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The interaction of an acoustic wave with a stratified fluid can drive strong streaming
flows owing to the baroclinic production of fluctuating vorticity, as recently
demonstrated by Chini et al. (J. Fluid Mech., 744, 2014, pp. 329-351). In the present
investigation, a set of wave/mean-flow interaction equations is derived that governs
the coupled dynamics of a standing acoustic-wave mode of characteristic (small)
amplitude € and the streaming flow it drives in a thin channel with walls maintained
at differing temperatures. Unlike classical Rayleigh streaming, the resulting mean flow
arises at O(e) rather than at O(e?). Consequently, fully two-way coupling between the
waves and the mean flow is possible: the streaming is sufficiently strong to induce
O(1) rearrangements of the imposed background temperature and density fields, which
modifies the spatial structure and frequency of the acoustic mode on the streaming
time scale. A novel Wentzel-Kramers—Brillouin—Jeffreys analysis is developed to
average over the fast wave dynamics, enabling the coupled system to be integrated
strictly on the slow time scale of the streaming flow. Analytical solutions of the
reduced system are derived for weak wave forcing and are shown to reproduce results
from prior direct numerical simulations (DNS) of the compressible Navier—Stokes
and heat equations with remarkable accuracy. Moreover, numerical simulations of the
reduced system are performed in the regime of strong wave/mean-flow coupling for
a fraction of the computational cost of the corresponding DNS. These simulations
shed light on the potential for baroclinic acoustic streaming to be used as an effective
means to enhance heat transfer.
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1. Introduction

Sound waves can drive Eulerian flows that evolve on a slow time scale compared
to the period of the waves. The theoretical study of this phenomenon, called acoustic
(or, in other contexts, steady) streaming, can be traced back to Rayleigh in the 19th
century (Rayleigh 1884). Given that ultrasonic power sources are now routinely used
in laboratory experiments, acoustic streaming has been widely observed, often as
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a source of unwanted flow. Nonetheless, streaming also has been recognized as a
practical means to enhance transport and mixing and has, for instance, been used to
improve the efficiency of chemical reactions occurring near a catalytic solid phase that
otherwise would be controlled by molecular diffusion (Bengtsson & Laurell 2004);
to directly mix chemical species (Yaralioglu et al. 2004); and for activated irrigation
in medical applications including root-canal procedures (Verhaagen et al. 2014). Heat
also can be transported by streaming flows, and acoustic waves therefore can be
used to accelerate the cooling of a hot object, as recently reviewed by Legay et al
(2011). Acoustic streaming technologies are of particular interest in the zero-gravity
environment, where natural convective flows do not exist and acoustic thermal
management systems may provide a reliable, efficient and lightweight alternative
to fans.

In a characteristically lucid lecture, Lighthill identified the different regimes of
acoustic streaming in a homogeneous medium (Lighthill 1978). Owing to attenuation
mechanisms, acoustic waves generate a Reynolds stress divergence capable of driving
a mean flow, which is balanced either by viscous forces (termed ‘Rayleigh streaming’
if, in addition, the sound waves are damped in oscillatory boundary layers) or
by inertia (‘Stuart streaming’). The former regime occurs for small values of the
streaming Reynolds number Re; = U,L/v, where U, is a characteristic streaming
speed, L is a typical dimension of the system and v is the kinematic viscosity of
the fluid. In Rayleigh streaming, the (laminar) cellular mean flow that is generated
is localized within a few wavelengths of any solid boundary (Nyborg 1958); the
streaming can be analytically computed for simple geometries, e.g. in a channel
(Rayleigh 1884; Hamilton, Ilinskii & Zabolotskaya 2003) or adjacent to a circular
cylinder (Holtsmark et al. 1954). This regime has become important in microfluidics,
where the vortices induced by acoustic streaming in microchannels can be used to
mix chemicals (see references above). In contrast, for large Re,, the streaming flow
acquires a jet-like structure and can become turbulent (Stuart 1966; Lighthill 1978).

The presence of an inhomogeneous background temperature (or density) field
strongly affects the fundamental mechanics and kinematics of acoustic streaming:
streaming velocities are significantly enhanced and the flow patterns are substantially
altered. These changes are evident in the early experiments of Fand & Kaye (1960)
and in subsequent experiments and numerical simulations; see e.g. Loh ef al. (2002),
Hyun, Lee & Loh (2005), Lin & Farouk (2008), Nabavi, Siddiqui & Dargahi (2008),
Atkas & Ozgumus (2010), Dreeben & Chini (2011) and Karlsen et al. (2018).
Consequently, the resulting flow and associated transport cannot be computed simply
by coupling the corresponding isothermal (e.g. Rayleigh or Stuart) streaming with the
heat or other appropriate transport equation. Instead, new physical phenomena occur,
which renders this problem both complex and interesting. Experimental challenges
arise because natural convection and acoustic streaming may be difficult to disentangle
in the laboratory; numerical challenges result from the need to resolve compressible
fluid dynamics on temporal scales ranging from the acoustic-wave period to the
slow time scale over which the streaming flow evolves; while the primary theoretical
challenge is to elucidate the novel phenomenology resulting from fully two-way
coupling between the sound waves and the mean flow.

This striking change in the character of the streaming has been observed in various
contexts in which an agency other than viscosity generates vorticity in the oscillatory
flow (e.g. the acoustic waves). Amin (1988) and Riley & Trinh (2001) noted
fundamental changes in the steady streaming driven by a non-conservative body force
in their study of fluid flow in the presence of g-jitter, i.e. a fluctuating gravitational
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field in an otherwise gravity-free environment. Motivated by the observation that
streaming velocities in high-intensity discharge lamps are two orders of magnitude
larger than those predicted by Rayleigh streaming theory (Dreeben & Chini 2011),
Chini, Malecha & Dreeben (2014) derived a theory capable of accounting for both
the observed streaming pattern and magnitude. As discussed more fully in §2, the
mechanism underlying this large-amplitude streaming is the baroclinic production
of sound-wave vorticity arising from the misalignment of fluctuating isobars and
mean isopycnals. Similarly, non-classical streaming phenomena have been observed
in microfluidic systems with gradients in density; in particular, Karlsen, Augustsson
& Bruus (2016) and Karlsen er al. (2018) recently obtained a local expression for the
acoustic force density driving the streaming flow as a function of the acoustic-wave
characteristics.

The primary objective of the present investigation is to systematically extend the
recent theory of Chini et al. (2014) to efficiently capture the two-way coupling
that can occur in baroclinic acoustic streaming and to quantify the concomitant heat
transfer. Accordingly, a novel Wentzel-Kramers—Brillouin—Jeffreys (WKBJ) analysis is
performed to enable prediction of the slow evolution of the acoustic-wave amplitude,
thereby obviating the need to explicitly simulate the fast oscillatory dynamics. We
focus on perhaps the most well-documented acoustic streaming configuration: a thin
two-dimensional channel with an imposed standing acoustic wave oscillating in the
wall-parallel direction. For a homogeneous system, the resulting streaming flow was
first described in the pioneering work of Rayleigh (1884) in the limits Re; < 1 and
0, K H, Kk ', where §, = /2v,/w, is the thickness of the oscillatory (Stokes)
boundary layers (v, is the kinematic viscosity and w, is the wave angular frequency),
H, is the channel width and k, is the wavenumber of the acoustic wave. The
streaming flow comprises a wall-parallel array of counter-rotating vortices, stacked
in the wall-normal direction and having a characteristic velocity 3U?/(16a,), where
U, is the maximum fluctuating velocity induced by the standing acoustic wave and
a, is the speed of sound. Experiments were first performed in a tube and showed
quantitative agreement with the predictions of Rayleigh (Andrade 1931). Hamilton
et al. (2003) extended this theoretical study to channels of arbitrary width H,, the
only restrictions being Re, < 1 and 8, < k;'. When the upper and lower walls of
the channel are maintained at fixed but differing temperatures, both experiments and
direct numerical simulations of the compressible Navier—Stokes and heat equations
indicate a change in the streaming phenomenology: the stacked vortices merge and
their characteristic velocity increases (Loh et al. 2002; Lin & Farouk 2008). To date,
no theory has correctly predicted the resulting streaming-flow pattern and intensity;
our study, which focuses on the regime Re, 2> 1, fills this gap in the literature.

The remainder of the paper is organized as follows. After formulating the problem
for the instantaneous dynamics, we carry out a multiple scale analysis (§ 2) to obtain
a reduced but two time-scale system. In § 3, we analyse the wave dynamics to show
that this multiscale system can be integrated strictly on the slow time scale. We then
consider, in § 4, the limit of weak wave forcing, in which the streaming flow does not
produce appreciable feedback on the waves; in particular, we derive an approximate
analytical solution and compare it to the streaming flow numerically computed by
Lin & Farouk (2008), demonstrating excellent quantitative agreement. In §5, we
perform numerical simulations of our reduced model and characterize the resulting
fully coupled waves and mean flows. We summarize our key findings and suggest
possible further extensions in § 6.
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FIGURE 1. (Colour online) Schematic of the flow configuration. A thermally stratified
ideal gas is confined between the plane parallel walls of a long thin channel of height
H,. A standing acoustic wave of wavelength 27 /k, interacts with the thermal stratification
to drive a time mean, or streaming, flow that is sufficiently strong to modify the wave
dynamics. The thermal driving is imposed by fixing the temperature 7 of the lower wall
to be T, and that of the upper wall to be T, + AO,.

2. Two time scale wave/mean-flow system
2.1. Flow configuration

The problem we consider is similar to that introduced in Chini et al. (2014).
Specifically, we analyse the two-dimensional flow of an ideal gas, with specific
gas constant R, and constant dynamic viscosity p, and thermal conductivity «,, in
a channel with walls separated by a distance H, in the y coordinate direction (see
figure 1). Here and throughout, tildes refer to dimensional variables, while asterisks
are used to denote dimensional parameters. Subsequently, overbars will be used
to designate dimensionless time-averaged fields, while primes will be reserved for
dimensionless oscillatory fields. The gas is presumed to be driven in an approximately
time-periodic fashion, with frequency w,, yielding a standing sound wave with
spatial wavenumber k.. The velocity field is required to satisfy no-slip and zero
normal-flow boundary conditions along the channel walls located at y=0 and y=H,.
All dependent fields are required to satisfy a 2m/k, periodicity condition in the
horizontal (x) coordinate. In addition, to fix the spatial phase of the sound wave, we
impose a symmetry condition along (or, equivalently, a zero-mass-exchange condition
across) X = 0; i.e. (0, y, 7)) = 0, where & is the X-velocity component and 7 is the
time variable. This additional boundary condition holds for any flow developing from
initial conditions that are symmetric with respect to x = 0, e.g. for the quiescent
diffusive state, since then both the initial conditions and the governing equations are
invariant with respect to the transformation x — —Xx, u — —iu and v — 0.

In contrast to the study of Chini ef al. (2014), the thermal driving is achieved
by fixing the temperatures of the lower and upper walls to be 7, and T, + A®,,
respectively, rather than by including a volumetric heat source. For convenience,
we take the temperature differential A®, > 0, but note that this restriction is not
dynamically significant since we do not consider the influence of buoyancy (gravity)
in this investigation. Denoting the density, pressure, temperature and velocity fields
by g, p, T and i, respectively, where @t = (i1, ¥) and ¥ is the j-velocity component,
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Notation Definition

u= (i, v) Gas velocity

0 Gas density

p Gas pressure

T Gas temperature

x,y) Horizontal, vertical (wall-normal) coordinate
i Time variable

H, Channel height

k. Acoustic-wave horizontal wavenumber
s Dynamic viscosity

Ks Thermal conductivity

R, Specific gas constant

(cv,, ¢p,) Constant volume, pressure specific heat coefficient
a, =+/(cp,/co,)R. T, Background sound speed

D+ Background pressure

TABLE 1. Dimensional variables and parameters.

the governing (compressible) Navier—Stokes, continuity and energy equations and the
ideal gas equation of state can be written as

pLosd + (@ - VYit) = —Vp + [V + 1V(V - )], 2.1
%p +V - (pit) =0, (2.2)

peo [T + (- VYT = —p(V - it) + k, VT, (2.3)
p=pR.T, (2.4)

where the two-dimensional gradient operator V= (0%, 0y). Note that dilatational (or
‘bulk’) viscosity has been neglected in (2.1), and viscous heating has been omitted
in (2.3). In practice, the bulk viscosity vanishes for a monatomic gas and, according
to early experiments, is smaller than the dynamic (or shear) viscosity for the specific
diatomic ideal gas (i.e. nitrogen) studied here (Prangsma, Alberga & Beenakker 1973).
More importantly, although significant variations in the dynamic viscosity may be
expected owing to the temperature dependence of this coefficient, these variations are
neglected to facilitate the analysis. The steady-state pressure and temperature fields in
the absence of acoustic waves and streaming flow, that is for uz =0, are referred to as
the background fields (denoted with a subscript ‘B’) and are found to be

*

Ty=T, (I—H“Z*), Ps = Pu» (2.5a,b)

where p, is a constant and the dimensionless temperature differential I" = AO,/T,.
Table 1 summarizes the dimensional fields and parameters used in the following
analysis.

2.2. Scaling and non-dimensionalization

To facilitate the asymptotic analysis, we non-dimensionalize the governing equations
by scaling the dependent and independent variables as outlined in table 2. The
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Variable Scale Parameter Definition Scaling
X k! Strouhal number S a,)U, S=1/e
y H, Aspect ratio § k.H, 8= ./eh
t (ak)™! Temperature gradient I” AO, /T, I'=0(1)
u a, Reynolds number Re P U/ (ki) Re =Reg/€
v (k.H,)a, Péclet number Pe p«Cp U/ (ki)  Pe=Peg/e
0 0 =P/ (R.T,) Specific heat ratio y ¢y /Co, y =0()
T T*

P Px

TABLE 2. Dimensionless variables and parameters.

X-velocity component is scaled with a,, the sound speed at temperature 7,. This
scaling introduces into the dimensionless governing equations the Strouhal number
S=a,/U,, where U, (rather than a,) is a characteristic oscillatory velocity induced
by the standing acoustic wave. The Strouhal number is large (10° or larger) in
many applications, and therefore we introduce € = 1/S and consider the asymptotic
limit ¢ — O with all other dimensionless parameters scaled as appropriate powers
of €. Since € <« 1, the leading-order acoustic-wave dynamics is linear. Nevertheless,
weak wave—wave nonlinearities are crucial for acoustic streaming, as their cumulative
effect can be significant over sufficiently many [O(1/€)] acoustic-wave periods (i.e.
over the slow time scale). The implied temporal scale separation between the wave
and streaming dynamics is readily achieved in both laboratory experiments and
streaming-enabled technologies.

The X and ¥ coordinates are scaled with k' and H,, respectively, so that the gas
lies in the domain defined by x € [0, 21t] and y € [0, 1]. Time 7 is non-dimensionalized
using the inverse reference wave frequency w;' = (a.k,)~'. The vertical (¥), or
wall-normal, velocity component is scaled by (k.H,)a,. The domain aspect ratio
8 = k,H, is assumed to be small and, more precisely, is chosen so that § = \/eh,
where h is a dimensionless parameter of order unity. Although the cross-channel
heat flux is not expected to be maximized as § — O (since the streaming flow
will be largely horizontal), we follow Chini et al. (2014) and continue to focus
on the small aspect-ratio regime for the following reasons. First, as noted in the
introduction, most theoretical and computational studies have been performed in this
regime, so meaningful comparisons to prior investigations can be made. Secondly,
the analysis of the acoustic wave is simplified in a domain that is thin relative to
the wavelength of the sound wave. Indeed, the acoustic wave then is dynamically
constrained to maintain its first-mode wall-normal structure. Finally, in the small
aspect-ratio regime, the leading-order fluctuating pressure gradient is orthogonal to
the imposed background density gradient, resulting in a crucial baroclinic contribution
to the production of fluctuating vorticity.

The temperature T, of the lower wall is used to non-dimensionalize the temperature
field 7. In the analysis that follows, I" is fixed, i.e. O(1), as € — 0, although the
smallness of € in acoustic streaming ensures that our multiple scale analysis remains
accurate even for 1" ~0.1, as will be evident in § 4, where we compare our theoretical
predictions with the results of direct numerical simulations.

The Reynolds and Péclet numbers characterizing the acoustic waves are denoted
Re and Pe, respectively. Since these parameters are very large compared to unity,
both momentum and thermal diffusion can be neglected in the leading-order wave
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dynamics, at least in the domain interior. Note that in baroclinic acoustic streaming,
typical streaming velocities also are of size U, (in contrast to Rayleigh streaming,
where streaming speeds are proportional to eU,). Consequently, Re and Pe also would
appear to characterize the streaming flow. Because we consider the limit of small
aspect ratio, however, diffusion in the wall-normal (y) direction is enhanced by a factor
82 oce!. We therefore define the streaming Reynolds and Péclet numbers Re, = €Re
and Pe; = €Pe as in traditional Rayleigh streaming as the proper measure of mean
inertia to the dominant mean diffusive effects.

2.3. Asymptotic analysis

Using the scalings described above (and summarized in table 2), the governing
equations and boundary conditions can be recast in dimensionless form. The
occurrence of the small parameter € in the dimensionless system prompts a multiple
scale asymptotic analysis in which the single time variable ¢ characterizing the fast
dynamics of the acoustic waves is augmented with a slow-time variable 7 = et to
capture the cumulative effect of weakly nonlinear wave dynamics that ultimately
drives streaming. Furthermore, we posit the following asymptotic expansions for the
various fields:

(u, v) = €(uy, v) + € (U, v2) + O(€?), (2.6)
T=€m, + €M + 0(eY), (2.7)

O = Oy + €O, + O(e?), (2.8)
p=po+ep + O, (2.9)

where 1 = (p — Pp)/p, and ® = (T — Ty)/T, are, respectively, the dimensionless
perturbation pressure and temperature fields. Note that, at each order in these
expansions, the field variables can have both fluctuating and mean components,
which subsequently will be disentangled via the introduction of a fast-time averaging
operation. Expansion (2.6) follows from the scaling of the Strouhal number (S=1/¢).
The state equation constrains the temperature and density perturbations to be of the
same order. In baroclinic acoustic streaming, the O(¢) streaming flow is sufficiently
strong to induce O(1) rearrangements of the background temperature and density
fields over an O(1/¢) time period. Thus, in contrast to other studies of acoustic
streaming in the presence of inhomogeneous temperature fields (e.g. Cervenka &
Bednartik 2017), it is crucial that the expansions for both ® and p begin at O(1),
as first shown in Chini et al. (2014).

Owing to the large perturbations to the background density field, the natural
frequency of the acoustic mode may evolve in time. Here, we extend the analysis
of Chini et al. (2014) by employing a WKBJ approximation to properly capture
this slow temporal evolution. Specifically, a generic dependent field f(x, y, f) is
re-expressed as f(x,y, ¢, T), where ¢ and T are treated as independent variables. The
rapidly varying phase ¢ may be written as

@(T)

o) =—— (2.10)
€

where d® /dT is of order unity. We define the instantaneous angular frequency w(7T),

w(T)zd—gb:dﬁ, (2.11)
dr  dT
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and expand @ = @, + € P, + O(€?), so that
o=+ €w; + O(e?). (2.12)

Finally, in order to distinguish the streaming flow from the acoustic wave, we
introduce the fast-time average of a function f(x, y, ¢, T),

_ $+2n7
f&,y, T)=— / fx,y,s, T)ds (2.13)
2nT Jy

for sufficiently large positive integer n, so that any function can be decomposed such
that

f@y, 6. D=fy, ) +f(xy,¢,1), (2.14)

where f/=0. Thus, f’ represents the acoustic wave and f the streaming flow.

2.4. Leading-order multiscale wave/mean-flow interaction equations

The multiple time scale governing equations for the coupled acoustic-wave/streaming-
flow system were first derived in Chini et al. (2014) and are reproduced here for
completeness. The evolution of the streaming fields is governed by the following
equations:

- - - - — — axiz -0 N 8vylj‘l

Po(Ority + 1y Oxtty + V18y1y) = — — 0x(pouy") — dy(pouyvy) + Re 2’ (2.15)
0,7, =0, (2.16)
drpo + 3x(pott1) + 9y(pov1) =0, (2.17)

L - _ _ 3yy®
0rO + 110,00 + 010y(Og + Tp) = (1 — y)(Op + Tp) (dxu1 + 9,v1) + ;e '22150 , (2.18)

K 0

1

0 = —= . 2.19
Lo G0+ Tp ( )

In this slow-time system, the sole — but crucial — effect of the waves arises from the
Reynolds stress divergence in the mean x-momentum equation (2.15) that drives the
streaming flow. For a homogeneous fluid, this wave-induced force can be offset by a
pressure gradient in the bulk: a Rayleigh streaming flow is driven at next order in €
by the Reynolds stress divergence acting in the oscillatory boundary layers that arise
near the no-slip channel walls. In contrast, for baroclinic acoustic streaming, the mean
temperature gradient causes this wave-induced forcing to be rotational even within
the bulk interior of the domain. Consequently, the bulk force that is created cannot
be balanced by a mere adjustment of the mean pressure gradient and instead induces
a (strong) mean flow even in the absence of diffusive boundary layers. (Further
discussion of this distinction is given in §6.)

To evaluate this force, we employ the equations governing the leading-order
acoustic-wave dynamics, viz.

1
w0,0_03¢,u’1 + *ax'.l'lf/l = O, 8yJT/1 = O, (220a,b)

Y
w00y P + 0:(Potty) + 3,(povy) =0, (2.21)
w0350 + ;3,00 + V}3,(Og + Tp) + (y — 1)(Op + Tp) (3,14, + 3,v}) =0, (2.22)
) — 01 (O + Tp) — py®; = 0. (2.23)
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These equations describe the fast dynamics of approximately linear non-dissipative
acoustic waves in a medium whose mean density field p, evolves slowly in time.
Conversely, the evolution of po(x, y, T) depends on the acoustic waves, as can be
gleaned from inspection of (2.15)—(2.19). Note further that, here, unlike in Rayleigh
streaming, the oscillatory Stokes layers are dynamically passive because the streaming
induced by near-wall fluctuating viscous torques is O(e*) while the streaming flow
governed by (2.15)—(2.19) is O(e¢). Therefore, the leading-order wave field is required
to satisfy only a zero normal-flow boundary condition at each wall, and the details of
the oscillatory flow within the Stokes (boundary) layers do not have to be determined
at this order (see §6).

Taken together, these two sets of equations form a closed but two time scale system.
As emphasized in Chini et al. (2014), the fully two-way coupling between the waves
and mean flow captured by this multiscale system renders it fundamentally distinct
from classical Rayleigh streaming theory, in which the acoustic-wave field can be
computed first and then the response of the streaming flow to the acoustic-wave
forcing self-consistently determined (i.e. one-way coupling). Subsequently, Karlsen
et al. (2016, 2018) also noted this two-way coupling in their computational studies of
acoustic streaming in inhomogeneous fluids. Nevertheless, to make analytical progress,
Chini et al. (2014) considered a small Prandtl number limit in which the coupling
is effectively one way. A primary contribution of the present investigation is to
extend the analysis of Chini er al. (2014) to systematically treat fully two-way
wave/mean-flow interactions. This extension requires the derivation of a novel
amplitude equation governing the slow evolution of the acoustic waves, which can
only be determined by carrying the asymptotic analysis to next order and imposing
an appropriate solvability condition. Heuristically, the slow evolution of the waves
is controlled by higher-order terms that e.g. account for energy exchanges with the
streaming flow or with the solid boundaries. In the next section, we show how these
effects can be self-consistently incorporated.

3. Averaging over fast wave dynamics

We now characterize the dynamics of the acoustic waves on both the fast and
slow time scales with the aim of eliminating the need to explicitly simulate the fast
evolution. Inspection of (2.20)—(2.23) reveals that the wave dynamics directly depends
on a single slowly varying field: the leading-order mean density py = (® + Tp)~'. For
purposes of the analysis described in this section, this field is presumed to be given.
Consequently, the fluctuation equations (2.20)—(2.23) comprise a linear homogeneous
system, and we henceforth consider a single eigenvector. A generic fluctuation field
f| can be expressed as

, A(T) /- 0
ity . 1) === (e y D +ee). G.1)
where f| stands for any fluctuation variable (u), v}, p|, |, ©1); A(T) is the slowly
evolving modal amplitude (here taken to be real without loss of generality); f is a
complex function that describes the spatial structure of the mode; and c.c. denotes
the complex conjugate. A normalization condition, specified subsequently, must be
imposed on f to render this decomposition unique. We next describe the determination
of the spatial structure of the mode (as defined by the functions i, 9, etc.) and then
derive a novel amplitude equation governing the slow evolution of the generally a

priori unknown function A(T).
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3.1. Mode structure

Substituting the decomposition (3.1) into the fluctuation equations (2.20)—(2.23) yields
a linear but non-separable two-dimensional (partial) differential eigenvalue problem
for the spatial structure and frequency w, of the leading-order fluctuation fields. By
continuing to exploit the small aspect-ratio limit, we nevertheless are able to reduce
the required computation to the solution of a one-dimensional eigenvalue problem —
a crucial simplification.

To proceed, we note that, using (3.1), (2.21)-(2.23) can be combined to deduce

L . .
frr = L (8t + 0,0)). (3.2)
o

With this expression for the acoustic-wave pressure 7;, the momentum equations
(2.20) become two coupled partial differential equations for #; and v;:

ax(axi\tl + ayi\)l) + 60(2),50'}1 =0, (33)
8,301y + 8,0,) = 0. (3.4)

A further reduction to a single ordinary differential equation is possible by formally
integrating a linear combination of these equations,

8,(3.3) + 0,(3.4) = 3, (Poit)) = 0= iy = L, (3.5)

Lo

where ¢ is an unknown function of x and T only. Integration of (3.4) gives
Bty + 0,0, =g, (3.6)

where g is a second unknown function of x and T only. Equations (3.3), (3.5) and
(3.6) imply that ¢g=—g'/w}, where a prime is used to denote partial differentiation of
the function g with respect to x, since the T dependence is parametric. The general
solution of this system of equations can be obtained using the kinematic boundary
condition 0;(x,y=0,T) =0, viz.

/

=-S5, 3.7)

5=
Wy Lo

. "
b1 =gy + 0, (gz/ f). 3.8)
wy Jo o Po

Finally, the upper boundary condition v;(x, y=1, T) = 0 provides a constraint on g
and w, in the form of the ordinary differential eigenvalue problem

d /
Y +wpg =0, (3.9)

where
1 dy

a(x, T)= = (3.10)
0o Lo

To characterize the function g(x, T), we first take, without loss of generality, i,
to be a real field: (3.3) and (3.4) then imply that ¥, and, thence, g are also real-
valued fields. Moreover, in order to ensure it; (x=0, y, T) =0, the ordinary differential


https://doi.org/10.1017/jfm.2018.785

https://doi.org/10.1017/jfm.2018.785 Published online by Cambridge University Press

546 G. Michel and G. P. Chini

equation (3.9) must be solved subject to the boundary conditions g'(0) = g'(2m) =0.
This requirement leads to an orthogonality condition: let (g4, gg) be two eigenvectors
and (w4, wp) their angular eigenfrequencies; then

27 1 ) )
/ 8a(0)gp(x) dx = ———[a(gagp — gpg)1T" =0. (3.11)
0 Wy — Wp

Equation (3.11) provides a convenient scalar product on eigenvectors, and therefore
we normalize them according to

27
/ g(x)*dx=1. (3.12)
0

This normalization condition resolves the ambiguity in the definition of A(T) and f‘l
in (3.1).

3.2. Wave amplitude

As explained in the previous subsection, the acoustic mode shape g(x, T) and
frequency wo(7T) can be computed at every time 7T for a given mean density profile
po(x, ¥, T). The advection of hot or cold gas by the streaming flow will cause both
g and w, to evolve on the slow time scale and induce a two-way coupling between
the waves and the streaming flow. The amplitude A(T) of the acoustic mode is
also expected to evolve on this slow time scale owing to dissipation by viscosity,
energy exchanges with the streaming flow and walls and/or external forcing. To
obtain an evolution equation for A(7T), we proceed as follows, relegating details to
the appendices.

(i) We collect terms in the dimensionless governing equations at O(e?). The resulting
equations are reported in appendix A.

(i) We make the ansatz that generic O(e*) fluctuation field f; can be represented as

B(T) /- 4
file.y. T, §) = == (Fatr.y. De? +cc.) (3.13)
and, in direct analogy with the manipulations performed in §3.1, reduce the O(e?)
fluctuation system for the five unknown fields i, 0,, 75, P, and 6, to a system of
two equations for the two fields i, and ¥,. (Harmonics of the form e¢ also exist at
this order, but are non-resonant and thus do not contribute to the slow-time dynamics;
accordingly, these harmonics need not be explicitly computed.) The resulting system

of equations has the form

8,(d.diz + 0,02) + wl ity = F. (3.14)
3, (0yita + 9,0,) = G. (3.15)

The linear operator acting on the left-hand side of this system is identical to that
arising in the leading-order fluctuation equations (3.3)—(3.4). The right-hand side
functions F and G include resonant forcing terms involving the leading-order
fluctuations fields (f]). Analytical expressions for the imaginary parts of F and
G, which are needed for the derivation of the (real) amplitude equation, are given in
appendix B.
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(iii)) We derive a solvability condition for the O(e*) system, which requires
determination of the adjoint linear operator, by invoking the Fredholm alternative
theorem in the usual manner; see appendix B.

(iv) We enforce the solvability condition to obtain an equation for dA/dT; cf.
appendix D.
Employing this procedure, we derive the following novel amplitude equation:

2 d(Aoy ) i /dxd 5,0, — — /dxd 2 dp " + 010,57
= — N — — x v
Aw,' dT Peh?* Jp Y80 20} Jp V8 WOl 1%P0
72
_ _ », & Pe;, 1
+ / dx dy(0,uy + 0,v1) [(1 - Y&+ 5= ( — ﬂ , (3.16)
D wipo \Re;, 2

where |, p Tefers to definite integration over the spatial domain. (Note that, since the

temperature and velocity fluctuations are out of phase, O, is strictly imaginary.) The
lack of terms nonlinear in A in (3.16) confirms that phenomena such as shock-wave
formation or harmonic generation are sub-dominant dynamical processes in the given
parameter regime relative to, for example, heat exchange with the boundaries or
energy exchange with the evolving stratified environment. In particular, the first
term on the right-hand side of (3.16) accounts for the time-mean heat transfer
between the waves and the boundaries. In §4.5, we demonstrate that this term can
be positive: in this scenario, the waves are driven by a process that is loosely akin
to the classical thermoacoustic instability in which acoustic waves in a channel can
be excited when a temperature gradient is imposed along the channel walls (Swift
1988). Owing to the occurrence of the mean fields #;, v; and p, in (3.16), the
amplitude equation is, in fact, nonlinear. A distinguishing feature of (3.16) is that,
unlike amplitude equations derived in numerous other contexts, determination of
the coefficients requires evaluation of functional derivatives that capture the O(1)

variations in generic eigenfunction fl caused by changes in the mean density field p
that occur on the slow time T'; see appendices B and D for details.

The quantity Aw,' on the left-hand side of (3.16) is proportional to the square
root of the dimensionless energy of the acoustic wave. Indeed, the leading-order
dimensionless kinetic energy Ex of the acoustic wave averaged over the fast time
scale is given by

. 1 27 1 _— A(T)2 27 1 Yy
Ex=— dx dypou = dx dypoit;. (3.17)
2 Jo 0 4 Jo 0
This expression can be evaluated using (3.7) to obtain
. A(T 2 27 1 2 A(T 2 2n
£ =20 / dx/ o = AD [ g, (3.18)
4wy Jo 0 Po 4wy Jo

The last integral reduces to ] following an integration by parts and utilization of the
differential equation (3.9) and the normalization condition (3.12), yielding

2
Ex = (A(T)> . (3.19)

26&)()

The amplitude equation therefore can be interpreted as an energy balance for the
acoustic wave, with the left-hand side of (3.16) equalling (1/Ex)dEk/dT.
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An important outcome of this study is that even allowing for two-way wave/mean-
flow coupling, the WKBJ analysis enables the streaming flow to be computed without
evolving the sound waves over the fast time scale. (Of course, in the absence of two-
way coupling, as in classical Rayleigh streaming, this averaging is trivial.) Instead,
the evolving spatial structure of the waves can be computed at every coarse time step
(in a numerical simulation) by solving the one-dimensional eigenvalue problem (3.9),
while the evolution of the amplitude can be determined by integrating (3.16) over the
slow time scale. These computations are performed in conjunction with the numerical
solution of the streaming equations (2.15)-(2.19).

4. One-way coupling

Although the asymptotically reduced equations constitute a substantial simplification
of the full compressible Navier—Stokes equations, they defy analytical solution owing
to the occurrence of nonlinearities and two-way coupling between the waves and the
streaming flow. For sufficiently weak streaming, however, an approximate steady-state
solution can be derived: in this limit, mean advection is weak and the mean density
perturbations are small, thereby ameliorating these two difficulties. Here, we derive
this approximate analytical solution and demonstrate that it accurately describes results
obtained from direct numerical simulations of the compressible Navier—Stokes and
heat equations reported in the literature.

4.1. Acoustic waves

In this section, we assume that the mean density profile varies little and thus can be
accurately approximated by the diffusive solution (2.5), i.e.

1

Po 4.1
The coefficient o defined in (3.10) then does not depend on x and is simply equal to
14 I"' /2. The acoustic-wave eigenfunction g characterizing the shape of the acoustic
mode follows from the solution of the second-order differential equation (3.9) and,
with the prescribed boundary conditions g'(2m) = g’'(1) = 0 and the normalization
condition (3.12), is given by

_ cos(nx)
glx) = T

where the integer n is set to unity for this study. The angular frequency of this mode
wo = +/14+ /2, and the velocity field (ii;, ;) follows from (3.7)—(3.8) and reduces
to

(4.2)

N (1+ I'y) sin(x)

RN E NS @
. I'y(I —y)cos(x)
RIS W o

This velocity field is plotted in figure 2 for two different values of I". A rotational
(vortical) component may be discerned, particularly for the I" = 1 scenario, even
though viscous torques are absent since the dynamics in oscillatory boundary layers
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(a) 1.0

FIGURE 2. Standing acoustic-wave velocity field corresponding to the first (i.e. n = 1)
eigenmode for I' =1 (upper) and I" =0.2 (lower), with y = 1.4. Particularly in (a), it is
evident that the wall-normal (y) velocity component is non-zero owing to the background
density stratification and, crucially, the wave is rotational. The lower plot is included to
illustrate the dependence of the wave field on the stratification and because I" =0.2 is
the value used in the direct numerical simulation performed by Lin & Farouk (2008) to
which we compare our theoretical predictions.

has been self-consistently omitted. Crucially, the Reynolds stress divergence terms,
here denoted R(x, y), arising in (2.15) and responsible for driving the streaming flow
can be explicitly evaluated:

_— o A? r TIy\ .
R(x, y) = =0 (pout) — 9y(poutvy) = T+ T2 1+ 7 + > sin(2x). (4.5)

If ' =0, i.e. for a homogeneous fluid, R(x, y) = 9,[(A%/47) cos(2x)]. Clearly, in
that case, the wave-induced Reynolds stress divergence can be balanced by a mean
pressure gradient, so that streaming is not directly driven; instead, the associated
Rayleigh streaming flow arises at next order in € owing to the action of viscous
torques within oscillatory boundary layers. If, however, I" # 0, then R(x, y) can no
longer be reduced to gradient form and, consequently, directly drives a streaming
flow.

4.2. Streaming flow

We assume that the steady streaming driven by R(x, y) given in (4.5) is sufficiently
weak that the streaming equations (2.15)—(2.19) can be linearized. Note that, unlike
Rayleigh streaming, the mean flow is compressible even though the streaming Mach
number is negligible.

In a steady state, the pressure field can be eliminated from the linearized versions
of equations (2.15)—(2.16), yielding

Oypyuil
doR=—"2" h; , (4.6)
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while conservation of mass and internal energy (2.17)—(2.18) imply

C(+Ty, -

axl:ll == W yyy@O' (47)

Finally, we obtain from equations (4.5)—(4.7) a single differential equation for Oy:

_ - 2A2I"?Re,Pe,h*
(1 + Fy)ayyyyyy@() + 3Fa)vyyyy@0 = —w COS(2.X). (4.8)

This equation is supplemented with the boundary conditions:

(i) Oy(x,y=0)=Oy(x,y=1) =0, since the wall temperatures are held constant;
(i1) ayy@_o(x, y=0) = ay),@o(x, y=1) =0, to enforce vy = 0 at the walls (see
(2.17)-(2.19)); and
(iii) aw.@o x,y=0)= 8),yy@0 (x,y=1)=0, to enforce the no-slip boundary condition
at each wall, upon using (4.7).
With these boundary conditions, a unique solution can be found. For illustration, we
focus on the case I' =1, for which

- 2A%Re Peh*
Op(x,y) = _97(;@) cos(2x), 4.9)
T
where
G(y) = 60(1 4 y)* log(1 +y)

1080(—3 + log(16)) [
+y (94 — 222 10g(2)—90y—20y*—5y (—5 + log(64)) + 3y* (=3 + log(16)))] .
(4.10)

For the self-consistency of this approximation, the assumptions of one-way coupling
and linear streaming dynamics require that the mean density change little during the
evolution, i.e. @y < 1, and that the nonlinear terms be negligible, e.g. #? < 1. From
equations (2.15)—(2.19) and (4.9), these constraints imply (for I" = 1) upper bounds
on the dimensionless parameter combinations A?Re,h’> and A’Re,Pe,h*.

4.3. Comparison with previous work

Using the analytical solution (4.9), various properties of the streaming flow can be
deduced. First, the maximum dimensional baroclinic streaming velocity obtained here

iy o< (max |G|)A’Re,h* U, 4.11)

can be compared to the corresponding velocity #z in Rayleigh streaming resulting
from dissipation in the Stokes boundary layers, i.e.

fip X €A%U,. 4.12)

Clearly, for small values of €, the baroclinic streaming dominates any streaming driven
by viscous torques acting in near-wall Stokes layers.
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FIGURE 3. (Colour online) Analytically predicted baroclinic streaming flow obtained in
the limit of one-way coupling (i.e. for sufficiently weak sound waves, which implies
upper bounds on A?Re;h* and A’Re Pe,h*). Colour is used to indicate the total temperature
(blue is cold). Recall that the lower boundary is colder than the upper boundary, and that
gravitational forces have been neglected. The parameter values are the same as those used
to compute the sound wave shown in figure 2 (lower plot); additionally, A =6, h =2.3,
Re; = 5.7 and Pe; = 4.1. Collectively, these parameters correspond closely to the values
employed by Lin & Farouk (2008) in their full numerical simulations of stratified acoustic
streaming. In contrast to Rayleigh streaming, the cells span the channel.

The streaming velocity field (#;, v;) computed from (4.8) for I" = 0.2 is plotted
along with the total temperature T3 + @&, in figure 3. Clearly, baroclinic streaming
differs from Rayleigh streaming not only in intensity but also in spatial structure;
specifically, here the streaming cells span the channel while in Rayleigh streaming the
cells are stacked in the wall-normal direction. These various distinguishing properties
accord with prior experiments and numerical simulations; e.g. see Loh et al. (2002),
Hyun et al. (2005), Lin & Farouk (2008), Nabavi et al. (2008), Atkas & Ozgumus
(2010) and Dreeben & Chini (2011).

Quantitative comparisons can be made with the results of Lin & Farouk (2008),
who performed direct numerical simulations of the compressible Navier—Stokes and
heat equations specifically to investigate the impact of acoustic streaming in a thin
channel on cross-channel heat transport. Thus, the system they considered is very
similar to that studied here. In the absence of thermal driving, the streaming flow
is accurately predicted by using Rayleigh’s formulation and, accordingly, exhibits
a pattern of counter-rotating cells stacked in the y direction. When a temperature
difference is imposed, however, the stacked cells merge, resulting in counter-rotating
cells that span the channel. In particular, for their case 1C, corresponding to the
largest imposed temperature differential, the dimensionless parameters used by Lin &
Farouk (2008) are approximately

e=102, y=14, I'=02, h=23, Re,=5.7, Pe,=4.1. (4.13a—f)

The amplitude A of the acoustic waves is not reported, but reasonably can be assumed
to be similar to the value arising in the absence of thermal driving, for which A ~ 6.
The authors report the values of the x (respectively y) component of the dimensional
streaming velocity at x =3m/4 (respectively x = 7/2). We compute u#; and v; for the
same parameters in this one-way coupling limit, and then obtain the corresponding
dimensional velocities by multiplying i, by the sound speed a, =353 m s~! and v, by
J/€ha,. Figure 4 shows the resulting comparison. The evident quantitative agreement
— with no adjustable parameters and despite the fact that the numerical simulations
of Lin & Farouk (2008) include several physical effects (oscillatory boundary-layer
dynamics, viscous heating, inertia and temperature-dependent viscosity and diffusivity
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One-way coupling model
Lin & Farouk (2008), x-velocity o)
Lin & Farouk (2008), y-velocity O o 0.08
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FIGURE 4. (Colour online) Comparison of the x and y components of the streaming
velocity field extracted from the numerical simulations of the instantaneous (compressible)
Navier—Stokes and heat equations performed by Lin & Farouk (2008) (their case 1C)
with the corresponding streaming velocities predicted from the present theory in the limit
of one-way wave/mean-flow coupling and linear streaming dynamics. The parameters
correspond to: A =6, I' =02, y =14, h =23, Re;, =5.7 and Pe; = 4.1. Excellent
quantitative agreement is observed without the use of any fitting parameters.

coefficients) not incorporated in our analysis — provides strong confirmation of the
baroclinic streaming theory developed by Chini ef al. (2014) and systematically
extended in the present study.

4.4, Heat flux enhancement

The streaming flow enhances cross-channel heat transport, as we now demonstrate
using the leading-order solutions derived in this section. For this purpose, we introduce
the steady-state Nusselt number Nu as the ratio of the (dimensional) total heat flux Q*
to the diffusive flux,

Nu= Q. , (4.14)
21k AO, (k H,)™!
and compute Nu — 1. The total heat flux Q, is evaluated at the top boundary,
. 27k ! B 2n -
0. :/ k. 0;T (X, 5= H,) dX = k., (k. H,) ' T. [/ 0,(Tg + Op)(x, y =D dx+ O(e))|,
0 0
(4.15)
so that the Nusselt number is given at leading order by
1 2n _
Nu:1+/ 0,0 (x, y=1)dx+ O(e). (4.16)
2nl’ 0
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Since viscous heating is neglected, the top and bottom heat fluxes are equal in a steady
state; hence, the following result holds:

27 27
(79,01} dx = / [+ 1)3,6(x, y=1) — 8,6 (x, y=0)]dx,
0 0

27
= r/ 3,0(x, y=1)dx + O(e). 4.17)
0

Moreover, from equations (2.17)—(2.19), the following equality can be derived,

27 1 27 27 1
/ dx / dyTd,,0p =0 = / [T9,0];dx = / dx / dy(8,T)(8,0) + O(e).
0 0 0 0 0
(4.18)

Finally, using the boundary condition &) =0 at the top and bottom walls, we obtain

1 2 1 _
Nu—1= W/O dx/o dy(8,7)(3,8p) + O(e)

1

2n 1
_ 512
- 27[1“2/0 dx/o dy(8,09)" + O(e). (4.19)

In the limit of one-way coupling and for I =1, we evaluate this quantity with the
approximate expression (4.9) for @, derived in §4.2,

Nu—12~3.2x 107'°(4%Re,Pe,h*)>. (4.20)

This expression should be contrasted with that obtained for Rayleigh streaming (i.e.
for sufficiently small temperature differences) and computed by Vainshtein, Fichman
& Gutfinger (1995):

(Nu—1)g =6.2 x 1075 (eA>Pe,h?)>. 4.21)

This comparison indicates that, although the Nusselt number derived here is very
small (as noted in §4.2, for the validity of the one-way coupling assumption the
dimensionless parameter combination A?Re Pe;h* cannot be too large), it nevertheless
is orders of magnitude larger than Nu resulting from boundary-layer-driven acoustic
streaming provided that, numerically, € < 1072, Equation (4.20) also suggests that
significant heat transport enhancement may be achieved in the limit A’Re,Pesh* > 1,
i.e. when there is strong two-way coupling between the acoustic waves and the
streaming flow. This strong coupling scenario is investigated in § 5.

4.5. Stability of the quiescent background state

Intriguingly, the amplitude equation (3.16) suggests that an acoustic wave may be
amplified via interaction with the solid boundaries. Indeed, the first term on the right-
hand side of (3.16) does not depend on the streaming flow, and quantifies how the
divergence of the acoustic-wave velocity field (i.e. g(x)) and the net heat flux to/from
the solid boundaries [proportional to 8},@1()@ y=1) — 8y(:)1(x, y = 0)] are coupled.
In a certain parameter regime, this system may act as a thermoacoustic engine and
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spontaneously generate an acoustic wave that, in turn, would drive a streaming flow
and increase the cross-channel heat transport.

To see this, note that @1 can be determined from the acoustic-wave solution derived
in §4.1 and then used to evaluate

L =21+ Q- D)(y — )]
/D drdygdy O = ——p s (4.22)

ia)()
Pe,h?

Since y > 1, this term is negative and damps the acoustic waves, unless the thermal
forcing I' is sufficiently strong. In that case, a proper discussion of the stability of the
quiescent background state would require the evaluation of the acoustic-wave energy
dissipation and temperature profile in the oscillatory boundary layers, which has been
neglected here (see § 6). Nevertheless, this calculation suggests that such an instability,
in which an acoustic wave spontaneously grows by a thermoacoustic effect even in the
absence of an imposed wall-parallel (x) temperature gradient, is possible.

5. Two-way coupling

The analytical solution derived in §4 and used to compute the heat flux enhancement
is not valid when there is two-way coupling between the acoustic waves and the
streaming flow, as occurs for sufficiently large values of the dimensionless parameter
groups A’Resh’ and A’Re,Pe;h*. To investigate the dynamics in this regime, we
perform numerical simulations of the reduced equations derived in §§2 and 3 using
the spectral computing environment Dedalus (Burns et al. 2018).

The spatial domain is discretized on a 512 x 128 (x x y) grid using a Fourier—
Chebyshev pseudospectral scheme. Temporal integration is performed strictly on the
slow time scale T with a second-order Runge—Kutta method. At each time step, the
shape and angular frequency of the standing acoustic-wave mode are obtained by
numerically solving the eigenvalue problem (3.9) derived in § 3.1 using a Chebyshev
spectral method and global QZ algorithm. The amplitude A of the acoustic mode
either is taken to be a prescribed time-independent value or evolved according to the
amplitude equation with an additional constant input power P, resulting in a term
P/Ex on the right-hand side of (3.16). In the first scenario, the forcing must be
imagined to be tuned continuously to maintain the constancy of the wave amplitude,
and the amplitude equation can then be utilized to self-consistently evaluate the power
P required. In the second scenario, in which the input power P is held constant, (3.16)
must be co-evolved numerically with the streaming equations.

Depending upon the parameter regime, numerical integration of (2.15)—(2.19) can
result in a grid scale instability manifesting as high wavenumber variability in the x
direction. To remedy this difficulty, we regularize the streaming dynamics simply by
including the next-order terms in € that, while formally small, introduce a viscous
term of the form 0,4, in (2.15) and eliminate the numerical instability.

Here, we describe the numerical simulations performed at constant amplitude A. The
other parameters are chosen as follows:

e=10"2% y=14, I'=1, h=4, Re,=4, Pe,=4. (5.1a—f)

Although not depicted here, for small values of A the resulting steady-state velocity
field agrees quantitatively with the one computed in §4. As A is increased, however,
the cellular streamline pattern evident in figure 3 changes into one dominated by
narrow jet-like flow structures; see figure 5, which shows the steady-state fields
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FIGURE 5. (Colour online) Steady-state streaming velocity (vector arrows) and total
temperature (colour) fields, (u;, v;) and Ty 4+ ©,, respectively, resulting from forcing
at fixed acoustic-wave amplitude A = 2.8. The other parameters are chosen as follows:
e=10"2, I'=1, y=14, h=4, Re,=4 and Pe,=4. Observe the emergence of vertical
jets.

Nu—1

One-way coupling limit, equation (4.20) ——

104 Numerical simulation of the reduced system  Q

0.5 1.0 2.0 3.0
Amplitude of the acoustic waves A

FIGURE 6. (Colour online) Nusselt number Nu versus forcing wave amplitude A for
baroclinic acoustic streaming in the small aspect-ratio limit without and with two-way
wave/mean-flow coupling.

obtained for A = 2.8. Unlike streaming at high Re, in the absence of background
density stratification (Vainshtein et al. 1995), symmetry with respect to the mid-plane
y = 1/2 is broken. Moreover, for this simulation, the angular frequency of the
acoustic wave changes by more than 3 %, providing quantitative evidence of the
two-way coupling between the wave and the streaming flow.

The heat flux enhancement factors achieved by steady streaming states obtained for
various values of A (and computed using (4.16)) are plotted in figure 6. For small
values of A, the results follow the theoretical prediction derived in §4, but ultimately
deviate as the streaming flow develops localized jets. Even in the regime of strong
coupling, the rapid growth of the Nusselt number (Nu — 1 oc A*) is qualitatively
observed, strongly suggesting that significant increases in heat transport may be
realized for sufficiently large values of A (see §6).
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6. Discussion

Both experiments and direct numerical simulations confirm that an imposed
temperature difference or, more generally, any inhomogeneous background density
field strongly affects both the pattern and intensity of acoustic streaming. To correctly
predict the streaming dynamics, it is thus necessary to properly account for these
density gradients, as in the work of Chini et al. (2014) and in the present study. The
striking effect of the inhomogeneous density field on the streaming originates from
the baroclinic generation of wave vorticity that occurs even in the absence of viscous
torques. This vorticity generation mechanism is readily inferred by taking the curl of
the linearized Euler equations describing the leading-order acoustic-wave dynamics,

(V5) x (Vp)

V x (ptit = —Vp) = (V x it) = 2

: (6.1)
and from the instantaneous acoustic-wave velocity field shown in figure 2. As already
emphasized in Chini et al. (2014), this mechanism enhances the transfer of energy
from the waves to the streaming flow; accordingly, this regime is appropriately termed
baroclinic acoustic streaming.

A quantitative understanding of baroclinic acoustic streaming is necessary for
ascertaining the extent to which acoustics can be used to improve the transport and
mixing of heat or of any dense or light solute chemical species. The separation in
time scales between the period of the waves and the dynamics of the streaming flow,
typically >10°, renders multiple scale analysis very attractive if not essential. The
analysis reported here has been shown to accurately describe acoustic streaming in a
thin channel across which a temperature difference is imposed: the explicit solution
derived in the limit of one-way coupling quantitatively fits the data of a previous
direct numerical simulation of the instantaneous governing equations (cf. §4.3). In
the same limit, our analysis enables us to readily compute the heat flux enhancement
engendered by the streaming and, in particular, to identify a very strong dependence
of Nu on the dimensionless channel height h: Nu — 1 oc h® (see (4.20)). This result
clearly indicates that, to enhance the heat flux in a channel, the frequency of the
acoustic wave should be tuned so that the aspect ratio § is of order unity.

The description of the § = O(1) scaling regime also should be amenable to multiple
scale analysis, an extension we are currently pursuing. In this regime, baroclinic
streaming continues to dominate viscous streaming, yet it is possible to more naturally
account for viscous losses in the oscillatory boundary layers. Indeed, whereas the
streaming flow induced by viscous dissipation in the Stokes boundary layers can be
shown to be of higher order in the reduced system (Chini et al. 2014), an order
of magnitude estimate of the dimensional time scale 7, over which the energy
dissipation in the boundary layers damps the waves is given by

y (k;'H,) x p,(a.€)? hy/Re,
T ~ ~ 9
P (k1 8p1) X 1s(au€/OpL)?  wun/E

where dp;, ~ /1Li/(psask,) is the thickness of the Stokes layers. Therefore, viscous
dissipation in the oscillatory boundary layers takes place on a time scale that falls
intermediate to the slow and the fast scales, and thus cannot be easily introduced
within the framework of the small aspect-ratio analysis. Here, these viscous losses
are implicitly presumed to be offset by the wave forcing mechanism. (Note that in
classical Rayleigh streaming, i.e. in a homogeneous medium, the dissipation time scale

(6.2)
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also lies between the wave period and the time required for steady streaming to be
established.) Practically, this results in a difference between the heat flux at the upper
and lower walls, and this difference is the input power necessary to sustain the out of
equilibrium state (Lin & Farouk 2008). With the scaling § = O(1), however, viscous
dissipation in the Stokes layers occurs on the streaming time scale (T w, & 1/€) and
therefore can be readily incorporated into the analysis.

The present study extends the investigation of Chini et al. (2014), in which a
similar multiple scale analysis is performed to predict acoustic streaming in a thin
channel with cold top and bottom boundaries and an imposed volumetric heat source,
in three significant ways. First, we have derived an analytical solution for baroclinic
acoustic streaming in the limit of one-way coupling and O(1) Prandtl number that
quantitatively accords with prior direct numerical simulations. Secondly, we have
performed numerical simulations of the reduced system that capture the feedback
from the streaming to the acoustic-wave field, i.e. two-way wave/mean-flow coupling,
as manifested by the deviation of the resulting heat flux enhancement from that
predicted using the analytical solution. In this stronger streaming regime, there is
a transition from a rather smoothly varying cellular streaming flow for which the
wave-induced Reynolds stress divergence is balanced by the mean viscous force
to a flow exhibiting jet-like structures and thin (streaming) boundary layers, akin
to the transition from the Rayleigh to Stuart streaming regimes. The detailed flow
pattern, which exhibits only upward jets, differs from that realized at large Re, in the
absence of stratification. Finally, perhaps the primary advance of the present study
is that the dynamics of a multiple time scale quasilinear wave/mean-flow system
has been reduced to dynamical evolution strictly on the slow time scale: the spatial
structure of the wave field is determined at each coarse time step from the solution
of a one-dimensional eigenvalue problem (§3.1), while the modal amplitude evolves
according to (3.16).

This reduction yields immediate computational and theoretical advantages. Indeed,
by numerically integrating the streaming equations (2.15)—(2.19) together with the
wave amplitude equation (3.16) and eigenvalue problem (3.9), the instantaneous
dynamics need not be simulated using supercomputing resources (e.g. as in Loh et al.
2002) nor approximated by alternatively time advancing the wave dynamics and the
streaming flow (Karlsen et al. 2018). Our algorithm thereby enables accurate and
inexpensive numerical simulations over several thousand acoustic-wave periods to be
performed in a regime where the waves and streaming flow are strongly coupled. For
example, in figure 7, we plot the evolution of the Nusselt number Nu and the wave
amplitude A for baroclinic acoustic streaming with a small (dimensionless) constant
input power P = 1073, Evidently, a steady state is not achieved until 7 ~ 1000, a
time period corresponding to roughly 7/e = 10° acoustic-wave cycles! Even using
modern computational capabilities, direct numerical simulation of the instantaneous
Navier-Stokes equations for this scenario would be prohibitively expensive. (For
comparison, Lin & Farouk (2008) were able to run their case 1C simulations,
discussed in §4.3, for only a few hundred cycles.) This computational challenge
highlights the value of the asymptotically reduced model, including the amplitude
equation (3.16), which obviates the need for directly simulating the fast dynamics.
We note that the model of the quasi-biennial oscillation developed by Plumb
(1977) has certain similarities with the one derived here for baroclinic acoustic
streaming: in the former case, the internal gravity waves are explicitly determined
using a WKBIJ approximation, ultimately yielding a closed system for the mean
(streaming) flow. The analogue of the amplitude equation (3.16), however, has not
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FIGURE 7. (Colour online) Evolution of the Nusselt number Nu and wave amplitude A
with slow time T for baroclinic acoustic streaming with constant input power P = 1073
The remaining parameter values are specified in (5.1).

been derived, with the waves instead being held at constant amplitude. From a
theoretical perspective, the derivation of the amplitude equation directly reveals the
potential for a thermoacoustic-like instability in which an acoustic wave spontaneously
grows in a stably stratified background, thereby increasing the heat flux. It seems
reasonable to assert that, without the amplitude equation, this instability would be
difficult to anticipate and to mechanistically understand.

To conclude, we emphasize the importance of obtaining a quantitative understanding
of the interaction of acoustic waves with a strongly stratified fluid. We are particularly
interested in the potential heat flux enhancement that can be achieved via baroclinic
acoustic streaming in the absence of natural convection as a lightweight means of
cooling electronics aboard spacecraft. For this purpose, the analysis performed here
should be extended to allow for channel aspect ratios of order unity. For Earth-based
applications, it also may be necessary to investigate the impact of buoyancy
(gravitational) forces, which introduces into the analysis another dimensionless
parameter, the Richardson number Ri = g,/ (k*ai), where g, is the acceleration
of gravity. Using the values g, = 10 m s™2, a, = 333 m s”! and k, = 100 m™!,
we obtain Ri = 107%. Accordingly, if Ri were scaled in proportion to €¥?, the
mean-flow dynamics would be modified at leading order in €; i.e. incorporation of
gravity would, indeed, modify the results reported here, implying that quantitative
experimental validation of the present study would require micro-gravity or microscale
(microfluidic) environments. Another important extension concerns the cooling of a
hot object immersed in a fluid (e.g. again in the absence of natural convection) and
subjected to acoustic-wave forcing. As for the internal flow configuration studied here,
a streaming flow is expected to develop and thereby enhance heat transfer. To date,
analysis of this fundamental problem, e.g. for a heated cylinder (first performed by
Richardson (1967) and Davidson (1973); see Riley (2001) for additional references),
has been implicitly and, indeed, perhaps unknowingly restricted to small temperature
anomalies. Again, if the temperature differential between the object and the ambient
fluid is sufficiently large, fundamental changes in the streaming dynamics may be
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anticipated with important ramifications for mixing rates and heat transfer that have
yet to be properly explored. Above all, very few experiments of the baroclinic acoustic
streaming regime have been performed: well-controlled experiments in micro-gravity
or stably stratified systems would be invaluable for quantitative assessment of the
theory. Finally, a complementary perspective on acoustic streaming in stratified
flows was recently offered by Beisner et al. (2015), who provided evidence that
acoustically induced mixing can suppress combustion in micro-gravity environments.
This phenomenon, too, relies on the strong coupling between a density stratified fluid
and an acoustic wave.
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Appendix A

In this appendix, we report the dimensionless set of equations for the waves at
second order. (The leading-order equations are given in (2.20)—(2.23); also see Chini
et al. (2014).) In these equations, the linear operator acting on the O(e?) fluctuation
fields is identified on the left-hand side and the inhomogeneous forcing arising from
the leading-order terms is collected on the right-hand side.

(i) The x-component of the momentum equation is

- ’ 1 ’ ’ I = ’
600,003¢M2 + ;ertz = —wo[pla¢u1 - ,018¢u1] - wlpoaqbu]

— oldrtt, + tdauy — Tty + v1 Byt — D10yr] + R;hzayyu;. A1
(i) The y-component of the momentum equation is
3, 7t) = —y h* powod, V). (A2)
(iii) Conservation of mass requires
00305 + B (Potts) + 3, (Fov})
= —w9yp; — Irpy — Ox(p1uy — Prify) — dy(P1vy — P10Y). (A3)

(iv) The internal energy balance is
w03y O + 0.0 + v50,(Oo + Tg) + (v — D(Og + Tp) (3,4 + 0yv3)] =
— C()18¢@1, — 8T(9{ — I/tlax@l + Mlax@l — Ulay@l + Ulay@l

4 _ piayyéo

+ (1 = pY)O1(0u; + 0yv1) — O1 (0 + yv1)] + m(ayy@; ).
(A4)
(v) The equation of state is
Tf/z_Pé((:‘)O‘FTB) — PO, =10 — pO. (AS)
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Appendix B

We can reduce the set of equations given in appendix A to (3.14)-(3.15). This
procedure is strictly analogous to the corresponding manipulations performed at
leading order. The imaginary parts of F and G, respectively F; and G;, are found
to be

Fi = %Bx’i-lr ngA(h? Ayl +wopoj;
+ wypoA(T) <8A+u18 Uy + 1y 0yl + Uy 0yity + 010 u1> , B1
and
G = (‘;") OH,, (B2)

where &f /8T = (0py/9T)(8f/8po) is shorthand notation for a differentiation operation
involving the functional derivative &§f/8po. (Strictly, 8f/8T should read df/dT, but
the &-notation is used to emphasize that functional differentiation is involved.) H, is
defined by

——p1 + ——=A(T) [ + 3,(p1ity) + 0, (/011)1)}
wopo dT o Lo

MMy (1 dA s 8O s
( ),0() <@l+1+ulax@l+vlay@l>

A(T) dT 5T

o ” L
4 AD 16, iy + 8,0 — 2D Y <a_,,y@l—;’;‘ayy@o>. (B3)

o wy Peh? 0
Appendix C

In this appendix, we derive the solvability condition for the system (3.14)—(3.15).
In the vector space (R*> — C)?, a vector

u
Vo (v) C

i
e (Poreim ). e

The linear operator

By Oy

so the set of equations (3.14)—(3.15) is of the form LV =F. Given two vectors V,
and Vg, we define their scalar product

271 1 21 1
(ValV) = / dr / Ay (VT V) = / dx / dyGinils + 000, (C3)
0 0 0 0

where f* stands for the complex conjugate of f . Given the 2m-periodicity requirement
in x and the kinematic boundary conditions in y, the operator £ is self-adjoint (L' =
L); ie.

(LValVE) = (V4ILVp). (C4)
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Therefore, the vectors in the kernel of £ consist of the O(¢) acoustic-wave modes
already described. Since one of these modes V| = (i, 91), then

(F|V)=0. (C5)
The imaginary part of (C5) requires

27 1
| o [ aEa+gin=o (C6)
0 0
recalling that both &, and 0, are real valued (so i, =u} and 0; = ¥}).

Appendix D

Evaluation of the solvability condition (C 6) requires functional forms for i; and v,
as detailed in (3.7)—(3.9), and F; and G;, whose explicit expressions are reported in
(B 1)—~(B 2). Obtaining (3.16) from (C6) is a lengthy but straightforward calculation,
except for the treatment of the functional derivatives. Certain functional derivatives
can be simplified by exploiting the normalization condition; we illustrate this technical
point through the computation of two integrals necessary to derive (3.16),

27 8
L=2] dwgt, (D1)
; 5T
and
2n 8141
L= dx dy”1p07~ (D2)

For a real-valued functional J of a functlon J, the functional derivative §J/§j
describes how J(j) evolves when j— j+w with |w| — O:

7(W)_1 <J(j+8W)—J(j))' D3)

e—>0 &

In the present work, the functions we consider (i#;, 0y, etc.) have a functional
dependence on p, and also depend on the real parameters x and y. Specifically, we

are interested in how the quantity f (x, y; po) evolves at a fixed position x and y, while

0o evolves slowly in time. Formally, we therefore should define a functional fx) such
that

~ [(0,2n] x [0,1] > R) - C
~ 2 ~ D4
{,00 ~ ey ) B
and the shorthand Sf /8T should therefore be understood as

s 3fx>
0 D5
5T 570 (@r/00)- (D5)

The first integral I; is thus given by
2n 2
2 sg? dxg: (po + £dr/0) — dxg? (ho)
I = dx—%(37p0) = lim | 2° 0 . (D6)
0 80 =0 €
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According to the normalization condition (3.12), each of the integrals on the right-
hand side of (D 6) is equal to unity so that I; =0.
Similarly, the second integral is expressed as a function of g with (3.7),

2n g/
L = / dyg e <2_> (D7)
@y Lo

1 8¢ 2409 "7 P
_ 1 dx/ [ _i_ gorwoy 8 T_ﬂo}. (DY)

wipo 8T powy w5 Py

The various contributions to (D 8) can be simplified using the function « introduced
in (3.10) since only py depends on y:

1 27

3¢ ZaTaht/Qn , Lo
L=— dxg'a drag? + —; dxg”dra. D9
2 a)g o 8T (,()8 0 ag wg 0 8 To ( )

The normalization condition (3.12) with the constitutive relation for g (3.9) yields
2n 2n
drag? =[agd " + dxwjg = wj. (D 10)
0 0

This result can be used to compute the first integral in (D9),

27 s ’ 1 27 k) 2 k)
o ST~ 2 J, sT §T

2n 27
1 dx(arg?)(po + £drp0) — dx(@g”)(po)
=— [lim | £° 0 - / dxg”dra
2 |e—>0 & 0
1 27 1 2n
- 20)087600 dxg’zaTot = w08Tw0 - = dxg’zarot. (D 11)
T2 0 2 Jo
Finally, we obtain
8]'0)0 1 2 ”
L=— 3+47 dxgdra. (D12)
w; 2w
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