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Abstract. Reconnective annihilation of magnetic field leads to the formation of
magnetic flux cells with small scales, followed by enhanced transverse plasmons oc-
curring in a thin current sheet with a very small vertical extent. The analysis here
focuses on the nonlinear interaction between the flux and plasmons. The transverse
plasmon field is modulationally unstable in the Lyapunov sense. When the initial
pumping wave amplitude attains the threshold of instability, this instability occurs
with a high growth rate. Nonlinear development of modulational instability even-
tually results in self-similar collapse, due to nonlinear equilibrium, giving rise to
a spatially intermittent, collapsing magnetic flux, very similar to a turbulent pat-
tern. The Maxwell stress tensor from the turbulence flux determines the anomalous
magnetic viscosity, i.e. the parameter α. It is shown that the instability is respon-
sible for the alternation of outburst or quiescent states in astrophysical accretion
disks. When the instability occurs, the parameter α is large. In the quiescent state,
the instability is suppressed, leading to a smaller, collapse-quenching value of α.

1. Introduction
During the magnetic coalescence of multiple loops, the plasma and magnetic flux
may be compressed towards a current sheet from both sides, driven by a Lorentz
force, leading to a resistive instability. A reconnective annihilation of the magnetic
field occurs, and magnetic energy is converted into kinetic energy of particles, ther-
mal energy of the plasma, and radiation by Ohmic dissipation, followed by the
formation of many small magnetic islands and enhanced turbulence plasmons, in-
cluding Langmuir and transverse ones, occurring in the thin current sheet. Then
the islands with very small scale and the strong turbulent plasmons can be inti-
mately coupled by ponderomotive interaction. This nonlinear interaction will cause
a instability of the magnetic islands in the current sheet. The instability can create
more turbulent patterns, and lead to magnetic viscosity. Therefore, the ponderomo-
tive effects within the current sheet are a very interesting problem in astrophysical
plasmas.

An anomalous viscosity is usually assigned to accretion disks, since , in almost
all cases, normal microscopic viscosities are too small to sustain an astrophysi-
cally significant accretion flow. Current α-models make the ad hoc assumption, by
virtue of introducing a parameter α to parametrize our ignorance, that the ‘tur-
bulent viscosity’ ηt satisfies ηt = αcsHρ, (α = const), where H is the disk scale
height, cs the sound speed, and ρ the mass density. The problem is that plausible
mechanisms that underlie the processes remain uncertain. The first calculation of
magnetic viscosity resulting from Keplerian fluid shear was performed by Eardley
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and Lightman (1975). Coroniti (1981) and Torkelsson (1993) extended the model
by including magnetic buoyancy. These models concentrate on viscosity as a direct
result of field line stretching by the Keplerian mean flow. It seems to be difficult
to find a pure hydrodynamic instability to initiate turbulence for a Keplerian disk.
Fortunately, in the presence of a weak magnetic field, the magnetized disks are sub-
ject to the Chandrasekhar–Balbus–Hawley magnetorotational instability (Balbus
and Hawley 1998). Such magnetohydrodynamic (MHD) turbulence can be devel-
oped by the instability and might explain the magnitude of the effective viscosity.

There is a wide range of systems containing accretion disks. The best studied
ones are cataclysmic variable stars with apparently non-magnetic or very weak
magnetic white dwarfs, which serve as one of the best laboratories to study accre-
tion disks in astrophysics. An interesting, and for this paper important, subclass
is the dwarf nova, which undergoes outbursts with amplitudes of about five mag-
nitudes with intervals of some weeks. The outbursts that last for some days can
be modelled as instabilities in the accretion disks (Osaki 1974). During the out-
bursts, the disk switches from a state with a low accretion rate to one with a high
accretion rate. To reproduce the right time scales in the models, it is necessary to
assume that α is smaller in the quiescent stage (α = 0.05) than during the outbursts
(α = 0.2) (Cannizzo et al. 1988). Similar outbursts seem to occur in T-Tauri stars
and X-ray transients. Black-hole candidates with high-mass companions, such as
Cyg X-1, also have two states. The differences in luminosity are taken to be the
result of different accretion rates within the disks. Typically, one finds short-term
variability – flickering in cataclysmic variables and shot-noise variability in black-
hole candidates – in the low state. It is expected (Schramkowski and Torkelsson
1996) that accretion disks to be magnetically active in their low-activity state, but
the accretion rate is higher in the high-activity state and for that reason the disks
seemingly require more MHD turbulence in the high-activity state. However, in
view of current understanding of magnetic activity, a sort of instability within the
disks would be responsible for the alternation of outburst or quiescent state. But
this intrinsic instability is still unknown (Osaki 1993). In this paper, we will address
this instability, which can switch between two states with different α values.

It is well known that a plasma is a system with a large number of degrees of
freedom; in such a highly unstable plasma, the tendency for energy equipartition
over the different possible degrees of freedom can produce turbulent waves, that is
to say, plasmons excited at a rather high level. In a plasma, there is a transverse
mode, with frequency ωp that is nearly the electron plasma frequency ωpe:

ωp = ωpe +
k2c2

2ωpe
(ωpe� kc). (1)

The group velocity, like that of Langmuir waves, is very small compared with the
speed of light c. It is extremely difficult for the oscillations to escape the plasma,
because the index of refraction for these waves is very nearly zero. Hence the Lang-
muir and the transverse modes are often grouped and called plasma oscillations.
Thus, it is convenient to call the transverse mode of (1) transverse plasmons (EM
wave). Due to the very small group velocities, the dominant interactions between
the transverse plasmons and Langmuir waves are strong; the interactions are con-
nected with scattering by electrons and ions (l + e 
 p + e′, l + i 
 p + i′) and
decay processes (l + l′ 
 p). Numerical calculations show that there is a continu-
ous transfer from Langmuir waves to the transverse plasmons and back, and their
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energy densities are approximately the same, averaged over time, W l ≈W p (Kap-
lan and Tsytovich 1973). In physical terms, it is natural that the interactions will
lead to a tendency towards equipartition of energy over both Langmuir and trans-
verse plasmons with the same frequencies near ωpe and similar dispersion laws. On
the other hand, for a plasma in thermal equilibrium, there is also a finite level of
plasma waves, which represents the degrees of freedom excited in thermal equilib-
rium. Langmuir plasmons are excited by the charged particles of the plasma as they
move due to their thermal energy by the Čerenkov processes e→ l+e′(spontaneous
emission) and they are then reabsorbed by the plasma due to Landau damping. A
balance between spontaneous emission and induced absorption leads to a thermal
level of Langmuir plasmons. The energy density of Langmuir plasmons in thermal
equilibrium is (Kaplan and Tsytovich 1973) W l

T = nekBTe/6π2ND. As a result, we
may expect for a plasma in thermal equilibrium that

W
p ≡ |Ep|2

4πnekBTe
= W

p

T =
W l
T

nekBTe
=

1
6π2ND

, (2)

where |Ep|2/4π is the energy density of transverse plasmons, ND is the Debye
number, and kB is Boltzmann’s constant. For excited levels , W

p
�W

p

T .
In this paper, we will study the collapse instability of the magnetic islands induced

just by the enhanced transverse plasmons, responsible for magnetic viscosity, within
a thin current sheet with a very small vertical extent δ,which is small compared
with the scale length ` of the flux cell. The basic ponderomotive effects on the flux
cell are given in Sec. 2. Section 3 discusses the collapse of the flux cell caused by the
transverse plasmons. On the basis of these results, we find the anomalous viscosity,
resulting from the collapsing spatially intermittent magnetic flux, in Sec. 4 followed
by some conclusions in Sec. 5.

2. Ponderomotive effects
For a plasma with electromagnetic oscillations, the basic equations relevant to
our discussion are the fluid equations for a two-component plasma consisting of
electrons and ions, supplemented by the Maxwell equations. Because of the large
difference in electron and ion oscillation frequencies in an astrophysical plasma, the
two-time-scale approximation is also relevant. In this case, all the field quantities,
say density, velocity, pressure, electric, and magnetic fields, can be divided into
fast-time-scale and slow-time-scale components, A = (ne, ni; ve, vi;Pe, Pi; E,B) =
Af + As, and it can be assumed that the ensemble average value of the fast-time-
scale components over the slow time scale vanishes: 〈Af 〉 = 0. On a slow time scale,
the quasineutrality condition leads to nes = nis ≡ ns. Under these circumstances,
with the aim of estimating the relative magnitude of the various terms in the
fast- and slow-component equations, we obtain the transfer equation for the fast
oscillation of electrons,

∇×∇× vef +
1
c2

∂2

∂t2
vef = − 1

c2

4πe2

me
nsvef +

3v2
Te

c2

1
ns
∇[∇ · (nsvef )], (3)

and the slow component continuity and momentum equations for the electrons and
ions (Li and Zhang 1997; Li et al. 1994)

∂

∂t
ns +∇ · (nsves) = 0, (4)
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∂

∂t
ns +∇ · (nsvis) = 0, (5)

Dves
Dt
≡ ∂

∂t
ves + (ves ·∇)ves =

e

me

(
Es +

1
c

ves × Bs

)
− ∇P

e
s

mens
+ Fep, (6)

Dvis
Dt
≡ ∂

∂t
vis + (vis ·∇)vis = − e

mi

(
Es +

1
c

vis × Bs

)
− ∇P

i
s

mins
, (7)

where vTe is the electron thermal velocity and Fep is the ponderomotive force de-
scribing the effect due to the high-frequency oscillations on the slow motion of the
electron fluid,

Fep = − 1
2∇〈(vef )2〉. (8)

Eliminating Es from (6) and (7), we have

me
Dves
Dt

+mi
Dvis
Dt

=
js × Bs
cn0

− 1
4
me∇(|vf0|2)− ∇P

e
s +∇P is
n0

, (9)

where js is the current density. The fast oscillation velocity of the electron can be
expressed as

vef = 1
2 [vf0(r, t)eiω0t + c.c.], (10)

with ω0 being the fast oscillation frequency of the plasmons, ω0 ' ωpe = 4πe2n0/me,
where n0 is the density of the background plasma with large characteristic scale
L0 and c.c. denotes the complex conjugate of the first term. We recall the equation
of the lowest order on the fast time scale, ∂vej/∂t ' (e/me)Ef , which, combined
with the van der Pol types of complex electric vector in the waves, similar to (10),
Eef = 1

2 [E(r, t)eiω0t + c.c.], gives

〈(vef )2〉 = 1
2 |vf0|2, vf0 ' −ie

meω0
E. (11)

For the purposes of this study, we have assumed that the turbulence parameter W ,
which expresses the excitation of the plasmons as a fraction of the total thermal
energy of the plasma, satisfies

W =
|E|2

4πnsTe
' |vf0|2

v2
Te

< 1, (12)

and that the electron plasma frequency ωpe is much greater than the cyclotron
frequency ωBe,

ωpe >> ωBe. (13)

In this case, (3) becomes

2iωpe
∂

∂t
vf0 + c2∇×∇× vf0 − 3v2

Te∇(∇ · vf0) +
δn

n0
ωpevf0 = 0, (14)

with ∣∣∣∣ 1
ω0

∂

∂t
ln vf0

∣∣∣∣� 1,

where δn = ns − n0, which is the slow disturbance density in the waves.
To close (14), we need to give the nonlinear term proportional to (δn/n0)vf0. In

the case of a thin current sheet, where there is a flow and plasmons, linearizing with
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respect to v, D/Dt ' ∂/∂t, multiplying (9) by dz, and integrating from z = −z0 to
z = z0 gives ∫ z0

−z0

∂

∂z

(
1
4
me|vf0|2 +

δn

n0
mic

2
s

)
dz = 0,

with c2
s = (γekBTe + γikBTi)/mi, where we have neglected the following terms due

to z0 → 0 :
∫ z0

−z0
vs dz = 2z0〈vs〉z → 0 and

∫ z0

−z0
(js × Bs) dz = 2z0〈js × Bs〉z → 0. We

then find that
δn(x, y, z)

n0
= −me/mi

4c2
s

|vf0(x, y, z)|2. (15)

In fact, the above result in a magnetic field was also found by Sotnikov and Kras-
noselskikh for the static limit (see Shapiro and Shevchenko 1984). By using (15),
we can write (14) in the form

i
∂

∂τ
v′f0 + αTe∇′ ×∇′ × v′f0 −∇′(∇′ · v′f0)− |v′f0|2v′f0 = 0, (16)

with

r′= 2
3

√
µkdr, τ = 2

3µωpet, αTe =
c2

3v2
Te

, µ =
me

mi
, v′f0 =

√
3vf0

4
√
µvTe

,

where kd is the Debye wavenumber.
By using standard procedures we may obtain a set of equations for global coup-

ling of MHD with the ponderomotive force by combining (4)–(7) (Li and Wu 1989).
The relevant equations are

∂

∂t
ρ +∇ · (ρU) = 0, (17)

ρ

[
∂

∂t
U + (U ·∇)U

]
=

1
4π

(∇× B)× B−∇P − 1
4
me

mi
ρ∇(|vf0|2), (18)

where

ρ = ns(mi +me), U =
mivis +meves
mi +me

, B = Bs,

and the pressure P is that at the center of mass of the system.

3. Magnetic flux cell collapse
It is known that reconnective annihilation of the magnetic field may create mag-
netic islands close to the surfaces of the current sheet. The field structure within a
magnetic island is circular, as assumed by Coroniti (1981), which is prescribed by
the simple vector potential

Az =
B0(t)

2`
(x2 + y2) (x2 + y2 6 `2), (19)

whereB0(t) is the characteristic magnetic field strength, which, in general, is depend-
ent on time t; ` is the scale length of the flux cell (L0� `� δ). The corresponding
magnetic field components are

Bx = −B0(t)
y

`
, By = B0(t)

x

`
. (20)
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Note that the field is not force-free. Usually, one can assume that the initial mag-
netic pressure is much less than the plasma thermal pressure P ; on the other hand,
the characteristic scale of the island, which is free to respond to local shear stresses
of Keplerian differntial rotation, is too small to balance the thermal pressure force.
Thus, the magnetic islands produced by reconnection may then interact with the
plasmons, and this causes a nonlinear equilibrium. Hence, we have from (18)

1
4π

(∇× B)× B =
1
4
µρ∇(|vf0|2). (21)

We will demonstrate later that this is the case.
As we have mentioned, many different types of wave may grow in a reconnecting

magnetic field and produce a turbulent environment within the thin current sheet.
We may assume that there are the plasmons oscillating along the z direction in the
sheet : vf0 = vfzz and vfz ∝ sech(zσ0) with σ0� 1 (see below). Thus, the divergence
of the fast oscillation velocity, ∇ · vf0 ∝ − sech(zσ0) tanh(zσ0), vanishes near the
surfaces of the sheet. Under this condition of transverse plasmons, (16) becomes

i
∂

∂τ
vfz +

1
2
∇2(vfz) + |vfz|2vfz = 0. (22)

Here we have taken the complex-conjugate equation and omitted the asterisk ‘*’
and prime ‘′’; and ∇2 = ∂2/∂ξ2

x + ∂2/∂ξ2
y + ∂2/∂ξ2

z and ξ = r′/
√

2αTe. In the
framework of (16), the transverse plasmon field is unstable in the Lyapunov sense to
the finite-amplitude, monochromatic pumping wave v0

f0 (or Ep0 , see (11)). It is found
(Li 1989) that modulational instability occurs when and only when k2 < 2|v0

f0|2,
or, in dimensional units,

|v0
f0|2
v2
Te

> 6
(
k

kd

)2

; (23)

the maximum growth rate and corresponding wavenumber of the instability for the
longitudinal perturbation (k‖v0

f0) are

γmax

ωpe
=

1
8

|v0
f0|2
v2
Te

,
klmax

kd
=

1

2
√

3

√
|v0
f0|2
v2
Te

. (24)

Obviously, one can see from the condition (23) that this instability is a zero-
threshold instability for the finite-amplitude monochromatic wave. In fact, one
of the most important features of a turbulent field is that this field is always a
relatively broad wavepacket. However, if the frequency spread ∆ω of the packet
is much less than γmax and its wavenumber width ∆k is much smaller than klmax,
then the perturbation will clearly have neither time nor space to realize that the
initial wave is not monochromatic (Thornhill and ter Haar 1978). In this case, when
its wavenumber width ∆k� klmax, we may find the threshold of the modulational
instability for the turbulent field:

|v0
f0|2
v2
Te

�WMI ≡ 12
(

∆k
kd

)2

. (25)

The modulation of the perturbed pumping field, occurring as a result of instability,
leads to field localization. The nonlinear development of the modulational insta-
bility, for the two- or three-dimensional case, will lead to collapse (Li et al. 1995).
This then causes an implosion of the waves and gives rise to spatially intermittent
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field structures with various intensities, very similar to a chaotic or more turbulent
pattern. The numerical simulations illustrate a similar turbulent pattern.

Now let us seek the solution to (22) in the following forms with three dimensions:

vf0 =
√
σ(R, z, τ ) exp[iS(R, τ )], (26)

σ = σ2
0(R, τ ) sech2(zσ0), R2 = ξ2

x + ξ2
y, z = ξz, (27)

where the amplitude σ0(R, τ ) is a slowly varying function with respect to the phase
function S(R, τ ), i.e. ∣∣∣∣ ∂S∂R

∣∣∣∣� ∣∣∣∣ ∂σ∂R
∣∣∣∣ . (28)

The scale length in the z direction, i.e. the thickness of the sheet, is δ = σ−1
0 . The

‘turbulence parameter’ is given by

W
p ≈ |vf0|2

v2
Te

=
16
3
µ|v′f0|2 < 1,

and the strong turbulence,W
p
> µ, is, to order of magnitude, |v′f0|2 < µ−1. Therefore

the thickness δ is exceedingly small for strong plasmons with σ0� 1:

δ� 1. (29)

Substituting (26) in (22) and separating into real and imaginary parts, we find that

∂σ

∂τ
+

∂

∂ξx

(
σ
∂S

∂ξx

)
+

∂

∂ξy

(
σ
∂S

∂ξy

)
= 0, (30)

σ
∂S

∂τ
+
σ

2

[(
∂S

∂ξx

)2

+
(
∂S

∂ξy

)2
]
−
{

1
4
∂2σ

∂ξ2
x

+
∂2σ

∂ξ2
y

− 1
8σ

[(
∂σ

∂ξx

)2

+
(
∂σ

∂ξy

)2
]}

= σ2 − 1
8σ

(
∂σ

∂z

)2

+
1
4
∂2σ

∂z2 . (31)

Considering (28), (30) becomes

∂σ

∂τ
+ σ

∂2S

∂ξ2
x

+ σ
∂2S

∂ξ2
y

= 0. (32)

In the thin sheet, we can ignore the terms in square brackets in (31) in view of (28)
and (29); then integrating this equation and (32) over z from z = −∞ to z = ∞
gives

∂σ0

∂τ
+
σ0

R

∂

∂R

(
R
∂S

∂R

)
= 0, (33)

∂S

∂τ
+

1
2

(
∂S

∂R

)2

− 1
2
σ2

0 = 0, (34)

where we have used that
∫∞

0 sech2z dz = 1 and
∫∞

0 sech4z dz = 2
3 .

We can make an ansatz for self-similar collapse, which was first obtained by Gorev
et al. (1976):

σ0 = (τ0 − τ )−2/3V (ζ), S = (τ0 − τ )−1/3ψ(ζ), ζ =
R

(τ0 − τ )1/3
. (35)
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Substituting (35) into (33) and (34) yields

ψ + ζ
dψ

dζ
+

1
2

(
dψ

dζ

)2

=
3
2
V 2,

2
3

+
ζ

3
1
V

dV

dζ
+

1
ζ

dψ

dζ
+
d2ψ

dζ2 = 0.

Putting ψ = a + bζ2 and 3b(1 + 2b)/a = −ε2, and dropping the term

ζ

3
1
V

dV

dζ
∼ ε2ζ2

1− ε2ζ2

if ε2ζ2� 1, yields a ≈ 1/3ε2 and b ≈ − 1
6 . As a result, we find

σ0 =

√
2

3ε
(τ0 − τ )−2/3

[
1− ε2 R2

(τ0 − τ )2/3

]1/2

, (36)

S =
1

3ε2 (τ0 − τ )−1/3
[
1− ε2

2
R2

(τ0 − τ )2/3

]
. (37)

This solution with ε = 1 obtained by Gorev et al. (1976) is valid only for ζ < 1.
Now the solution above is also available for ζ > 1, provided that ε2ζ2� 1. Hence,
at the plane of the sheet,

|vf0|2 = σ2
0 =

2
9ε2 (τ0 − τ )−4/3

[
1− ε2 R2

(τ0 − τ )2/3

]
,

or, in dimensional units,

|vf0|2
v2
Te

=
16
9

(
3
2

)1/3
µ−1/3

ε2 (τ̃0 − τ̃ )−4/3

[
1−

(
2
81

)1/3

µ1/3ε2 3k2
0(x2 + y2)

(τ̃0 − τ̃ )2/3

]
, (38)

with τ̃ = ωpet and k0 = ωpe/c. Now one sees from (20), (21), and (38) that there
is indeed nonlinear equilibrium between the ponderomotive force and the Lorentz
force within the sheet. In this case, one has

By =
1
2`

∫ `

−`
By dx =

1
2
B0(t) =

2π1/2

3
(k0`)

P 1/2

τ̃0 − τ̃ , (39)

where P = n0kBT. It should be pointed that it is precisely the nonlinear equilibrium
that causes the collapsed magnetic flux to be in a turbulent state, as turbulent
transverse plasmons.

The collapse results from the development of modulational instabilities. Hence we
may identify τcoll ≡ τ̃0− τ̃ as the scale (τ̃0− τ̃min) to stop collapse, which corresponds
to W

p ∼ 1. On the one hand, the derivation of our basic equations (16) and (18)
breaks down as soon as W

p
is no longer small compared with unity. On the other

hand, the ideal situation would be that the parameter W
p

was limited by unity:
the strong field with W

p
in excess thereof would make the nonlinear interactions

very strong and the time scale of interactions very short; physically, an energy
flow arises, which would lead to an increase in thermal energy neTe during a very
short period; and then W

p
would quickly drop to below unity again after this

period (Tsytovich 1977). Therefore the minimum time scale collapse motion could
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be found from the self-similar solution (38) as

(τ̃0 − τ̃ )2
min ≈ ( 16

9 )3/2( 3
2 )1/2µ−1/2ε−3. (40)

4. Magnetic viscosity from collapsing flux cell
The magnetic viscous force due to the collapsed spatially intermittent flux is

fmi =∇jt
m
ij , (41)

where the viscous stress tensor is

tmij = 〈δBiδBj − 1
2δij(δB)2〉/4π. (42)

The work done on the volume dr, per unit time, by the stress is

−∂t
m
ij

∂xj
vi dr,

which contributes to the thermal energy due to viscous dissipation, resulting in a
change of entropy within the volume:

Ṡ =
∫

1
T

(
−∂t

m
ij

∂xj
vi

)
dr =

∫
tmij
Vij
T
dr, (43)

where

Vij ≡ 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

Equation (43) corresponds to that of Lifshitz and Pitaevskii (1981):

tmij = γij;lk
Vlk
T

= ηij,lkVlk, (44)

where ηij;lk are kinetic coefficients. This above can be recast as

tmij = ηm

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij

∂vk
∂xk

)
, (45)

with

ηij;lk = ηm(δilδjk + δikδjl − 2
3δijδlk), (46)

where ηm is the magnetic viscosity defined through the kinetic coefficient as ηm =
ηlk,lk (l� k, with no summation over repeated lk).

In many practical cases, including accretion disks and the Galaxy, the shear stress
tensor Vlk has a dominant rϕ component, and then (45) becomes

tmij = ηij,rϕ
1
2

(
∂vϕ
∂r
− vϕ

r

)
= ηij,rϕ

1
2
r
∂Ω(r)
∂r

. (47)

Furthermore, it yields from (42), (46), and (47)

1
4π
|〈δBrδBϕ〉| = ηm

1
2
r

∣∣∣∣∂Ω(r)
∂r

∣∣∣∣ . (48)

In this circumstance of turbulent flux cells, which are in various phases, we may
assume that the collapsed magnetic field of the transverse modes is statistically
isotropic on the scales of interest :

1
2 〈(δB)2〉 ≈ 〈δBrδBϕ〉. (49)
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Up to an uncertainty of order unity, one has 〈(δB)2〉 ≈ (δB2
max). For a Keplerian-

rotation thin disk, Ω(r) = ΩK =
√
GMr−3/2, (48) becomes

δB2
max

8π
= 3

4ηmΩK ; (50)

and, putting ηm ≈ ηt = αcsρH and ΩKH ≈ cs, we get formally

δB2
max

8π
= 3

4αρc
2
s = 3

4αP, (51)

with

α =
2
27

k2
0`

2

(τ̃0 − τ̃ )2 . (52)

It is rather difficult to give the width ∆k for the transverse plasmons in (25),
because their spectrum is unknown. However, as the thermal equilibrium state cor-
responds physically to the lowest energy level, obviously one has WMI > W

p

T for
a turbulent field with relatively broad wavepacket. The modulational instability
is therefore suppressed in this low-level state of W

p
< WMI, which could be con-

sidered as an indicator of the quiescent state of the accretion disk. Under these
circumstances, this magnetic collapse is also quenched; then we get the parameter
α for collapse-quenching from (52) as α = αq = 2

27k
2
0`

2/τ̃ 2
0 . On the other hand,

during outbursts, the accretion disk is magnetically more active and wave–wave
and wave–particle interactions involving the transverse plasmons happen at higher
levels. Thus, the modulational instability is induced by the enhanced plasmons
with W

p
> WMI; then the flux cell undergoes collapse up to a time limited by

(40). Hence we have from (52) and (40) that α = αb = 0.2(n0/1014)(ε3`2). Taking
ct0 ∼ ` and ε3`2 ∼ 1 yields that α = αq = 0.07 in the quiescent stage of the disk and
α = αb = 0.2, with (1− t/t0)min = 0.6, during outbursts in a dwarf nova.

5. Conclusions
Reconnective annihilation of the magnetic field leads to the formation of small
magnetic islands, followed by enhanced transverse plasmons occurring in a thin
current sheet with very small vertical extent. In an island (i.e. a cell), the magnetic
field lies in the plane of the disk, as assumed by Coroniti (1981). The flux cell
interacts subtly with the plasmons in the plane of the disk, as described by (21).

The transverse plasmon field is modulationally unstable in the Lyapunov sense
to the pump wave. When the initial pump wave amplitude satisfies the condition
(25), instability occurs and attains the largest growth rate (24). Nonlinear devel-
opment of the modulational instability results eventually in self-similar collapse,
due to nonlinear equilibrium, giving rise to a more spatially intermittent, collap-
sing magnetic flux, very similar to a turbulent pattern, which is illustrated also by
numerical simulation (Ma and Li 2002).

The Maxwell stress tensor of the intermittent flux determines the anomalous
magnetic viscosity, i.e. the parameter α (see (52)). During outbursts, the plas-
mons are probably in high levels with W

p
> WMI; then the flux undergoes col-

lapse, leading to a large α value, say of 0.2. On the other hand, in low levels with
W

p
< WMI, the modulational instability is therefore suppressed and this magnetic

collapse is also quenched. Then we get a smaller value of the parameter α for the
quiescent stage of the disk.
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