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The rapid-rotation limit of the neutral curve
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An asymptotic theory is developed for the linear stability curve of rapidly rotating
Taylor–Couette flow. The analytic curve obtained by the theory excellently explains
the limiting Navier–Stokes stability result for general disturbances. When the cylinders
are corotating, the asymptotic theory describes the gap between the neutral curve and
the Rayleigh stability criterion. For the case when the cylinders are counter-rotating,
it is found that, along the stability boundary, the Reynolds number based on the inner
cylinder speed is proportional to that based on the outer cylinder speed to the power
of 3/5.
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1. Introduction

Taylor–Couette flow has long served as a theoretical testing ground for the stability
theory of rotating fluid flows. Linear stability theory is probably one of the greatest
theoretical achievements developed using the apparatus; the theory has been treated by
a number of authors since Taylor (1923) established the excellent agreement of the
stability analysis based on the Navier–Stokes equations with the experimental results
of fluid flows between independently rotating concentric cylinders. The neutral curve
derived from the linear stability analysis significantly improved the accuracy of the
stability boundary of the basic flow from the previously established Rayleigh stability
criterion derived assuming inviscid and axisymmetric properties of the disturbances
(Rayleigh 1917).

The stability diagram of Taylor–Couette flow for the radius ratio η= 5/7 (used in
recent experiments/simulations, for example, Ostilla et al. 2013) is shown in figure 1.
The stability of the flow is computed over a range of inner and outer Reynolds
numbers, Ri and Ro, respectively. The grey region is the area called the Rayleigh
stable region, where the quantity called the Rayleigh discriminant becomes negative
for all radial positions. The neutral curve sits inside the Rayleigh unstable region as
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FIGURE 1. The stability of Taylor–Couette flow for η = 5/7. The thick dashed curve is
the neutral curve obtained from the linear stability analysis of the Navier–Stokes equations.
The axial and azimuthal wavenumbers are optimised to give the most unstable result. The
crosses on the neutral curve are the bicritical points, where the value of the optimised
azimuthal wavenumber indicated by the arrows changes. The red solid curves are the
asymptotic result. Corotation case (RiRo > 0): Rayleigh line Ri = η−1Ro. Counter-rotation
case (RiRo < 0): Ri = C2|Ro|3/5 with C2(η) shown in figure 6(b). The grey region is
Rayleigh stable. The boundary of the Rayleigh stable region is defined by the Rayleigh
line Ri = η−1Ro and Ri = 0.

shown by the dashed curve, and the gap between the linear and Rayleigh stability
boundaries is called the viscous correction. When the basic flow is linearly unstable,
cellular fluid motions develop due to the centrifugal instability. In the Ri–Ro plane,
various cellular patterns have been observed, as shown in the seminal experimental
work of Andereck, Liu & Swinney (1986). More recently, the parameter dependence
of the Taylor–Couette flow for higher Reynolds numbers has been of great concern,
as summarised in the review paper by Grossmann, Lohse & Sun (2016). The linear
stability boundary accurately describes the onset of these nonlinear patterns as long
as the disturbances are so small that the possibility of subcritical instability (see
Deguchi, Meseguer & Mellibovsky (2014), for example) is excluded.

The aim of this short paper is to produce a rational analytic expression for
the limiting neutral curve for rapidly rotating Taylor–Couette flow. Previously, the
derivation of such analytic approximations has been attempted by Esser & Grossmann
(1996) and Dutcher & Mullar (2007). However, despite the nice physical insights
introduced, the results in those papers are entirely based on ad hoc assumptions
and thus are not compatible with the high-Reynolds-number approximation to the
Navier–Stokes equations. So far, rational asymptotic theory of the neutral curve is
limited for the case of a stationary outer cylinder (Hall 1982). Although it is well
known that when the cylinders are rotating in the same direction (the corotating case)
the most unstable disturbance is axisymmetric and the neutral curve is asymptotic
to the Rayleigh line, the analysis of the viscous correction by a self-consistent
high-Reynolds-number asymptotic analysis has not been performed. When the
cylinders are rotating in opposite directions (the counter-rotating case), the limiting
behaviour is less clear since the most unstable disturbance has a non-zero azimuthal
wavenumber (see Langford et al. 1988) and thus does not satisfy the assumptions
made in Rayleigh’s stability analysis.

In the next section we start our analysis for a simplified problem valid for
axisymmetric disturbances at the narrow-gap limit (η → 1). Section 3 generalises
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The rapid-rotation limit of the neutral curve for Taylor–Couette flow

the asymptotic theory derived in § 2. Lastly, in § 4, we draw some conclusions and
discuss the implications of the asymptotic analysis.

2. Axisymmetric vortices in narrow-gap cylinders

Consider a Taylor–Couette flow governed by the incompressible Navier–Stokes
equations in infinitely long rotating concentric cylinders with radius ratio η < 1.
Following convention, the gap and fluid density are scaled to be unity. The viscous
velocity scale is chosen for the velocity components, and thus the Reynolds numbers
appear in the boundary conditions rather than in the governing equations. Hence, in
cylindrical coordinates (r, θ, z), the normalised azimuthal velocity V must satisfy the
no-slip conditions on the cylinder walls:

V = Ri at ri ≡ η/(1− η), (2.1a)
V = Ro at ro ≡ 1/(1− η), (2.1b)

where Ri and Ro are the cylinder speeds non-dimensionalised by the kinematic
viscosity of the fluid and the gap.

In this section we assume that the disturbance is axisymmetric. Defining the
streamfunction ϕ, where the radial and axial velocity components U and W are
written as −ϕz and r−1(rϕ)r, respectively, the Navier–Stokes equations become

Vt + r−2{(rϕ)r(rV)z − (rϕ)z(rV)r} =1V, (2.2a)

1ϕt + (rϕ)r
(
1ϕ

r

)
z

− (rϕ)z
(
1ϕ

r

)
r

=∆2ϕ − 2VVz

r
. (2.2b)

Here note that −1ϕ =−(ϕrr + r−1ϕr − r−2ϕ + ϕzz) describes the streamwise vorticity.
In order to perform the stability analysis, we linearise the governing equations around
the basic flow V = Vb(r),

Vb(r)= Ar+ Br−1, A≡ Ro − ηRi

1+ η , B≡ η
−1Ri − Ro

1+ η r2
i . (2.3a−c)

We further simplify the equations by taking the narrow-gap limit η→ 1. Since we
have fixed the gap to be unity, the limit corresponds to ri, ro ∼ (1− η)−1→∞. Thus
we define an O((1− η)0) gap variable y= r − r̄ with some representative radius r̄ ∈
[ri, ro], which is of course O((1− η)−1). In order to take the limit, it is convenient to
write V = Vb + 2Av in (2.2) with the scaled velocity v, to get

vt + r−2{(rϕ)r(rv)z − (rϕ)z(rv)r} =1v + ϕz, (2.4a)

1ϕt + (rϕ)r
(
1ϕ

r

)
z

− (rϕ)z
(
1ϕ

r

)
r

=∆2ϕ − 8A2vvz

r
+Ξvz, (2.4b)

where Ξ(r) ≡ −4AVb/r is called the Rayleigh discriminant. In order to keep the
terms on the right-hand side of (2.4a), we see that ∂z ∼O(r0), and that v and ϕ are
comparable in size. Then, when r̄� y, the Rayleigh discriminant on the right-hand
side of (2.4b) expands to

Ξ =−4AVb

r

(
1− 2

y
r̄

)
− 8A2

(y
r̄

)
+O(r−2), (2.5)

where Vb ≡ Vb(r)= γRo + (1− γ )Ri and γ ≡ r − ri. Here γ is chosen to be 1/2 for
later convenience. If we assume T ≡−4AVb/r and G≡ 8A2/r are O(r0), then Ξ →
[T −Gy] ∼O(r0) as η→ 1. Therefore, assuming an infinitesimally small disturbance
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of normal mode form (v, ϕ)= (ṽ, ϕ̃) exp[σ t+ ikz] with ṽ= ϕ̃= ∂yϕ̃= 0 on the cylinder
walls, we have the eigenvalue problem for a complex growth rate σ :

0= {(∂2
y − k2)− σ }ṽ + ikϕ̃, (2.6a)

0= {(∂2
y − k2)− σ }(∂2

y − k2)ϕ̃ + ik[T −Gy]ṽ. (2.6b)

This problem can be solved numerically by the Chebyshev collocation method to
obtain the stability curve in terms of (T,G). In order to compare the stability to that
for the wide-gap cases, it is convenient to rescale Ri and Ro as

R+i ≡ Ri

√
1− η= (2G)−1/2Ξ |r=ri = (2G)−1/2(T +G/2), (2.7a)

R+o ≡ Ro

√
1− η= (2G)−1/2Ξ |r=ro = (2G)−1/2(T −G/2). (2.7b)

These scaled Reynolds numbers are O(r0) if T,G∼O(r0) and therefore, as shown in
figure 2, in the R+i –R+o plane the neutral curve for the wide-gap case converges to the
narrow-gap result as η→ 1.

Now, let us perform a rapid-rotation asymptotic analysis of (2.6). First we focus on
the corotating case. For this case, we may assume that |B| is large but |A| is small,
since we already know that the neutral curve is close to the Rayleigh line where
A= 0. In the context of the narrow-gap limit, this means that we are concerned with
the limit of small G/T . This special case corresponds to the rotating plane Couette
flow (RPCF) investigated, for example, by Nagata (1986). For the RPCF, r̄ is taken
at the midgap, and thus we have chosen γ to be 1/2. It is noteworthy that, as is
well known, streamwise independent RPCF has an exact analogy to Rayleigh–Bénard
convection, and the Rayleigh discriminant, which now becomes a constant called
the Taylor number T , plays the role of the Rayleigh number (Veronis 1970). In this
analogy, a positive/negative Rayleigh discriminant corresponds to an unstable/stable
stratification. In figure 2, the results for RPCF are plotted as the blue solid curve
using the well-known critical value of the Taylor number T = 1707.8 = R+2

i − R+2
o .

Near the Rayleigh line R+i ≈ R+o , and the asymptotic stability curve is written as

R+i = R+o +
T

2R+o
+ · · · . (2.8)

It is now clear that the Taylor number describes the leading-order effect of the viscous
correction.

On the other hand, the neutral curve for the counter-rotating case corresponds to the
limit of large G/T; also recall that it appears near the other boundary of the Rayleigh
stable region, Ri = 0. The normalised Rayleigh discriminant at sufficiently large G
along the neutral curve of (2.6) is shown in figure 3. This time, the discriminant
is not uniform, but a monotonically decreasing function in r with the positive
part concentrated near the inner cylinder. As expected from the analogy to the
convection problem, we see that it is this positive part that drives the near-wall
instability shown by the streamfunction. This observation motivates the asymptotic
analysis of the limiting neutral curve for the case of counter-rotation. Assuming that
G is asymptotically large and all the disturbances are concentrated near the inner
cylinder, we analyse the stability in the near-wall layer where the stretching variable
Y = δ−1(y + 1/2) is O(1). The thickness of the boundary layer δ� 1 is to be fixed
in terms of G. If we assume that the positive part of Ξ = G[(T/G + 1/2) − δY]
is concentrated in the wall layer, the small positive constant part and the term
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The rapid-rotation limit of the neutral curve for Taylor–Couette flow
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FIGURE 2. The stability of Taylor–Couette flow under axisymmetric disturbances. The
value of the axial wavenumber is optimised. The rescaled parameters R+i and R+o are
defined in (2.7). The magenta dot-dashed curve represents the results for η= 5/7, 0.9, 0.99.
The result for η = 0.99 is almost indistinguishable from the narrow-gap results indicated
by the black thick dashed curve. The red and blue solid curves are asymptotic results for
the narrow-gap limit.
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FIGURE 3. The solid curve is the neutral disturbance of the narrow-gap limit equations
(2.6) at (G, T, k) = (1.6 × 106, −1.22 × 106, 8.6). The dashed line is the corresponding
normalised Rayleigh discriminant Ξ/G= T/G− y.

proportional to Y must be comparable in size. Thus we define an O(1) quantity
Q0 = δ−1(T/G + 1/2) to write Ξ = δG[Q0 − Y]. We further define the scaled
wavenumber k0 = δk to balance the wall-normal and spanwise diffusion. From
the scaling, k is asymptotically large, and this is indeed the case in view of
the computational result. Likewise, we write the scaled growth rate as σ0 = δ2σ .
Substituting the scaled variables and the expansions ϕ̃ = δ−1ϕ̃0 + · · · , ṽ = ṽ0 + · · ·
into (2.6), we get the leading-order problem

0= {(∂2
Y − k2

0)− σ0}ṽ0 + ik0ϕ̃0, (2.9a)
0= {(∂2

Y − k2
0)− σ0}(∂2

Y − k2
0)ϕ̃0 + ik0(δ

5G)[Q0 − Y]ṽ0, (2.9b)
ϕ̃0 = ϕ̃0Y = ṽ0 = 0, at Y = 0,∞. (2.9c)

The balance in the second equation gives the layer thickness δ=G−1/5. The problem
(2.9) can be solved by a standard linear eigenvalue solver to seek the neutral
point where the real part of σ0 vanishes. Here the equations are discretised by
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FIGURE 4. The thick dashed curves are the neutral curve of the narrow-gap problem (2.6)
and the optimised value of k. These results are rescaled by the near-wall-layer thickness
G−1/5. The dot-dashed lines are the large-G asymptotic results Q0 = 4.11 and k0 = 0.494
computed using (2.9).

the Chebyshev collocation method in Y , mapping [0,∞] to [−1, 1]; see Boyd (2001),
for example. The accuracy of the computation has been checked by changing the
number of collocation points, typically taking more than 200. Along the computed
neutral curve Q0(k0), we minimise the value of Q0 to yield the critical point (Q0, k0)=
(4.11, 0.494). As shown in figure 4, the scaled Navier–Stokes result computed by
(2.2) quickly converges to the asymptotic result when increasing the value of G. The
asymptotic result can also be confirmed in figure 2, where the result is presented in
terms of R+i and R+o based on the critical value transformed using the definition of
Q0 and (2.7). We can see that the asymptotic result shown by the red solid curve
excellently approximates the counter-rotating limit of the Navier–Stokes result.

3. General case

On the basis of the basic physics of the instability given in the previous section,
we now generalise the theory to a wide gap and arbitrary linear disturbances. In
order to generalise the asymptotic results we introduce the toroidal–poloidal potential
decomposition

(U, V,W) = Vbeθ +∇×∇× (φer)+∇× (ψer)

= (−∆2φ, Vb + ∂rθr−1φ + ∂zψ, r−1∂rzrφ − ∂θr−1ψ), (3.1)

where ∆2≡ r−2∂2
θ + ∂2

z is the two-dimensional Laplace operator. The linearised Navier–
Stokes equations can then be written in the form (see Deguchi & Nagata 2011, for
example)

0 = −r(∂t −∆3′)∆2
ψ

r
+ 2

r2
∂r
ψθθ

r
+ 2

r
(∂t − 2∆3)

φθz

r

+ (rVb)
′∂z∆2

φ

r
+ Vb

r
∂θ

(
2
r2
φθz −∆2ψ

)
, (3.2a)

0 = r(∂t −∆3′)

(
∆3′∆2

φ

r
+ 2

r3
∂r
φθθ

r

)
− 2

r2

(
∂r∆3

φθθ

r
− 2

r2
φθθzz

)
+ 2

r
(∂t − 2∆3)

ψθz

r

+ Vb

r
∂θ

(
r∆2∆3

φ

r
+ 2∂r

φzz

r
+ 2

r2
ψθz

)
+
(

V ′b
r
− V ′′b

)
∂θ∆2

φ

r

− 2
r2

V ′b∆2φθ − 3
r3

Vbφθzz + 1
r5

Vbφθθθ + 2
r

Vb∆2ψz, (3.2b)
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FIGURE 5. The asymptotic results for the corotating case. (a) The coefficient C1 in (3.3).
The filled circle is the narrow-gap result C1 = 1707.8. (b) Comparison of the neutral
curve for η = 5/7 (black dashed curve) and the asymptotic prediction (3.4) truncated at
the second term (blue dot-dashed curve). The magenta solid line is the Rayleigh line
Ri = η−1Ro.

where

∆3 ≡ ∂2
r +

1
r
∂r +∆2, ∆3′ ≡ ∂2

r +
3
r
∂r +∆2. (3.2c,d)

If the flow is axisymmetric, i.e. ∂θ =0, we recover (2.2) with the replacement of (ϕ,V)
by (φz, Vb +ψz).

It is known that the most unstable mode for the corotating case is axisymmetric
and the neutral curve approaches the Rayleigh line, where the value of |A| is small
and that of |B| is large. It is reasonable to assume the size of A is O(B−1), because
by substituting the Rayleigh discriminant and the basic flow (2.3), we see that the
right-hand side of (2.4) depends on A2 and (AB). Then we can numerically seek the
critical value of (AB), neglecting the terms proportional to A2. Assuming ϕ and v
are O(1), no other term drops from (2.4) at the asymptotic limit. Thus the vortices
are fully viscous, in the sense that the leading-order perturbation at the limit can be
determined only by the viscous problem. Using the critical value we can calculate the
coefficient

C1(η)≡−AB(1+ η)2η
r2

i
= (ηRi − Ro)(Ri − ηRo). (3.3)

As shown in figure 5(a), reducing η from the narrow-gap value 1, the value of C1
decreases from 1707.8 (shown by the filled circle, the same value as the critical Taylor
number at the RPCF limit) and then reaches a minimum at η ≈ 0.33. Upon further
decreasing η, the curve shown in the figure tends to infinity as η→ 0. The value of
C1 gives the asymptotic prediction

Ri = Ro

η
+ C1

1− η2
R−1

o + · · · (3.4)

in Ri–Ro parameter space; this is a generalisation of (2.8). In figure 5(b), the Navier–
Stokes result and the asymptotic prediction are compared for η= 5/7. As in the last
section, the asymptotic result describes the gap between the neutral curve and the
Rayleigh line.

Next we shall analyse the counter-rotating case, writing the potentials in their
normal mode form (φ, ψ) = (φ̃, ψ̃) exp[σ t + imθ + ikz]. As in the previous section,
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FIGURE 6. The asymptotic results for the counter-rotating case. (a) The neutral solution
of the asymptotic problem (3.7). The contours indicate Q0 = 4.3, 4.2, 4.1, 4.0 and 3.9.
The value of Q0 decreases in the direction of the arrow and takes the minimum value
Q0= 3.85 at (k0,m0)= (0.300, 0.315) as indicated by the circle. The square corresponds to
the minimum of Q0 for the axisymmetric case. (b) The comparison of the asymptotic and
full Navier–Stokes stability. The solid curve is the asymptotic result C2 given in (3.8). The
crosses are the neutral point at Ro =−2× 105 based on the Navier–Stokes computations.
The arrows indicate the values of the optimum azimuthal wavenumber m used in the
computation.

we may seek an asymptotic problem near the inner cylinder with asymptotically large
axial wavenumber k. From numerical observations, the azimuthal wavenumber m also
increases asymptotically (see figure 1) but at a smaller rate than k. Thus we assume
δ−1 ∼ k�m� 1 in (3.2) and neglect small terms, to get

0= {(δ−2∂2
Y − k2)− σ − imr−1Vb}ψ̃ + r−1(rVb)

′ikφ̃, (3.5a)

0= {(δ−2∂2
Y − k2)− σ − imr−1Vb}(δ−2∂2

Y − k2)φ̃ − 2ikr−1Vbψ̃, (3.5b)

from which we find the balance m(Vb/r) ∼ δ−2 for non-axisymmetric disturbances.
Because we already know that the instability appears near the inner wall, it is
convenient to choose r = ri and seek an asymptotic structure in a layer where
Y = δ−1(r − ri)∼ O(1), where the layer thickness is δ = G−1/5 with G= r−1

i 8A2� 1,
similar to the previous section. Substituting the scaled quantities Q0=−Vb|r=ri/(2δA),
m0 = 2Amδ3/ri, σ0 = δ2σ , k0 = δk and the potential expansions φ̃ = δ−1φ̃0 + · · · ,
ψ̃ = 2Aψ̃0 + · · · into (3.2), we get the leading-order equations

0= {(∂2
Y − k2

0)− σ̃0 + im0(Q0 − Y)}ψ̃0 + ik0φ̃0, (3.6a)

0= {(∂2
Y − k2

0)− σ̃0 + im0(Q0 − Y)}(∂2
Y − k2

0)φ̃0 + ik0(Q0 − Y)ψ̃0. (3.6b)

Here it is important to notice that (3.6) does not explicitly depend on η, meaning that
the solution of this canonical problem describes the rapidly counter-rotating asymptotic
limit of the neutral curve for all η. This system is of course a natural generalisation
of (2.9) and we can solve it numerically to seek neutral values Q0(m0, k0). The global
minimum of Q0(m0, k0) is the critical value that gives the asymptotic prediction of
the neutral curve. The computational result shown in figure 6(a) reveals that the
minimum is at (Q0, k0, m0) = (3.85, 0.300, 0.315), as shown by the circle. The fact
that the minimum is at m0 6= 0 explains why we observe spiral disturbances near the
neutral curve in the counter-rotating case. Having determined the critical value, then
by definition of the scaled parameters we have the leading-order asymptotic results

Ri =C2|Ro|3/5, k= k0g2|Ro|2/5, m=
√

2rim0g|Ro|1/5, (3.7a−c)
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where

g(η)=
(

8(1− η)
η(1+ η)2

)1/10

, C2(η)=Q0g3

√
ri

2
, (3.8a,b)

describe the non-trivial dependence of the asymptotic stability on η. Here we have
used the fact that |Ro| � |Ri| in the limit.

In figure 1 the asymptotic result is compared with the full Navier–Stokes result for
η= 5/7. The asymptotic prediction given by (3.7), the red solid curve, is in excellent
agreement with the rapid counter-rotation limit of the full neutral curve. For other
values of the radius ratio, the convergence has been checked by comparing the full
Navier–Stokes neutral value of Ri|Ro|−3/5 at sufficiently large −Ro with its asymptotic
value C2 in (3.8). We can see in figure 6(b) that the asymptotic result derived here
predicts well the full computational result over a wide range of η, although the
approximation gets slightly worse for small η because the optimum value of m is
restricted to be an integer value in the full computation.

4. Conclusion and discussion

An asymptotic theory is developed for the neutral curve of Taylor–Couette flow. The
analysis is mathematically consistent with the rapid-rotation limit of the Navier–Stokes
equations, in contrast to previous works based on a fully empirical model approach
(Esser & Grossmann 1996; Dutcher & Mullar 2007).

Our theory is first derived for the axisymmetric disturbances for the narrow-gap
limit (η → 1) and then extended to the general case. Here we briefly discuss the
implications of the results in § 2 since, although the limiting equations (2.6) were
derived and solved in, for example, Drazin & Reid (1981), the convergence of the
wide-gap neutral curve to this limit has not been discussed. In order to observe
the convergence, we found that the rescaled Reynolds numbers (2.7) must be used,
as seen in figure 2. Here we further remark that the convergence can be observed
even when the disturbances are non-axisymmetric. For the non-axisymmetric case,
we must scale the azimuthal wavenumber m so that the azimuthal convective terms
balance with the viscous terms, namely Am/r∼O(r0)∼O((1− η)−1). In the limit, the
problem reduces to the Cartesian problem and the streamwise wavenumber α ≡ m/r
is O(r−1/2) since A ∼ O(r1/2) from (2.3) and (2.7). This means that the streamwise
scale is much longer than the gap, and thus the limiting equations are similar to
the Görtler vortex equations derived by Hall (1983), i.e. the streamwise derivatives
in the pressure and viscous terms are dropped from the Navier–Stokes equations for
unit Reynolds number; these equations are also called boundary region equations, see
Deguchi, Hall & Walton (2013), for example. When the neutral curve is close to
the Rayleigh line, the narrow-gap limit becomes RPCF, and this is the special case
where there is a degree of freedom in choosing the scaling of the Reynolds numbers
because we do not need to balance the term proportional to G in (2.6). The freedom
can be removed by further assuming that the Navier–Stokes equations are recovered
in the limit, and this is in fact the case studied by Nagata (1986). This assumption
requires α ∼O(r0), and thus V/r, Ri, Ro are O(r0) quantities as well.

The high-Reynolds-number asymptotic analysis is performed assuming the size of
A and B, which appear in the basic flow (2.3). From observation of the Rayleigh
discriminant, it is obvious that a neutral asymptotic structure is possible when |A|
is small and |B| is large, as long as |AB| is O(1). The smallness of |A| means that
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we are concerned with the neutral curve near the Rayleigh line, where the cylinders
are corotating and the most unstable disturbance is known to take an axisymmetric
form. In the asymptotic limit, we can compute the critical value of AB, which gives
a viscous correction of the neutral curve from the Rayleigh line (3.3). Although the
correction is asymptotically small, it is important, because our analysis showed that
the neutral disturbance is fully viscous even when the cylinders rotate asymptotically
fast.

For the counter-rotating case, the neutral curve can be described by the asymptotic
problem obtained when |A| is large and |Ri/Ro| is small. The asymptotic problem for
the counter-rotating case can be derived by considering the thin layer near the inner
cylinder. It is only in that layer that the Rayleigh discriminant remains positive and
thus the vortices are localised. This asymptotic vortex structure is quite different from
that for the corotating limit, occupying the whole gap. Within the layer, asymptotic
balance gives the non-trivial asymptotic behaviour Ri ∝ R3/5

o , k ∝ R2/5
o and m ∝ R1/5

o .
Further analysis gives an analytic expression for the neutral curve, with the coefficients
fixed by the numerical computation of the canonical asymptotic problem, valid for
all η, as shown in (3.6). The asymptotic result predicts that the most unstable mode
is non-axisymmetric, consistent with the fact that spiral vortices are observed in the
counter-rotating Taylor–Couette experiments.

The present linear results may also be important in building asymptotic theories for
nonlinear vortices in Taylor–Couette flow, where the torque scaling is a matter of great
concern for recent experiments. When the amplitude of the disturbance is O(1) or less,
a nonlinear theory can be found by a simple extension of the viscous linear theory
here. For larger amplitudes, the viscous nonlinear asymptotic structure may break
down to produce inviscid vortices at the asymptotic limit. It is noteworthy that, from
the form of (2.2), such inviscid vortices naturally develop the zero-absolute vorticity
states observed, for example, in Johnston, Halleen & Lezius (1972); see appendix A.
In that inviscid case, the viscous layer must appear around the cell perimeter to
satisfy the boundary conditions, as seen in the high-Reynolds-number direct numerical
simulations (see Ostilla et al. 2013, for example). The three-dimensional extension of
such a fully nonlinear theory is also of interest since it may describe the nonlinear
structures that could even reach the Rayleigh stable region (Deguchi et al. 2014).

Appendix A. The emergence of zero-absolute vorticity states

Here we prove that inviscid Taylor vortices create so-called zero-absolute vorticity
states, extending the standard argument of the Prandtl–Batchelor theorem; see
Batchelor (1967) for example. Consider the axisymmetric Navier–Stokes equations
(2.2) and define the modified steady streamfunction ϕ̂≡ rϕ, azimuthal velocity V̂ ≡ rV
and azimuthal vorticity ω̂ ≡−r−11ϕ. We assume that the viscous terms in (2.2) are
small and the contour of ϕ̂ is closed. Let us focus on the contour defined by fixing
ϕ̂ as some constant. The key is the integration of (2.2a) over the area A enclosed
by the contour. First, if we transform (r, z) to coordinates (n, s) that are normal and
tangential to the contour, we see that V̂ is a function of n only; note that since the
convective term dominates the inviscid flow, along the contour 0≈ ϕ̂nV̂s− ϕ̂sV̂n= ϕ̂nV̂s

and thus V̂s ≈ 0 to leading order. Then the integral of (2.2a) can be evaluated as

0=
∫
A
[(r−1V̂r)r + r−1V̂zz] dr dz= V̂ ′(n)

∮
∂A

r−1 ds, (A 1)
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that is, V̂ ′(n) = 0 and we conclude that V̂ is a constant in the region where the
assumptions hold. Similar arguments can be used for (2.2b) to prove that ω̂ is constant
there as well. The constancy of V̂ means that the axial absolute vorticity r−1(rV)r is
zero.
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