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Abstract

The effect of plant phenology and canopy structure of four crops and four weed species on
reflectance spectra were evaluated in 2016 and 2017 using in situ spectroscopy. Leaf-level
and canopy-level reflectance were collected at multiple phenologic time points in each
growing season. Reflectance values at 2 wk after planting (WAP) in both years indicated strong
spectral differences between species across the visible (VIS; 350–700 nm), near-infrared (NIR;
701–1,300 nm), shortwave-infrared I (SWIR1; 1,301–1,900 nm), and shortwave-infrared II
(SWIR2; 1,901–2,500 nm) regions. Results from this study indicate that plant spectral
reflectance changes with plant phenology and is influenced by plant biophysical characteristics.
Canopy-level differences were detected in both years across all dates except for 1WAP in 2017.
Species with similar canopy types (e.g., broadleaf prostrate, broadleaf erect, or grass/sedge) were
more readily discriminated from species with different canopy types. Asynchronous phenology
between species also resulted in spectral differences between species. SWIR1 and SWIR2
wavelengths are often not included inmultispectral sensors but should be considered for species
differentiation. Results from this research indicate that wavelengths in SWIR1 and SWIR2
in conjunction with VIS and NIR reflectance can provide differentiation across plant phenol-
ogies and, therefore should be considered for use in future sensor technologies for species
differentiation.

Introduction

Remote sensing in agriculture has continued to expand as pressure on farmers to produce crops
more efficiently has increased. For profitable farming, farmers are exploring diverse cropping
systems, resulting in a greater variety of weed control challenges. Integrating remote-sensing
technology into agriculture to improve efficiency and inform management decisions has been
a topic of research for decades (Lamb and Brown 2001). With improvements in sensor tech-
nology, data management, storage, and processing power, a resurgence of interest in agricultural
remote sensing has occurred in the past 15 years (Hung et al. 2014; Hunt et al. 2014;
López-Granados 2011). Remote sensing has been used to estimate crop yield and biomass
(Bandyopadhyay et al. 2014; Casanova et al. 1998; Diker and Bausch 2003; Hansen and
Schjoerring 2003; Ray et al. 2006), water stress (Bandyopadhyay et al. 2014; Penuelas et al.
1993), crop nutrient status (Cohen et al. 2010; Goel et al. 2003; Jain et al. 2007), herbicide injury
(Everman et al. 2008; Henry et al. 2004a), damage caused by plant diseases and insects (Del Fiore
et al. 2010; Mahlein et al. 2013), and the detection and control of weeds (Bolch et al. 2020; Burks
et al. 2002, 2005; Henry et al. 2004b; Huang et al. 2016; López-Granados 2011; Medlin et al.
2000). Despite a growing body of research in which remote sensing in agriculture was used,
additional research is needed to continue to narrow the gap between data collection and prac-
tical management decisions.

One application of remote sensing in agriculture is the site-specific management of weeds
(Jurado-Expósito et al. 2003; López-Granados 2011). Site-specific weedmanagement can reduce
the need for broadcast applications, limiting potential environmental impacts of herbicide use,
tillage, soil compaction, off-target pesticide movement, and lowering overall input costs.
Site-specific weed management requires accurate differentiation between crop and weed species
to be able to control weed species while leaving crops untouched. Successful differentiation of
plant species can be challenging because many weed and crop species share similar biophysical
plant traits. Species-level discrimination using remote sensing has been successful using plant
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biophysical traits such as leaf morphology, canopy structure,
and plant biochemistry (Asner 1998; Gamon et al. 1997). More
recent approaches have used complex machine-learning algo-
rithms that use combinations of standard color photographs
and multispectral images to successfully separate weed species
from a planted crop (Dian Bah et al. 2018; Farooq et al. 2019).
Even with these approaches using color and multispectral images,
other approaches may be necessary to further improve the reliabil-
ity for crop and weed species to be distinguished from one another.

One approach for making the distinction between each of these
species has focused on reflectance spectra, or the wavelengths of
light reflected off the plant canopy (Gray et al. 2009; Hemming
and Rath 2001; Henry et al. 2004a; Henry et al. 2004b). These spec-
tra can be collected through proximal sensors mounted on tractors
or other vehicles, handheld proximal sensors, or via satellites or
unmanned aerial vehicles (Thorp and Tian 2004). Hyperspectral
remote sensing, or spectroscopy, provides a high degree of spectral
resolution, capturing solar radiation reflected off plant surfaces in
narrow wavelength bands collected between 350 and 2,500 nm
(Jensen 2007). With the human eye and color photographs, the
spectra detected are limited to visible light (VIS; 300–700 nm).
However, wavelengths outside of the visible range such as the
near-infrared (NIR; 701–1,300 nm), shortwave-infrared I (SWIR1;
1,301–1,900 nm), and shortwave-infrared II (SWIR2; 1,901–2,500
nm) may improve species differentiation by detecting differences
unnoticed with the naked eye, with common photographic equip-
ment, or even multispectral cameras (Ustin et al. 2004). Remote
sensing using spectroscopy has been used to discriminate between
species in agricultural (Henry et al. 2004b; Koger et al. 2004) and
nonagricultural settings (Santos et al. 2012; Schmidt and Skidmore
2003). Although previous research has been able to differentiate
species in the VIS and NIR range (Cho et al. 2010; López-Granados
2011), newer sensors can detect bands in the SWIR (1,300–2,500).
SWIR spectra may provide additional information for the refine-
ment of species differentiation algorithms, provide new spectra to
be included inmultispectral sensors, or provide additional utility of
remote sensing in agriculture.

Although researchers have successfully been able to discrimi-
nate between crop and weed species in field settings using multi-
spectral and hyperspectral remote sensing, these studies have been
limited to only a few crops and weed species (Gray et al. 2009;
Hemming and Rath 2001; Henry et al. 2004a, 2004b; Koger et al.
2004). These species include common cocklebur (Xanthium
strumarium L.), sicklepod [Senna obtusifolia (L.) Irwin &
Barneby], pittedmoringglory (Ipomoea lacunosa L.), and horsenet-
tle (Solanum carolinense L.) in soybean [Glycine max (L.) Merr.]
(Henry et al. 2004a; Henry et al. 2004b; Koger et al. 2004;
Medlin et al. 2000); Palmer amaranth (Amaranthus palmeri S.
Watson) in cotton (Gossypium hirsutum L.); climbing milkweed

[Funastrum cynanchoides (Decne.) Schltr.] in orange [Citrus× sinen-
sis (L.) Osbeck.]; ragweed parthenium (Parthenium hysterophorus L.)
in carrot (Daucus carota L. var. sativus Hoffm.); London rocket
(Sisymbrium irio L.) in cabbage (Brassica oleracea var. capitata);
and johnsongrass [Sorghum halepense (L.) Pers.] in sorghum
[Sorghum bicolor (L.) Moench ssp. bicolor] (Menges et al. 1985).
Although these studies address some problematic weed species in
crops, the list of these species is not exhaustive and more research
is needed. Furthermore, a previous study indicated that phenologic
changes during a growing season can affect species differentiation
(López-Granados et al. 2008) and can be used to increase weed detec-
tion accuracy from hyperspectral remote-sensing data (Andrew and
Ustin 2008; Glenn et al. 2005; Lass and Callihan 1997). However,
limited research exists on optimal timing for species differentiation
in cropping systems. Thus, the objectives of this study were to
(1) determine if four common crops and four problematic weed spe-
cies can be differentiated on the basis of their hyperspectral reflec-
tance, (2) identify spectral regions that allow for species differenti-
ation, (3) evaluate the effect of phenologic stage of crops and weeds
on crop and weed differentiation, and (4) determine the impact of
canopy structure on spectral reflectance using canopy- and leaf-level
spectra.

Materials and Methods

Plant Potting

This study was conducted in 2016 and 2017 at North Carolina
State University’s Horticulture Field Laboratory, Raleigh, NC
(35°47 0N, 78°41 0 W). Plants representing most common or trouble-
some weeds in agronomic and horticultural crops [(cucumber
(Cucumis sativus L.), peanut (Arachis hypogea L.), soybean, sweetpo-
tato [Ipomoea batatas (L.) Lamm.], and weed species (Palmer
amaranth, common ragweed (Ambrosia artimisiifolia L.), yellow
nutsedge (Cyperus esculentus L.), and large crabgrass (Digitaria
sanguinalis (L.) Scop.] (Webster 2010, 2014) were planted into
95-L pots (Table 1) on May 27, 2016, and May 24, 2017. Pots were
watered for the first week after planting (WAP) to allow for seed ger-
mination and transplant establishment. After emergence, plants were
thinned to a single plant pot−1. Sweetpotatowas the only plant species
that was not seeded; it was transplanted using nonrooted cuttings
with 1 to 2 leaves.

Each pot contained two layers: the bottom layer contained 28 L
of a soilless potting medium (Jolly Gardener 4P Growing Mix;
Oldcastle Lawn and Garden, Poland Spring, ME), and the upper
layer contained 38 L of native Norfolk loamy sand (Fine-loamy,
kaolinitic, thermic Typic Kandiudults), with a humic matter
of 0.41% and soil pH 6.0, collected from the Horticultural
Crops Research Station near Clinton, NC (35°1 0N, 78°16 0W).

Table 1. Crop and weed species used for plant spectral analysis at the Horticulture Field Laboratory, Raleigh, NC, in 2016 and 2017.

Crop/weed Common name Scientific name Source

Crop Sweetpotato Ipomoea batatas L. Lam. ‘Covington’ Jones Family Farm, Bailey, NC
Crop Peanut Arachis hypogaea L. ‘Bailey’ NC Foundation Seed Producers, Zebulon, NC
Crop Soybean Glycine max L. Merr. ‘AG6535’ Asgrow Seed, St. Louis, MO
Crop Cucumber Cucumis sativus L. ‘Arabian’ Seminis Vegetable Seeds, St. Louis, MO
Weed Yellow nutsedge Cyperus esculentus L. Azlin Seed Service, Leland, MS
Weed Large crabgrass Digitaria sanguinalis (L.) Scop. Azlin Seed Service
Weed Palmer amaranth Amaranthus palmeri S. Watson Collected field accession, Horticulture Crops Research Station, Clinton, NC
Weed Common ragweed Ambrosia artimisiifolia L. Collected field accession, private grower field, Moyock, NC
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The purpose of the soilless medium was to draw water from a
water-filled tray while minimizing disturbance of the upper-field
soil layer. The field soil was used to mimic soil reflectance that
would be present in an agricultural field.

Pots were arranged in a randomized complete block design
with four replications and placed in a large, polyethylene-lined,
1.2 × 2.4 m trays 76-mm tall to allow pots to be watered from
the bottom. To ensure plants did not experience water stress, trays
were filled with water twice daily (morning and evening). Each pot
was fertilized every 14 d with 24-8-16 (N-P-K; Miracle-Gro;
Miracle-Gro Lawn Products, Marysville, OH) at a rate of
270 kg ha−1. The study was terminated 10 WAP.

Spectral Data Collection

Five measurements for each pot were taken using a portable
field spectrometer equipped with a handheld foreoptic with a
44-rad instantaneous field of view (PSM-2500; Spectral Evolution,
Lawrence, MA). Each canopy measurement was collected weekly
when weather was appropriate from nadir at 1 m above the plant
canopy, resulting in a ground instantaneous field of view (GIFOV)
of 0.44 m−2. Measurements were taken at full-intensity sunlight
(10:00–14:00 hours). The spectrometer was calibrated using a
white reflectance panel (Spectralon; LabsSphere, North Sutton,
NH) approximately every 15 min to account for variations in
sun angle and atmospheric conditions. Pots containing no plant
material were used as a soil reference to ensure plants could be
differentiated from the soil.

In addition to canopy-level spectra, leaf-level spectra from the
upper and the lower plant canopy were collected immediately after
canopy-level measurements using a leaf clip attachment (ILM-105;
Spectral Evolution). The leaf clip used an independent light source
containing a 5-W tungsten halogen bulb delivered to the leaf clip
by fiber-optic cable to minimize the plant tissue degradation due to
heat from the light source. The leaf clip allowed for additional
data collection during times when canopy level data could not
be obtained and for quantification of contributions of each portion
of the canopy to the overall plant reflectance. Upper leaf measure-
ments were taken on the newest unfurled leaf on each species. Data
collected on species with compound leaves were taken frommulti-
ple leaflets on the uppermost leaf. Lower leaf measurements were
taken on the most mature true leaves in the plant canopy.

Measurement of Plant Biological Characteristics

Plant height, leaf angle, phenologic stage, and soil moisture
content were measured on each data collection date. Leaf angle
was measured using a protractor with a weight attached to a light-
weight string. Five leaves on each plant were measured to deter-
mine the mean leaf angle. Measurements were taken from the
horizontal position, where 0° was perpendicular to the soil surface.
Angles greater than 0° (i.e., more erect leaf types) were measured in
positive degrees, whereas leaf angles less than 0° (i.e., leaf blade
angled downward toward the soil surface) were given negative val-
ues. The phenologic stage was assessed usingmethods described by
Meier (2001). Soil-moisture sensors (Watermark soil moisture
sensor, model 200SS; The Irrometer Company, Riverside, CA)
were inserted 0.15-m deep in two of four replications to monitor
soil-water availability in the pots and to ensure plants were not
water stressed during spectral measurements. Soil moisture sensors
were not placed in all replications, because of the high cost of each
sensor.

To assess environmental conditions and account for variability
between years, daily mean temperature, precipitation, and growing
degree-days were obtained from the North Carolina Climate Office
for the nearest weather station at the NC State University Lake
Wheeler Road Field Laboratory (35°43 0N, 78°40 0W) located
approximately 6.5 km southeast of the study location. Weather
at the study site was consistent across years (Table 2).

Data Analysis

All spectral reflectance data (350–2,500 nm) for each plot were
graphed by date. Data quality was visually assessed to remove
errant or noisy measurements caused by human error or environ-
mental interference. Errant readings were noted during field mea-
surements for removal. The mean spectral reflectance for each
species for each date was calculated on the remaining spectral mea-
surements. To examine spectral separation between all species, a
nonparametric Kruskal-Wallis test on ranks (P ≤ 0.1) (Corder
and Foreman 2009) by date, wavelength, and spectral type
(i.e., canopy, uppermost-leaf, lowermost-leaf) was used. To further
test for differences between individual species, a Mann-Whitney
U (P ≤ 0.1) test was used for all possible pairwise species compar-
isons, and species were considered to be “differentiable” at these
spectra when resulting P-values were less than 0.1. Both tests
are nonparametric tests that do not assume the normal distribution
of data. These tests use median values for data and can account for
unequal numbers of species samples. Because there were many
species comparisons for canopy level, upper leaf, and lower leaf,
results where differences across multiple spectra and date were
observed are discussed. Additional data are included as supple-
mental data or can be accessed in the report of Basinger (2018).
All statistical analyses and data visualization were performed in
R, version 3.5.2 (R Foundation, Vienna, Austria).

Results and Discussion

Species Differentiation

In both years, species were differentiable on the basis of their
canopy hyperspectral reflectance. However, spectral regions where
species were differentiable at P ≤ 0.1 were not consistent across all
reading dates (Figures 1 and 2). Several species, such as yellow
nutsedge, soybean, and sweetpotato, were consistently differentia-
ble from other species throughout the season (Supplementary
Figures S1–S6). Other species, such as Palmer amaranth, cucum-
ber, and ragweed, showed early-season differentiation but were not
differentiable at readings later in the season (Figures 3 and 4;
Supplementary Figures S7–S14). Soil-moisture measurements col-
lected at each reading date indicated that soil moisture did not fall

Table 2. Average Monthly Temperature and Growing Degree-Days (base, 10 C)
for Horticulture Field Laboratory, Raleigh, NC, from May to August for 2016 and
2017.

Temperature Growing degree-day

Month 2016 2017 2016 2017

————C———— ——Base 10 C——

May 19.2 20.2 293 327
June 24.4 23.6 439 414
July 26.7 26.6 537 529
August 26.6 25.2 537 487
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Figure 1. Canopy-level spectral reflectance curves for crop and weed species, Raleigh, NC, 2016. Species are indicated by color and reflectance spectra grouped by weeks after
planting (WAP). Wavelengths at which species differences, as indicated by the Kruskal-Wallis at test P ≤ 0.1, are indicated as a continuous variable behind the spectral reflectance
curves.

Figure 2. Canopy-level spectral reflectance curves for crop and weed species, Raleigh, NC, 2017. Species are indicated by color and reflectance spectra grouped by weeks after
planting (WAP). Wavelengths at which species differences, as indicated by the Kruskal-Wallis at test P ≤ 0.1, are indicated as a continuous variable behind the spectral reflectance
curves.
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below field capacity. Plants did not present any signs of nutrient
deficiencies, and senescence that occurred in this study was natural
and occurred after reproduction. Species separation has been
noted by others (Gray et al. 2009; Koger et al. 2004; Schmidt
and Skidmore 2003) but has not addressed season-long changes
in plant phenology with changes in spectral reflectance.

Plant Phenology

Spectral differences between species were detected as early as 1
WAP in 2016 and 2 WAP in 2017 at the canopy level but were
not constant season-long with changing plant phenology
(Figures 1–4). Plant species in this study at gross, distinctly differ-
ent phenologic stages according to Meier (2001), were often

differentiable (Table 3). Therefore, plants with early-establishing
canopies were more readily differentiated early in the season from
species with more slowly establishing canopies. Early-season
differentiation was seen for most species in the VIS and NIR,
coinciding with the establishment of the plant canopy. The
group-wise differences resulting from the Kruskal-Wallis test
occurring early in the season were likely due to the quick canopy
establishment of sweetpotato (transplanted), cucumber, and
Palmer amaranth. Cucumber germinated (~4 d) and established
a canopy (large cotyledons and large true leaves) more quickly than
other species (Table 3). Palmer amaranth quickly established a
canopy after germination, allowing for adequate leaf area for detec-
tion of the species compared with bare ground. Palmer amaranth’s
rapid canopy establishment has been documented by others

Figure 3. Weeks after planting (WAP) in 2016 at which species could be differentiated. Measurements were taken at weeks 1, 2, 5, and 6 WAP. Species were considered differ-
entiable if ≥10 wavelengths were significant according to the Kruskal Wallis test at the P ≤ 0.1 level.

Figure 4. Weeks after planting (WAP) in 2017 at which species could be differentiated. Measurements were taken at weeks 1, 2, 5, 6, 7, 8, 9, and 10 WAP. Species were considered
differentiable if ≥10 wavelengths were significant according to the Kruskal Wallis test at the P ≤ 0.1 level.
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Table 3. Average Plant Phenology (BBCH Scale) WithWeeks After Planting, Type of Spectral Measurement, Date, and Growing Degree-Days When Spectral Measurements Were Taken; Horticulture Field Laboratory, Raleigh,
NC, from May to August for 2016 and 2017.

Species

WAPa
Leaf- or canopy-level
measurement Date GDDb CR CU LC PA PN SB SP YN

Phenologyc

0 None May 27, 2016 0 Seed Seed Seed Seed Seed Seed Nonrooted cutting Tuber
1 Canopy June 3, 2016 114 Cotyledons

completely
unfolded

Cotyledons completely
unfolded

First true leaf emerged Cotyledons completely
unfolded

Cotyledons completely
unfolded

Cotyledons completely
unfolded

2 true leaves completely
unfolded

First true leaf emerged

2 Canopy & leaf level June 9, 2016 214 First leaf pair
visible

Second true leaf on main
stem unfolded

First true whorl
unfolded

2 true leaves unfolded Fourth true leaf
unfolded

Trifoliate on the second
node unfolded

5 true leaves completely
unfolded

3 true leaves emerged

4 Leaf level June 24, 2016 445 Fourth leaf pair
visible

3 flower initial with
elongate ovary visible on
mainstem

5 node stage of stem
elongation

≥9 visibly extended
internodes on the main
shoot

Seventh side shoot
visible

Second side shoot of
first-order visible

5 visibly extended stem
internodes

Constant new
development of young
plants

5 Canopy & leaf level July 1, 2016 564 5visibly extended
internodes

First flower on tertiary
side shoot open

8 node stage of stem
elongation

Inflorescence visible Ninth side shoot visible Sixth side shoot of first-
order visible

Storage roots begin to
develop

Constant new
development of young
plants

6 Canopy & leaf level
eaf level

July 8, 2016 696 6 visibly extended
internodes

Fourth fruit on main
stem has reached typical
size and form

Flag leaf sheath
extending

First individual flowers
visible (still closed)

Beginning of flowering Seventh side shoot of
first-order visible

Continued development
of storage roots

Constant new
development of young
plants

7 Leaf level July 16, 2016 849 8 visibly extended
internodes

Sixth fruit on main stem
has reached typical size
and form

First awns visible Full flowering: 50% of
flowers open

Full flowering Flower buds visible Continued development
of storage roots

Constant new
development of young
plants

2017
0 None May 24, 2017 0 Seed Seed Seed Seed Seed Seed Nonrooted cutting Tuber
1 Canopy & leaf level June 3, 2017 140 Cotyledons

completely
unfolded

Cotyledons completely
unfolded

First true whorl
unfolded

First true leaves
unfolded

First true leaf unfolded Hypocotyl with
cotyledons breaking
through soil surface

2 true leaves completely
unfolded

Shoot breaks through
soil surface

2 Canopy & leaf level June 9, 2017 221 First true leaf
unfolded

Second true leaf on
main stem unfolded

3 whorls unfolded Second side shoot visible Second true leaf
unfolded

Emergence: hypocotyl
with cotyledons emerged
above soil surface
(“cracking stage”)

First side shoot visible ≥9 true leaves visible

4 Leaf level June 22, 2017 422 3 true leaves
unfolded

Second flower on initial
with elongate ovary
visible on main stem

2 node stage of stem
elongation

≥9 visibly extended
internodes

≥9 sides shoots visible Trifoliate on 2nd node
unfolded

≥9 visibly extended
stem internodes

First young plants visible

5 Canopy & leaf level June 29, 2017 516 6 side shoots
visible

Tenth flower open on
main stem

≥9 visibly extended stem
internodes

Inflorescence visible First flower petals visible Trifoliate on sixth node
unfolded

Storage roots begin to
develop

Constant new
development of young
plants

6 Canopy & leaf level July 7, 2017 649 ≥9 side shoots
visible

Third fruit on a tertiary
side shoot has reached
typical size and form

Flag leaf sheath just
visibly swollen

First flowers opening Continuation of
flowering

Fourth side shoot of
first-order visible

Continued development
of storage roots

Constant new
development of young
plants

7 Canopy & leaf level July 14, 2017 774 ≥9 side shoots
visible

Fourth fruit on a tertiary
side shoot has reached
typical size and form

Flag sheath opening Full flowering: 50% of
flowers open

Full flowering Flower buds visible Continued development
of storage roots

Constant new
development of young
plants

8 Canopy & leaf level July 20, 2017 1047 ≥9 side shoots
visible

30% of fruits show
typical fully ripe color

Half of the inflorescence
emerged

End of flowering First carpophore pegs
penetrating the soil

First flower petals
visible; flower buds
still closed

Continued development
of storage roots

Constant new
development of young
plants

9 Canopy & leaf level July 30, 2017 1120 ≥9 side shoots
visible

60% of fruits size typical,
fully ripe color

Beginning of fruit
ripening and coloration

Beginning of fruit
ripening and coloration

End of flowering About 20% of flowers
open

Swelling of storage roots;
top of roots above soil
surface

Constant new
development of young
plants

10 Canopy & leaf level August 4,
2017

1864 ≥9 side shoots
visible

Fruit are fully ripe,
plant in decline

Fruit fully ripe Fruit continuing to
ripen, but not fully ripe,
plant beginning to
senesce

Beginning of pod
development

Full flowering: ~50% of
flowers open

Some storage roots have
reached harvestable size

Constant new
development of young
plants

aAbbreviations: CR, common ragweed; CU, cucumber; LC, large crabgrass; PA, Palmer amaranth; PN, peanut; SB, soybean; SP, sweetpotato; WAP, weeks after planting; YN, yellow nutsedge.
bCumulative growing degree-day calculated using a base temperature of 10 C from the day of crop and weed planting.
cPhenology determined using method of Meier (2001).
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(Ehleringer 1983; Horak and Loughin 2006). Rapid canopy estab-
lishment resulted in higher absorbance in the spectra associated
with chlorophyll a and b at 400 to 460 nm and 660 to 685 nm,
respectively (Blackburn 2007). Canopy establishment is also asso-
ciated with greater NIR reflectance as a result of increased scatter-
ing in the leaf spongy mesophyll as leaf area increases (Asner 1998;
Jensen 2007), as seen in Figures 1 and 2.

Seasonal phenologic changes are often associated with the accu-
mulation of biomass, reproduction, and senescence. Cucumber
and Palmer amaranth spectra showed an increase in reflectance
during flowering in the VIS around 550 nm at 7 WAP (2017)
for cucumber and 6 WAP (2016) and 8 WAP (2017) for Palmer
amaranth compared with other species in the study (Figures 1
and 2). Changes in spectra due to phenology have been observed
for weeds in other systems as well. Andrew and Ustin (2009) high-
lighted the small white flowers of perennial pepperweed (Lepidium
latifolium L.), an invasive herb pervasive in theWest and Midwest,
as important for detecting spectral differences between it and other
species in the landscape.

In the early season, differentiation of plant reflectance spectra
was often tied to the VIS and NIR (Figures 1 and 2). Spectral
differences between species after canopy establishment, in the
latter part of the season, shift from the NIR to the VIS, SWIR1,
and SWIR2 regions. Others have reported that SWIR spectral
regions are associated with key plant structural components such
as lignin, starch, and cellulose, often tied to plant maturation
(Curran 1989; Kokaly et al. 2009; Thenkabail et al. 2004). When
some species were at maturation, such as Palmer amaranth,
cucumber, and sweetpotato, other species such as peanut, yellow
nutsedge, and soybean were still in a vegetative or reproductive
stage. Furthermore, at soybean flowering, sweetpotato, Palmer
amaranth, and cucumber had begun to senesce, which is indicated
by the lower reflectance in the NIR and SWIR regions and increase
in reflectance in the VIS regions as chlorophyll is broken down.
Absorbance in the VIS between 550 nm and 700 nm became less
as both of these species began to senesce, reducing chlorophyll
absorbance from 8 WAP to 10 WAP for cucumber and Palmer
amaranth (Figure 2). Because Palmer amaranth and cucumber
followed similar phenologic patterns throughout the season,
they were often spectrally indistinguishable over many spectra
(Supplementary Figures S7 and S8). At the time that cucumber
and Palmer amaranth are beginning to senesce, peanut, soybean,
and large crabgrass are beginning reproduction. Species that were
phenologically different from one another were often more easily
distinguishable, especially in the VIS, SWIR1, and SWIR2 regions.
These include peanut and soybean (Supplementary Figures S4 and
S5), sweetpotato and soybean (Supplementary Figures S5 and S6),
and large crabgrass and cucumber (Supplementary Figures S9 and
S10). Although phenology is not the only component of species
differentiation, it plays a key role in seasonal changes in reflectance
spectra.

Differences in plant phenology, such as the quick establishment
of leaf canopies, the timing of plant emergence, the emergence
of reproductive structures, or plant senescence, can be useful when
using remote sensing to differentiate between species. Other
studies have looked at spectral differences at distinct phenologic
time points (Burks et al. 2002; Peña-Barragán et al. 2006), but
the present study shows that spectra change with even minor
changes in plant phenology. Because these phenologic changes
between species are not aligned, changing phenology can be
exploited for species separation but may not be consistent from
year to year, based on environmental conditions. This approach

does require knowledge of the biology and ecology associated with
the species of interest, and plant phenology should be considered
when using remote sensing for species differentiation.

Spectral Regions of Interest

Throughout the season the VIS region (350–700 nm) was important
for species differentiation. Differentiation consistently occurred
in pairwise comparisons of species in broad spectral regions
around the blue (450 nm) and red (670 nm) (Supplementary
Figures S1–S14) and are tied to plant chlorophyll content (Xue
and Yang 2009). Some species in this study had a variable green
color (namely, sweetpotato and nutsedge) around the green spectra
(550 nm). In addition, NIR spectra (701–1300 nm), as previously
mentioned, were important for early-season differentiation. SWIR1
and SWIR2, especially around peaks in these regions (1,550–1,690
nm and 2,025–2,200 nm for SWIR1 and SWIR2, respectively), in
addition to VIS, can provide species differentiation and can change
significantly throughout the season. The optimal time to take these
measurements is between 2 and 5 WAP. Spectral differences
between species in SWIR1 and SWIR2 were typically present by
5WAP in both years. The SWIR1 and SWIR2 spectral regions have
not been included in previous weed/crop differentiation research
(Koger et al. 2004; López-Granados et al. 2008; Menges et al.
1985; Peña-Barragán et al. 2006), to our knowledge. The inclusion
of these spectral regions in SWIR1 and SWIR2 for future sensor
development could provide additional data that could be used
for spectral differentiation and improve the accuracy of future
site-specific management techniques.

Canopy Versus Leaf-Level Spectra

As plant phenology changes throughout the season, biophysical
changes such as cuticle thickness, anthocyanin accumulation,
and canopy structure may affect reflectance spectra (Ahmadiani
et al. 2016; Asner 1998; Dayan et al. 1996; Islam et al. 2002).
Many of these biophysical changes can be detected on the leaf level,
but not all of these changes translate to canopy-level spectra
(Figures 1, 2, 5–8). Studies using only leaf-level spectra negate gross
morphologic properties (e.g., leaf angle, plant canopy structure, the
presence of inflorescence) but may provide additional information
for species discrimination (Henry et al. 2004b; Vaiphasa et al.
2007). In the present study, with a 0.44-m2 GIFOV, data collected
from the canopy level comprised mixed spectra containing soil and
foliage. The mixed spectra collected from the canopy accounts
for the gross morphology and leaf arrangement of each species.
Leaf-level measurements enable the determination of differences
occurring within the measured leaf, removing effects of plant
morphology. Results of this study demonstrate that certain species
have unique spectra on the leaf level that were not always present in
the canopy-level spectra.

Sweetpotato
Leaf-level spectra for sweetpotato exhibited unique reflectance
when compared with other species in the study. Sweetpotato
exhibited a notable absorption feature in upper leaves at 550 nm
normally denoted by a peak in green reflectance (Wu et al.
2017) (Figures 7 and 8). New leaves of ‘Covington’ sweetpotato
are often a burgundy color due to high levels of the anthocyanins
cyanidin and peonidin (Ahmadiani et al. 2016; Islam et al. 2002),
which have absorbance spectra at 540 nm and 546 nm, respectively.
The presence of these anthocyanins in young sweetpotato leaves
is likely the cause of the absorption feature around 550 nm
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Figure 5. Lower leaf spectral reflectance curves for crop and weed species, Raleigh, NC, 2016. Species are indicated by color and reflectance spectra grouped by weeks after
planting (WAP). Wavelengths at which species differences, as indicated by the Kruskal-Wallis at test P ≤ 0.1, are indicated as a continuous variable behind the spectral reflectance
curves. Common ragweed spectra are not included at 2 WAP, because of slow weed emergence.

Figure 6. Lower leaf spectral reflectance curves for crop and weed species, Raleigh NC, 2017. Species are indicated by color and reflectance spectra grouped by weeks after
planting (WAP). Wavelengths at which species differences, as indicated by the Kruskal-Wallis at test P ≤ 0.1, are indicated as a continuous variable behind the spectral reflectance
curves. Common ragweed and soybean spectra are not included at 2 WAP, because of slow emergence.
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Figure 7. Upper leaf spectral reflectance curves for crop and weed species, Raleigh NC, 2016. Species are indicated by color and reflectance spectra grouped by weeks after
planting (WAP). Wavelengths at which species differences, as indicated by the Kruskal-Wallis at test P ≤ 0.1 are indicated as a continuous variable behind the spectral reflectance
curves. Common ragweed spectra are not included at 2 WAP, because slow weed emergence.

Figure 8. Upper leaf spectral reflectance curves for crop and weed species, Raleigh, NC 2017. Species are indicated by color and reflectance spectra grouped by weeks after
planting (WAP). Wavelengths at which species differences, as indicated by the Kruskal-Wallis at test P ≤ 0.1, are indicated as a continuous variable behind the spectral reflectance
curves. Common ragweed and soybean spectra are not included at 2 WAP, because of slow emergence.
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(Asen et al. 1972; Rustioni et al. 2012). The concentration of antho-
cyanin in the young leaves act as photoprotectants, because anthocya-
nin concentration decreases with increased leaf shading (Islam et al.
2005). Leaves of ‘Covington’ sweetpotato transition to green as they
mature. Despite the differences seen in the upper leaves of sweetpo-
tato, the absorbance seen around 550 nm is not detected in the
canopy-level reflectance (Figures 1 and 2). This could be due to the
relatively low ratio of newly emerged burgundy leaves tomature green
leaves. However, using spectra that are unique to specific crops or
weeds could be exploited to provide additional parameters for species
separation and improved site-specific management.

Yellow Nutsedge
In addition to unique spectra of sweetpotato, leaf-level spectra for
yellow nutsedge tended to have higher overall reflectance across
the VIS, SWIR1, and SWIR2 for upper and lower leaf measure-
ments compared with other species in the study (Figures 5–8).
Other researchers have noted that the leaf surface and visual
appearance differ from that of other weed or crop species, includ-
ing soybean (Dayan et al. 1996). Furthermore, yellow nutsedge in
this study had high amounts of wax on the leaf surface. Low reflec-
tance at 1 WAP for yellow nutsedge may be linked to a lack of
development of these leaf traits. Brighter reflectance at measure-
ments after 1WAPmay be related to this thick waxy cuticular layer
in addition to a thick upper epidermis and uniformly distributed
Kranz anatomy, which is common in C4 plants and distinguished
by thick cell walls and chlorenchyma cells containing chloroplasts
surrounding vascular bundles in the leaf (Wills 1987; Wills et al.
1980). The development of accessory and Kranz cells characterized
by thicker cell walls (Wills et al. 1980)may increase light scattering,
resulting in brighter reflectance in the VIS, SWIR1, and SWIR2
wavelengths. Differences observed in the SWIR1 and SWIR2
regions are often related to the development of lignin, cellulose,
and starch in the plant (Youngentob et al. 2012). Previous studies
(Cho et al. 2010; López-Granados 2011) were able to differentiate
species without using spectra in the SWIR1 and SWIR2 bands.
However, the results from the current research suggest that both
crop and weed species respond differently in the SWIR areas of
the reflectance spectra. As a result, these spectra could be used
to differentiate between species.

Plant Morphology
Leaf angle for most species was not consistent across the season
and leaves tended to be more erect from 1 to 3 WAP. As each

species matured, the leaf angle became more horizontal from
4 to 10WAP, with some species having leaves angled down toward
the soil surface (Figure 9). Other researchers have noted that
reflectance spectra are influenced by leaf angle (Asner 1998),
and changes in leaf angle with changing phenology may affect
the differentiation of species over time (Andrew and Ustin
2009). In our study, plants that had horizontal foliage had similar
spectral properties at the canopy level (Figures 1, 2, 9). Yellow nut-
sedge and large crabgrass, two species that have narrow erect
leaves, were spectrally different at the upper and lower leaf level
across measurement dates. Both species initially exhibited an erect
growth habit. However, large crabgrass became more prostrate at
3 to 4 WAP, whereas yellow nutsedge maintained upright growth
(Figure 9), resulting in changes in spectral reflectance at the canopy
level. The influence of canopy structure on spectral reflectance has
been observed in previous research (Asner 1998; Santos et al. 2012;
Serbin et al. 2014; Xiao et al. 2014). Yellow nutsedge reflectance on
the leaf level was high across the spectra measured (Figures 5–8)
but had low reflectance in NIR and SWIR at the canopy level, indi-
cating that canopy biophysical characteristics (Table 3; Figure 9)
influenced overall reflectance (Figures 1 and 2). Also, the thicken-
ing of cuticular wax as leaves age (Yeats and Rose 2013) may con-
tribute to changes in spectral reflectance (Lu 2013). This change in
cuticular thickness could also explain differences in upper and
lower leaves of these species, because lower leaves would have
developed a thicker cuticular layer. It should also be noted that
differences in gross morphology alone do not ensure that species
are spectrally dissimilar. In this study, Palmer amaranth and
cucumber were not differentiable across large regions of spectra
(Supplementary Figures S7 and S8) despite very different plant
morphology. Palmer amaranth is an upright weed (Horak and
Loughlin 2006), whereas cucumber has a prostrate growth habit.
The converse can also be true where species with similar morphol-
ogy tend to have similar spectra. Cucumber and sweetpotato are
both prostrate in growth habit but were spectrally similar in both
years of the study (Supplementary Figures S13 and S14). Although
others have noted that spectral differences may be tied to gross
morphology, these spectral differences are likely tied to both plant
morphology and phenology.

In this research, we have demonstrated that hyperspectral
reflectance can be used to distinguish crop and weed species
in situ. We have also further elucidated that small changes in
phenology, in a little as a week, can affect plant spectra. In this
study, species differentiation occurred across phenologic and

Figure 9. Weekly mean leaf angle for 10 wk after planting (WAP) for peanut, cucumber, soybean ‘AG6535’, sweetpotato ‘Covington’, and Palmer amaranth, common ragweed,
yellow nutsedge, and large crabgrass, Raleigh, NC, 2017. A leaf angle of 0° is parallel with the soil surface. Positive angles are more erect leaf angles and negative angles are
indicative of leaf angles below parallel.
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seasonal time points, which have been noted by others in limited
agricultural (Peña-Barragán et al. 2006) and nonagricultural
(Ouyang et al. 2013) settings. These changes in phenology can
result in changes in leaf area, plant canopy structure, leaf color,
or development of inflorescence or fruit. Plant phenology and bio-
physical characteristics have been linked to changes in hyperspec-
tral reflectance spectra (Lausch et al. 2015; Ouyang et al. 2013;
Schmidt and Skidmore 2003). Plants at very different phenology
and/or with different morphology positively contribute to
differences in species reflectance spectra but are not distinctly tied
to one or the other. We have demonstrated that early-season spec-
tra used for differentiation of species were often tied VIS and NIR
spectra. However, as plants continued to mature, differences in
species spectra remained differentiable in the VIS, but the
SWIR1 and SWIR2 regions increased in importance.
Furthermore, in this study, we have demonstrated that unique
leaf-level spectra that could be used for species differentiation
are not always present in canopy-level spectra. Differences in bio-
physical and phenologic characteristics between species could be
used to further aid in separating weed and crop species from
one another using spectroscopy. We also demonstrated that differ-
entiation of species does have an important temporal component
and that spectra, when collected at a closely timed temporal fre-
quency, are more likely to catch phenologic stages at which species
can be differentiated.

Differentiation between species was analyzed by wavelength
and did not account for the spectral difference over the entirety
of the measured spectra. Additional analysis methods considering
the shape and magnitude of the whole spectral reflectance
may provide additional insight into spectral variations between
species, which may include using principal component analysis,
Bhattacharyya distance, Jefferies-Matusita distance, or discrimi-
nant analysis. Because of the importance of the phenologic stage
on differentiation in our study, future studies should consider
phenology when investigating species differentiation. To continue
to close the gap between data collection and management deci-
sions, researchers should examine the impact of mixed species
on differentiation. We believe that to make species discrimination
for site-specific weed management a viable option in the future,
integration of multiple disciplines (e.g., machine learning, remote
sensing, and agronomy) is required.
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