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MEAN AND VARIANCE OF BALANCED PÓLYA URNS
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Abstract

It is well-known that in a small Pólya urn, i.e., an urn where the second largest real part
of an eigenvalue is at most half the largest eigenvalue, the distribution of the numbers
of balls of different colours in the urn is asymptotically normal under weak additional
conditions. We consider the balanced case, and then give asymptotics of the mean
and the covariance matrix, showing that after appropriate normalization, the mean and
covariance matrix converge to the mean and covariance matrix of the limiting normal
distribution.
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1. Introduction

A (generalized) Pólya urn contains balls of different colours. A ball is drawn at random from
the urn, and is replaced by a set of balls that depends on the colour of the drawn ball. (Moreover,
the replacement set may be random, with a distribution depending on the drawn colour). This
is repeated an infinite number of times, and we are interested in the asymptotic composition
of the urn. For details, and the assumptions used in the present paper, see Section 2; for the
history of Pólya urns, see e.g. [24].

It is well-known, and proved under various conditions in a number of papers by a variety
of authors (see e.g. [19, Theorems 3.22–3.24]), that the asymptotic behaviour depends on the
eigenvalues of the intensity matrix of the urn, defined in (2.5) below, and in particular on the
two largest (in real part) eigenvalues, λ1 and λ2. If Re λ2 � 1

2λ1 (a small urn), then, under some
assumptions (including some version of irreducibility), the number of balls of a given colour
is asymptotically normal, while if Re λ2 > 1

2λ1 (a large urn), then this is not true: there are
(again under some assumptions, and after suitable normalization) limits in distribution, but the
limiting distributions have no simple description and are (typically, at least) not normal; fur-
thermore, there may be oscillations so that suitable subsequences converge in distribution but
the full sequence does not. Another difference is that for a small urn, the limit is independent
of the initial state, and therefore independent of what happens in any fixed finite set of draws
(i.e., the limit theorem is mixing; see [1, Proposition 2]), while for a large urn, on the contrary,
there is an almost sure (a.s.) limit result and thus the limit is essentially determined by what
happens early in the process.

For large urns, assuming that the urn is balanced (see Section 2), Pouyanne [29] proved a
limit theorem which shows such an a.s. result and also shows convergence in Lp for any p, and
thus convergence of all moments.
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For small urns, however, less has been known about moment convergence in general.
Balanced deterministic urns with two colours were considered already by Bernstein [9, 10],
who both showed the asymptotic normality in the small urn case and gave results on mean
and variance; Savkevitc [30] also considered this urn and studied the mean and variance and,
moreover, the third and fourth moments. Bagchi and Pal [5] (independently, but 45 years later)
gave another proof of asymptotic normality for balanced deterministic small urns with two
colours, by using the method of moments and thus proving moment convergence as part of
the proof. Bai and Hu [6, 7], who consider an arbitrary number of colours and allow random
replacements (under somewhat different conditions than ours, allowing also time-dependent
replacements), show asymptotic results for the mean and (co)variance as part of their proofs of
asymptotic normality for small urns, using the same decomposition of the covariance matrix
as in the present paper; however, these results are hidden inside the proof and are not stated
explicitly. More recently, Janson and Pouyanne [21] proved explicit results on asymptotics of
mean and variance, and also higher central moments of arbitrary order, for irreducible small
urns; the method there combined the known result on asymptotic normality in this case, and
moment estimates by the method in [29], leading to uniform integrability.

Note that asymptotics of mean and variance often are of interest in applications, comple-
menting results on convergence in distribution. (In some applications, results on mean and
variance have been proved separately by other methods.) Moreover, although not surprising,
it is satisfying to know that in a case where a central limit theorem holds, the mean and vari-
ance also converge as suggested by this central limit theorem. In particular, loosely speaking,
the variance of the number of balls of a given colour is asymptotic to the asymptotic vari-
ance. Furthermore, for this random number, the standard normalization by mean and standard
deviation yields convergence to a standard normal distribution.

The main purpose of the present paper is to give explicit asymptotics for the first and sec-
ond moments for a balanced small urn by an elementary direct method. (Our assumptions are
somewhat weaker than in [21]; we do not assume that a central limit theorem holds, and also
some non-normal cases are included; see Remark 3.2.) We also include a simple result on non-
degeneracy of the limit (Theorem 3.5). Precise statements are given in Section 3. Some results
(e.g. Theorem 3.1 and the lemmas in Sections 5 and 6) apply also to large urns.

Our method is closely related to the one used by e.g. [6, 7]; it is also related to the method of
[29] and [21], but substantially simpler. The main idea (which has been used in various forms
earlier, in particular by [6, 7] is that the drawing of a ball and the subsequent addition of a set
of balls, at time k, say, influences the composition of the urn at a later time n not only directly
by the added balls, but also indirectly since the added balls change the probabilities for later
draws. By including the expectation of these later indirect effects, we find the real effect at
time n of the draw at time k, and we may write the composition at time n as the sum, for k � n,
of these contributions; see (4.11). The contributions for different k are orthogonal, and thus the
variance can be found by summing the variances of these contributions.

Another purpose of the present paper is to demonstrate in detail this elementary method and
how it can be used to obtain important results. We believe that although the method is closely
related to earlier proofs in e.g. [6; 7; 17], making the decomposition (4.11) explicit illuminates
both the proofs and the general behaviour of Pólya urns, in particular the difference between
large and small urns. See the comments in Section 8.

Section 2 gives definitions and introduces the notation. Section 3 contains the statements
of the main results, which are proved in Sections 4–6. Section 7 presents some applications,
and Section 8 contains some further comments on where the variance comes from, i.e., which
draws are most important, and the difference between small and large urns. The appendices
give some further, more technical, results.
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Remark 1.1. We consider in the present paper only the mean and (co)variance. As stated
above, similar results on convergence of higher moments for balanced small urns are given
in [21] (under somewhat more restrictive assumptions than in the present paper), by another
method, based on showing uniform integrability. (An anonymous referee of the first version of
the present paper has suggested another, simpler, way to show uniform integrability; this can
be used to simplify the proofs in [21].)

It is possible that the method in the present paper can be extended to handle higher moments
too, but we do not see any immediate extension. On the other hand, for the first and second
moments, the present method seems simpler, and perhaps also more informative, than the one
in [21].

Problem 1.1. In the present paper, we consider only balanced urns. We leave it as a challenging
open problem to prove (or disprove?) similar results for non-balanced urns.

2. Pólya urns

2.1. Definition and assumptions

A (generalized) Pólya urn process is defined as follows. (See e.g. Mahmoud [24], Johnson
and Kotz [23], Janson [19], Flajolet, Gabarró and Pekari [14] and Pouyanne [29] for the history
and further references, as well as some different methods used to study such urns.) There are
balls of q colours (types) 1, . . . , q, where 2� q < ∞. The composition of the urn at time n is
given by the vector Xn = (Xn1, . . . , Xnq) ∈ [0, ∞)q, where Xni is the number of balls of colour i.
The urn starts with a given vector X0, and evolves according to a discrete-time Markov process.
Each colour i has an activity (or weight) ai � 0, and a (generally random) replacement vector
ξi = (ξi1, . . . , ξiq). At each time n + 1 � 1, the urn is updated by drawing one ball at random
from the urn, with the probability of any ball proportional to its activity. Thus, the drawn ball
has colour i with probability

aiXni∑
j ajXnj

. (2.1)

If the drawn ball has type i, it is replaced together with �Xnj balls of type j, j = 1, . . . , n, where
the random vector �Xn = (�Xn1, . . . , �Xnq) has the same distribution as ξi and is independent
of everything else that has happened so far. Thus, the urn is updated to Xn+1 = Xn + �Xn.

In many applications, the numbers Xnj and ξij are integers, but that is not necessary; it has
been noted several times that the Pólya urn process is well-defined also for real Xni and ξij,
with probabilities for the different replacements still given by (2.1); see e.g. [6], [8, p. 126],
[19, Remark 4.2], [20, Remark 1.11], and [29], and the earlier [22] for the related case of
branching processes; the ‘number of balls’ Xni may thus be any non-negative real number.
(This can be interpreted as the amount (mass) of colour i in the urn, rather than the number
of discrete balls.) The replacements ξij are thus random real numbers. We allow them to be
negative, meaning that balls may be subtracted from the urn. However, we always assume that
X0 and the random vectors ξi are such that, for every n � 0, a.s.

each Xni � 0 and
∑

i

aiXni > 0, (2.2)

so that (2.1) really gives meaningful probabilities (and the process does not stop due to lack
of balls to be removed). An urn with such initial conditions and replacement rules is called
tenable.
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Remark 2.1. A sufficient condition for tenability, which often is assumed in other papers
(sometimes with simple modifications), is that all ξij and X0i are integers with ξij � 0 for j �= i
and ξii �−1 (this means that we may remove the drawn ball but no other ball), and further-
more, for example,

∑
j ajξij � 0 a.s. (meaning that the total activity never decreases); then the

urn is tenable for any X0 with non-zero activity. This is satisfied in most applications we know
of, but not all; see Remark 7.1 for a different example. We shall not assume this condition in
the present paper, unless explicitly stated.

Remark 2.2. In all applications that we know of, each ξi is a discrete random vector, i.e. it
takes only a countable (usually a finite) number of different values. This is not necessary,
however; the results below hold also if, e.g., some ξij is continuous.

We assume, for simplicity, that the initial composition X0 is deterministic.

Remark 2.3. The results are easily extended to the case of random X0 by conditioning on X0,
but that may require some extra conditions or minor modifications in some of the statements,
which we leave to the reader.

The Pólya urn is balanced if ∑
j

ajξij = b > 0 (2.3)

(a.s.) for some constant b and every i. In other words, the added activity after each draw is
fixed (non-random and not depending on the colour of the drawn ball). This implies that the
denominator in (2.1) (which is the total activity in the urn) is deterministic for each n; see
(4.9). This is a significant simplification, and is assumed in many papers on Pólya urns. (One
exception is [19], which is based on embedding in a continuous-time branching process and
stopping at a suitable stopping time, following [3]; this method does not seem to easily give
information on moments and is not used in the present paper.)

Remark 2.4. We exclude the case b = 0, which is quite different; a typical example is a
Markov chain, regarded as an urn always containing a single ball.

We shall assume that the urn is tenable and balanced; this is sometimes repeated for
emphasis.

We also assume (2.9) below; as discussed in Remark 2.6 and Appendix A, this is a very
weak assumption needed to exclude some trivial cases allowed by our definition of tenable; by
Lemma A.1 it is sufficient to assume that every colour in the specification actually may occur
in the urn, which always can be achieved by eliminating any redundant colours.

Finally, in order to obtain moment results, we assume that the replacements have second
moments:

Eξ2
ij < ∞, i, j = 1, . . . , q. (2.4)

It follows that every Xn has second moments, so the covariance matrix Var (Xn) is finite for
each n.

Remark 2.5. In the tenable and balanced case, the assumption (2.4) is almost redundant. First,
although there might be negative values of ξij, we assume that the urn is tenable. Hence, given
any instance (x1, . . . , xq) of the urn that may occur with positive probability as some Xn, we
have ξij �−xj a.s. for every i and j such that aixi > 0. In particular, if every ai > 0, and every
colour may appear in the urn, then each ξij is bounded below. Furthermore, still assuming ai > 0
for each i, this and (2.3) implies that each ξij also is bounded above; hence ξij is bounded and
has moments of any order.
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2.2. Notation

We regard all vectors as column vectors. We use standard notation for (real or complex)
vectors and matrices (of sizes q and q × q, respectively), in particular ′ for transpose, ∗ for
Hermitian conjugate, and · for the standard scalar product; thus u · v = u′v for any vectors
u, v ∈Rq. We let ‖ ‖ denote the standard Euclidean norm for vectors, and the operator norm
(or any other convenient norm) for matrices.

Let a := (a1, . . . , aq)′ be the vector of activities. Thus, the balance condition (2.3) can be
written a · ξi = b.

The intensity matrix of the Pólya urn is the q × q matrix

A := (aj Eξji)
q
i,j=1. (2.5)

(Note that, for convenience and following [19], we have defined A so that the element (A)ij is
a measure of the intensity of adding balls of colour i coming from drawn balls of colour j; the
transpose matrix A′ is often used in other papers.) The intensity matrix A with its eigenvalues
and eigenvectors has a central role for asymptotical results.

Let σ (A) (the spectrum of A) be the set of eigenvalues of A.
We shall use the Jordan decomposition of the matrix A in the following form. There exists a

decomposition of the complex space Cq as a direct sum
⊕

λ Eλ of generalized eigenspaces Eλ,
such that A − λI is a nilpotent operator on Eλ; here λ ranges over the set σ (A) of eigenvalues
of A. (I is the identity matrix of appropriate size.) In other words, there exist projections Pλ,
λ ∈ σ (A), that commute with A and satisfy∑

λ∈σ (A)

Pλ = I, (2.6)

APλ = PλA = λPλ + Nλ, (2.7)

where Nλ = PλNλ = NλPλ is nilpotent. Moreover, PλPμ = 0 when λ �= μ. We let νλ � 0 be

the integer such that Nνλ

λ �= 0 but Nνλ+1
λ = 0. (Equivalently, in the Jordan normal form of A,

the largest Jordan block with λ on the diagonal has size νλ + 1.) Hence νλ = 0 if and only if
Nλ = 0, and this happens for all λ if and only if A is diagonalizable, i.e. if and only if A has
a complete set of q linearly independent eigenvectors. (In the sequel, λ will always denote an
eigenvalue. We may for completeness define Pλ = Nλ = 0 for every λ /∈ σ (A).)

The eigenvalues of A are denoted λ1, . . . , λq (repeated according to their algebraic multi-
plicities); we assume that they are ordered with decreasing real parts, Re λ1 � Re λ2 � . . . ,
and furthermore, when the real parts are equal, in order of decreasing νj := νλj . In particular, if
λ1 > Re λ2, then νj � ν2 for every eigenvalue λj with Re λj = Re λ2.

Recall that the urn is called small if Re λ2 � 1
2λ1 and large if Re λ2 > 1

2λ1; the urn is strictly
small if Re λ2 < 1

2λ1.
In the balanced case, by (2.5) and (2.3),

a′A =
( q∑

i=1

ai(A)ij

)
j
=

( q∑
i=1

aiajEξji

)
j
= (

ajE(a · ξj)
)

j = ba′; (2.8)

i.e., a′ is a left eigenvector of A with eigenvalue b. Thus b ∈ σ (A). We shall assume that,
moreover, b is the largest eigenvalue, i.e.,

λ1 = b. (2.9)
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Remark 2.6. In fact, (2.9) is a very weak assumption. For example, if each ξij � 0, then A is
a matrix with non-negative elements, and since the eigenvector a′ is non-negative, (2.9) is a
consequence of the Perron–Frobenius theorem. The same holds (by considering A + cI for a
suitable c > 0) under the assumption in Remark 2.1. Under our, more general, definition of
tenability, there are counterexamples (see Example A.1), but we show in Appendix A that they
are so only in a trivial way, and that we may assume (2.9) without real loss of generality.
(Of course, the proof of Lemma A.1, which uses Lemma 5.4, does not use the assump-
tion (2.9).)

We shall in our theorems furthermore assume that Re λ2 < λ1 (and often more), and thus
that λ1 = b is a simple eigenvalue. There are thus corresponding left and right eigenvectors u′

1
and v1 that are unique up to normalization. By (2.8), we may choose u1 = a. Furthermore, we
let v1 be normalized by

u1 · v1 = a · v1 = 1. (2.10)

Then the projection Pλ1 is given by
Pλ1 = v1u′

1. (2.11)

Consequently, in the balanced case, for any vector v ∈Rq,

Pλ1v = v1u′
1v = v1a′v = (a · v)v1. (2.12)

Remark 2.7. The dominant eigenvalue λ1 is simple, and Re λ2 < λ1 if, for example, the matrix
A is irreducible, but not in general. A simple counterexample is the original Pólya urn (see
Markov [26], Eggenberger and Pólya [13], and Pólya [28]), where each ball is replaced together
with b balls of the same colour (and every ai = 1); then A = bI and λ1 = · · · = λq = b. As
is well-known, the asymptotic behaviour is quite different in this case; in particular, Xn/n
converges in distribution to a non-degenerate distribution and not to a constant; see e.g. [28]
and [23].

Define also
P̂ :=

∑
λ �=λ1

Pλ = I − Pλ1 . (2.13)

Furthermore, define the symmetric matrix

B :=
q∑

i=1

aiv1iE
(
ξiξ

′
i

)
, (2.14)

and, if the urn is strictly small, noting that P̂ commutes with esA := ∑∞
k=0 (sA)k/k!, define

�I :=
∫ ∞

0
P̂esABesA′

P̂′e−λ1sds. (2.15)

This integral converges absolutely when the urn is strictly small, as can be seen from the proof
of Theorem 3.2, or directly because ‖P̂esA‖ = O

(
sν2 eRe λ2s

)
for s � 1, as is easily seen from

Lemma 5.1. (The integral is matrix-valued; the space of q × q matrices is a finite-dimensional
space and the integral can be interpreted componentwise.) See also Appendix B.

Unspecified limits are as n → ∞. As usual, an = O(bn) means that an/bn is bounded; here
an may be vectors or matrices and bn may be complex numbers; we do not insist that bn be
positive.

	x
 is the smallest integer greater than or equal to x.
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3. Main results

Our main results on asymptotics of mean and variance are the following. Proofs are given in
Section 6. As mentioned in the introduction, results of this type exist, mainly implicitly, in ear-
lier work. In particular, under similar (but not identical) assumptions, Theorem 3.1 is implicit
in Bai and Hu [7, Theorem 3.2], and its proof, and explicit in Pouyanne [29, Proposition 7.1];
Theorems 3.2 and 3.3 are implicit in Bai and Hu [6, 7].

Theorem 3.1. If the Pólya urn is tenable and balanced, and Re λ2 < λ1, then for n � 2,

EXn = (nλ1 + a · X0)v1 + O
(
nRe λ2/λ1 logν2 n

)
= nλ1v1 + O

(
nRe λ2/λ1 logν2 n + 1

)
= nλ1v1 + o(n).

(3.1)

In particular, if the urn is strictly small, i.e. Re λ2 < 1
2λ1, then

EXn = nλ1v1 + o
(
n1/2). (3.2)

Theorem 3.2. If the Pólya urn is tenable, balanced, and strictly small, i.e. Re λ2 < 1
2λ1, then

n−1 Var (Xn) → � := λ1�I . (3.3)

Theorem 3.3. If the Pólya urn is tenable, balanced, and small but not strictly small, i.e.
Re λ2 = 1

2λ1, then

(n log2ν2+1 n)−1 Var (Xn) → λ
−2ν2
1

(2ν2 + 1)(ν2!)2

∑
Re λ= 1

2 λ1

Nν2
λ PλBP∗

λ(N∗
λ)ν2 .

Remark 3.1. Under some additional assumptions (irreducibility of A, at least if we ignore
colours with activity 0, and, for example, the condition in Remark 2.1), [19, Theorems 3.22–
3.23 and Lemma 5.4], show that if the urn is small, then Xn is asymptotically normal, with the
asymptotic covariance matrix equal to the limit in Theorem 3.2 (Re λ2 < 1

2λ1) or Theorem 3.3

(Re λ2 = 1
2λ1). For example, in the strictly small case, n−1/2(Xn − nλ1v1)

d−→ N(0, �). Hence
(under these hypotheses), Theorems 3.1–3.3 can be summarized by saying that the mean and
(co)variances converge as expected in these central limit theorems.

We also obtain the following version of the law of large numbers for Pólya urns.
Convergence a.s. has been shown before under various assumptions, including the unbal-
anced case as well as time-inhomogeneous generalizations (see [4, Section V.9.3], [2], [8], [18,
Theorem 2.2], [19, Theorem 3.21], and [7, Theorem 2.2]), and is included here for complete-
ness and because our conditions are somewhat more general. The L2 result is in [29, Remark
7.1(2)].

Theorem 3.4. If the Pólya urn is tenable and balanced, and Re λ2 < λ1, then as n → ∞,
Xn/n → λ1v1 a.s. and in L2.

The asymptotic covariance matrix � in (3.3) is always singular, since, by (2.15), � = P̂�P̂′
and thus u′�u = u′P̂�P̂′u = 0 when P̂′u = 0, which happens when P′

λ1
u = u, i.e., when u is
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a multiple of the left eigenvector u1 = a. In the balanced case, this is easy to see: a · Xn is
deterministic and thus Var (a · Xn) = 0; hence a′�a = 0, since for any vector u, by (3.3),

n−1 Var (u · Xn) = n−1u′ Var (Xn)u → u′�u. (3.4)

With an extra assumption, this is the only case when the asymptotic variance u′�u vanishes
(cf. [19, Remark 3.19]). Let Ã be the submatrix of A obtained by deleting all rows and columns
corresponding to colours with activity ai = 0.

Theorem 3.5. Suppose that the Pólya urn is tenable, balanced, and strictly small, i.e. Re λ2 <
1
2λ1, and, furthermore, that Ã is irreducible. If u ∈R

q, then u′�u = 0 if and only if for every
n � 0, Var (u · Xn) = 0, i.e., u · Xn is deterministic.

Remark 3.2. If Ã is reducible, then, on the contrary, � is typically more singular. As an
extreme example, consider a ‘triangular’ urn with two colours, activities ai = 1, and deter-
ministic replacements ξ1 = (1, 0), ξ2 = (1 − λ, λ) for a real λ ∈ (0, 1) (starting with one ball of
each colour, say). Then A = (

1 1−λ
0 λ

)
. The eigenvalues are 1 and λ, so the urn is strictly small

if λ < 1
2 . However, v1 = (1, 0), and thus (2.14) yields B = ξ1ξ

′
1 = v1v′

1, and thus by (B.4) (or
a direct calculation) P̂B = 0, and thus � = �I = 0. Theorems 3.2 and 3.3 are still valid, but
say only that the limit is 0. In fact, in this example, the proper normalization is nλ: it follows

from [20, Theorem 1.3(v)] that n−λXn2 = n−λ(n + 2 − Xn1)
d−→ W for some non-degenerate

(and non-normal) random variable W. Moreover, calculations similar to those in Section 6
show that EXn2 ∼ c1nλ and Var Xn2 ∼ c2n2λ for some c1, c2 > 0, as shown earlier in [29,
Example 7.2(2)].

Remark 3.3. It is easily seen that Ã is irreducible if and only if v1i > 0 for every i with ai > 0.

4. Proofs, first steps

Let In be the colour of the nth drawn ball, let

�Xn := Xn+1 − Xn, (4.1)

and let
wn := a · Xn, (4.2)

the total weight (activity) of the urn. Furthermore, let Fn be the σ -field generated by
X1, . . . , Xn. Then, by the definition of the urn,

P
(
In+1 = j |Fn

) = ajXnj

wn
, (4.3)

and, consequently, recalling (2.5),

E
(
�Xn |Fn

) =
q∑

j=1

P
(
In+1 = j |Fn

)
Eξj = 1

wn

q∑
j=1

ajXnjEξj

= 1

wn

( q∑
j=1

(A)ijXnj

)
i
= 1

wn
AXn.

(4.4)

Define
Yn := �Xn−1 −E

(
�Xn−1 |Fn−1

)
. (4.5)
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Then Yn is Fn-measurable, and obviously,

E
(
Yn |Fn−1

) = 0 (4.6)

and, by (4.1), (4.5) and (4.4),

Xn+1 = Xn + Yn+1 + w−1
n AXn = (

I + w−1
n A

)
Xn + Yn+1. (4.7)

Consequently, by induction, for any n � 0,

Xn =
n−1∏
k=0

(
I + w−1

k A
)
X0 +

n∑
�=1

n−1∏
k=�

(
I + w−1

k A
)
Y�, (4.8)

where (as below) an empty matrix product is interpreted as I.
We now use the assumption that the urn is balanced, so a · �Xn = b, and thus by (4.1)–(4.2),

wn is deterministic with
wn = w0 + nb, (4.9)

where the initial weight w0 = a · X0. We define the matrix products

Fi,j :=
∏

i�k<j

(
I + w−1

k A
)
, 0� i � j, (4.10)

and write (4.8) as

Xn = F0,nX0 +
n∑

�=1

F�,nY�. (4.11)

As said in the introduction, we can regard the term F�,nY� as the real effect on Xn of the �th
draw, including the expected later indirect effects.

Taking the expectation, since EY� = 0 by (4.6) and the Fi,j and X0 are non-random, we find

EXn = F0,nX0. (4.12)

Hence, (4.11) can also be written

Xn −EXn =
n∑

�=1

F�,nY�. (4.13)

Consequently, the covariance matrix can be computed as

Var (Xn) :=E
(
(Xn −EXn)(Xn −EXn)′

)
=E

n∑
i=1

n∑
j=1

(
Fi,nYi

)(
Fj,nYj

)′ (4.14)

=
n∑

i=1

n∑
j=1

Fi,nE
(
YiY

′
j

)
Fj,n

′.

However, if i > j, then E
(
Yi |Fj

) = 0 by (4.6), and since Yj is Fj-measurable, we have

E
(
YiY

′
j

) =E
(
E(Yi |Fj)Y ′

j

) = 0. (4.15)
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Taking the transpose we see that E
(
YiYj

′) = 0 also when i < j. Hence, all non-diagonal terms
vanish in (4.14), and we find

Var (Xn) =
n∑

i=1

Fi,nE
(
YiYi

′)F′
i,n. (4.16)

The formulas (4.12) and (4.16) form the basis of our proofs, and it remains mainly to analyse
the matrix products Fi,j.

Remark 4.1. The formula (4.8) holds for general Pólya urns, also when they are not balanced.
However, in the general case, the total weights wk are random, and they are dependent on each
other and on the Y�, and it seems difficult to draw any useful consequences from (4.8); certainly
the arguments above fail because the Fi,j would be random.

Remark 4.2. As remarked by a referee, since Pλ1Y� = 0 by Lemma 6.1, we may also write
(4.13) as

Xn −EXn =
n∑

�=1

F�,nP̂Y� =
n∑

�=1

F̂�,nY�, (4.17)

where F̂i,j := P̂Fi,j = Fi,jP̂ = ∏
i�k<j (I + w−1

k Â) − Pλ1 with Â := P̂A. This could be used
instead of (4.13) to make another version of the proofs below; the two versions are very simi-
lar and essentially equivalent. (See [18] for a version essentially of this type.) The form (4.17)
has the advantage that we have eliminated the (large) deterministic part corresponding to Pλ1 ;
for example, assuming b = 1, for 1� �� n we obtain ‖F̂�,n‖ = O

(
(n/�)Re λ2 (1 + log (n/�))ν2

)
;

see Lemma 5.5. Nevertheless, we prefer to use Fi,j in the proofs below.

5. Estimates of matrix functions

In this section we derive some estimates of Fi,n; these are used in the next section together
with (4.16) to obtain the variance asymptotics. The estimates of Fi,n are obtained by standard
matrix calculus, including a Jordan decomposition of A. Similar estimates have been used in
several related papers, e.g. [18], [7], [31], and [19]. For completeness we nevertheless give
detailed proofs.

For notational convenience, we make from now on the simplifying assumption b = 1. (For
emphasis and clarity, we repeat this assumption in some statements; it will always be in force,
whether stated or not.) This is no loss of generality: we can divide all activities by b and
let the new activities be â := a/b; this defines the same random evolution of the urn, and we
have â · ξi = b/b = 1 for every i, so the modified urn is also balanced, with balance b̂ = 1.
Furthermore, the intensity matrix A in (2.5) is divided by b, so all eigenvalues λi are divided
by b, but their ratios remain the same; the projections Pλ remain the same while the nilpotent
parts Nλ are divided by b, and in both cases the indices are shifted; also, with the normalization
(2.10), u1 = a is divided by b while v1 is multiplied by b. It is now easy to check that λ1v1, B,
and λ1�I are invariant, and thus the theorems all follow from the special case b = 1. By the
assumption (2.9) (see Remark 2.6 and Appendix A), we thus have λ1 = 1.

Note that (4.9) now becomes

wn = n + w0. (5.1)
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Note also that (4.10) can be written Fi,j = fi,j(A), where 0� i � j and fi,j is the polynomial

fi,j(z) :=
∏

i�k<j

(
1 + w−1

k z
) =

∏
i�k<j

wk + z

wk
=

∏
i�k<j

k + w0 + z

k + w0

= 	( j + w0 + z)/	(i + w0 + z)

	( j + w0)/	(i + w0)
= 	( j + w0 + z)

	( j + w0)
· 	(i + w0)

	(i + w0 + z)
.

(5.2)

Recall that by the functional calculus in spectral theory (see e.g. [12, Chapter VII.1–3]),
we can define f (A) not only for polynomials f (z) but for any function f (z) that is analytic in a
neighbourhood of the spectrum σ (A). Furthermore, if K is a compact set that contains σ (A) in
its interior (for example a sufficiently large disc), then there exists a constant C (depending on
A and K) such that for every f analytic in a neighbourhood of K,

‖ f (A)‖� C sup
z∈K

| f (z)|. (5.3)

We shall use the functional calculus mainly for polynomials and the entire functions z �→ tz =
e(log t)z for fixed t > 0; in these cases, f (A) can be defined by a Taylor series expansion as was
done before (2.15). Note also that the general theory applies to operators in a Banach space;
we only need the simpler finite-dimensional case discussed in [12, Chapter VII.1].

We shall use the following formula for f (A), where f (m) denotes the mth derivative of f . (The
formula can be seen as a Taylor expansion; see the proof.)

Lemma 5.1. For any entire function f (λ), and any λ ∈ σ (A),

f (A)Pλ =
νλ∑

m=0

1

m! f (m)(λ)Nm
λ Pλ. (5.4)

Proof. This is a standard formula in the finite-dimensional case (see [12, Theorem VII.1.8]),
but we give for completeness a simple (and perhaps informative) proof when f is a polyno-
mial (which is the only case that we use, and which furthermore implies the general case by
[12, Theorem VII.1.5(d)]). We then have the Taylor expansion f (λ + z) = ∑∞

m=0
1

m! f (m)(λ)zm,
which can be seen as an algebraic identity for polynomials in z (the sum is really finite since
f (m) = 0 for large m), and thus

f (A)Pλ = f (λI + Nλ)Pλ =
∞∑

m=0

1

m! f (m)(λ)Nm
λ Pλ, (5.5)

where Nm
λ = 0 when m > νλ. �

Our strategy is to first show estimates for the polynomials fi,j(z) in (5.2) and then use these
together with (5.3) and (5.4) to show the estimates for Fi,j = fi,j(A) that we need.

Lemma 5.2.

(i) For every fixed i, as j → ∞,

fi,j(z) = jz
	(i + w0)

	(i + w0 + z)

(
1 + o(1)

)
, (5.6)

uniformly for z in any fixed compact set in the complex plane.
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(ii) As i, j → ∞ with i � j,
fi,j(z) = jzi−z(1 + o(1)

)
, (5.7)

uniformly for z in any fixed compact set in the complex plane.

Proof. Both parts follow from (5.2) and the fact that

	(x + z)

	(x)
= xz(1 + o(1)

)
, (5.8)

uniformly for z in a compact set, as x → ∞ (with x real, say), which is an easy and well-known
consequence of Stirling’s formula; see [27, 5.11.12]. (Note that 	(i + w0)/	(i + w0 + z) is an
entire function for any i � 0, since w0 > 0. 	( j + w0 + z)/	( j + w0) has poles, but for z in a
fixed compact set, this function is analytic when j is large enough.) �

For the derivatives f (m)
i,j (z) there are corresponding estimates.

Lemma 5.3. Let m � 0.

(i) For every fixed i � 0, as j → ∞,

f (m)
i,j (z) = jz(log j)m 	(i + w0)

	(i + w0 + z)
+ o

(
jz logm j

)
, (5.9)

uniformly for z in any fixed compact set in the complex plane.

(ii) As i, j → ∞ with i � j,

f (m)
i,j (z) =

( j

i

)z(
log

j

i

)m + o

(( j

i

)z(
1 + log

j

i

)m
)

, (5.10)

uniformly for z in any fixed compact set in the complex plane.

Proof. (i): Let gj(z) = j−zfi,j(z). Then, by (5.6),

gj(z) = 	(i + w0)

	(i + w0 + z)

(
1 + o(1)

) = O(1) as j → ∞, (5.11)

uniformly in each compact set, and thus by Cauchy’s estimates, for any �� 1,

g(�)
j (z) = O(1) as j → ∞, (5.12)

uniformly in each compact set. By Leibniz’s rule,

f (m)
i,j (z) = dm

dzm

(
jzgj(z)

) =
m∑

�=0

(
m

�

)
d�

dz�
jz · g(m−�)

j (z)

=
m∑

�=0

(
m

�

)
(log j)�jzg(m−�)

j (z),

(5.13)

and (5.9) follows by (5.11)–(5.12).
(ii): Similarly, for 1 � i � j, let hi,j(z) = (i/j)zfi,j(z). Then, by (5.7),

hi,j(z) = 1 + o(1) as i, j → ∞, (5.14)
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uniformly in each compact set, and thus by Cauchy’s estimates, for any �� 1,

h(�)
i,j (z) = d�

dz�

(
hi,j(z) − 1

) = o(1) as i, j → ∞, (5.15)

uniformly in each compact set. By Leibniz’s rule,

f (m)
i,j (z) = dm

dzm

(
( j/i)zhi,j(z)

) =
m∑

�=0

(
m

�

)
d�

dz�
( j/i)z · h(m−�)

i,j (z)

=
m∑

�=0

(
m

�

)(
log ( j/i)

)�
( j/i)zh(m−�)

i,j (z),

(5.16)

and (5.10) follows by (5.14)–(5.15). �
We now apply these estimates to Fi,j, noting that by Lemma 5.1,

Fi,jPλ = fi,j(A)Pλ =
νλ∑

m=0

1

m! f (m)
i,j (λ)Nm

λ Pλ. (5.17)

Lemma 5.4. If b = 1, then, for n� 2 and λ ∈ σ (A),

F0,nPλ = nλ logνλ n
	(w0)

νλ! 	(w0 + λ)
Nνλ

λ Pλ + o
(
nRe λ logνλ n

)
. (5.18)

Proof. By (5.17) and (5.9),

F0,nPλ =
νλ∑

m=0

1

m! f (m)
0,n (λ)Nm

λ Pλ = 1

νλ! f (νλ)
0,n (λ)Nνλ

λ Pλ +
νλ−1∑
m=0

O
(
nλ logm n

)
, (5.19)

which yields (5.18) by another application of (5.9). �

Lemma 5.5. If b = 1, then, for 1� i � j and λ ∈ σ (A),

Fi,jPλ = O
(
( j/i)Re λ(1 + log ( j/i))νλ

)
. (5.20)

More precisely, for any ν � νλ, as i, j → ∞ with i � j,

Fi,jPλ = 1

ν!
( j

i

)λ

logν
( j

i

)
Nν

λPλ + o
(( j

i

)Re λ

logν
( j

i

))
+ O

(( j

i

)Re λ(
1 + logν−1

( j

i

)))
. (5.21)

Proof. This is similar to the proof of Lemma 5.4. First, (5.20) follows directly from (5.17)
and (5.10).

For (5.21), note that the summation in (5.17) may be extended to m � ν, since Nm
λ = 0 when

m > νλ. Then use (5.10) for each term m = ν. �
Lemma 5.6. If Re λ2 < λ1 = b = 1, then for 0 � i � j,

Fi,jPλ1 = fi,j(λ1)Pλ1 = j + w0

i + w0
Pλ1 . (5.22)
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Proof. Since λ1 thus is assumed to be a simple eigenvalue, νλ1 = 0. (Alternatively, see
Lemma A.1.) Hence, (5.17) yields Fi,jPλ1 = fi,j(λ1)Pλ1 . Furthermore, (5.2) yields

fi,j(λ1) = fi,j(1) = j + w0

i + w0
, (5.23)

and (5.22) follows. �
Lemma 5.7. For any fixed x ∈ (0, 1], as n → ∞,

F	xn
,n → x−A. (5.24)

Proof. Let K be a compact set containing σ (A) in its interior. As n → ∞, by (5.7),

f	xn
,n(z) =
( n

	xn

)z(

1 + o(1)
) = x−z(1 + o(1)

) = x−z + o(1), (5.25)

uniformly for z ∈ K. Consequently, f	xn
,n(z) − x−z → 0 uniformly on K, and thus F	xn
,n −
x−A → 0 by (5.3). �
Lemma 5.8. There exist i0 and C such that if i0 � i � j � 2i, then ‖Fi,j‖−1 �C.

Proof. Again let K be a compact set containing σ (A) in its interior. By (5.7), we may choose
i0 such that if i0 � i � j, then | fi,j(z)|� 1

2 |( j/i)z| on K. If furthermore i � j � 2i, this implies

| fi,j(z)|� c on K, for some c > 0, and thus | f −1
i,j (z)|� c−1 on K. The result follows by (5.3).

(The condition j � 2i is not needed when σ (A) ⊂ {Rez > 0}, so we may assume Rez � 0 for
z ∈ K.) �

6. Completions of the proofs

Proof of Theorem 3.1. By (4.12) and (2.6),

EXn =
∑

λ∈σ (A)

F0,nPλX0. (6.1)

For each eigenvalue λ �= λ1, Lemma 5.4 shows that

F0,nPλX0 = O
(
nRe λ logνλ n

) = O
(
nRe λ2 logν2 n

)
. (6.2)

Furthermore, by (2.12),
Pλ1X0 = (a · X0)v1 = w0v1, (6.3)

and it follows from (5.22) that

F0,nPλ1X0 = n + w0

w0
Pλ1X0 = n + w0

w0
w0v1 = (n + w0)v1. (6.4)

The result (3.1) follows (when λ1 = 1) from (6.1), (6.2), and (6.4). �
Lemma 6.1. For every n, Pλ1Yn = 0.

Proof. Since the urn is balanced, a · �Xn = b is non-random, and thus, by (4.5),

a · Yn := a · �Xn−1 −E
(
a · �Xn−1 |Fn−1

) = b − b = 0. (6.5)

The result follows by (2.12). �
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Using (2.6), we can rewrite (4.16) as

Var (Xn) =
∑
λ

∑
μ

n∑
i=1

Fi,nPλE
(
YiYi

′)P′
μF′

i,n. (6.6)

For convenience, we define

Ti,n,λ,μ := Fi,nPλE
(
YiY

′
i

)
P′

μF′
i,n. (6.7)

Note that Lemma 6.1 implies Pλ1E(YiY ′
i ) =E(Pλ1YiY ′

i ) = 0 and thus also, by taking the trans-
pose, E(YiY ′

i )P
′
λ1

= 0. Hence Ti,n,λ,μ = 0 when λ = λ1 or μ = λ1, so these terms can be
dropped and (6.6) can be written

Var (Xn) =
∑
λ �=λ1

∑
μ�=λ1

n∑
i=1

Ti,n,λ,μ. (6.8)

We begin with a simple estimate of this sum. The same estimates are given in [7, Theorem 2.2]
under similar conditions.

Lemma 6.2. If λ1 = 1, then, for n � 2,

Var Xn =

⎧⎪⎪⎨
⎪⎪⎩

O
(
n
)
, Re λ2 < 1

2 ,

O
(
n log2ν2+1 n

)
, Re λ2 = 1

2 ,

O
(
n2Re λ2 log2ν2 n

)
, Re λ2 > 1

2 .

(6.9)

In particular, if λ2 < λ1 = 1, then

Var (Xn) = o
(
n2). (6.10)

Proof. It follows from (2.4) that E(YnY ′
n) = O(1). By combining this and Lemma 5.5, we

see that if λ and μ are two eigenvalues, then, for 1 � i � n,

Ti,n,λ,μ = Fi,nPλE
(
YiY

′
i

)
(Fi,nPμ)′ = O

(
(n/i)Re λ+Reμ(1 + log (n/i))νλ+νμ

)
. (6.11)

If Re λ + Reμ� 1, we note that this implies

Ti,n,λ,μ = O
(
(n/i)Re λ+Reμ logνλ+νμ n

)
, (6.12)

while if Re λ + Reμ < 1, we choose α with Re λ + Reμ < α < 1 and note that (6.11)
implies

Ti,n,λ,μ = O
(
(n/i)α

)
. (6.13)

By summing over i we obtain from (6.12) and (6.13) that

n∑
i=1

Ti,n,λ,μ =

⎧⎪⎪⎨
⎪⎪⎩

O
(
n
)
, Re λ + Reμ < 1,

O
(
n logνλ+νμ+1 n

)
, Re λ + Reμ = 1,

O
(
nRe λ+Reμ logνλ+νμ n

)
, Re λ + Reμ > 1.

(6.14)

The result (6.9) follows from (6.8) by summing (6.14) over the finitely many λ, μ ∈ σ (A) \ {λ1}
and noting that our estimates are largest for λ = μ = λ2. The simpler estimate (6.10) is an
immediate consequence. �
Lemma 6.3. If Re λ2 < λ1 = 1, then, as n → ∞,

E
(
YnY ′

n

) → B − v1v′
1. (6.15)
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Hence, for any eigenvalue λ �= λ1,

PλE
(
YnY ′

n

) → PλB. (6.16)

Proof. By (4.5) and (4.4), Yn+1 = �Xn − w−1
n AXn, with E(Yn+1 |Fn) = 0 by (4.6). Hence,

E
(
Yn+1Y ′

n+1 |Fn
) =E

(
�Xn(�Xn)′ |Fn

) − w−2
n AXn(AXn)′ (6.17)

and thus

E
(
Yn+1Y ′

n+1

) =E
(
�Xn(�Xn)′

) − w−2
n AE

(
XnX′

n

)
A′. (6.18)

By the definition of the urn and (4.3),

E
(
�Xn(�Xn)′ |Fn

) =
q∑

j=1

P
(
In+1 = j |Fn

)
E
(
ξjξ

′
j

) =
q∑

j=1

ajXnj

wn
E
(
ξjξ

′
j

)
,

and thus, using (5.1) and Theorem 3.1, and recalling (2.14), as n → ∞,

E
(
�Xn(�Xn)′

) =
q∑

j=1

ajEXnj

n + w0
E
(
ξjξ

′
j

) →
q∑

j=1

ajv1jE
(
ξjξ

′
j

) = B. (6.19)

Furthermore, by (6.10) and Theorem 3.1 again,

n−2
E
(
XnX′

n

) = n−2 Var (Xn) + n−2(EXn)(EXn)′ → 0 + v1v′
1. (6.20)

Consequently, by (6.18), (6.19), and (6.20), and recalling that wn/n → 1 by (5.1) and Av1 =
λ1v1 = v1,

E
(
Yn+1Y ′

n+1

) → B − Av1v′
1A′ = B − v1v′

1. (6.21)

This proves (6.15), and (6.16) follows from noting that Pλv1 = PλPλ1v1 = 0 when λ �= λ1. �
Proof of Theorem 3.2. Let λ, μ ∈ σ (A) \ {λ1}, and note that, by our assumption,

Re λ, Reμ�Re λ2 < 1
2λ1 = 1

2 . Write the inner sum in (6.8) as an integral:

1

n

n∑
i=1

Ti,n,λ,μ =
∫ 1

0
T	xn
,n,λ,μdx. (6.22)

For each fixed x ∈ (0, 1], by Lemmas 5.7 and 6.3,

T	xn
,n,λ,μ = F	xn
,nPλE
(
Y	xn
Y ′	xn


)
P′

μF′	xn
,n
→ x−APλBP′

μx−A′
.

(6.23)

Furthermore, choose some α ∈ [0, 1) such that Re λ2 < 1
2α. Then (6.13) applies and yields, for

some C < ∞,

T	xn
,n,λ,μ �C(n/	xn
)α � Cx−α, (6.24)
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which is integrable on (0,1]. Thus, Lebesgue’s theorem on dominated convergence applies to
(6.22) and yields, by (6.23) and the change of variables x = e−s,

1

n

n∑
i=1

Ti,n,λ,μ →
∫ 1

0
x−APλBP′

μx−A′
dx =

∫ ∞

0
esAPλBP′

μesA′
e−sds.

Hence, (6.8) and the definition (2.15) yield

1

n
Var Xn = 1

n

∑
λ �=λ1

∑
μ�=λ1

n∑
i=1

Ti,n,λ,μ →
∫ ∞

0
esAP̂BP̂′esA′

e−sds = �I,

showing (3.3). �
Proof of Theorem 3.3. As in the proof of Theorem 3.2, we use (6.8) and consider the sum∑n
i=1 Ti,n,λ,μ for two eigenvalues λ, μ ∈ σ (A) \ {λ1}. By assumption, Re λ + Reμ� 2Re λ2 =

1, and if Re λ + Reμ < 1, then
∑n

i=1 Ti,n,λ,μ = O(n) by (6.14). Hence we only have to consider
the case Re λ + Reμ = 1, i.e., Re λ = Reμ = 1

2 = Re λ2. In particular, νλ, νμ � ν2.
In this case, as in (6.22), we transform the sum into an integral, but this time in a somewhat

different way. Using the change of variables x = ny = ey log n, we have

n∑
i=1

Ti,n,λ,μ = T1,n,λ,μ +
∫ n

1
T	x
,n,λ,μdx

= T1,n,λ,μ +
∫ 1

0
T	ny
,n,λ,μny log n dy.

(6.25)

Hence, since T1,n,λ,μ = O
(
n log2ν2 n

)
by (6.12),

(
n log2ν2+1 n

)−1
n∑

i=1

Ti,n,λ,μ = o(1) +
∫ 1

0
ny−1(log n)−2ν2T	ny
,n,λ,μdy. (6.26)

Fix y ∈ (0, 1). Then, by (5.21),

F	ny
,nPλ = 1

ν2!
(

n

	ny

)λ

logν2

(
n

	ny

) (

Nν2
λ Pλ + o(1)

)
= 1

ν2!n(1−y)λ((1 − y) log n
)ν2

(
Nν2

λ Pλ + o(1)
)
,

(6.27)

and similarly for μ.
Recall the assumption Re λ + Reμ = 1, and let τ := Imλ + Imμ, so λ + μ = 1 + iτ . Then,

by (6.7), (6.27), and (6.16),

ny−1(log n)−2ν2T	ny
,n,λ,μ

= 1

(ν2!)2 ni(1−y)τ (1 − y)2ν2Nν2
λ PλB

(
Nν2

μ Pμ

)′ + o(1). (6.28)

Moreover, by (6.12), uniformly for y ∈ (0, 1] and n � 2,

ny−1(log n)−2ν2T	ny
,n,λ,μ = O
(
(n/	ny
)ny−1) = O(1). (6.29)
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Hence the error term o(1) in (6.28) is also uniformly bounded, and we can apply dominated
convergence to the integral of it, yielding∫ 1

0
ny−1(log n)−2ν2T	ny
,n,λ,μdy

= 1

(ν2!)2

∫ 1

0
ni(1−y)τ (1 − y)2ν2dy · Nν2

λ PλB
(
Nν2

μ Pμ

)′ + o(1). (6.30)

In the case τ = 0, i.e., μ = λ, the integral on the right-hand side of (6.30) is
∫ 1

0 (1 − y)2ν2dy =
(2ν2 + 1)−1. Furthermore, in this case, Pμ = Pλ = Pλ and thus P′

μ = P∗
λ, and similarly N′

μ =
N∗

λ . Hence, (6.31) yields∫ 1

0
ny−1(log n)−2ν2T	ny
,n,λ,λdy = 1

(2ν2 + 1)(ν2!)2
Nν2

λ PλBP∗
λ(N∗

λ)ν2 + o(1). (6.31)

On the other hand, if τ �= 0, then, with u = 1 − y,∫ 1

0
ni(1−y)τ (1 − y)2ν2dy =

∫ 1

0
ei(τ log n)uu2ν2du → 0 (6.32)

as n → ∞, and thus |τ log n| → ∞, by an integration by parts (or by the Riemann–Lebesgue
lemma). Hence, when μ �= λ, (6.30) yields∫ 1

0
ny−1(log n)−2ν2T	ny
,n,λ,μdy = o(1). (6.33)

We saw in the beginning of the proof that we can ignore the terms in (6.8) with Re λ < 1
2

or Reμ < 1
2 , and by (6.26) and (6.33), we can also ignore the case Re λ = Reμ = 1

2 but μ �= λ.
Hence only the case μ = λ with Re λ = 1

2 remains in (6.8), and the result follows by (6.26)
and (6.33). �

Proof of Theorem 3.4. By (6.10),

E‖Xn/n −EXn/n‖2 = n−2
E‖Xn −EXn‖2 =

q∑
i=1

n−2 Var (Xni) → 0,

and EXn/n → v1 by Theorem 3.1. Hence, E‖Xn/n − v1‖2 → 0, which is the claimed conver-
gence in L2.

Moreover, if we fix ε ∈ (0, 1
2 ) such that Re λ2 < 1 − ε, then the same argument shows, using

(6.9) and (6.1)–(6.4), that, more precisely,

E‖Xn − (n + w0)v1‖2 = O
(
n2−2ε

)
. (6.34)

Let N � 1. By (4.11) and the definition (4.10), for any n �N,

Fn,NXn = F0,NX0 +
n∑

�=1

F�,NY�. (6.35)

Moreover, by (4.6), Yn is a martingale difference sequence, and thus so is Fn,NYn, for n � N.
Hence, (6.35) shows that Fn,NXn, n �N, is a martingale, and thus

Fn,NXn =E
(
XN |Fn

)
, n� N. (6.36)
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By Lemma 5.6,

Fn,Nv1 = Fn,NPλ1v1 = N + w0

n + w0
v1,

and thus (6.36) implies

Fn,N
(
Xn − (n + w0)v1

) =E
(
XN − (N + w0)v1 |Fn

)
, n � N. (6.37)

Hence, by Doob’s inequality (applied to each coordinate) and (6.34),

E sup
n�N

‖Fn,N
(
Xn − (n + w0)v1

)‖2 � 4E‖XN − (N + w0)v1‖2 = O
(
N2−2ε

)
. (6.38)

It follows, using Lemma 5.8, that if N � 2i0, then

E sup
N/2�n�N

‖(Xn − (n + w0)v1
)
/n‖2 = O

(
N−2ε

)
. (6.39)

This holds trivially for smaller N as well, since each Xn ∈ L2 and thus the left-hand side of
(6.41) is finite for each N. Consequently, taking N = 2k and summing,

E

∞∑
k=1

sup
2k−1�n�2k

‖(Xn − (n + w0)v1
)
/n‖2 < ∞. (6.40)

Consequently, ‖(Xn − (n + w0)v1
)
/n‖ → 0 a.s., and thus Xn/n

a.s.−→ v1. �
Proof of Theorem 3.5. If Var (u · Xn) = 0 for every n, then u′�u = 0 by (3.4).
For the converse, assume that u′�u = 0. Then, by (3.3) and (2.15),

0 = u′�Iu =
∫ ∞

0
u′P̂esABesA′

P̂′u e−λ1sds. (6.41)

The integrand is a continuous function of s � 0, and non-negative since B is non-negative
definite by (2.14). Hence, the integrand vanishes for every s � 0. In particular, taking s = 0 we
obtain, using (2.14) again,

0 = u′P̂BP̂′u =
q∑

i=1

aiv1iu′P̂E(ξiξ
′
i )̂P′u

=
q∑

i=1

aiv1iE
(
u′P̂ξi(u′P̂ξi)′

) =
q∑

i=1

aiv1iE
(
u′P̂ξi

)2
,

(6.42)

noting that u′P̂ξi is a scalar. Each term is non-negative, and thus each term is 0. If i is such that
ai > 0, then it follows from the assumption that Ã is irreducible that v1i > 0, and hence (6.42)
yields E(u′P̂ξi)2 = 0 and thus u′P̂ξi = 0 a.s. Furthermore, since the urn is balanced, by (2.12),

Pλ1ξi = (a · ξi)v1 = bv1. (6.43)

Hence, for every i with ai > 0,

u · ξi = u · (P̂ + Pλ1

)
ξi = 0 + u · (bv1) = bu · v1. (6.44)
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This is independent of i, and thus, for every n, a.s.,

u · �Xn = bu · v1. (6.45)

Consequently, a.s.,
u · Xn = u · X0 + nbu · v1 (6.46)

and thus u · Xn is deterministic. �

7. Examples

Pólya urns have been used for a long time in various applications, for example to study
fringe structures in various random trees; see e.g. [5], [2], and [11]. Some recent examples are
given in [15], where, in particular, the number of two-protected nodes in a random m-ary search
tree is studied for m = 2 and m = 3 using suitable Pólya urns with 5 and 19 types, respectively,
and it is shown that if this number is denoted by Yn (m = 2) or Zn (m = 3) for a search tree with
n keys, then

Yn − 11
30 n√

n
d−→ N

(
0,

29

225

)
, (7.1)

Zn − 57
700 n√
n

d−→ N

(
0,

1692302314867

43692253605000

)
. (7.2)

(The binary case (7.1) was shown earlier by Mahmoud and Ward [25] using other methods.)
The urns are strictly small; in both cases λ1 = 1 and λ2 = 0, with ν2 = 0, and Theorems 3.1
and 3.2 yield, using the calculations in [15] (see Remark 3.1),

EZn = 57

700
n + O(1), (7.3)

Var Zn = 1692302314867

43692253605000
n + o(n), (7.4)

together with corresponding results for Yn. (The results for Yn were previously shown in
Mahmoud and Ward [25], where exact formulas for the mean and variance of Yn were given.)

Furthermore, [15] also studies the numbers of leaves and one-protected nodes in a random
m-ary search tree using a similar but simpler urn. (For m = 2 this was done already by Devroye
[11].) For 2 �m � 26, this is a strictly small urn, and again the results in Section 3 yield
asymptotics of mean and variance.

See [16] for further similar examples.

Remark 7.1. As mentioned above, the urn used to show (7.1) has five types, corresponding to
five different small trees. Drawing a ball corresponds to adding a node to a (randomly chosen)
gap in the corresponding tree; this may cause the tree to break up into several smaller trees.
The five types have 4, 3, 2, 1, and 0 gaps, respectively, and these numbers are their activi-
ties. Moreover, for type 2, the gaps are not equivalent, which makes the replacement for this
type random. (We have ξ2 = (1, −1, 0, 0, 0) with probability 1/3 and ξ2 = (0, 0, 0, 1, 0) with
probability 2/3; see [15].)

A different, essentially equivalent, approach is to instead consider as types the different
gaps in the different trees; this yields five new types that we denote by 1, 2A, 2B, 3, 4. The

https://doi.org/10.1017/apr.2020.38 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.38


1244 S. JANSON

transition from the old urn to the new is a simple linear transformation: each old ball of type
1 is replaced by four new balls of type 1, which we write as 1 → 4 · 1, and similarly 2 →
2A + 2 · 2B, 3 → 2 · 3, 4 → 4, while balls of type 5 (which has activity 0) are ignored. This
yields a new Pólya urn, where all types have activity 1. In the new urn, all replacements are
deterministic, which sometimes is an advantage, but on the other hand, replacements now
may involve subtractions. For example, in the original urn, ξ1 = ( − 1, 1, 1, 0, 0), meaning
that if we draw a ball of type 1, it is discarded and replaced by one of type 2 and one of
type 3. In the new urn, this translates to ξ1 = ( − 4, 1, 2, 2, 0), meaning that we remove the
drawn ball together with three others of type 1, and then add 2A + 2 · 2B + 2 · 3. Even worse,
ξ2 = (4, −1, −2, 0, 0), meaning that if we draw a ball of type 2A, we remove it together with
two balls of type 2B, and add four balls of type 1. Nevertheless, by the construction, the urn is
obviously tenable in the sense of the present paper. This urn, with the gaps as types, thus is an
example of a tenable urn with subtractions that occur naturally in an application.

The Pólya urn for the ternary search tree with 19 types in [15] can similarly be translated
into an urn (with 29 types) using gaps as types, again with deterministic replacements, but
sometimes subtractions.

See also [15], where the transition to the corresponding urn with gaps was used for the
simpler urn used to study leaves; in that case there are no subtractions.

8. Further comments

The decomposition (4.11) and its consequence (4.16) explain some of the differences
between the small and large urns described in the introduction. Suppose again for convenience
that λ1 = 1. Then the term F�,nY� in (4.11), which is the (direct and indirect) contribution from
the �th draw, has a variance roughly (ignoring logarithmic factors when ν2 > 0) of the order
(n/�)2Re λ2 ; see Lemma 6.2 and its proof. For a large urn, this decreases rapidly with �, and∑

� �−2Re λ2 converges; thus the variance is dominated by the contribution from the first draws.
This strong long-term dependency leads to the a.s. limit results, and to the dependency of the
limit on the initial state X0.

On the other hand, for a strictly small urn, the sum of the variances is of the order n, but each
term is o(n) and is negligible, which explains why the first draws, and the initial state, do not
affect the limit distribution. In fact, for a component Xn,i with asymptotic variance (�)ii > 0,
we see that for any ε > 0, all but a fraction ε of Var Xn,i is explained by the draws with numbers
in [δn, n], for some δ = δ(ε) > 0. The long-term dependency is thus weak in this case.

The remaining case, a small urn with Re λ2 = 1/2, is similar to the strictly small case, but
the long-term dependency is somewhat stronger. If for simplicity we assume ν2 = 0, then the
contribution of the �th draw to Var (Xn) is of the order n/�, giving a total variance of order
n log n. Again, the first draws and the initial state do not affect the limit distribution, but in
order to explain all but a fraction ε of the variance, we have to use the draws in [nδ, n], for
some small δ > 0. (Cf. the functional limit theorem [19, Theorem 3.31] with different time
scales for strictly small and non-strictly small urns.)

Cf. also [19, Remark 4.3], where a similar argument is made using the corresponding
continuous-time branching process.

Appendix A. The largest eigenvalue

We have seen in (2.8) that for a balanced urn, b is an eigenvalue of A, with a non-negative
left eigenvector a.
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In typical applications, b is the largest eigenvalue λ1. Before proceeding, let us note that
this is not always true.

Example A.1. As a counterexample, consider an urn with three colours, with activities 1,
and the (deterministic) replacements ξ1 = (1, 2, 0), ξ2 = (2, 1, 0), ξ3 = ( − 1, 0, 4). The urn is
balanced, with b = 3, and if we start with X0 = (1, 0, 0), the urn is tenable. Nevertheless, the
largest eigenvalue λ1 = 4 > b. Of course, the reason is that the urn never will contain any ball
of colour 3, so this ought to be treated as an urn with just colours 1 and 2. (If there is any ball
of colour 3, the urn is not tenable.)

Example A.1 is obviously a silly counterexample, but it shows that we need some extra
assumption to exclude such trivialities. We have the following result, which shows that if we
only use colours that actually can occur, then λ1 = b holds (or, at least, may be assumed) and
ν1 = 0.

Lemma A.1. If the Pólya urn is tenable and balanced, and moreover every colour has a
non-zero probability of ever appearing in the urn, then Re λ� b for every λ ∈ σ (A), and,
furthermore, if Re λ = b then νλ = 0. We may thus assume λ1 = b.

Proof. As in Section 5, we may and shall assume that b = 1.
Suppose that λ ∈ σ (A). By (4.12) and Lemma 5.4,

PλEXn = PλF0,nX0 = F0,nPλX0

= nλ logνλ n
	(w0)

νλ! 	(w0 + λ)
Nνλ

λ PλX0 + o
(
nRe λ logνλ n

)
.

(A.1)

On the other hand, by our assumption (2.4), E‖ξi‖ < ∞ for each i, and thus E‖�Xn‖�
maxi E‖ξi‖ < ∞ and therefore ‖EXn‖�E‖Xn‖ = O(n). Hence,

PλEXn = O(n). (A.2)

Suppose now that either Re λ > 1, or Re λ = 1 and νλ > 0. Then (A.1) and (A.2) yield the
desired contradiction unless

Nνλ

λ PλX0 = 0. (A.3)

Moreover, if we run the urn for k steps and regard Xk as a new starting position (conditioning
on Xk), then the resulting urn is a.s. tenable; hence the argument just given shows that

Nνλ

λ PλXk = 0 (A.4)

a.s. for every k � 0. Hence, also Nνλ

λ Pλ�Xk = 0 a.s. If j is any colour with aj > 0, then, by
assumption, there exists a k such that P(Xk,j > 0) > 0, and thus with positive probability Ik+1 =
j and then �Xk is a copy of ξj. Consequently, if aj > 0 then

Nνλ

λ Pλξj = 0 (A.5)

a.s., and thus
Nνλ

λ PλEξj = 0. (A.6)

In other words, for every j,
Nνλ

λ Pλ

(
ajEξj

) = 0. (A.7)
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However, by (2.5), the jth column of A is ajEξj. Consequently, (A.7) is equivalent to

Nνλ

λ PλA = 0. Since PλA = λPλ + Nλ by (2.7), and Nνλ+1
λ = 0, this yields

0 = Nνλ

λ PλA = λNνλ

λ Pλ + Nνλ+1
λ = λNνλ

λ (A.8)

and thus λ = 0, which contradicts the assumption on λ.
Consequently, Re λ� 1 = b for every λ ∈ σ (A), and since b ∈ σ (A), Re λ1 =

maxλ∈σ (A) Re λ = b. We have not ruled out the possibility that there are other eigenval-
ues λ with Re λ = b (see Remark A.2 below), but even if this should happen, we have shown
that they all have νλ = 0, so we are free to choose λ1 = b. �
Remark A.1. As noted in Remark 2.2, the eigenvalue λ1 = b may be multiple. Lemma A.1
shows that ν1 := νλ1 = 0 also in this case.

Remark A.2. Lemma A.1 is not completely satisfactory since it does not rule out the possi-
bility that besides b, there is also some complex eigenvalue λ = b + it with t �= 0. We do not
believe that this is possible, but we do not know a proof for a general tenable urn under our
assumptions.

Appendix B. A note on (2.15)

In the balanced case, by (2.12) and (2.3), a.s.,

Pλ1ξi = (a · ξi)v1 = bv1 = λ1v1, (B.1)

and thus, by (2.14) and (2.5),

Pλ1B =
q∑

i=1

aiv1iE
(
Pλ1ξiξ

′
i

) =
q∑

i=1

aiv1iλ1v1E
(
ξ ′

i

) = λ1v1

( q∑
i=1

aiv1iEξij

)′
j

= λ1v1

( q∑
i=1

(A)jiv1i

)′
j
= λ1v1

(
Av1

)′ = λ2
1v1v′

1.

(B.2)

Since B is symmetric, also BP′
λ1

= (Pλ1B)′ = λ2
1v1v′

1, and thus

Pλ1BP′
λ1

= Pλ1B = BP′
λ1

= λ2
1v1v′

1 (B.3)

and, as a simple consequence, still in the balanced case,

P̂BP̂′ = P̂B = BP̂′ = B − λ2
1v1v′

1. (B.4)

Cf. Lemma 6.3 (where λ1 = 1).
Hence, in the balanced case, we can omit either P̂ or P̂′ in (2.15). (This was noted empir-

ically by Axel Heimbürger and Cecilia Holmgren, in personal communication.) However, by
(B.4), we cannot omit both, nor even move both outside the integral, because esAv1 = eλ1sv1
and thus ∫ ∞

0
esAv1v′

1esA′
e−λ1sds =

∫ ∞

0
eλ1sv1v′

1ds, (B.5)

which diverges.
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