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We consider a one-dimensional stochastic model of sediment deposition in which the complete

time history of sedimentation is the sum of a linear trend and a fractional Brownian motion

wH (t) with self-similarity parameter H ∈ (0, 1). The thickness of the sedimentary layer as a

function of time, d(t), looks like the Cantor staircase. The Hausdorff dimension of the points

of growth of d(t) is found. We obtain the statistical distribution of gaps in the sedimentary

record, periods of time during which the sediments have been eroded. These gaps define

sedimentary unconformities. In the case H = 1/2 we obtain the statistical distribution of

layer thicknesses between unconformities and investigate the multifractality of d(t). We show

that the multifractal structures of d(t) and the local time function of Brownian motion are

identical; hence d(t) is not a standard multifractal object. It follows that natural statistics

based on local estimates of the sedimentation rate produce contradictory estimates of the

range of local dimension for d(t). The physical object d(t) is interesting in that it involves the

above anomalies, and also in its mechanism of fractality generation, which is different from

the traditional multiplicative process.

1 Introduction

A large fraction of the surface of the Earth is covered by a layer of sediments. These

sediments were usually deposited in shallow seas as tectonic subsidence was occurring.

Subsidence occurs over a long time scale so that we may assume that it occurs at a constant

velocity u. Sediment deposition is also affected by variations in sea level which we will

consider as a random process w(t) with zero mean value. It is standard practice to assume

that the sediments follow sea level. Therefore, the thickness of the sedimentary layer as a

function of time is given by ξ(t) = ut+w(t). There are periods when sediments exceed the

sea level. Then erosion occurs and all sediments above sea level are lost. There are thus

gaps in the sedimentary record and they occur on a world-wide basis. The major gaps

define the geological epochs, for example, the beginning and the end of the Cretaceous

period. These gaps also define sedimentary unconformities. At the end of an erosional

period the older rocks beneath the unconformity have very different physical properties

from the younger rocks above the unconformity. Sharp changes in the properties are
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easily seen in road cuts and are the interfaces that reflect seismic energy in seismic oil

exploration. The result of the deposition-erosion process is that the local stratigraphic

section of a sedimentary layer will consist of sediments not eroded during the whole time

interval T0. We assume that sediment deposition and erosion are fast processes compared

with the time scale of sea level variation. Then the sedimentary record can be described

in terms of the complete history of accumulation ξ(t) as follows:

d(t) = inf{ξ(s) : s > t}. (1.1)

Any point of growth t0 of d is a time episode of deposition represented in the

stratigraphic section and the value d(t0) is the thickness of the sedimentary layer at the

time t0. The functions d(t) and ξ(t) are schematically shown in Figure 1. Flat segments

of d(t), d(t) = constant, correspond to time gaps in the sedimentary record. Time gaps

alternate with periods during which sediments were not eroded. They will be called beds

or ε-beds in what follows, if they supplement gaps of size > ε on the t-axis. In that

case ε is treated as the resolution threshold of time gaps. The total duration of beds

measured in fractions of T0 has been called stratigraphic completeness, C . One important

observation (Sadler, 1981) is that C is a function of the chosen time scale, ε. The same

holds for the parameter R which controls the average rate of deposition. Sadler showed

that C ∝ ε1−D , R ∝ εD−1 when ε� T0, where the exponent D varies with the environment

of deposition in the range (0.3, 0.7). In other words, episodes of deposition represented

in the sedimentary record form a fractal set of box-dimension D ∈ (0.3, 0.7) (Turcotte,

1997). One can also ask the more difficult question about the multifractality (Mandelbrot,

1989) of a sedimentary record. Since geological data are quite noisy, the analysis of d(τ) is

preferably first based on suitable models because the traditional basis for multifractals like

stochastic cascade measures (Mandelbrot, 1989) seems to be unsuitable for sedimentation

processes.

Since the work of Kolmogorov (1949), the simplest probabilistic models of bed formation

were random walk models with discrete time (see Mizutani & Hattori, 1972; Schwarzacher,

1975; Dacey, 1979; Tipper, 1983; Thompson, 1984). Strauss Sadler (1989) extended this

class of models to the case of continuous time assuming ξ(t) = max(0, ut+ σw(t)), t > 0,

where w(t) is a standard Wiener process and the diffusion parameter σ is interpreted as

the unsteadiness of the sedimentation process. Strauss & Sadler (1989) found for this

model the distribution of the sedimentation rate,

R(s) = [d(t+ s)− d(t)]/s,
and showed that the conditional mean of R(s) given R(s) > 0 is proportional to s−0.5,

s� T0, corresponding to the dimension D = 1/2.

As mentioned above, the range of observed D is broad enough, (0.3, 0.7). For this reason

Pelletier & Turcotte (1997) suggested using the same model where w(t) is to be replaced

with a fractional Brownian motion wH (t) or, in other words,

ξ(t) = max(0, ut+ σwH (t)), t > 0, (1.2)

where wH (t) is a Gaussian process with zero mean and the structure function

E|wH (t+ s)− wH (t)|2 = |s|2H, 0 < H < 1.
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The quantity H is the self-similarity parameter for wH (t). This means that the scale

transformation |a|−HwH (at) does not affect the stochastic nature of wH (t). When H = 1/2,

the fractional Brownian motion becomes identical with the Wiener process. Pelletier

& Turcotte (1997) concluded that the value H = 1/4 is the most suitable for fluvial

depositional environments. These authors did some numerical calculations to show for

the case H = 1/4 that

(a) R(ε) ∝ ε−(1−H);

(b) the bed-thickness distribution is of the exponential type;

(c) the time gap distribution falls off for large values faster than the exponential distri-

bution.

Below we prove that the points of growth of d(t) have the dimension H and we refine

statement (c) in quantitative terms. In the case H = 1/2 for d(t) we discuss statistics of

the multifractal type, which are reasonable for applications. The results essentially rely

on the work of the first author concerned with the study of zeroes of Brownian motion

(Molchan, 1994, 1995) and of the maximum of fractional Brownian motion (Molchan,

1999).

2 Fractality of deposition episodes

We now discuss the fractal properties of the stratigraphic section d(t) for the model (1.1,

1.2), assuming that the history of the sedimentary record is long, T0 → ∞. Our first

statement shows that curve d(t) looks like the Cantor staircase, i.e. d(τ) is a continuous

nondecreasing function with a fractal set of points of growth. The proof is based on

nontrivial asymptotics for the distribution of the position of the maximum of fractional

Brownian motion in the interval [0,1], (Molchan, 1999).

Statement 1 For the model (1.1, 1.2) the episodes of deposition represented in the sedimentary

record form a fractal set S of Hausdorff dimension dim S = H .

Proof For ti ∈ S , d(t1)− d(t2) = ξ(t1)− ξ(t2). Taking into account that ξ(t) = ut+σwH (t)

is a Gaussian process and E|wH (t) − wH (s)|2 = |t − s|2H , it is easy to show that a.s.

|∆ξ(t)| < C|∆t|H−ε for any ε > 0 and t ∈ [0, T ] where C = C(ε, T , ω) is a finite random

constant. Hence |∆d(t)| < C|∆t|H−ε a.s.. With the help of Frostman’s lemma (e.g. see

Falconer, 1990) we obtain that dim S > H − ε, ε > 0, i.e. dim S > H .

Let us prove the converse. Since wH (t) is self-similar, it is sufficient to show that

dimS∗ 6 H for S∗ = S ∩ [0, 1].

Let {Bi} be the covering of [0,1] by means of δ-intervals of type (a, a + δ) with

overlapping of size δ/2. Select such intervals B′i which have non-empty intersection with

S . Then ∪B′i is the covering of S∗ and

E
∑ |B′i |H+ε 6 δH+ε · p · 2/δ,

where p = maxE 1Bi∩S . If p < δ1−H−ρ, ρ < ε, then

E
∑ |B′i |H+ε 6 δε

′
, δ ↓ 0, ε′ = ε− ρ
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and by the Chebyshev inequality we get P (
∑ |B′i |H+ε > δε

′/2) 6 δε
′/2. Setting δ = 2−n and

using the Borel–Cantelli lemma we have a.s.∑ |B′i |H+ε < δε/2, n > N(ω),

where N depends upon the realization of wH . Hence dim S 6 H+ε or dim S 6 H , because

ε is an arbitrary positive constant.

To prove the desired upper bound, p < δ1−H−ρ, we have to show that

P (Aδ(a)) < δ1−H−ρ, 0 < a < 1, ρ < ε,

where Aδ(a) = {∃ t0 ∈ B = (a, a + δ) : ξ(t0) < ξ(t), ∀t > a + δ}. Taking into account that

wH (t)− wH (a)
d
= wH (t− a), where

d
= denotes equality for finite-dimensional distributions,

we have

P (Aδ(a)) = P (Aδ(0)) < P (Aξδ).

Here Aξδ = {∃ t0 ∈ (0, δ) : ξ(t0) < ξ(t), δ < t < 1}. The Gaussian measures Pξ and Pw
corresponding to the processes ξ(t) = ut + σwH (t) and w = σwH (t), 0 < t < 1, are

mutually absolutely continuous (Molchan & Golosov, 1969). Using the Cameron–Martin

formula for the Radon–Nikodim derivative Pξ(dw)/Pw(dw) = l(w) we have

P (Aξδ) = E 1Awδ l(w)

where the functional ln l(w) has a Gaussian distribution with mean m = −‖ϕ‖2/2 and

variance ‖ϕ‖2, ϕ = ut and ‖ · ‖ is the norm of the Hilbert space with the reproducing

kernel B(t, s) = σ2EwH (t)wH (s) that is

B(t, s) =
σ2

2
(|t|2H + |s|2H − |t− s|2H ), 0 < t, s < 1.

Using the Hölder inequality with indices p = (1− ρ)−1 and q = ρ−1 we get

P (Aξδ) < cρ[P (Awδ )]1−ρ

where cρ = (E[l(w)]1/ρ)ρ = exp{ 1
2

(ρ−1 − 1)‖ϕ‖2}. Note that

P (Awδ ) = P (∃ t0 ∈ (0, δ) : wH (t0) < wH (t), δ < t < 1) = P (τmin < δ)

where τmin is the position of the minimum of wH (t) on [0,1].

According to Molchan (1999), we have P (τmin < δ) < δ1−HLδ where Lδ is slowly

varying at the origin in the sense of Karamata. Therefore, p < cρ[δ
1−HLδ]

1−ρ < cρδ
1−H−ρ′

for any ρ′ > (1−H)ρ. Choosing a small enough ρ we can make ρ′ < ε. q

3 The distribution of time gaps

The time scale ε is a parameter in what follows. Time gaps of size > ε will be denoted ∆ε
(|∆ε| is the length of ∆ε). The complement of ε-gaps on the t-axis consists of intervals δε,

to be called ε-beds. The increments d(t) in δε, or ε-bed thickness, will be denoted as dε (see

Figure 1).

The numerical calculations of time gaps due to Pelletier & Turcotte (1997) furnish no

clue as to the distribution of |∆ε| for large values. The next statement shows that the tail
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Figure 1. A sketch of the sedimentary process: the complete history of accumulation ξ(t) (fine and

bold lines) and the sedimentary record d(t) (bold line). For the time resolution scale ε we show the

time gaps ∆ε, ε-beds δε and ε-bed thicknesses dε.

of the distribution of |∆ε| may fall off slower or faster as the case may be than does the

exponential distribution depending on H .

Statement 2 For the model (1.1, 1.2) the distribution of the gap ∆ε containing a point a > 0

has the following form:

lnP (|∆ε| > t|∆ε 3 a) = −0.5 [uσ−1 t1−H ]2c(t), (3.1)

where aH < c(t) < bH for t� 1; the thresholds aH and bH are given by the table

H 0.3 0.4 0.6 0.7

aH 0.08 0.14 0.35 0.53

bH 4.24 4.08 4.12 4.66

In the case H = 1/2 the unconditional distribution |∆ε| can be found exactly:

P (|∆ε| > t) = cε

∫ ∞
t

exp(−0.5(u/σ)2x) x−3/2 dx, t > ε (3.2)

' 2cε(σ/u)
2 exp(−0.5(u/σ)2t) t−3/2, t→∞,

where cε is a normalizing constant such as to make P (∆ε > ε) = 1.

Proof We are going to prove (3). The relation (4) is more conveniently discussed in the

next section. Let us consider the ε-gap ∆ε 3 a on the semiaxis t > 0 of the length ∆. We

are interested in the event A = {∆ > T }, where T > a.

The lower bound for P (A)

Let us fix the point t0 = a+ T (1 + ε), ε > 0, and define the following event:

B = {ξ(t) > ξ(t0), t ∈ (a, T + a)} =

= {wH (t)− wH (t0) > b(t0 − t), t ∈ (a, T + a)},
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where b = u/σ. Then B ⊂ A and P (A) > P (B). Now note that

wH (t)− wH (t0)
d
= THwH

(
t0 − t
T

)
.

Therefore, putting θ = T 1−H , we get

P (B) = P {wH (x) > bθx, x ∈ (ε, 1 + ε)}
= {wH (x)− wH (−ε) > bθ(x+ ε), x ∈ (0, 1)}.

Here we have used the stationary property of inrements of wH (t).

Decompose the Gaussian variable wH (−ε) in a sum of independent terms w⊥+w∧, where

w∧ = E(wH (−ε) |wH, t ∈ (0,∞)) is the best forecast of wH (−ε) based on {wH (τ), τ > 0}.
Therefore, w⊥ is independent of {w∧, wH (τ), τ ∈ (0, 1)}, so that for any ϕT > 0

P (B) > P (w⊥ > θb(1 + ε) + ϕT , w∧ + wH (x) > −ϕT , x ∈ (0, 1))

= Ψ (
θb(1 + ε) + ϕT

σ(ε)
)qT . (3.3)

The first factor above is P (w⊥ > θb(1 + ε) +ϕT ), and therefore can be expressed in terms

of the error function:

Ψ (x) =
1√
2π

∫ ∞
x

e−u2/2du ∼ 1√
2π
e−x2/2x−1, x→∞, (3.4)

and of the variance of w⊥: σ2
ε = Ew2⊥ = ε2Hs2H . Here, s2H is variance of the error of

the best forecast of wH (−1) based on {wH (t), t ∈ (0,∞)}:
s2H = Γ (1.5−H)/[Γ (0.5 +H)Γ (2− 2H)], (3.5)

where Γ is the gamma-function (e.g. see Molchan, 1997).

The second factor qT is

qT = P {w∧ + wH (τ) > −ϕT , τ ∈ (0, 1)} → 1, T →∞,
provided ϕT →∞. Choose ϕT = T (1−H) then the desired bound follows from (5,6):

P (A) > CT
1√
2π

exp

(
−1

2
T 2−2H b2 ρH,T

)
[T 1−H b ρ1/2

H,T ]−1, (3.6)

where CT ∼ 1, T →∞ and ρH,T ∼ (1 + ε)2 ε−2H/s2H = ρH , T →∞.

Now let us minimize ρH over the values of ε. We then get ε = H/(1−H) and

ρH = [(1−H)(1−H) HH sH ]−2. (3.7)

The upper bound of P (A)

If a gap ∆ε is such that |∆ε| > T and a ∈ ∆ε ⊂ (0,∞) then ∆ε ⊃ (a, T ). Thus, for any

δ > 0

P (A) 6 P (min
(a,T )

(ξ(t) > min
(T ,∞)

ξ(t)) =

= P ( min
(a−T ,0)

(wH (t) + bt) > min
(0,∞)

(wH (t) + bt)) 6

6 P ( min
(a−T ,0)

(wH (t) + bt) > −bTδ) + P (min
(0,∞)

(wH (t) + bt) < −bTδ) =

:= p1 + p2.
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Let 0 < ε < 1− a/T . Then

p1 < P (wH (−εT )− bεT > −bTδ) = Ψ (bT 1−H (ε− δ)ε−H ).

Let us estimate p2, using the property {wH (t)} d
= {−wH (t)}:

p2 <

∞∑
k=0

P

(
min
(0,T )

[wH (kT + τ) + bτ] < −bT (k + δ)

)
6

6
∞∑
k=0

P

(
max
(0,T )

wH (Tk + τ) > bT (k + δ)

)
.

Now we use the Fernique (1975) estimate for the distribution of the maximum of a

Gaussian process. In application to wH we have for all x >
√

5:

P

(
max
(0,T )

wH (Tk + τ) > xTH [(k + 1)H + cH ]

)
6 10

∫ ∞
x

e−u2/2du,

where

cH = (2 +
√

2)

∫ ∞
1

2−u2H du. (3.8)

Hence

p2 < 10
√

2π
∑
k>0

Ψ (bT 1−H (k + δ)((k + 1)H + cH )−1) <

< 10
√

2π
∑
k>0

Ψ

(
bT 1−H (k + δ)(k + 1)−H

1 + cH

)
.

As T →∞, the sum has the same order as the first term, i.e.

p2 6 10
√

2πΨ

(
bT 1−H δ

1 + cH

)
(1 + o(1)), T →∞.

To make the orders of p1 and p2 equal we require that (ε− δ)ε−H = δ/(1 + cH ), and that

this quantity have the maximum value in ε ∈ (0, 1− a/T ). The result is

δ

1 + cH
=

ε

1 + cH + εH
|ε=1− a

T
=

1

cH

(
1− O

( a
T

))
.

Consequently,

P (A) 6 CΨ

(
bT 1−H 1− εT

cH

)
, (3.9)

where εT → 0 as T →∞.

So, taking into account (3.6), (3.9) and (3.5), (3.7) and (3.8), one has

aH (1 + o(1)) < ln P (A) / [−0.5 (T 1−Hµ/σ)2] <

< bH (1 + o(1)), T →∞
where aH = c−2

H (see (3.8)) and bH = ρH (see (3.7)). The particular values of aH and bH
for H = 0.3− 0.7 are given by the table in the statement 2. q
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4 Distributions of ∆ε and dε: the case H = 1/2

The stochastic analysis of sediments is mostly concerned with the process d(t). However,

when H = 1/2, the inverse (continuous from the right) process τ(d) is a simpler object.

Let τ0 be the first moment of time that has remained in the sedimentary record. Speaking

formally, ξ(t) > ξ(τ0) for all t > τ0. In that case, the process τ̃(d) = τ(d) − τ0, d > 0, has

homogeneous independent increments whose distribution is given by the Laplace transform

E exp{−θ(τ̃(d+ x)− τ̃(x))} = exp{−duσ−2
√

1 + 2θ(σ/u)2 − 1}, (4.1)

(see, for instance, Exercise VII.3 in Bertoin, 1996).

From this we can derive the probability density for increments of τ̃(d):

P (τ̃(d+ x)− τ̃(x) ∈ dt)/dt = (2π)−1/2(d/σ)t−3/2 exp{−(ut− d)2/(2σ2t)}. (4.2)

This is the so-called ‘inverse Gaussian law’. Note that τ̃(d+x)− τ̃(x) is the period required

for generating a sedimentary layer d thick.

Following P. Levy (see Bertoin, 1996), we will describe a process with independent

increments in terms of time gaps to be observed in samples of τ(d). Let ∆i be a sequence

of time gaps of size > ε where d(t) = di with 0 < di < d and νε(d) the number of the gaps.

Then the quantity νε(d) will obey the Poisson distribution with parameter dΛε, where

Λε = σ−1

∫ ∞
ε

(2π)−1/2t−3/2 exp{−0.5 (u/σ)2t} dt. (4.3)

Besides, the amplitudes di are independent and uniformly distributed in the interval (0, d),

the |∆i| are independent and obey the distribution (3.2) or, which amounts to the same

thing, P (|∆| > t) = Λt/Λε. The sets of random variables {|∆i|}, {τi} are independent as

well.

Suppose τ̃ε(d) is the total length of the time gaps ∆i for which di < d. In that case τ̃ε(d)

converges to τ̃(d) as ε→ 0 in the sense of finite dimensional distributions.

The above description of τ̃(d) explains the result (4) concerning the distribution of time-

gap size ∆ε. The description will also be used to derive the distribution of bed-thickness

dε:

For the model (1.1, 1.2), H = 1/2, the increment of d(t) in ε-bed, dε, has the exponential

distribution

P (dε > x) = exp(−Λεx), x > 0. (4.4)

The proof is as follows. The increments of τ̃(d) are homogeneous and τ̃(d) has the strict

Markov property. Therefore, the ε-bed δε can be considered to begin at 0. However, the

event {dε > x} then means that the path of τ̃(d) has no discontinuities of size > ε in (0, x).

Hence P (dε > x) = P (νε(x) = 0) = exp(−xΛε). The last equality is true, because νε(x) has

a Poisson distribution with parameter xΛε.

Strauss & Sadler (1989) studied the distribution of increments of d(t) in a fixed time

interval. The distribution is significantly different from the exponential, because it falls

off according to the Gaussian law. The exponential type was to be expected for the

distribution of dε, considering that it arises in a discrete random-walk model for bed

formation (Dacey, 1979). The nontrivial thing for applications, which follows from (4.3),
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is the particular functional form of the parameter of the exponential distribution in terms

of time scale ε and model parameters (u, σ).

The structure of the distribution of dε in the general case of H can be inferred only

from the computations of Pelletier & Turcotte (1997) for H = 1/4. The appearance of an

exponential distribution for dε would be a surprise in the case H� 1/2.

5 The multifractility of d(t): the case H = 1/2

The complete sedimentation history ξ(t) in the above models is described by a curve

whose increments ∆ξ have order ∆H . It would be natural to expect that ∆d(t) has the

same property for times {t} that have been preserved in the record and which form a

fractal set of Hausdorff dimension H . As a matter of fact, the structure of d(t) for the

model (1.2) is more complex and calls for a multifractal description. We recall that a

multifractal measure dµ(x) is by definition such that there is a set of fractal subsets Sα,

α ∈ (α1, α2) for which ∆µ(x) ∼ ∆α when x ∈ Sα. The dimensions of the Sα, which are

dim Sα = f(α), α ∈ (α1, α2), determine the multifractal spectrum of dµ(x). Here and below

the notation a ∼ b means ln |a| = ln |b|(1 + o(1)).

According to Genyuk (1997), “a typical measure µ typically has no local dimension”:

α = lim
ε→0

log[µ(x+ ε)− [µ(x− ε)]/ log 2ε. (5.1)

Therefore, replacing the limit in (5.1) with lim sup or lim inf we arrive at a multifractal

description of the upper and lower local dimensions α; suppose the sets S±α and dimS±α =

f±(α), respectively, correspond to these. The theoretical data d(t) with H = 1/2 concern

the case in which S+
α � S−α . Below we will show how that feature affects the natural (from

the applications standpoint) statistics of the multifractal type.

Now we formulate the key statement for multifractal analysis of d(t). Let τ̃0(d) be a

Levy process whose increments are described by the Laplace transform (4.1) with u = 0,

while d0(t) is the inverse process. It is a well known fact that d0(t) has the same probability

structure as the process of local time for σw(t), where w(t) is the standard Wiener process

(see Bertoin, 1996).

Lemma The probability measures corresponding to the processes d0(t) and d(t), d(0) = 0

are mutually absolutely continuous on any finite interval [0, T ].

Proof The Levy processes τ̃(d) defined by (4.2) have jump-like increasing paths. They

can be completely described by the spectral measure density of the jumps λu(t) =

σ−1(2π)−1/2t−3/2 exp{−0.5(u/σ)2t}.
It is easy to see that the Kakutani criterion is fulfilled:∫ ∞

0

(√
λ0(t)−√λu(t))2

dt < ∞,

which guarantees that the measures corresponding to τ̃(d) and τ̃0(d) are equivalent on any

finite interval 0 6 d 6 D (see Jacod & Shiryaev, 1987). We stop the processes τ(d) and

τ0(d) at the times d∗ and d∗0 when the level T was first reached. Obviously, d∗ < ∞, since
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from (4.2) it follows that

P (d∗ = ∞) = lim
x→∞P (d∗ > x) = lim

d→∞P (τ̃(d) < T ) = 0.

Hence, the measures corresponding to the inverse processes d(t) and d0(t) in the interval

(0, T ) are equivalent (see Jacod & Shiryaev, 1987). q

The lemma yields one corollary that is important for what follows: all statements

(events) that have probability 0 or 1 for the process d(t) with u = 0 automatically have

the same probabilities for the process d(t) with u� 0 as well. In other words, the ‘0-1’

properties of local Brownian motion (see Molchan, 1994, 1995; Dolgopyat & Sidorov,

1995; and Hu & Taylor, 1997) are automatically transferred to the process d(t).

According to (Hu & Taylor, 1997), d0(t) has the a.s. single local dimension α = 1/2 for

which f(α) = 1/2. On the other hand, there is the following nontrivial spectrum of upper

local dimensions:

f+(α) =
1− α

2α
, 1/2 6 α < 1. (5.2)

Molchan (1998) found for d0(t) the so-called Renyi τ-function which is traditionally used

in multifractal analysis. This is defined as the limit

τ(q) = lim
N→∞

log
∑′

dq(∆i)

log |∆| , (5.3)

where {∆i} is the partition of I into equal intervals of size ∆ = |I |/N. The sum
∑′ means

that terms with d(∆i)� 0 are incorporated, d(∆i) being the increment of d(t) over the

interval ∆i. As is well known for the regular situation, the multifractal spectrum f(α) and

τ(q) form a Legendre transform pair:

τ(q) = min
α

(αq − f(α)) :=Lf (5.4)

and Lτ = f.

According to Molchan (1998), the limit (5.3) exists with probability one when N = 2n,

n→∞ and equals

τ(q) = 0.5 min(q − 1, 2q). (5.5)

Obviously, τ = Lf+, but not vice versa, because the Legendre transform produces

concave functions. It follows that in our case the Renyi function provides little relevant

information. Using τ(q) = 1/2(q−1) on the half-axis q > 0, that is typical for applications,

we see from the slope of τ(q) the typical local dimension α = 1/2 only.

We will deal with statistics that are more natural for our object of study. Let us use

ε-beds for local estimation of sedimentation rate: R(δε) = dε/|δε|. Then for the model (1.2),

with H = 1/2 the number of ε-beds with R(δ) ∼ |δ|α−1 is increasing with ε−1 as follows:

# {δε ⊂ I : |δ|α−1/| ln δ| < R(δ) < c|δ|α−1} ∼ ε−f∗(α) (5.6)

where f∗(α) = 3/2 − 2α, α ∈ [1/2, 3/4] and f∗(α) = −∞ for the other values of α (here

and below ε∞ = 0 is understood to hold). The asymptotic expression (5.6) is true with

probability one, when ε = 2−n, n→∞.
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Molchan (1995) proves (5.6) in probability as ε→ 0. A trivial use of the Borel–Cantelli

lemma yields a.s. convergence, when the choice ε = 2−n, n→∞ has been made.

Relation (5.6) is similar to a multifractal description where the sedimentation rate

index α plays the part of the order of singularities, while the exponent f∗(α), which

characterizes the number of ε-beds with the relevant sedimentation rate index, plays the

part of multifractal spectrum. However, the dimension functions f∗(α) and f+(α) differ,

not only in form, but also in their respective singularity supports: [1/2, 3/4] and [1/2, 1],

respectively. The Legendre transform of the former is

τ∗(q) =Lf∗ =
1

2
min (q − 1, 3/2 q) (5.7)

and can be derived independently on the lines of Halsey et al. (1986) as follows.

Consider the following function:

Φε(q, τ) =
∑

d̃qε (i) |δε(i)|−τ, δε(·) ⊂ [0, 1],

where d̃ε(i) = dε(i)/
∑
dε(i) are normalized ε-bed thicknesses. Then the following limit exists

a.s. when ε = 2−n ↓ 0:

lim
ε↓0 Φε(q, τ) =

{ ∞ τ > τ∗(q)

0 τ < τ∗(q)

The function τ∗(q) coincides with (5.7) (Molchan, 1995).

Thus, parallel with (5.2) and (5.5), we have again the dual pair of statements (5.6), (5.7)

as the multifractal formalism prescribes.

The result (5.6) may be due to the fact that ε-beds have strongly varying lengths. The

variability of |δε| is indeed present and can be described in a multifractal manner (see

Molchan, 1995):

# {δε ⊂ I : εα/| ln ε| < |δε| < c εα} ∼ ε−fδ (α), a.s. (5.8)

when ε = 2−n and n → ∞. Here, fδ(α) = 1− α/2, α ∈ [1, 2] and fδ(α) = −∞ for the other

values of α.

Thus, a typical ε-bed has a size of order ε, while nontypical ones are of order εα,

1 < α < 2. Treating ε as a time-resolution scale, all lengths of ε-beds should be made

equal to ε. One then gets a rough estimate of sedimentation rate based on the ε-beds:

R̂(δε) = dε/ε. The multifractal description like (5.6) holds for the new estimate as well.

The variable factors are the range of index α and the exponent f(α). To be more specific,

# {δε ⊂ I : εα−1/| ln ε| < R̃(δε) < c εα−1} ∼ ε−f∗(α) (5.9)

with probability one, when ε goes through the sequence 2−n, n → ∞. Here, f∗(α) = 1 − α,
α ∈ [1/2, 1] and f∗(α) = −∞ for the other values of α.

To attach a fractal geometrical meaning to (5.9), we write the right-hand side of (5.9)

as

ε−f∗(α) = (∆α)
−f∗(α)/(2α) = (∆α)

−f+(α)

where ∆α = ε2α is a typical size of ε-beds that have the property dε ∼ εα (Dolgopyat &
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Sidorov, 1995). We see that (5.2) and (5.9) are consistent, but statistics (5.5), (5.9) and

(5.7), (5.6) give different information on the range of possible local dimensions α.

6 Conclusion

We have considered a model for the deposition of sediments. The model assumes constant

tectonic subsidence and a random variation in sea level. An important aspect of sedimen-

tary sequences are periods of erosion that produce time gaps in the record and generate

well defined sedimentary beds. We have presented analytical results on the statistics of

the time gaps, bed thicknesses, and sedimentation rates. The object under study d(t) is

interesting in several respects. First, typical multifractal objects in applications have their

origin in multiplicative processes. Examples are turbulent cascades and their associated

local energy dissipation fields (Frisch, 1995; Mandelbrot, 1974). The dynamics of an

evolving section d(t) has an essentially different origin and, as we have seen, a different

type of multifractal spectrum (a convex instead of a concave function). Also, the object

d(t) is not a multifractal in the strict sense of the term, f(α)� f+(α). Consequently, any

inferences as to multifractality are nearly meaningless here without a relevant theoretical

basis. Lastly, the model case H = 1/2 provides a nearly unique opportunity to follow all

complexities of the multifractal analysis of d(t). A series of statistics that are natural from

the practical point of view allows an analysis that demonstrates the multifractal nature

of d(t). However, the statistics can lead us to different conclusions about the multifractal

spectra of local and upper local dimensions.
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