidence, decides how any evidence we may subsequently encounter will
alter our beliefs.

4. Inductions Too Local to Categorize. In the little survey above, we can
see that the more universal the scope of an inductive inference schema, the
less its strength. Unaugmented enumerative induction and hypothetico-
deductivism can assure us only of weak support at best. As we narrow the
domain of application of an inductive inference schema, it can be grounded
in more specific matters of fact and can supply stronger support. At the
same time an imperfection of fit will arise between it and the small
repertoire of inductive inference schemas recognized in the literature. Thus
we should expect cases of inductive inferences that prove to be too hard to
characterize, while at the same time we are quite sure of their strength from
merely inspecting the particular case.

The clearest examples of such inductions arise when a major advance in
the science brings a major enhancement to our inductive powers. In such
cases, the inductive inference schemas supplied by the methodology
literature remain essentially unchanged. The enhancement in our inductive
reach can be most naturally attributed to the new material postulates made
available in the relevant domain.

Prior to Lavoisier and the establishment of modern chemistry in the late
eighteenth and early nineteenth century, it was quite hard to know what
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sorts of properties of substances were likely to be the same across all
samples. Learning which substances were elements and compounds and
which mixtures dramatically improved our inferential abilities. To know
that something was an element or compound brought a license to infer that
all its samples were most likely alike in physical properties. We also
learned when to infer that our failure to bring about a transformation might
merely be due to our failure to find the right methods or when it could be
generalized to an impossibility. From a chemical perspective there were no
barriers to transforming inorganic matter into organic matter; it was a case
of the former. But our failure to transform lead into gold was a case of the
latter. While these all fit the form of enumerative inductions (with some
failing) they have become so completely modified by the particular
chemical facts in the domain that the characterization has almost no
practical value.

More examples: Once we learned in the 1920s that the nature and
properties of the elements are due to the quantum properties of electrons
trapped by atomic nuclei, we had a much stronger basis for knowing which
unfilled spaces in the periodic table might really coincide with undiscov-
ered chemical elements, where the table might be expanded and where no
such expansion would be possible; and we secured a greater ability to
decide when a new substance with certain stable properties might be a new
element. After Newton showed us the gravitational forces that act between
celestial bodies, we were given a new prescription for inferring to causes.
All we needed to show was that some effect could be generated within the
repertoire of Newton’s system and we could infer to its reality. So Newton
himself showed that the moon’s gravitational attraction caused our tides
and that comets were deflected in their motion about the sun by the force of
gravity from the sun. The scheme even licensed inferences to new bodies.
The planet Neptune was discovered in the nineteenth century by working
back to the location of an undiscovered body that could cause perturba-
tions in the planet Uranus’ motion.

In these cases, the added inferential power that comes from knowing
more does not come from delivery of some new schema. In the cases
above, it is even hard to know what to call the schemas. The inference to
the moon’s gravity as cause of the tides or to a new planet is not just
simply finding an hypothesis that saves the phenomena. It has to do it in
the right way. One might be tempted to talk of best explanations, common
causes or consiliences. None quite capture the strength of the inference;
some inferences to best explanations or common causes can be weak and
some strong. The clearest explication of what that right way amounts to is
just a local fact: the hypotheses do it in accord with the repertoire of
Newtonian gravitation theory. Our confidence in Newton’s theory under-
writes the strength of the induction.
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5. The Control of Inductive Risk.

5.1. Strategies in a Formal and Material Theory. In inductive inference
we take an inductive risk: the danger that we may accept or accord high
belief to a result that turns out to be false. In science we seek to reduce this
inductive risk as much as possible. The strategies for controlling inductive
risk are different according to a formal theory of induction or a material
theory.

According to a formal theory, we approach the problem in two ways.
First we seek to amass as much evidence as possible. The better the
evidence the stronger will be our inductive inferences. Second we seek to
expand the inductive inference schemas available to us. While this second
approach might seem promising, with the notable exception of continuing
work in statistics, there has been relatively little work by scientists devoted
to expanding our repertoire of inductive methods.

According to the material theory of this paper, this lacuna is not so
surprising. The two approaches to controlling inductive risk cannot be
separated. We reduce our exposure to inductive risk by collecting more
evidence. At the very same time, exactly because we learn more from the
new evidence, we also augment our inductive schemas. For according to
the material theory, all these schemas obtain only locally and are ultimately
anchored in the facts of the domain. Crudely, the more we know, the better
we can infer inductively. The result is that scientists do not need to pay so
much attention explicitly to inductive inference. As we saw in the
examples of Section 4, with each major advance in science has come a
major advance in our inductive powers. The mere fact of learning more
will augment their inductive powers automatically.

5.2. The Portability and Localization of Inductive Risk. The above
examples also illustrate a common dynamic in our efforts to control
inductive risk. We start with an induction that uses some fairly general
schema—enumerative induction or hypothetical induction. The inferences
are risky because the generic forms of the schemas are known to be
unreliable. We localize the induction to a particular domain, whose
material postulates licenses the induction far more securely. In the
examples, with some risk we generalized the physical properties of one
sample of a substance to all. When we recognize that substance is an
element, we now have recourse to the known constancy of elemental
properties to underwrite the inference securely. Because of the correlation
of tides with the position of the moon, we hypothesize it as the cause of
the tides. Localizing the process to gravitation theory and drawing on the
resources of Newton’s theory, we become much more confident that the
hypothesis is correct.
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This dynamic is a transporting of inductive risk from a schema to a fact,
the relevant material postulate. This portability affords an important means
of assessing and controlling inductive risk. As long as the inductive risk
resides within the schema, we must assess it through a highly problematic
judgment of the overall reliability of the relevant schema. We have little
chance of coming to a clear judgment let alone determining how to reduce
the risk. However once the risk is relocated in a material postulate in some
local domain, our assessment of the inductive risk will depend in large
measure on our confidence in the material postulate. If the inductive risk is
great, we now also have a program for reducing it. We should seek more
evidence relevant to the material postulate and perhaps even modify the
material postulate in the light of the evidence. The result will be a more
secure induction.

In short, we can control inductive risk by converting schematic risk into
presumptive risk, since the latter can be more accurately assessed and
reduced.

5.3. Demonstrative Induction as a Limiting Case. If we can reduce
inductive risk by transporting it from the schemas into the material
postulates, might we eliminate it entirely? We can, in a limiting case in
which the material postulate and the evidence taken together deductively
entail the hypothesis at issue. There is no trickery in this limiting case. In
effect we are just discovering that we have already taken the relevant
inductive risk elsewhere in our investigations when we accepted the
material postulate. As a result we do not need to take it again.

This form of inference has entered the literature under many names,
such as demonstrative induction, eliminative induction or Newtonian
deduction from the phenomena. The latter term is appropriate since
demonstrative inductions arise quite naturally in Newton’s analysis of
planetary motions (See Smith 2002; Harper 2002). For example, Newton
knew that the supposition that planets are attracted by an inverse square
law to the sun is sufficient to generate the stationary ellipses of the
planetary orbits. But that the hypothesis saves the phenomena is not
decisive. Might there be other force laws that also yield stationary
ellipses? Newton showed that this was not possible. In Propositions 44
and 45 of his Principia, he showed that alternatives would fail to yield
the stationary orbits observed. For the near circular orbits of the solar
system, he showed any force law in 1/rn (with r the distance to the sun)
would yield a rotation of the axis of the apsides, the points of farthest and
nearest approach to the sun, from which the value of n could be read. The
evidence of the fixity of this axis conjoined with the relevant propositions
deductively entails that n = 2 and that the force law is an inverse square
law.
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There are numerous other examples in the literature. For example,
following Planck’s 1900 work, it was recognized that the hypothesis of
quantization of energy would save the phenomena of the distribution of
energy over different frequencies in heat radiation. But is that enough to
force us to accept this hypothesis so fundamentally at odds with classical
physics? Shortly after, in the early 1910s, Ehrenfest and Poincaré showed
that we had to accept it. The extra presumptions needed to make the
inference deductive were ones already accepted: essentially that thermal
systems are really just systems with many degrees of freedom acting in the
most probable way. From the relevant phenomena, they now showed one
could deduce the quantization of energy (see Norton 1993; and for an
example in Bohr’s work, Norton 2000).

6. The Problem of Induction Eluded?

6.1. The Analog of Hume’s Problem for the Material Theory. In order to
learn a fact by induction, the material theory says that we must already
know a fact, the material postulate that licenses the induction. Does some
vicious circularity or harmful regress lurk here? One will quickly recognize
this concern as the analog of a familiar problem for formal theories of
induction, re-expressed in the framework of a material theory of induction.
It is just The Problem of Induction, that most celebrated of philosophical
problems traditionally attributed to Hume. We shall see that Hume’s
problem can be set up quite easily for a formal theory, since a formal
theory separates factual content from formal schemes. I will argue that the
absence of this separation in a material theory results in the same
considerations failing to generate a comparable problem for a material
theory.

In the usual context, the problem of induction asserts (Salmon 1967, 11)
that there can be no justification of induction. A deductive justification
would violate its inductive character; an inductive justification would
either be circular or trigger an infinite regress. To generate the analogous
problem for a material theory, we consider the material postulates that
justify inductions in the two cases. Analogous to the deductive justification
of induction is the use of a material postulate that is a universal truth
known a priori. That justification fails since such a postulate would violate
the locality of induction. Analogous to the inductive justification of
induction is a material postulate that is a contingent fact. If that fact is
the same fact as licensed by the induction, then we have an obvious
circularity. If it is a different fact, then we trigger a regress. But, I shall
urge, the regress is neither infinite nor demonstrably harmful. The analogy
is summarized in the table:

666 john d. norton

https://doi.org/10.1086/378858 Published online by Cambridge University Press

https://doi.org/10.1086/378858


6.2. Comparison. The problem is immediate and serious for a formal
theory. Consider the justification offered in the last line of the table. We
justify an inductive inference schema by displaying many successful in-
stances of it and performing a meta-induction on them using a different
inductive inference schema. This first step is already a fanciful proposal,
since we do not actually carry out such meta-inductions on inductions
scattered through our science. But it is just the beginning of an infinite
regress of inductions. If we can reconcile ourselves to the first meta-
induction, then we must face a second of even greater ambition: a meta-
meta-induction on the meta-inductions. This must continue indefinitely.
Each meta-induction will be of broader scope and more remote from any
inductions anyone does or could do. The sequence has no termination. We
face a fatal infinite regress.

When we transport the argumentation used to set up the problem of
induction to the material theory, it no longer forces the same sort of
difficulty.8 While the first two justifications of Table 1 are obviously
problematic, the third is not. In it, we induce a fact with an induction that is

TABLE 1. HUME’S PROBLEM OF INDUCTION FOR A FORMAL THEORYAND ITS

ANALOG IN A LOCAL MATERIAL THEORY

Formal Theory Material Theory

Justify an inductive

inference schema . . . Diagnosis

Analogously, justify an

induction to a fact . . . Diagnosis

. . . by a deductive

argument?

Fails. Violation

of inductive

character of

induction.

. . . by a material

postulate that is a

universal truth

known a priori?

Fails. Violates local

character of

induction.

. . . by displaying

many successful

instances of the

schema and

applying the

same inductive

schema?

Fails. Circular. . . . by using the

same fact as

the material

postulate?

Fails. Circular.

. . . by displaying

many successful

instances of the

schema and

applying a different
inductive schema?

Fails. Infinite
regress of fanciful

meta- and meta-

meta-inductions

is triggered.

. . . by using a

different fact
as the material

postulate?

A regress is trigger-

ed through a se-

quence of justif-

ying facts, but it

is neither infinite
nor demonstrably

harmful.

8. I thank Jim Bogen for making me see this.
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grounded by the facts of a material postulate; these latter facts are justified
by inductions that are in turn grounded in the facts of other material
postulates; and those facts are justified by inductions grounded in other
facts; and so on. The regress described here is far from the fanciful meta-
meta-meta-inductions remote from actual inductive practice required by a
formal theory. It merely describes the routine inductive explorations in
science. Facts are inductively grounded in other facts; and those in yet
other facts; and so on. As we trace back the justifications of justifications
of inductions, we are simply engaged in the repeated exercise of displaying
the reasons for why we believe this or that fact within our sciences.

What remains an open question is exactly how the resulting chains (or,
more likely, branching trees) will terminate and whether the terminations
are troublesome. As long as that remains unclear, these considerations have
failed to establish a serious problem in the material theory analogous to
Hume’s problem. And it does remain unclear. It is possible that serious
problems could arise in termination. In principle the chains could end in
some sort of circularity, although such circularity was not displayed in any
of the examples above. It is also possible that the chains have benign
termination. They may just terminate in brute facts of experience that do
not need further justification, so that an infinite regress is avoided. Or,
more modestly, they may terminate in brute facts of experience augmented
by prosaic facts whose acceptance lies outside the concerns of philosophy
of science—for example, that our experiences are not fabricated by a
malicious, deceiving demon. Perhaps we might doubt that a single such
brute fact is rich enough to license a substantial induction. But we should
not expect that of a single brute fact. It is more reasonable to expect that
enough of them, careful woven together through many smaller inductions,
would eventually license something grander. A decision for or against
must await the ever elusive clarification of the notion of brute facts of
experience and of whether the notion even makes sense.9

The closest we have come to a fatal difficulty in the material theory is a
regress whose end is undecided but with the real possibility of benign
termination: a fatal difficulty has not been forced. Contrast this with the
analogous outcome in a formal theory: a regress whose beginning is prob-
lematic and whose end, an assured infinity, is disastrous.

In sum, the simple considerations that visit The Problem of Induction on
formal theories fail to generate a comparable difficulty for a material

9. I reject the simple argument that such brute facts are always singular and that no

collection of singular facts can license a universal. The problem is that canonical singular

facts—‘‘the ball is red’’—already presuppose universal knowledge. In this case it resides in

the recognition that the thing is a ball and that its surface is red, thereby admitting

recognition of commonality with potentially infinite classes of objects and colors.
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theory. What makes the difference is that the material theory does not
separate facts from inductive inference schema. This separation diverted a
formal theory into tracing the justification of an induction back through an
infinite hierarchy of meta- and meta-meta-inductions that no-one actually
does or could complete. In analogous circumstances, the material theory
merely traces the justification of an induction back through chains of
licensing facts whose justification is part of the regular practice of science.

7. Conclusion. My purpose in this paper has not been to advocate any
particular scheme of inductive inference from the many that compete in the
literature of philosophy of science. Rather I want to suggest that they are
all admissible in the right context and to try to explain why we have such a
proliferation of them in enduring conflict. I have urged that we resolve the
intractable tension between the universality and the successful functioning
of an inductive inference schema by forgoing universality and adopting
a material theory of induction. In such a theory, the facts that prevail in
each local domain in science license inductive inference schemas that are
peculiar to that domain. We justify the inductive inferences of the domain
by reference to these facts and not by passing through them to universal
inductive inference schemas. I have tried to show how the existing
schemas for inductive inference all require some local facts for their
justification. I have also suggested that any schema with pretensions of
universality will fit actual inductions imperfectly and that the fit will
become worse as we proceed to narrower domains and the facts licensing
the inductions become more specialized. This, I believe, explains a curious
phenomenon in science. We can be quite sure of a result in science as long
as we look at the particulars of the result and the evidence that supports it,
but we often end up struggling to explain by means of standard inductive
inference schemas how the evidence can yield that strength of support.
Finally I have suggested that the material theory gives new options for
assessing and controlling inductive risk: we investigate the warrant for the
material postulate; and the theory tells us that merely learning more facts
can extend our inductive reach by supplying more local inductive inference
schemas.
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