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We review simple models of oil reservoirs and suggest some ideas for theoretical and numerical

study of this important inverse problem. These models are formed by a system of an elliptic

and a parabolic (or first-order hyperbolic) quasilinear partial differential equations. There are

and probably there will be serious theoretical and computational difficulties mainly due to

the degeneracy of the system. The practical value of the problem justifies efforts to improve

the methods for its solution. We formulate ‘history matching’ as a problem of identification of

two coefficients of this system. We consider global and local versions of this inverse problem

and propose some approaches, including the use of the inverse conductivity problem and the

structure of fundamental solutions. The global approach looks for properties of the ground in

the whole domain, while the local one is aimed at recovery of these properties near wells. We

discuss the use of the model proposed by Muskat which is a difficult free boundary problem.

The inverse Muskat problem combines features of inverse elliptic and hyperbolic problems.

We analyse its linearisation about a simple solution and show uniqueness and exponential

instability for the linearisation.

1 Introduction

In oil production, it is crucial to find out properties of the ground from various meas-

urements of geophysical fields. In secondary oil recovery, oil is extracted by pumping

in water (through injecting wells) and creating pressure which pumps out oil through

production wells. The water/oil pressure at wells is monitored, providing information to

determine two important characteristics of the medium: permeability and porosity. These

characteristics can indicate the location of oil, and hence give valuable recommendations

for drilling new wells and finding pumping regimes to optimise oil recovery. Looking for

the permeability and porosity can be viewed as an inverse problem for (system of) quasi-

linear partial differential equations describing the fluid flow in porous media. This inverse

problem is called ‘history matching’. Despite its obvious applied importance, this inverse

problem has been only studied numerically, in most cases by using routine least-squares

minimization [14, 16, 30], sometimes with the use of statistical methods [12]. Due to the

large size of the problem and its non-convexity, these methods are not efficient and not

reliable. In particular, there is no uniqueness and stability analysis.

We review the simplest models of oil reservoirs and suggest some ideas for theoret-

ical and numerical study of this important inverse problem. These models are formed
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460 V. Isakov

by a system of an elliptic and a parabolic (or first-order hyperbolic) quasilinear partial

differential equations. There are and probably there will be serious theoretical and com-

putational difficulties with both direct and inverse problems for this system mainly due

to its degeneracy. However, the practical value of the problem justifies efforts producing

any improvement in its solution. At present, in inverse problems for elliptic and parabolic

equations, there is theoretical and numerical progress [18]. We believe that this progress

can generate new efficient mathematical methods in oil recovery.

In Section 2, we recall the systems of quasilinear partial differential equations for

pressure and saturation of water and oil and some known results about their solvability.

Then we formulate ‘history matching’ as a problem of identification of two coefficients

of this system. We consider global and local versions of this inverse problem. The global

one seeks for properties of the ground in the whole domain, while the local one is

aimed at recovery of these properties near wells. The difficulties with direct and inverse

problems justify linearisation of the inverse problem, which can be viewed as the inverse

conductivity problem. We recall known results about this problem and suggest new

methods and directions. The local version makes use of various approximations and of

the almost explicit algebraic structure of fundamental solutions of elliptic equations. As

a result, we obtain a simple linear integral equation for the unknown permeability.

In Section 3, we use a simplification of the original model proposed by Muskat, which

is a difficult free boundary problem. The Muskat model seems to be most suitable for

local inverse problem. The inverse Muskat problem combines features of inverse elliptic

and hyperbolic problems, due to finite speed of propagation of the wet area. We analyse

its simplified linearisation at a basic solution and show uniqueness and exponential

instability for the linearised inverse problem for two different types of free boundary

conditions discussed in the literature.

In Section 4, we consider compressible fluid modelled by a second-order parabolic

equation. We adopt to this problem known results on identification of parabolic equations

by using hyperbolic or elliptic equations.

We emphasise that all the inverse problems under consideration seem to be exponentially

ill-posed. This fact suggests a relatively low resolution in the inverse problems due to their

intrinsic nature and not to the numerical methods employed.

2 A general two-phase model

One of the accepted mathematical models of filtration of oil and water through a porous

medium [13] (see also [1, 6, 10]) consists of two partial differential equations,

−div(k(α1∇u− α2γ∇J(S) − α3g∇h)) = f in Ω (2.1)

and

φ∂tS − div(kα4(∇u− 0.5γ∇J(S) − ρwg∇h)) = 0 in Ω × (0, T ), (2.2)

where u is the pressure in the medium, k= k(x) is the permeability, α1 = kwμ
−1
w + koμ

−1
o ,

kw = kw(S), μw are the relative permeability and viscosity of water, S is the saturation of

water, ko(S), μo are the relative permeability and viscosity of oil. Next, α2 = 1
2
(kwμ

−1
w −

koμ
−1
o ), γ is a known function (proportional to surface tension at the water/oil interface),
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φ=φ(x) is the porosity, J is a known capillary pressure (the Leverett function). Moreover,

α3 = kwρwμ
−1
w + koρoμ

−1
o , where ρw, ρo are the densities of water and oil, and α4 = kwμ

−1
w .

Observe that kw, ko are known functions of S, and hence α1, α2, α3, α4 are known functions

of S . Finally, g is the acceleration due to gravity, h is the so-called height function (h(x) = x3

when n= 3) and f represents sources and sinks. We will impose the following practically

feasible conditions: Ω is a bounded domain in �n, n= 2, 3, its boundary ∂Ω is a C2-surface,

γ, k, φ ∈ L∞(Ω), δ1 < k, δ2 < φ, δ3 < γ on Ω, where δ1, δ2, δ3 are some positive constants,

ko, kw, γ ∈ C1(�), kw is non-increasing and ko non-decreasing, kw(0) = 0, ko(0) = 1, J is

increasing and J(s0) = 0 for some s0 ∈ (0, 1).

The partial differential equations (2.1), (2.2) for u, S are supplemented by the initial

conditions

S = S(; 0) on Ω × {0} (2.3)

and the boundary conditions

α1∂νu− α2γ∂νJ(S) − α3g∂νh = 0 on ∂Ω × (0, T ), S = S(; 0) on ∂Ω × (0, T ). (2.4)

It is natural to assume that ∫
Ω

f = 0, (2.5)

and to normalise pressure as follows: ∫
Ω

u = 0. (2.6)

Observe that equation (2.1) for u is of elliptic type, while equation (2.2) is a partial

differential equation for S which is of parabolic type. The initial boundary value prob-

lem (2.1), (2.2), (2.3), (2.4) is a system of quasilinear equations with natural boundary

conditions. For some results on (weak) solvability of this problem, we refer to [1, 6],

and more recently to [7, 8]. A feature of the filtration system is the degeneracy at S = 0,

which occurs near the domain filled by oil. This degeneracy accounts for several unusual

phenomena, including the finite speed of propagation, which is one of the basic properties

of solutions of hyperbolic equations and which is not possible for non-generate (linear or

non-linear) elliptic and parabolic equations. As shown below, in some cases equation (2.2)

can be replaced by a quasilinear first-order equation for the saturation S . This equation

is hyperbolic and it exhibits shock solutions which collapse in finite time. In filtration

theory, this causes a phenomenon called ‘fingering’ (developing of wet zones recalling

the shape of a hand with long fingers) and causing instability and blowup of solutions.

‘Fingering’ does not always occur, but only under some conditions (e.g. when water is less

viscous than oil and displaces it). These reasons lead to serious difficulties in the theory of

solvability of the boundary value problem (2.1), (2.2), (2.3), (2.4): currently, only existence

of weak solutions is established. We will briefly describe a typical result.

The pair (u, S) is a weak solution of the initial boundary value problem (2.1), (2.2),

(2.3), (2.4) if

u ∈ L∞(0, T ;H1(Ω)),

S ∈ L∞(Ω × (0, T )), ∇J(S) ∈ L2(Ω × (0, T )), 0 � S � 1 on Ω × (0, T )
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and ∫
Ω

k(α1∇u− α2γ∇J(S) − α3g∇h)) · ∇ϕ1 =

∫
Ω

fϕ1,∫
Ω×(0,t)

(
− φS∂tϕ2 +

(
kα4

(
∇u− 1

2
γ∇J(S) − ρwg∇h

))
· ∇ϕ2

)

= −
∫

∂(Ω×(0,t))

φSϕ2νt

for all test functions ϕ1 ∈ H1(Ω), ϕ2 ∈ H1(Ω × (0, T )), t < T . Let us assume that

f ∈ L∞((0, T ), L2(Ω)), S(; 0) ∈ C([0, T ], H1(Ω), 0 � S(; 0) � 1, S(; 0) = 0 on ∂Ω× (0, T ) (no

water on the outer boundary) or S(; 0) = 1 on ∂Ω, ko(1) = 0 (no oil on the outer boundary).

Following the arguments in [1, 6, 8], one can show that there is a weak solution (u, S) to

the initial boundary value problem (2.1), (2.2), (2.3), (2.4). As in case of the Navier–Stokes

system, uniqueness of a weak solution remains unknown, as well as existence of regular

solutions. It seems that the main obstacle to completing theory of existence and uniqueness

of solution of the initial boundary value problem (2.1), (2.2), (2.3), (2.4) is its degeneration

(of the parabolic equation (2.2) for S) at S = 0. In cases when the data exclude degeneracy

(when one can show, say by using maximum principles, that for all solutions with this

data ε0 < S for some positive ε0), global existence and uniqueness of solutions most likely

can be derived from known theory of quasilinear elliptic and parabolic equations and

systems [23, 24]. Maximum principles for the system of filtration theory can be found

in [1].

In oil production, the source function f can be modelled as the sum of point sources

at x(m) ∈ ω, where ω is a subdomain of Ω, with intensities qm, so

f(x) =

M∑
m=1

qmδ(x− x(m)). (2.7)

The system of equations (2.1), (2.2) is too complicated, and satisfactory mathematical

results for the direct initial boundary value problem are not available. However, in practical

situations, simplifying assumptions are possible. In particular, one neglects capillarity and

gravity, to arrive at a version of Buckley–Leverett system

div(kα1∇u) = f, (2.8)

φ∂tS − div(kα4∇u) = 0 in Ω × (0, T ). (2.9)

Expressing div(k∇u) from equation (2.8), one transforms equation (2.9) into

φ∂tS + α1

(
α4

α1

)′
k∇u · ∇S =

α4

α1
f (2.10)

with the initial and boundary value conditions

∂νu = 0 on ∂Ω, S = S(; 0) on Ω × (0, T ). (2.11)

Even for the simplified system (2.8), (2.10), it is too hard to obtain theoretical results in
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direct and inverse problems. We write the system (2.8), (2.10) in the most convenient form

possible,

div(kα1(S)∇u) = μwf, (2.12)

φ∂tS + α5(S)k∇u · ∇S = α6f, (2.13)

where

α5(S) =
k′
wko − kwk

′
o

μokw + μwko
(S), α6(S) =

μokw

μokw + μwko
(S).

The functions kw(S), ko(S) are known from numerous experiments. In agreement with

these experiments, a good form of these functions is

kw(S) =

(
S − 0.1

0.9

)λ

, when 0.1 < S, kw(S) = 0, when 0 < S � 0.1,

ko(S) = kw(1 − S), (2.14)

where λ= log10−log3
log9−log4 . In many cases, μo = 0.6 while μw = 1 (see [3]).

Since typically there are hundreds of wells located in some region ω, we can assume

that f is a function in L2(Ω) supported in a subdomain ω ⊂ Ω ∂ω ∈ C2. In practice,

pressure is measured at wells for a single given f or for many of them, provided one

can change the rates of pumping. It is of great importance to know two characteristics

of the medium Ω, the permeability k and porosity φ. These functions can be assumed to

be piecewise constant, with constants reflecting the properties of 20–30 typical materials

forming the rock. Complying with equation (2.5) and physical reality, we partition ω into

two open subsets ω+ and ω− with C2-boundaries, so that 0 < f on ω+ and f < 0 (and

constant) on ω−.

Hence we formulate the following.

Inverse Problem 1

Find k, φ entering the initial boundary value problem (2.1), (2.2), (2.3), (2.4) (or (2.8),

(2.10), (2.11)) from the additional data

u = g0 on ω × (0, T ) (2.15)

given for one or many f on ω+.

Even the direct problem for the system (2.1), (2.2) is not well understood. So not

surprisingly, there are no theoretical results about uniqueness and stability of k, φ from

the data (2.15). We will outline some linearisation approach to the inverse problem (2.8),

(2.10), (2.11), (2.15) where one can at least claim uniqueness of k(x) for the data from

many f.

Let the initial data ε0 be a small positive constant, f= f0 + τf1 where τ is a small

parameter. First we assume that f0 = 0, S(; 0) = 0. By a standard perturbation argument,

u = u0 + τu1 + · · · , S = τS1 + · · · ,

where · · · are terms bounded (in certain standard norms) by Cτ2. Observe that this

linearisation can be most likely rigorously justified, however we do not do it in this review

paper.
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If f0 = 0, we have u0 = 0 and

div(kα1(0)∇u1) = μwf1, (2.16)

with the boundary condition (2.4) for u1. One can assume that k is known on ω+. Then

the additional data (2.15) uniquely determine

kα1(0)∂νu1 = g1 on ∂ω+. (2.17)

We will call a function k piecewise Lipschitz constant on Ω if there is a partition of Ω

into finitely many Lipschitz subdomains, such that k is constant on each subdomain. In

inverse problem 1, these subdomains and constants on these domains are not known and

are to be found.

Theorem 2.1. The map f1 → u on ω+ (0 < f1 on ω+, f1 < 0 on ω−, f ∈ L2(ω) and

satisfies equation (2.5)) uniquely determines piecewise Lipschitz constant k on Ω.

We observe that Theorem 2.1 guarantees uniqueness of domains where k is constant

and constants on these domains.

Outline of proof. By using approximations, one can show that for the solution u(·; y+, y−)

to the Neumann problem

−div(k∇u) = δ(· − y+) − δ(· − y−) on Ω, ∂νu = 0 on ∂Ω,

the function u(· ; y+, y−) on ω+ is uniquely determined. From the definition of a weak

solution, ∫
Ω

k∇u(· ; y+, y−) · ∇v = v(y+) − v(y−)

for any v ∈ C1(Ω̄). We can assume that k is a known constant k0 in a connected

neighbourhood Ω(0) of ω̄+. Then by uniqueness of the continuation for elliptic equations,

u(· ; y+, y−) is given on Ω(0). Let Ω(1) be a connected component of Ω where k= k1,

k1 	 = k0 and which has a common piece of boundary Γ (1) with Ω(0). If v is given, then

we are given ∫
Ω\ω+

k∇u(· ; y+, y−) · ∇v.

Now let v(x) = |x − y+|−1. Let γ be a (piecewise) analytic curve in Ω(0). Integrating by

parts and using harmonicity of v outside ω+, we conclude that we are given∫
∂ω+

k0u(· ; y+, y−)∂νv +

∫
Γ (1)

(k1 − k0)u(· ; y+, y−)∂νv + · · · ,

where · · · denotes terms (integrals over surfaces of discontinuity of k away from Ω∪Γ (1),

which are bounded when y+ ∈ γ. Observe that the first term in the preceding equality is

known when y+ ∈ ω+. Hence

I(y+) =

∫
Γ (1)

(k1 − k0)u(· ; y+, y−)∂νv + · · ·
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is given when y+ ∈ ω+ and is obviously analytic with respect to y+ ∈ Ω(0). Since k0 	 = k1,

as in ([18], Section 5.7), the first integral behaves as C log d(y+), where d(y+) is the distance

from y+ to Γ (1). Hence varying curves γ with starting points inside ω+ and continuing

I(y+) along γ, we can uniquely identify Γ (1) and k1.

We can repeat the same step and, moving subsequently from known discontinuity

surfaces to adjacent ones, identify all discontinuity surfaces and piecewise constant k.

Remark. Slightly changing this proof one can show that for uniqueness it is sufficient

to have the data of Theorem 2.1 for one f1 on ω−.

Theorem 2.1 is new, but the idea of using singular solutions of partial differential equa-

tions for identification of domains was proposed in [17]. Efficient numerical algorithms

based on this idea are given by Potthast [27].

For smooth k, uniqueness can be shown if Ω= R3, by using the Kelvin transform

with the pole inside ω+ and known results of Sylvester and Uhlmann for the inverse

conductivity problem in bounded domains. If Ω is a ball in R3, then we expect that

uniqueness can be shown by the methods of the paper [19]. When Ω= R2 by using

inversion with respect to a point of ω+ and recent results of Astala and Päivärinta

[2], one obtains uniqueness of k ∈ L∞(Ω). Currently, there is progress in the inverse

conductivity problem with partial boundary data [5], [21]; however, complete results with

data at a part of the boundary of a general domain Ω are still not available.

For general f0, S0 and k= k0 + τk1 + ..., φ=φ0 + τφ1 + · · ·, one similarly obtains

div(k0α1(S0)∇u1) + div(k0α
′
1(S0)S1∇u0) = μwf1 − div(k1α1(S0)∇u0),

φ0∂tS1 + α5(S0)k0∇S0 · ∇u1 + α5(S0)k0∇u0 · ∇S1

+ (α′
5(S0)k0∇u0 · ∇S0 − α′

6(S0)f0)S1

= −(∂tS0)φ1 − α5(S0)∇u0 · ∇S0k1 + α6(S0)f1. (2.18)

These equations are augmented by zero initial and boundary value conditions (2.11) for

u1, S1. The data for the linear inverse problem for first-order corrections k1, φ1 are similar

to equation (2.15). The term f1 can be interpreted as a new well, and solution of the linear

inverse problem as updating old solution k0, φ0.

Practical needs stimulate numerical solution of the inverse problem (in general and sim-

plified formulations). Currently this is done mostly by regularised least-squares matching

[14, 16, 30], without analytic justification. Non-convexity of the minimisation problems

and absence of analytic theory result in poor resolution and low reliability of these nu-

merical methods. For this reason, simplifications of the inverse problem which preserve

its essential features are of obvious interest.

As known [9], the inverse conductivity problem with complete boundary data is expo-

nentially unstable. Hence, the simplest inverse problem for k is exponentially ill-posed.

We expect this type of instability for more realistic problems with data at a part of the

boundary and for more complicated original quasilinear equations.

Due to theoretical and numerical difficulties with the quasilinear degenerate system

(2.12), (2.13), one uses a different linear elliptic partial differential equation for the

pressure u

−div(a(x)∇(u− ρgh)) = f in Ω (2.19)
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with the natural boundary condition

∂ν(u− ρgh) = 0 on ∂Ω. (2.20)

Here a(x) = k(x)μ(x)−1, k is the permeability and μ is some average viscosity. Of course,

this average viscosity is not known. But if in some cases we assume μ to be known, then

we arrive at the inverse conductivity problem where there has been some theoretical and

numerical progress (as described above and in [18]). The model (2.19) is used in some

cases when one can assume that compressibility of the fluids is small.

If f is given by equation (2.7) and n= 3, then, as known from the theory of elliptic

equations,

u(x) =

M∑
m=1

qm(K1(x, x(m)) +K2(x, x(m)) + · · · ,

where

K1(x, x(m)) =
1

4πa(x)|x− x(m)| ,

K2(x, x(m)) =
1

4πa(y)

∫
Ω∗
K1(x, v)

(
− ∇va(v) · ∇v

1

|v − x(m)|

)
dv,

and · · · are bounded as well as their gradients with respect to x. Here Ω∗ is some domain

containing Ω. Integrating by parts, it is not hard to show that

K2(x, x(m)) = − 1

16π2a(x(m))

(∫
∂Ω∗

log a(v) − log a(y)

|x− v| ∂ν(y)
1

|v − x(m)|dΓ (y)

+

∫
Ω∗

(log a(x(m) − log a(v))∇v

1

|x− v| · ∇v

1

|v − x(m)|dv
)
. (2.21)

When u(x) is given for x ∈ ∂ω and ω is a small neighbourhood of x(m) (typically, a

sphere), the most singular terms K1,∇K1,∇K2 are uniquely determined by u,∇u. One

can use the formula for K1 to find a near x(m). Moreover, one can use the second (less

explicit) term K2 of the expansion to get more detailed information about a near sources

and sinks by solving linear integral equation with respect to a(v). The first term on the

right-hand side of equation (2.21) can be assumed to be known. Since we can take Ω∗ to

be a sufficiently large ball, we can neglect the first term on the right-hand side of equation

(2.21) which will be small. Letting

b(v) = − 1

4πa(x(m))
(log a(v) − log a(y)),

we obtain for b the following integral equation:

1

4π

∫
Ω∗
b(v)∇v|x− v|−1 · ∇v|v − x(m)|−1dv = U(x), x ∈ ω+, (2.22)

where U(x) =K2(x, x(m)). It is not hard to show (integrating by parts when b is C1 smooth

and compactly supported in Ω∗) that

ΔU = div(b∇| − x(m)|−1) in Ω∗.
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Hence the integral equation (2.22) can be viewed as a linearisation of the inverse conduct-

ivity problem ([18], Section 10.1). Also it has similarities with the inverse gravimetrical

problem ([18], Section 4.1). Uniqueness of the solution b of the integral equation (2.22)

is not known (and it is not anticipated for general b), and stability is expected to be of

logarithmic type (i.e. the corresponding linear inverse problem is exponentially ill-posed).

3 Muskat free boundary model

In this model suggested in the 1930s, Muskat assumed that oil and water do not mix and

occupy the domain Ω ⊂ Rn, n = 2, 3, so that the domain occupied by water is Ωw and by

oil is Ωo. As known, [6, 25]

−div(aw∇(uw − ρwgh)) = fw in Ωw,

−div(ao∇(uo − ρogh)) = fo in Ωo, (3.1)

where aj = σkkjμ
−1
j , j= o, w. The function σ(x) is the so-called section of field at x, σ= 1

when n= 3, but for n= 2 it depends on the reduction of a 3-dimensional problem to the

2-dimensional one. Here ρj is density of the jth fluid. According to [15, 25], the boundary

conditions at the oil–water interface Γ = ∂Ωo ∩ ∂Ωw are

uo − uw = 0 on Γ , aw∂ν(uw − ρwgh) = ao∂ν(uo − ρogh) = φVν on Γ , (3.2)

where Vν is the normal velocity (with respect to t) of Γ and the standard outer boundary

conditions are

∂νuj = 0 on ∂Ω ∩ ∂Ωj. (3.3)

Given all the coefficients and source terms, we have an elliptic free boundary problem

(3.1), (3.2), (3.3). There are only few partial analytic results on this problem [6, 15, 29].

Observe that fw (rate of water injection) is given, while fo (rate of oil production) may

be assumed to be constant determined from solvability condition (2.7).

As above in the inverse problem, one is looking for the coefficient k(x) from the

additional data

uw = g in ω, (3.4)

where g is a given function for one or several given fw . An advantage of the Muskat

model for inverse problem is a possibility to use moving, due to pumping in water,

interfaces Γ to introduce into the inverse problem an additional parameter θ, and hence

some evolution with respect to this parameter.

Inverse Problem 2

Find k from the data (3.4) for the solution to (3.1), (3.2), (3.3) given for a one-parametric

family of domains Ωw and one fw .

Now we will show that in a simple realistic case, one has uniqueness in this inverse

problem with the reduced (and most likely minimal) data.

Let n= 2. We will neglect gravity, arriving at

div(k∇uw) = f0 in Ωw. (3.5)
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Let ω be the unit disc {x : |x| < 1, Ω(θ) = {|x| < 1 + θ}, Γθ = ∂Ω(θ). We assume that

k = 1 + f, (3.6)

where f is ‘small’ and equal to 0 in ω. We will assume that the data (3.4) are given for

Ωw =Ω(θ), 0 < θ < T . By standard perturbation argument, u= u0 + u1 + · · · where u0

corresponds to f= 0, u1 to first-order perturbations (with respect to f), etc. Then

Δu1 = −div(f∇u0) in Ω(θ). (3.7)

We have

∂νu1 = 0 on Γ (θ), ∂νu1 = 0 on Γ (0), (3.8)

and we are given

u1 = g1(; θ) on Γ (0), g = g0 + g1 + · · · . (3.9)

In order to simplify the exposition, we assume the second boundary condition in (3.8)

to be homogeneous. A much more delicate analysis is needed to completely justify this

condition or to replace it with a similar condition. We plan to do this analysis in the near

future. We assume constant water pumping letting

u0(x; θ) = log
r

1 + θ
, (3.10)

where r = |x|.

Theorem 3.1. The solution f ∈ L2(Ω(T )) to the linearised inverse problem (3.7), (3.8), (3.9),

(3.10) is unique. This inverse problem is severely (exponentially) ill-posed.

Proof. To find f we make use of its angular Fourier series

f(x) =

∞∑
−∞

fm(r)eimσ, x = r(cos σ, sin σ)

and of the solutions

u∗
m(x; θ) =

((
r

1 + θ

)m

+

(
r

1 + θ

)−m)
e−imσ

of an ‘adjoint’ problem. From the definition of a weak solution to equation (3.7), we have

−
∫
Ω(θ)

∇u1 · ∇u∗
m = −

∫
Γ (θ)

f∂νu0u
∗
m +

∫
Ω(θ)

f∇u0 · ∇u∗
m.

Using that u∗
m are harmonic in Ω(θ) \ ω and ∂νu

∗
m = 0 on Γ (θ) to replace the left side by

the integral over γ(θ) and orthogonality of exponents, polar coordinates, and the equality

∂νu0 = r−1 to transform the right-hand side, we get

−
∫
Γ (0)

u1∂νu
∗
m = −

∫
Γ (θ)

f(1 + θ)−12e−imσdΓ (σ)

+

∫
Γ (0)

f((1 + θ)−m + (1 + θ)m)e−imσdΓ (σ) +

∫
Ω(θ)

f∂ru0∂ru
∗
m.
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Using polar coordinates again we obtain

m

∫ 2π

0

g1(σ; θ)((1 + θ)−m − (1 + θ)m)e−imσdσ = −2

∫ 2π

0

f(1 + θ, σ)e−imσdσ

+m

∫ 1+θ

0

(∫ 2π

0

f(r, σ)((1 + θ)−mrm−1 − (1 + θ)mr−m−1)e−imσdσ

)
dr.

Introducing the angular Fourier coefficients

fm(1 + θ) =
1

2π

∫ 2π

0

f(1 + θ, σ)e−imσdσ,

g1m(1 + θ) =
1

2π

∫ 2π

0

g1(cos σ, sin σ; θ)e−imσdσ,

we obtain the following Volterra integral equation:

fm(1 + θ) +
m

2

∫ 1+θ

1

((1 + θ)mr−m−1 − (1 + θ)−mrm−1)fm(r)dr

=
m

2
((1 + θ)m − (1 + θ)−m)g1m(1 + θ). (3.11)

Of course, the solution fm to this Volterra equation and hence to the linearised inverse

problem 2 is unique.

To show exponential instability, we solve the integral equation (3.11) explicitly. We

managed to do it by using elementary but not standard arguments given in the proof of

the following key lemma. �

Lemma 3.2. Let

Fm(1 + θ) =
m

2
((1 + θ)m − (1 + θ)−m)g1m(1 + θ).

Then the function

fm(1 + θ) = Fm(1 + θ) + m2

∫ 1+θ

1

(
log

r

1 + θ

)
r−1Fm(r)dr (3.12)

solves the integral equation (3.11).

Although this statement can be checked by elementary direct calculations, we prefer to

give a proof explaining how to obtain equation (3.12).

Proof of Lemma 3.2.

Letting

vm(1 + θ) = (1 + θ)mvm(1 + θ), (3.13)

and multiplying both sides by (1 + θ)m, we transform the integral equation (3.11) for fm
into

vm(1 + θ) +
m

2

∫ 1+θ

1

((1 + θ)2mr−2m−1 − r−1)vm(r)dr = (1 + θ)mFm(1 + θ).
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Differentiating we replace this equation by a new homogeneous integro-differential equa-

tion with an initial condition

v′
m(1 + θ) + m2

∫ 1+θ

1

(1 + θ)2m−1r−2m−1vm(r)dr = ((1 + θ)mFm(1 + θ))′, vm(1) = 0,

where we used that Fm(1) = 0. Finally letting

wm(1 + θ) =

∫ 1+θ

1

r−2m−1vm(r)dr, (3.14)

we obtain the Euler differential equation with the initial conditions

(1 + θ)2w′′
m(1 + θ) + (2m+ 1)(1 + θ)w′

m(1 + θ) + m2wm(1 + θ) = ((1 + θ)mFm(1 + θ))′,

wm(1) = 0, w′
m(1) = 0 (3.15)

that are equivalent to the integro-differential equation for vm.

By standard integration method of ordinary differential equations, functions (1 + θ)−m,

(1+θ)−m log(1+θ) are two linearly independent solutions to the homogeneous differential

equation (3.15). According to the variation of the parameters technique, we look for

general solution to equation (3.15) in the form

wm(1 + θ) = u1(1 + θ)(1 + θ)−m + u2(1 + θ)(1 + θ)−m log(1 + θ).

Using also the initial conditions, we obtain

u1(1 + θ) = −
∫ 1+θ

1

r−m log r(rmFm(r))′dr

= − log(1 + θ)Fm(1 + θ) +

∫ 1+θ

1

(−m log r + 1)r−1Fm(r)dr,

u2(1 + θ) =

∫ 1+θ

1

r−m(rmFm(r))′dr = Fm(1 + θ) + m

∫ 1+θ

1

r−1Fm(r)dr.

Due to our choice of wm and u1, u2,

w′
m(1+ θ) = m(1+ θ)−m−1 log(1+ θ)Fm(1+ θ) + m(1 + θ)−m−1

∫ 1+θ

1

(m log r − 1)r−1Fm(r)dr

+ (Fm(1 + θ) + m

∫ 1+θ

1

r−1Fm(r)dr)(−m(1 + θ)−m−1 log(1 + θ) + (1 + θ)−m−1)

= (1 + θ)−m−1Fm(1 + θ) + m2(1 + θ)−m−1

∫ 1+θ

1

log
r

1 + θ
r−1Fm(r)dr,

so using that

fm(1 + θ) = (1 + θ)−mvm(1 + θ) = (1 + θ)m+1w′
m(1 + θ),

we obtain the needed solution (3.12). The proof is complete.

Now we complete the proof of Theorem 3.1 by showing exponential instability of

solution to equation (3.11). Indeed, the terms on the right-hand side of equation (3.12)
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containing (1 + θ)−m form the stable part of fm, so to exhibit instability we look at the

remaining part of fm(1 + θ) which, after integration by parts, is

m

2
(1 + θ)mg1m(1 + θ) +

m3

2

∫ 1+θ

1

log
r

1 + θ
r−1+mg1m(r)dr

=
m

2
(1 + θ)mg1m(1 + θ) +

m2

2

∫ 1+θ

1

(
rm log

r

1 + θ
r−1+m − rm

m

)′
g1m(r)dr

=

(
m2

2
log(1 + θ) +

m

2

)
g1m(1) − m2

2

∫ 1+θ

1

rm
(

log
r

1 + θ
− 1

m

)
g′

1m(r)dr.

Due to the presence of powers rm, the last formula shows exponential magnifying of

the Fourier coefficients of g1m with growing m, and hence exponential instability for the

Volterra equation (3.11) and for the linearised inverse Muskat problem. The proof is

complete.

According to [6], the boundary conditions at the oil–water interface Γ = ∂Ωo ∩ ∂Ωw are

uo − uw = 0 on Γ , aw∇(uw − ρwgh) = ao∇(uo − ρogh) on Γ . (3.16)

Given all the coefficients and source terms, we again have an elliptic free boundary

problem (3.1), (3.16), (3.3). This free boundary problem is not overdetermined in R2 and

it is overdetermined in R3.

Letting ∇τ be the tangential component of ∇ we have, from (3.2), ∇τuo = ∇τuw on Γ

and hence (
ko

μo
− kw

μw

)
∇τuw =

(
koρo

μo
− kwρw

μw

)
g∇τh on Γ ,

so given Γ , one can uniquely (modulo constant) determine uw on Γ . Neglecting gravity

(i.e. letting ∇τh= 0) we conclude that uw is constant on each connected component of Γ .

Inverse Problem 2(D)

Find k from the data (3.4) for the direct problem (3.1), (3.16), (3.3), for a one-parametric

family of domains Ωw and one fw .

Now we will demonstrate uniqueness for a linearisation of this inverse problem and

analyse its stability.

Let n= 2. As above, from condition (3.16), we have uw = const on Γ . We can assume

that this constant is zero. We have

u1 = 0 on Γ (θ), ∂νu1 = 0 on Γ (0), (3.17)

and we are given equation (3.9).

Theorem 3.3.

A solution f ∈ L2(Ω(T )) to the linearised inverse problem (3.7), (3.17), (3.9), (3.10) is

unique. This inverse problem is severely (exponentially) ill-posed.
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Proof. To find f we again make use of its angular Fourier series

f(x) =

∞∑
−∞

fm(r)eimσ, x = r(cos σ, sin σ)

and of solutions u∗
m of an ‘adjoint’ problem

u∗
m(x; θ) =

((
r

1 + θ

)m

−
(

r

1 + θ

)−m)
e−imσ.

Using that u∗
m are harmonic in Ω(θ) \ω and u∗

m = 0 on Γ (θ) from the definition of a weak

solution to equation (3.7), we have∫
Γ (0)

f∂νu0u
∗
m +

∫
Ω(θ)

f∇u0 · ∇u∗
m = −

∫
Γ (0)

g1∂νu.

As the expansion is orthogonal, we get∫
Ω(θ)

f∇u0 · ∇u∗
m =

∫
Ω(θ)

f∂ru0∂ru
∗
m

= 2π

∫ 1+θ

1

fm(r)r−1 m

1 + θ

((
r

1 + θ

)m−1

+

(
r

1 + θ

)−m−1)
rdr

= 2π

∫ 1+θ

1

kfm(r)(rm−1(1 + θ)−m + r−m−1(1 + θ)m)dr.

Hence, we have the following Volterra integral equation:

∫ 1+θ

1

fm(r)(rm−1(1 + θ)−m + r−m−1(1 + θ)m)dr = Fm(θ), (3.18)

where

Fm(θ) =
1

2π
((1 + θ)m + (1 + θ)−m)

∫ 2π

0

g1(cos σ, sin σ; θ)e−imσdσ.

To solve equation (3.18) for fm we introduce the two functions

Φ1m(θ) =

∫ 1+θ

1

fm(r)rm−1dr, Φ2m(θ) =

∫ 1+θ

1

fm(r)r−m−1dr. (3.19)

From equations (3.18), (3.19), we have

Φ′
1m(θ) = (1 + θ)m−1fm(1 + θ), Φ′

2m(θ) = (1 + θ)−m−1fm(1 + θ),

(1 + θ)−mΦ1m(θ) + (1 + θ)mΦ2m(θ) = Fm(θ). (3.20)

Expressing Φ2m from the third equation (3.20), differentiating with respect to θ and using

the second relation (3.20) we arrive at the following linear ordinary differential equation

with respect to Φ:

(θ+ 1)−2kΦ′
1m(θ) = −(1 + θ)−2mΦ′

1m(θ) + 2m(1 + θ)−2m−1Φ1m(θ) + ((1 + θ)−mFm(θ))′ (3.21)
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with the initial condition

Φ1m(0) = 0. (3.22)

The initial condition (3.22) follows from equation (3.19). On the other hand, it is not

hard to see that equations (3.21), (3.22), and the first relation (3.20) are equivalent to the

Volterra equation (3.18).

The solution to equations (3.21), (3.22) is

Φ1m(θ) =
1

2
(θ + 1)m

∫ θ

0

(s+ 1)m((s+ 1)−mFm(s))′ds.

Hence from equations (3.20) and (3.18) by elementary calculations,

fm(1 + θ) = (1 + θ)1−mΦ′
1m(θ)

=
m

2

∫ θ

0

(s+ 1)m(((s+ 1)−mFm(s))′ds)′ +
1

2
(θ + 1)2m+1((θ + 1)−mFm(θ))′

=
θ + 1

2
F ′
m(θ) − m2

2

∫ θ

0

(s+ 1)−1Fm(s)ds. (3.23)

Due to equation (3.18), we have

F ′
m(θ) = m((1 + θ)m−1 − (1 + θ)−m−1)

1

2π

∫ 2π

0

g1(cos σ, sin σ; θ)e−imσdσ

+ ((1 + θ)m + (1 + θ)−m)
1

2π

∫ 2π

0

∂θg1(cos σ, sin σ; θ)e−imσdσ.

This formula combined with equations (3.18) and (3.23) implies exponential ill-

conditioning of the linearised inverse problem 2D.

We analysed the simplest 2-dimensional version of the linearised inverse problem which

preserves some features of the complete non-linear 3-dimensional problem. There are no

results on the full (non-linear) inverse problem 2 when 1-dimensional family of domains

growing with pumping time θ depends on the permeability. It will be interesting to study

complete non-linear case analytically and numerically and to adjust it to some realistic

situations of oil recovery. �

4 Compressible fluids

For compressible fluids a simple model [26] is the linear parabolic partial differential

equation for the pressure

a0(x)∂tu− div(a(x)∇u) = f in Ω × (0, T ) (4.1)

with the initial data

u = u0 on Ω × {0}
and the natural boundary condition

∂νu = 0. (4.2)
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Here a0(x) =φ(x)c(x), where φ is the porosity of the medium and c(x) is the compress-

ibility of the fluid, and a(x) = μ−1k(x), where μ(x) is some average viscosity of fluids which

is assumed to be known. We assume that φ, c ∈ L∞(Ω) and δ0 < φ, δ0 < c on Ω for some

positive number δ0. As above, we can assume that f is a function in L2(Ω) supported in

a subdomain ω ⊂ Ω. We denote Ωω =Ω \ ω̄.

Inverse Problem 3

Find a0, a in Ωω from solution u to the problem given on ω × (0, T ) for any function

f ∈ L2(Ω × (0, T )) which is zero on Ωω × (0, T ).

Theorem 4.1. The solution a0, a to inverse problem 3 is unique, if either (a) a0, a ∈ C∞(Ω̄)

or (b) a0, a are Lipschitz piecewise constant functions.

We outline a proof of part (a) based on the heat equation transform of parabolic

problems to hyperbolic ones and application of results obtained by the boundary control

method, and a proof of part (b) based on reduction to elliptic equations via stabilisation

method.

First we will show that the data of inverse problem 3 uniquely determine the para-

bolic Dirichlet-to-Neumann map Λp(Ω,ω). To define it we consider the parabolic initial

boundary value problem

a0(x)∂tw − div(a(x)∇w) = 0 in Ωω × (0, T ), (4.3)

with the initial data

w = 0 on Ωω × {0} (4.4)

and the boundary conditions

w = g0 on ∂ω × (0, T ), ∂νw = 0 on ∂Ω × (0, T ). (4.5)

One can show that any g0 ∈ C1(∂ω× [0, T ]) can be approximated in L∞(0, T ;H
1
2 (∂ω)) by

solutions u of the problem (with various f ∈ L∞(0, T ;L2(ω))). By the conditions u on ω×
(0, T ) is given for any f. Hence ∂νu on ∂ω×(0, T ) is given as well. From standard estimates

for solutions to parabolic initial boundary value problems, it follows that convergence of

u in L∞(0, T ;H
1
2 (∂ω × (0, T )) implies convergence of ∂νu in L∞(0, T ;H− 1

2 (∂ω × (0, T )).

Hence g0 uniquely determines ∂νw on ∂ω× (0, T ), so we are given the parabolic Dirichlet-

to-Neumann map Λp(Ω,ω).

To use results for hyperbolic equations, we define

w = a− 1
2 v (4.6)

which as known ([18], Section 5.2), transforms the partial differential equation for w into

a1(x)∂tv − Δv + c(x)v = 0 in Ωω × (0, T ), a1 = a
1
2 a0, c = a− 1

2Δa
1
2 , (4.7)

v = 0 on Ωω × {0}, (4.8)

u = g0 on ∂ω × (0, T ), ∂νv = 0 on ∂Ω × (0, T ). (4.9)
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We recall the heat equation transform v of a function v∗,

v(x, t) = (πt)− 1
2

∫ ∞

0

exp(−τ2

4t
)v∗(x, τ)dτ.

Let v∗ solve the initial value mixed hyperbolic problem

a1(x)∂
2
t v

∗ − Δv∗ + c(x)v∗ = 0 in Ωω × (0, T ∗), (4.10)

v∗ = ∂tv
∗ = 0 on Ωω × {0}, (4.11)

v∗ = g∗
0 on ∂ω × (0, T ), ∂νv

∗ = 0 on ∂Ω × (0, T ), (4.12)

with g∗
0 ∈ C2

0 (∂ω×(0,∞)) and g0 being the heat equation transform of g∗
0 . Available theory

of the mixed hyperbolic problem (4.10), (4.11), (4.12) guarantees existence and uniqueness

of the solution u∗ with e−τtv∗ ∈ L∞(0,∞;H2(Ω)), e−τt∂2
t v

∗ ∈ L∞(0,∞;L2(Ω)) for some

positive τ. For such functions the heat equation transform is well defined. We refer for its

properties to ([18], Section 9.2). In particular, v solves the parabolic initial boundary value

problem (4.7), (4.8), (4.9). Since for this parabolic equation the Dirichlet-to-Neumann is

known, g∗
0 uniquely determines ∂νv on ∂ω× (0, T ). It is clear that ∂νv is the heat transform

of ∂νv
∗. Since the inverse heat transform is unique ([17], Section 9.2), ∂νv

∗ on ∂ω× (0, T ∗)

is known (for any T ∗). From known results on inverse hyperbolic problems [4, 20], we

derive that a1, c are uniquely determined on Ω. Now from definition of c in (4.7), we have

the elliptic partial differential equation Δa
1
2 − ca

1
2 = 0 in Ωω for a

1
2 . Since a is known on

ω, we have Cauchy data for a on ∂ω. By uniqueness in the Cauchy problem for elliptic

equations ([17], Section 3.3), a is unique. Since a1, a are unique, from the definition of a1

in (4.7), a0 is unique.

This completes an outline of a proof in case (a). Now we explain ideas of proof in

case (b).

The substitution

w = veτt (4.13)

transforms equation (4.3) into equation

a0∂tv − div(a∇v) + τa0v = 0 in Ωω × (0, T ). (4.14)

Let g0 = G0φ, where G0 is any function in C2(Ω̄) and φ(t) ∈ C∞(R) satisfies the conditions:

φ(t) = 0 on (−∞, T
4
) and φ(t) = eτt if T

2
< t. Since the coefficients of equation (4.14) and

the boundary data do not depend on t > T
2
, the solution to the initial boundary value

problem is analytic with respect to t > T
2
. So it is uniquely determined for all t > 0.

Since equation (4.14) satisfies the conditions of the maximum principle and the boundary

data are time-independent for large t, by known stabilisation results

‖v(, t) − v0‖(1)(Ωω) → 0 as t → ∞, (4.15)

where v0 solves the following mixed boundary value problem

−div(a∇v0) + τa0v0 = 0 in Ωω, v0 = G0 on ∂ω, ∂νv0 = 0 on ∂Ω. (4.16)

Since ∂νv(, t) on ∂ω is given from equation (4.15), it follows that ∂νv0 on ∂ω is given as

well (for any Dirichlet data G0). Hence we are given a partial Dirichlet-to-Neumann map
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for all elliptic equations (4.16). Due to analyticity, we can take τ= 0; then uniqueness

of piecewise Lipschitz constant a follows from the generalisation of results of Kohn and

Vogelius [22] given by Sever [28]. Similarly, one can show uniqueness of a0.

The proof is complete.

As follows from the proof of Theorem 4.1 and known results on the inverse conduct-

ivity problem and on inverse hyperbolic problems, Problem 3 should be also severely

(exponentially) ill-conditioned.

Let ε will be the operator norm of the difference of the lateral parabolic Dirichlet-

to-Neumann operators corresponding to the coefficients a01, a1 and a02, a2 of equation

(4.1) (with zero initial data). The operators are from L2((0, T );H( 1
2 )(∂(Ω \ ω)) into

L2((0, T );H(− 1
2 )(∂(Ω \ ω)). The data of the inverse problem 3 can be in a standard

and stable way recalculated into the lateral Dirichlet-to-Newmann map as in [11].

Theorem 4.2. Assume that Ω= �3, that a0j , aj are constants outside some ball B, and that

‖a0j‖∞,1(Ω) + ‖aj‖∞,3(Ω) � M, j = 1, 2.

Then there is a constant C depending on M,B,ω such that

‖a02 − a01‖(Ω) + ‖a2 − a1‖∞(Ω) � C| log ε|−0.2.

A proof can be obtained by using the Kelvin transform and some modification of the

proof of Theorem 9.4.3 in [18]. A linearisation of the inverse problem 3 with reduced data

was considered analytically and numerically in [11].

5 Conclusion

We have reviewed analytical results for inverse problems based on some models of

filtration of water and oil through soil and outlined some new possible directions of

analytical and numerical research on inverse problems. The results on linearised versions

of the inverse Muskat problem are new. In most cases we only outlined proofs which

can be made complete. We plan to rigorously analyse the inverse problems 1–2 in near

future. We hope that methods of proofs (especially formulas for the inverse Muskat

model and the heat equation transform) can be used to design more efficient and reliable

numerical algorithms. It seems that all possible formulations of inverse problems are

severely ill-posed, which indicates that it is hard to expect fine numerical resolution. We

observe that similar inverse problems arise in hydraulics [31]. The filtration system is a

combination of a conservation–diffusion law (elliptic equation) with a drift (parabolic

or first-order equation). The same structure is a feature of partial differential equations

models of semiconductors and ion channels. In all our considerations, we decoupled the

system into scalar equations. It would be very interesting to find some approach to inverse

problems for full drift–diffusion systems.

As mentioned, the direct problem is a serious mathematical challenge which is not likely

to be completely addressed in the near future. So as in hydrodynamics, it makes sense to

simplify general system of filtration to particular interesting cases and study these cases

https://doi.org/10.1017/S0956792508007365 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792508007365


Inverse problems in secondary oil recovery 477

analytically and numerically. Simultaneously, one can try to look at more difficult but

more realistic model of three phases filtration (oil, water, and gas).
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