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Abstract

This paper presents a fleet model explained through a complex configuration of load sharing
that considers overcapacity and is based on a life cycle cost (LCC) approach for cost-related
decision-making. By analyzing the variables needed to optimize the fleet size, which must be
evaluated in combination with the event space method (ESM), the solution to this problem
would normally require high computing performance and long computing times.
Considering this, the combined use of an integer genetic algorithm (GA) and the ant colony
optimization (ACO) method was proposed in order to determine the optimal solution. In
order to analyze and highlight the added value of this proposal, several empirical simulations
were performed. The results showed the potential strengths of the proposal related to its flex-
ibility and capacity in solving large problems with a near optimal solution for large fleet size
and potential real-world applications. Even larger problems can be solved this way than by
using the complete enumeration approach and a non-family fleet approach. Thus, this
allows for a more real solution to fleet design that also considers overcapacity, availability,
and an LCC approach. The simulations showed that the model can be solved in much less
time compared with the base model and allows for the resolution of a fleet of at least 64 trucks
using GA and 130 using ACO, respectively. Thus, the proposed framework can solve real-
world problems, such as the fleet design of mining companies, by offering a more realistic
approach.

Introduction

When a fleet of vehicles is designed, one of the most important goals is to establish its size (i.e.,
the number of elements it comprises) (Sha and Srinivasan, 2016) because the fleet size is
related to key components of company operations. Mining companies and other mineral
extraction operations work with a great number of vehicles in order to effectively handle
their production plan. However, the cost related to those assets can be very high. Thus, opti-
mizing the creation of an efficient and optimal fleet, in terms of how many vehicles are actually
needed, could potentially reduce costs. This is a well-studied subject (Hoff et al., 2010; Kumar
and Panneerselvam, 2012; Gavalas et al., 2016), and several models and techniques have been
proposed to solve it. However, an important aspect to consider is the effect of overcapacity
(higher capacity than required) in improving operational results in terms of the level of
availability and the incorporation of operational and inefficiency costs. These costs are even
more important when a fleet is already in operation and demand is reduced. In that case,
the fleet size must be reduced and, then, decisions must be made about which vehicles to
sell and which to maintain. The economical evaluation model for decision making is the
same in both cases.

Overcapacity is a part of a greater design approach that considers different failure behaviors
(Distefano and Puliafito, 2009), where reliability (availability) via a load sharing configuration
and flexible work levels are also considered. This design approach is based on event space
assessments (Ding et al., 2017) with matrix-based dynamic evaluations over the multistate
impact of each system element, obtaining an equivalent of the expected availability for the
studied configuration (López-Campos et al., 2014). This requires that the equipment be capa-
ble of operating at different load levels. Because of this, the impact of each element of the
equipment will vary and the extent of variation will depend on the required load, reliability,
ease of maintenance, and other characteristics of each piece.

In general, transport systems are characterized by their flexibility, their high amount of
equipment, and their degree of dynamism (Chaowasakoo et al., 2017). A particularity of a
load sharing system is that the required capacity can be obtained based on the sum of available
equipment that can operate at a lower load than required (Czerny et al., 2016). Overcapacity is
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characterized by operating at a higher installed capacity than
required. Thus, there exist a series of combinations that are capa-
ble of generating the same results.

Moreover, the classical approach consists of grouped asset
families that are classified by make, year, capacity, and model,
regardless of the reliability and behavior of each specific element
under different requirements and operational characteristics, uti-
lization and history. However, this is a common approach used to
model availability (Oliveira et al., 2017). This model considers all
equipment to be a single unit in which the capability of this new
entity is the sum of all of the capabilities of the collective if the
new availability is the mean availability of all equipment.
Although this solution could be useful in simplifying the problem,
it is a simple generalization because it does not consider scenarios
where some elements of the collective are available while others
are not, instead of assuming the same state for all of the elements.
In addition, when the fleet is in operation and statistics are avail-
able, vehicles of the same type have different availabilities and dif-
ferent failure rates as well as different operating costs, none of
which are considered by this classical approach.

This study proposes solving this model without grouping equip-
ment and instead considering acquisition/opportunity costs, opera-
tional costs, and inefficiency costs due to unavailability as main
variables (Parra et al., 2012) by using the life cycle cost (LCC)
approach (Woodward, 1997; Durairaj et al., 2002). A mathematical
model is presented to integrate all of these aforementioned variables,
creating a relatively complete model in terms of overcapacity and
availability, relating them to a cost optimization problem.

Thus, the aim is to minimize the cost of equipment based on
LCC analysis, with the restriction of capacity. This approach is
based on the methodology presented by Woodward (1997), in
which different costs were related to fleet size and investment.
In this study, we utilized a cost-related objective function
(Woodward, 1997), in which we presented investment costs as
an opportunity cost that represents not selling equipment that
is already possessed by the company and, therefore, represents
an opportunity cost of equipment maintenance.

In addition, operation and inefficiency costs are key in selecting
how many and what type of vehicles are the best for the company.
The proposal for expected availability analysis included in the model
is based on probabilistic variable modeling that allows for the inclu-
sion of an overcapacity indicator as the main factor used to calculate
fleet availability and, thus, estimate the benefits of the additional
fleet elements (trucks). This concept is centered on the innovative
analysis given that, traditionally, overcapacity analysis is under-
developed, usually statistic-focused, and aimed at assessing fleet
availability in comparison with the load transported. However,
this analysis is not able to model the expected fleet availability
because it depends on specific conditions of the period analyzed.

The traditional LCC (Johannknecht et al., 2016bb) is charac-
terized by the assessment of direct maintenance costs in the
operational expenditure (OPEX) estimate. This proposal also
includes an analysis and evaluation of inefficiency costs, which
is the measurement used to incrementally evaluate the expected
fleet availability in an economic dimension and, from this per-
spective, justify capacity increases of the fleet (equipment quan-
tity) in order to obtain an optimal size.

Literature review

There are four main topics that are covered in this paper’s pro-
posed model: (1) fleet design, (2) LCC analysis, (3) reliability,

and (4) overcapacity. The main objective of this study is to iden-
tify which vehicles are actually needed for company operations in
order to ensure good fleet design. In one sense, this topic is a well-
studied subject and there is a great amount of literature regarding
techniques, models, and solutions for different industries and par-
ticular problems within this field of the study.

In this study specifically, the work of Coelho et al. (2016) is of
interest because the authors base their analysis on a heteroge-
neous fleet and propose a model for optimal routing in a vehicle
routing problem (VRP) variant, all in order to minimize trans-
portation cost. Because they worked with a heterogeneous
fleet, they used a heuristic that they called GILS-VND. This
heuristic combines iterated local search (ILS), the greedy ran-
domized adaptive search procedure (GRASP), and the variable
neighborhood descent (VND) procedure. Compared with
other similar studies, this proposal achieved better economic
and technical results. Another study from Coelho et al. (2012)
also suggested that fleet design in a mining operation is a computa-
tionally demanding task, thereby supporting the use of heuristics to
develop solutions to real-world applications. Finally, King et al.
(2017) applied an appropriated branch-and-bound technique to
solve the linear programming problem behind the transition
between underground and above ground operations. Their tech-
nique included rounding heuristics and the authors applied their
proposed methodology to a real metal extraction operation. It was
a very large problem (50,000 variables and over 1.5 million con-
straints), but the framework managed to efficiently solve the linear
programming problem.

In the case of LCC analysis, the study by Johannknecht et al.
(2016a) combined fleet size, availability, and LCC for gas and oil ser-
vices. This paper is interesting because it provides a model based on
cost efficiency, where fleet size depends on availability. There is an
important difference between this study and the proposed model
in this study, which is the fact that this study does not uniformly
characterize the fleet and also considers overcapacity. However, this
study successfully integrated the LCC in order to create a follow-up
cost analysis that considered the fleet size. Li and Epureanu (2018)
optimized the use of a military fleet using the LCC approach.
Their model was able to diminish costs related to operation with
minor effects on fleet readiness. This was also demonstrated in a real-
life military implementation and achieved excellent results.

Reliability is the third important component. In the study by
Johannknecht et al. (2016bb), a thorough cost analysis consider-
ing availability and LCC for oil and gas operations was made.
The authors proposed a framework that considered cost from the
early concept phase all the way through to deployment. They
acknowledged that this kind of consideration was needed to realis-
tically model the expendables that a company must consider when
acquiring a particular vehicle or tool, and then empirically demon-
strate its efficiency. Finally, the work of Klosterhalfen et al. (2014)
proposed a model that optimally determined the structure and
fleet size for a chemical company while also considering availability
constraints and a predefined number of vehicle types. Through this
approach, a considerable reduction (120 vehicles) was made to fleet
size without compromising company operations.

Finally, overcapacity is another key component to address in
our proposed model for fleet design. However, to the best of
our knowledge, there are no previously published studies that
address this topic as it is presented here. There are, however, stud-
ies that have defined and explained the methodology (such as
Vestergaard et al., 2003; Kjærsgaard, 2010), but it has not yet
been directly applied to fleet design. Thus, this study will
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contribute to the existing literature in this important field of
study, which is particularly crucial for mining operations.

Fleet sizing with overcapacity

In order to model fleet size while also considering overcapacity,
it is necessary to understand this objective and the justification
behind it. Overcapacity is a long-term investment strategy
aimed at ensuring better operational results through fleet avail-
ability and inefficiency cost reduction. For example, transporta-
tion costs in large mines are around 50% or 60% of total
operational costs (Chaowasakoo et al., 2017). Moreover, a sys-
tem with overcapacity minimizes the failure effect and consid-
ers the possibility of replacing an unavailable element with a
standby element or increasing the idle capacity of other ele-
ments. From a capital expenditure (CAPEX) point of view,
fleet sizing with overcapacity increases the required investment
but reduces OPEX due to higher fleet availability (Amado
2013).

Consider N as the total equipment to be evaluated. Let xi be
defined as follows:

xi = 1 if equipment i is purchased/maintained
0 if equipment i is not

{

∀ i e {1, . . . ,N}.

If the analysis is before the beginning of the project, xi = 1
means that the vehicle would be bought. If an operating fleet is
being evaluated, it would mean that the vehicle would be main-
tained and not sold.

All equipment in the system have two possible operating states:
available (with the value 1) and not available (with the value 0).
Thus, the first step is to obtain all the possible combinations of
operating states. Because operating states are binary, the total
number of operating states in the system is J, defined as follows:

J = 2
∑N

i=1
xi . (1)

Consider a combination of system operating states J and the
corresponding binary variables used to visualize the operative sta-
tus of each equipment item are defined as follows:

dij = 1 if equipment i is operative in state j
0 if equipment i is inoperative in state j

{

∀ i e {1, . . . ,N}, ∀ j e {1, . . . , J}.

(2)

The available capacity of each combination of operative states
can be obtained from the matrix δ:

CA
j =

∑N
i=1

dij · Cmax
i ∀ j e {1, . . . , J}. (3)

Given the operative state j of the system, the ratio between the
operational capacity of the corresponding equipment CO

ij and its
maximum capacity Capmax

i will be the same for all equipment.
To determine the final impact of each piece of equipment, it is
necessary to identify the operative states j of these systems, so
that the available capacity of the equipment is less than or
equal to the required system capacity (otherwise, the impact will

be defined as 0 because the system already meets the capacity
requirement).

Therefore, the ωj binary variable is defined as follows:

vj = 1 CA
j ≥ CR

S
0 �

{
∀ j e {1, . . . , J}. (4)

The operative capacity CO
ij of the equipment, therefore, will be

given in the following expression:

CO
ij =

(vj · CR
S + (1− vj) · CA

j ) · dij · Capmax
i

Capmax
i +∑N

k=1^ k=i dkj · Capmax
k

∀ i e {1, . . . ,N}, ∀ j e {1, . . . , J}.

(5)

When calculating impacts, that is, CR
S . CA

j , the operational
state of the system is considered to be the state of reference for
all equipment. The aim is to determine the loss of capacity that
unavailable equipment exerts on the system, depending on the
operational capacity that the system would have if such an equip-
ment were operating. Hence, the formula used to determine the
impact will be given in the following equation:

Iij =
(CR

S − CA
j ) · (1− dij) · CO

i1

CR
S ·∑N

k=1 (1− dkj) · CO
k1

CR
S . CA

j

0 �

⎧⎪⎨
⎪⎩

∀ i e {2, . . . ,N}, ∀ j e {2, . . . , J}.

(6)

Considering an operating state of the system, the required
capacity will always be satisfied. Therefore, the probability based
on the availability of each operating state of the system is defined
as follows:

PA
j =

∏N
i=1

A
dij
i · (1− Aj)

(1−dij) j e {1, . . . , J}. (7)

The weighted impact of the equipment, considering all possi-
ble combinations for the operating state of the system, is given as
follows:

Ivi =
∑J

j=1

PA
j · Iij ∀ i e {1, . . . ,N}. (8)

Finally, the availability of load sharing systems and overcapa-
city is calculated as follows:

Asist =
∑N
i=1

Ai · Ivi . (9)

Once the calculation of every component is ready, the related
cost of having (or not having) a specific piece of equipment must
be calculated. The first cost to calculate is the operational cost,
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which is defined in the following equation:

Copij =
dij · CA

j

D
CA
S . CR

j

dij · CA
j �

⎧⎪⎨
⎪⎩

∀ i e {2, . . . ,N}, ∀ j e {2, . . . , J}.

(10)

where Δ is a scaling factor, introduced to diminish the impact of
overcapacity.

With this, we can calculate the operational cost of all scenarios
as defined in the following equation:

Cop =
∑N
i=2

∑J

j=1

Copij · PA
j · FA. (11)

Therefore, considering (9), we can calculate the inefficiency
cost, as shown in the following equation:

Cin = (1− Asist) · Cinef · FA · h. (12)

where Cinef is the inefficiency cost of the fleet per hour due to una-
vailability, FA is the actualization factor, and h is the annual
operational time.

Finally, we used the following cost-related objective function to
minimize the global cost:

min
x

∑N
i=1

xiivi + Cin + Cop. (13)

where xi is the decision of purchasing/maintaining the equipment
i (1 if it is purchased/maintained and 0 if not) and ivi is the invest-
ment/opportunity cost related to equipment xi.

It should be noted that, in the case of fleets in operation, avail-
ability indicators, operating costs, and maintenance costs are
much more distorted given their historical values. Therefore, the
mathematical model can be summarized as follows:

Mathematical model

min
x

∑n
i=1

xiivi + Cin + Cop

s.t. Qsist ≤ Qreq

x e {0, 1}

with

J = 2
∑N

i=1
xi ∀ i e {1, . . . ,N} (1)

dij = 1 if equipment i is in operative status in scenario j
0 if equipment i is inoperative in scenario j

{ ∀ i e {1, . . . ,N}, ∀ j e {1, . . . , J} (2)

CAj =
∑N
i=1

dij · Capmax
i

∀ j e {1, . . . , J} (3)

vj = 1 CAj ≥ CRS
0 other

{ ∀ j e {1, . . . , J} (4)

COij =
(vj · CRS + (1− vj) · CAj ) · dij · Cmax

i

Cmax
i +∑N

k=1^ k=i dkj · Cmax
k

∀ i e {1, . . . ,N}, ∀ j e {1, . . . , J} (5)

Iij =
(CRS − CAj ) · (1− dij) · COi1
CRS ·

∑N
k=1 (1− dkj) · COk1

CR
S . CA

j

0 other

⎧⎪⎨
⎪⎩

∀ i e {2, . . . ,N}, ∀ j e {2, . . . , J} (6)

PAj =
∏N
i=1

Adiji · (1− Aj)
(1−dij )

∀ j e {1, . . . , J} (7)

Glossary

N Number of possible equipment decisions
J Total of possible scenarios given a set of equipment xi
xi Decision of purchasing/maintaining equipment i, 1 if

it is purchased/maintained and 0 if not.
δij Operational status of equipment i in state j
CA
j Available capacity for state j

ωj Relationship between the available capacity and the
required system capacity for state j

CO
ij Operative capacity of equipment i in state j

Iij Impact of equipment i regarding the operative capac-
ity of state j

PA
j Probability based on the availability of state j

Ivi Weighted impact for equipment i considering all
states

Asist System availability
Copij Operational cost of state j and equipment i
Cop Operational cost of the system
Cin Expected annual inefficiency cost
Cinef Inefficiency cost of the system per hour
Capmax

i Maximum capacity for equipment i
Qreq System required capacity.
Qsys System total capacity
ivi Investment/opportunity cost related to equipment xi
FA Discount factor for an h payment
PA
j Probability of occurrence of state j

h Operational planned time in a year
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Proposed solution algorithm

To solve the proposed model, two alternatives were explored. First,
a deterministic approach was taken, solving the model (when pos-
sible) with a full calculation of every possible state. Second, a meta-
heuristic approach was taken, solving the model for all proposed
cases in an approximated (but near-optimal) calculation.

Determinist model

This methodology analyzes and calculates the total cost of all pos-
sible scenarios for each combination. The number of calculations
needs to achieve an optimal fleet is 2J. The number of calculations
and the way data is managed prevent a solution for fleets with a
high number of vehicles.

As shown in Algorithm 1, each step is explained and justified.

Metaheuristic approaches

There are 2J possible scenarios that need to be checked in order to
find the optimal solution with the entire model being used in each
case. Due to this a high number of possibilities, two metaheuris-
tics were tested to find the optimal solution, namely genetic algo-
rithm (GA) and ant colony optimization (ACO). The reason why
we chose this type of algorithm is because model complexity
scales quickly in relation to the number of trucks that are cur-
rently owned by a company. This means that, in real-life applica-
tions, a deterministic approach will be very inefficient, costing the
company time and money. International mining companies can
have fleets as large as 400 trucks that they then seek to optimize
(see the Results section for links regarding this fleet size). This
makes computation time, even if there is an ample time in
which to run the model, an important factor to consider.

GA is an evolutionary algorithm (EA) that was first presented
by Holland and Reitman (1977). It is based on a Darwinian
approach of the survival of the fittest, an evolutionary process
that identifies the best candidate to solve the problem. Through
the evolution, genetic operators, such as crossover and mutation,
are applied in addition to a selective process that preserves the
best individuals over generations. The application to the current
problem is presented and described below. ACO, introduced by
Dorigo and Gambardella (1997), is a population-based algorithm
that mimics the behavior of ants and how they communicate with
each other in order to find an optimal path to a specific goal.
Specifically, each ant follows a path that leads to a solution of
the problem, and ants leave pheromones along the best path
(the shortest) that are stored. This allows the next generation to

know what paths are better. After enough generations have
passed, the ants should, in theory, obtain the optimal solution
or a near optimal solution.

The GA algorithm pseudocode is shown in Algorithm 2.
The ACO pseudocode is shown in Algorithm 3.
Specifically, we follow the proposed algorithm by Xiong et al.

(2006) for the GA approach and Hristakeva and Shrestha (2004)
for the ACO approach. The specifications for both algorithms can
be seen in Table 1.

Simulation experiment

The proposed model was tested in a simulation using different fleet
sizes and applied these two metaheuristic approaches to solve it.
Table 2 presents a technical description of the trucks used for this
simulation, including capacity, availability, and opportunity cost.

Algorithm 1

Step 1: Determine all possible combinations for the fleet.
Step 2: For each combination (Step 1), determine all possible scenarios for

the operating states of the system as J = 2
∑N

i=1
xi [Eq. (1)].

Step 3: Determine the available capacity for each operative state as

CA
j = ∑N

i=1
dij · Capmax

i , given the binary variable δij [Eq. (3)].

Step 4: Calculate the operative capacity as

CO
ij =

(vj · CR
S + (1− vj) · CAj ) · dij · Capmax

i

Capmax
i +∑N

k=1 ^k=i dkj · Capmax
k

, given the binary variable ωj

[Eq. (5)].
Step 5: Determine the probability based on the availability as

PA
j = ∏N

i=1
Adiji · (1− Aj)

(1−dij ) [Eq. (7)].

Step 6: Obtain the weighted impact of the equipment as Ivi = ∑j
j=1

PAj · Iij
[Eq. (8)].

Step 7: Calculate availability of the load sharing system and overcapacity

as Asist =
∑N
i=1

Ai · Ivi [Eq. (9)].

Step 8: Calculate operational costs from all scenarios as

Cop = ∑N
i=2

∑J
j=1

Copij · PAj · FA [Eq. (11)], given the individual operational cost

Copj .

Step 9: Calculate the inefficiency cost as Cin = (1− Asist) · Cinef · FA · h
[Eq. (12)].

Step 10: Determine the objective function as min
x

∑N
i=1

xi ivi + Cin + Cop for all
possible combinations of the fleet.

Step 11: Select the minimum objective function of all possible
combinations of the fleet.

Ivi = ∑J
j=1

PAj · Iij
∀ i e {1, . . . ,N} (8)

Asist =
∑N
i=1

Ai · Ivi
(9)

Copij =
dij · CAj
D

CAS . CRj

dij · CAj other

⎧⎨
⎩

∀ i e {2, . . . ,N}, ∀ j e {2, . . . , J} (10)

Cop = ∑N
i=2

∑J
j=1

Copij · PAj · FA
(11)

Cin = (1− Asist) · Cinef · FA · h (12)
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The computational environment used was Matlab 2018a,
Xubuntu 16.04, two Intel Xeon E5-2630 processors, and 12 GB
of ram.

The simulation experiment was developed in an incremental
fashion. Five scenarios were tested considering fleets of size 10,
12, 15, 18, and 20, in which the GA, ACO and complete enumera-
tion approaches were selected to solve the problem. The results for
each approach were then compared. In all simulations, the
required capacity was set at 70% of total capacity, inefficiency
cost at $110 (USD/h), 10% annual interest rate, and 10 years
for an evaluation period. As expected, the complete enumeration
(deterministic) found the global optimal solution, so the two
metaheuristics were tested against this approach. Additional
experiments consisting of 22, 25, and 30 trucks, for which the
deterministic approach take over a day to compute, were also per-
formed. The results of all experiments can be seen in Tables 3–5
for the deterministic, ACO, and GA approaches, respectively.

The simulations that used small fleet sizes were developed in
order to determine the relationship between the actual global
minimum and the minimums found by the metaheuristic
approaches. We can see that, in general, both metaheuristics man-
aged to find the global minimum but under different conditions.
ACO found the exact global minimum for small fleet sizes, that is,
10, 12, and 15 trucks, but only found a near optimal solution for
18 (0.34% difference) and 20 trucks (1.75% difference). On the
other hand, GA did not behave well for small fleet sizes, resulting
in considerable differences with the optimal case (2.43% for 10
trucks and 0.34% for 12 trucks). However, GA interestingly find
the exact global minimum for 15 and 18. Yet, it also failed to
determine the actual global minimum for 20 trucks, having a dif-
ference of 1.07%. This is a very important result because it shows
that this kind of algorithm can actually find the optimal solution
for particular problems, opening up the possibility of applying
this method to a real-world application with excellent results.

Considering the above, the time consumption analysis was also
worth performing, especially given the fact that the actual global

minimum can be reached through metaheuristic methods. For
very small cases, as expected, the deterministic approach was faster
than the metaheuristic methods. This is not a surprising result
because, for small problems, the algorithm takes more time in pre-
paring their configurations than actually finding the solution.
Specifically, for the first two simulations, there was a big difference
in time (×5 for ACO and ×3 approximately for GA). Yet, in the
simulation of 15 trucks, ACO managed to reduce time consump-
tion by around 38%, and GA was slightly higher (3.63% higher).
When the 18 trucks simulation was performed, time was reduced
in both approaches by a seventh of the time that it took the deter-
ministic approach to complete the same problem. Significantly, GA
managed to actually find the global minimum, which is a promis-
ing result for larger applications. In the case of 20 trucks, these
findings made this even more evident, given that the deterministic
approach took almost 2 days to find the solution, while the meta-
heuristic methods took just seconds.

It is important to notice the actual trucks that were selected in
each case. For the fleet size of 10 trucks, only ACO found the actual
global minimum, which was to select all the trucks. In contrast, GA
dropped the 8th truck, finding a higher cost function. For the 12
trucks, both ACO and GA kept 11 of the 12 trucks, but again
only ACO actually dropped the correct one (the third one) and
GA dropped the 10th, again finding a higher cost function.

An interesting result happened in the 15 fleet size simulations.
In that case, both ACO and GA found the global minimum and,
therefore, dropped the correct truck, the third one. Until this
simulation, we had noticed that ACO behaved better than GA
in solving the problem, both in terms of cost function as well
as identification of the actual solution and time consumption.

However, for higher fleet sizes, GA achieved better results,
finding the global minimum (and therefore, selecting the correct
trucks to drop) for 18. Both algorithms failed to find the optimal
minimum for 20 trucks, but ACO selected the same amount of
trucks in the fleet (17 trucks), but made different choices than
GA, which selected 18 of the 20 trucks. Yet, GA actually reached
a solution close to the actual minimum, regardless of selecting one
more truck. When taking time into consideration, we believe that
this result could be due to the configurations regarding the num-
ber of ants, maximum iterations, and alpha setting of the ACO
algorithm. This could be a topic for further research as finding
the best hyperparameters for this algorithm will not be considered

Algorithm 2 (GA)

Step 1: Initialize the first population as an alternative fleet option.
Step 2: While (generation < maximum generations) or (stall < maximum

stall) perform:
Step 2.1: Evaluate each chromosome in Algorithm 1, where Eq. (13) is the

fitness function.
Step 2.2: If the stopping criteria are not reached, apply genetic operators to

form the next generation.
Step 2.3: Sum 1 to generation, and return to Step 2.
Step 3: When at least one of the stopping criteria is reached, end the

sequence and present the best chromosome identified so far.

Algorithm 3 (ACO)

Step 1: Initialize the first population of ants.
Step 2: For 1 to maximum iterations, do.
Step 2.1: For each ant, do.
Step 2.1.1: Randomly select the path of the ant.
Step 2.1.2: Calculate the cost and solution for that particular ant, using Eq.

(13) as the objective function and restricting the computation by
Algorithm 1.

Step 2.2: Update pheromones and evaporate.

Table 1. Hyperparameter settings for ACO and GA

GA settings ACO settings

Generations 200 Maximum iterations 200

Stall 50 Number of ants 80

Population size 20 Alpha 0.1

Crossover rate 0.7 Beta 0.002

Mutation rate 0.1 Rho 0.1

The first column shows the main hyperparameters of the GA. Generations refer to the
maximum number of iterations that the algorithm can perform to find the solution. Stall
refers to the maximum number of generations have to pass consecutively and, if an error
does not improve, the algorithm stops. Population size refers to the number of genes that
are candidates to solve the problem. Crossover rate and mutation rate are the percentages
at which these two operators are applied. The second column contains the main
hyperparameters of the ACO. Maximum iterations refer to the maximum times that the
algorithm can be run to solve the problem. The number of ants are the population of ants
that search for the optimal solution. Alpha and beta refer to the relative importance of track
and visibility, respectively, and rho is the durability of the track.
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in this work. Thus, it was relatively expected that ACO would take
less time but fail to find the optimal solution.

This allows us to conclude that, considering the time required
for the deterministic approach to complete simulations, the
experiment with larger fleet’s sizes would be pointless to solve
using this approach because of the clear exponential growth
that occurs with increases in fleet size. Thus, three more simula-
tions were made that only considered the results of the metaheur-
istic methods. Their results are shown in Tables 6 and 7.

In this extended simulation, we saw that GA managed to
obtain better cost functions than ACO in two of the three experi-
ments. However, ACO found the better solution for the smallest
of these simulations (of 22 trucks). The time consumption obser-
vation that was previously described was also seen here. Indeed,
GA took more time but was able to find better solutions to the
problem. A very interesting result was in relation to the actual
truck composition that each approach found. GA tended to

Table 5. Results from the GA approach

Fleet size

GA

Best cost Time (s) # Trucks In Trucks Left

10 1,973,939 2.82 9 8

12 2,104,238 4.58 11 10

15 2,490,907 29.17 14 3

18 2,841,593 118.17 16 3, 10

20 3,053,994 596.47 18 3, 16

This table shows the results of solving the problem by using the GA approach. Best cost
refers to the total cost of the trucks selected. Time refers to how much time it takes for the
algorithm/approach to find the solution. # Trucks In refer to how many trucks must be
considered in the optimal solution of the problem. Trucks Left refer to which trucks,
specifically, are left out of the solution.

Table 3. Results from the deterministic approach

Fleet size

Deterministic

Best cost Time (s) # Trucks In Trucks Left

10 1,927,057 0.16 10 −

12 2,096,203 1.33 11 3

15 2,490,907 28.15 14 3

18 2,841,593 704.41 16 3, 10

20 3,021,71 7053.01 17 3, 10, 15

This table shows the results of solving the problem by using the complete enumeration
approach. Best cost refers to the total cost of the trucks selected. Time refers to how much
time it takes for the algorithm/approach to find the solution. # Trucks In refer to how many
trucks must be considered in the optimal solution of the problem. Trucks Left refer to which
trucks, specifically, are left out of the solution.

Table 4. Results from the ACO approach

Fleet size

ACO

Best cost Time (s) # Trucks In Trucks Left

10 1,927,057 4.35 10 −

12 2,096,203 6.79 11 3

15 2,490,907 17.45 14 3

18 2,851,261 49.58 15 3, 10, 15

20 3,074,692 109.19 17 2, 15, 16

This table shows the results of solving the problem by using the ACO approach. Best cost
refers to the total cost of the trucks selected. Time refers to how much time it takes for the
algorithm/approach to find the solution. # Trucks In refer to how many trucks must be
considered in the optimal solution of the problem. Trucks Left refer to which trucks,
specifically, are left out of the solution.

Table 2. Fleet technical description

ID Availability (%) Capacity (ton) Opportunity cost (MUSD) ID Availability (%) Capacity (ton) Opportunity cost (MUSD)

1 74.20 400 23.20 16 73.50 300 16.26

2 71.20 300 15.60 17 75.40 350 15.58

3 71.50 400 23.92 18 83.10 350 14.00

4 87.00 250 11.75 19 79.70 250 11.20

5 75.90 350 16.94 20 81.20 350 15.16

6 85.60 350 16.59 21 87.10 300 12.72

7 83.30 400 17.56 22 87.30 200 8.32

8 69.80 250 10.43 23 83.90 350 14.98

9 78.90 250 12.80 24 83.10 300 17.16

10 65.50 350 18.31 25 77.50 300 14.70

11 85.60 300 14.94 26 65.60 400 18.36

12 86.90 300 14.82 27 69.10 300 14.64

13 79.20 300 14.58 28 71.40 350 20.51

14 66.80 400 17.24 29 82.30 250 13.85

15 65.50 200 10.72 30 76.60 250 10.83

The information in this table is organized as follows: Availability and capacity are unique parameters measuring confidence that are specific to each truck. Opportunity cost refers to how
much the truck cost, meaning that, in the optimal solution, the truck not selected is actually a source of positive revenue for the organization.
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drop slightly less trucks compared with ACO. Although the differ-
ence was just one truck in these simulations, this difference could
result in a bigger difference for bigger fleet sizes. An important
point to consider is that, in general, better solutions were found
when more trucks were selected rather than when more trucks
were dropped, an important fact for larger fleets.

The important reduction in time consumption presented an
opportunity to apply the proposed model to real mining industry
situations, where the companies have to optimize very large fleets.
To name a few, two of the biggest Chilean mining operations
work with 172 haul trucks (Escondida1) and 120 trucks
(Chuquicamata2). Rio Tinto3 (Australia) works with 400 haul
trucks and Grasberg4 (Indonesia) works with 170 trucks.
Although the simulation made in the study was relatively small
compared with the real fleet sizes used today in the mining indus-
try, they allow for a fair comparison between the two models.
Now, given what happened with the deterministic approach, the
exponential time that was needed to make all the necessary calcu-
lations makes it impossible to apply this method to such large
fleets. The fairly small amount of time that ACO and GA needed
to find near-optimal solutions make them good possibilities that
could be effective in real-world applications. In order to better
visualize this, Figure 1 showed a log-time graph with the three
approaches.

This figure is a log–log graph of fleet size and shows how long
it takes the algorithm/approach to find the optimal solution for
that particular configuration. The deterministic approach can
solve a problem only to a certain point, after which it can no
longer solve problems. Also, metaheuristic approaches are better
suited for larger problems as they (1) can solve them within a rea-
sonable time and (2) for smaller problems, the complete enu-
meration is faster and is guaranteed to find the optimal solution.

This figure clearly shows the rapid growth of the determinis-
tic approach, even in log transformation. Both ACO and GA had
a slower tendency, expressed in the slope of the log-time func-
tion. The higher slope for the deterministic approach means
that it consumes much more time when there are more trucks
in the fleet. This allows us to estimate the time required for
every approach in a real-world application. Considering that
most companies perform fleet optimization once a year, ACO
could solve this problem in less than a year (in 338 days) for a
fleet composed of 130 trucks, whereas GA could solve the prob-
lem in less than a year (333 days) for a fleet composed of 64
trucks. Considering the companies that were cited early, both
approaches could actually solve problems for even larger fleets,
depending on the computational environment and algorithm
enhancement that could be performed on the approaches pre-
sented here. This is open to future research. However, this
work has already shown that large fleets can be optimized –
while also considering overcapacity, availability, and inefficient
cost – in less than a year.

Discussion and conclusions

In this study, we proposed a complete framework that considers
overcapacity, availability, and LCC for fleet design problems. To
the best of our knowledge, there is no currently published study
that includes all of these topics at once in relation to mining
operations. Thus, this paper contributes to the literature and the
current practical resolution for the model can be easily applied
to real-world situations. Specifically, we presented a theoretical
optimization model and tested it in different simulation scenarios,
solving the problem via complete enumeration (deterministic)
approach (when possible) as well as ACO and GA.

We obtained some interesting results in the simulation experi-
ment, where the metaheuristics successfully found the global
minimum. For the smaller-sized problems (10 and 12 trucks),
ACO behaved more robustly than GA, both in terms of cost func-
tion finding and time consumption. However, GA managed to
obtain better global minimum solutions for larger fleets, whereas
ACO, although faster, only obtained near optimal solutions.

Given the time consumption associated with each approach,
the deterministic approach grew exponentially with the fleet
size, and we could only solve problems for fleets of a maximum
size of 20 trucks. However, metaheuristic methods allowed us to
solve problems for much larger fleets, with a theoretical maxi-
mum of 64 trucks for GA and 130 trucks for ACO, with the
restriction being the computational environment used.

Considering the fleet size of actual companies that are in the
mining business today, this framework could be used to optimally

Table 6. Extra ACO simulations

Fleet size ACO

Best cost Time (s) # Trucks In Trucks Left

22 3,208,036 220.12 19 3, 9, 14

25 3,580,795 770.50 20 2, 8, 10, 15, 17

30 4,253,014 6,190.40 24 1, 15, 17, 25, 27, 28

This table shows additional results obtained by using the ACO approach, specifically for greater fleet sizes, which are not possible to solve by using the complete enumeration approach. Best
cost refers to the total cost of the trucks selected. Time refers to how much time it takes for the algorithm/approach to find the solution. # Trucks In refer to how many trucks must be
considered in the optimal solution of the problem. Trucks Left refer to which trucks, specifically, are left out of the solution.

Table 7. Extra GA simulations

Fleet
size

GA

Best cost Time (s)
# Trucks

In Trucks Left

22 3,210,289.29 1092.50 19 1, 8, 15

25 3,469,942.15 4717.10 21 1, 3, 10, 15

30 4,209,019.51 68,526.00 25 1, 2, 3, 8, 15

This table shows additional results obtained by using the GA approach, specifically for
greater fleet sizes, which are not possible to solve by using the complete enumeration
approach. Best cost refers to the total cost of the trucks selected. Time refers to how much
time it takes for the algorithm/approach to find the solution. # Trucks In refer to how many
trucks must be considered in the optimal solution of the problem. Trucks Left refer to which
trucks, specifically, are left out of the solution.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 111

https://doi.org/10.1017/S0890060419000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060419000428


determine the fleet size in real-world applications that would only
require a few changes to be made to the computational environ-
ment and a few adjustments to the metaheuristic algorithms.
However, we have demonstrated here that a model that includes
overcapacity, availability, and LCC for fleet design is not only pos-
sible but also provides more realistic results where each truck is
treated separately based on its own specifications.

In terms of future research, we believe that newer metaheuris-
tic algorithms (such as NGA-II or a robust version of ACO) could
enable better solutions for large fleets.
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