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The paper is devoted to the problem of harmonic oscillations of thin plates in
a viscous incompressible fluid. The two-dimensional flows caused by the plate
oscillations and their hydrodynamic influence on the plates are studied. The fluid
motion is described by the non-stationary Navier–Stokes equations, which are solved
numerically on the basis of the finite volume method. The simulation is carried out
for plates with different thicknesses and shapes of edges in a wide range of control
parameters of the oscillatory process: dimensionless frequency and amplitude of
oscillations. For the first time in the framework of one model all two-dimensional flow
regimes, which were found earlier in experimental studies, are described. Two new
flow regimes emerging along the stability boundaries of symmetric flow regimes are
localized. The map of flow regimes in the frequency–amplitude plane is constructed.
The analysis of the hydrodynamic influence of flows on the plates allow us to
establish new effects associated with the influence of the shape of the plates on
the drag and inertia forces. Due to these effects, the values of hydrodynamic forces
can differ by 90 % at the same parameters of the oscillation. The lower and upper
estimates of hydrodynamic forces obtained in the work have a good agreement with
the experimental data presented in the literature.

Key words: flow–structure interactions, vortex shedding, separated flows

1. Introduction
The problem of a two-dimensional flow around an infinitely long thin plate

performing harmonic oscillations in a viscous incompressible fluid is a classical
hydrodynamic problem. Its solutions are widely used for estimation of the character-
istics of fluid–structure interaction processes and for determination of the parameters
of flows caused by oscillations of structures in studies of complex dynamical systems
in a variety of subject areas, such as the construction of oil platforms (e.g. Tao
& Thiagarajan 2003a,b), development of biomimetic underwater propulsion systems
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(e.g. Kopman & Porfiri 2013), generation of electric energy (e.g. Aureli et al. 2010;
Erturk & Inman 2011), damping of oscillations in fuel tanks (e.g. Buzhinskii 1998a,b),
development of cooling systems of electronic boards (e.g. Bidkar et al. 2009), study
of properties of materials (e.g. Egorov et al. 2014; Paimushin et al. 2014; Paimushin,
Firsov & Shishkin 2017), etc.

Analytical solutions of the problem which cover the entire range of geometric
and frequency parameters are available today only for the range of small oscillation
amplitudes, where the fluid dynamics around the plate can be described in a linear
approximation (see Kanwal 1955; Tuck 1969). In the range of large and moderate
oscillation amplitudes, where the external flow is determined by the nonlinear
interaction of complex vortex structures forming near the plate, the key methods
of investigation are experiments and numerical simulation.

Experimental results are the main source of estimates of the hydrodynamic forces
acting on the plate today. A significant part of the information about the problem was
obtained in classical hydrodynamic experiments conducted in the 60–80s of the last
century (see Keulegan & Carpenter 1958; Bearman 1971; Bearman, Graham & Singh
1979; Singh 1979; Bearman & Obasaju 1982; Bearman et al. 1985). The main goals
of these pioneer researcher were: (i) identification of the main control parameters of
the oscillatory process; (ii) evaluation of the hydrodynamic forces acting on the plates;
(iii) observation of the flow structure near the oscillating plates.

In the course of numerous experiments with cylindrical bodies of different cross-
sections, it was established that the key similarity parameters of flows near bodies
with the same geometric characteristics are the following complexes

KC= 2π
U0

bω
= 2π

A
b
, β =

b2ω

2πν
. (1.1a,b)

Where A and U0=Aω represent the amplitude of the oscillations and the amplitude
of the velocity of oscillations, respectively, b is a characteristic length scale (a width
of the plate for the considered case), ω is the angular frequency and ν is the kinematic
viscosity of the fluid.

The parameter KC is called the Keulegan–Carpenter number, it characterizes the
dimensionless amplitude of the oscillations. According to the results of Bearman
et al. (1985) this parameter almost completely determines the solution of the problem
for large oscillation amplitudes. The second parameter β is often called the Stokes
number or vibrational Reynolds number, it can be interpreted as the dimensionless
oscillation frequency. A significant influence of this parameter on the oscillation
process is manifested at small and moderate amplitudes. Notice that the structure
of the flows and the magnitude of the forces at the same values of the parameters
for profiles of different shapes are extremely different, for example, the drag of the
square cylinder and the thin plate at large amplitudes of oscillations differ by more
than a factor of two (see Singh 1979; Bearman et al. 1985).

The parametrization of the measured forces in oscillatory motion is a non-trivial
task. For this purpose in the works of Keulegan & Carpenter (1958), Bearman
et al. (1979), Singh (1979), Bearman et al. (1985), Morison’s approach (Morison,
Johnson & Schaaf 1950) was chosen. According to which the force Fx acting on the
oscillating body in the fluid along the axis of oscillation is represented as the sum
of the drag force, proportional to the velocity, and the inertia force, proportional to
the acceleration of the oscillatory motion

Fx =
1
4ρπb2CMU̇p +

1
2ρbCDUp|Up|. (1.2)
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Where ρ is the density of the fluid, Up, U̇p are the velocity and the acceleration of
the motion, CD,CM are the coefficients of the drag and inertia forces, respectively.

Despite similar concepts of research methods and data analysis, on comparing the
results obtained in classical experiments by different groups of researchers (Keulegan
& Carpenter 1958; Bearman et al. 1979; Singh 1979; Bearman et al. 1985), it is
possible to detect significant differences (up to 30 %) in estimation of the drag
coefficient of the plate in the zone of moderately large values of the dimensionless
amplitude KC. These differences are explained by Singh (1979) as a result of
incomplete agreement of other parameters of the experiments, such as the frequency
range and geometric characteristics of the plates. It is not possible to completely
identify the effects of these parameters from experimental data of Keulegan &
Carpenter (1958), Singh (1979), Bearman et al. (1985). The geometric characteristics
of the samples in the work (Keulegan & Carpenter 1958) are unknown. In the works
of Singh (1979), Bearman et al. (1985), plates with chamfered edges and different
relative thickness ∆≈ 0.31, 0.21, 0.1 are used, where ∆ is defined as the ratio of the
plate thickness h to its width b

∆= h/b. (1.3)

However, each sample was tested only at one value of dimensionless frequency:
β = 188 (for ∆≈ 0.31), β = 421.5 (for ∆≈ 0.21), β = 1685.8 (for ∆≈ 0.1).

The descriptions of the flow structures in the vicinity of oscillating thin plates,
obtained from the results of investigations (Keulegan & Carpenter 1958; Singh 1979)
in general are identical. The most complete information is given in the research of
Singh (1979). According to its results, it is possible to distinguish four main flow
regimes which can be localized in the following ranges of values of the parameter KC:
0< KC< 3 is the range of symmetric flows, 3< KC< 7 is the range of asymmetric
flows, 7< KC < 25 is range of ‘cyclic’ flows, KC > 25 is range of ‘pseudo-Kármán
vortex street’ development.

Another type of experimental source is the modern works of Egorov et al.
(2017), Egorov, Kamalutdinov & Nuriev (2018), Shrestha, Ahsan & Aureli (2018)
where the two-dimensional flows around long thin beams performing flexural
vibrations in a fluid were investigated. The motion of a fluid near each beam
cross-section at low oscillation modes in a limited range of oscillation amplitudes
has a two-dimensional structure that is equivalent to a flow near a harmonically
oscillating thin rigid plate. On the basis of this concept Egorov et al. (2017, 2018)
purposed a theoretical–experimental method for determination of the hydrodynamic
drag and inertial forces acting on cantilever beams performing free vibrations in the
air. The experiments were performed in the range 0 < KC < 6, 50 < β < 1500. As
test samples, beams with chamfered edges and a relative thickness of 0.03<∆< 0.1
were used. The obtained estimates of the drag forces have a good agreement with
the data of Singh (1979). In addition, for CD in the studied range of parameters,
an approximation formula that describes the dependence of this coefficient from the
parameters β and KC was proposed.

Shrestha et al. (2018) on the basis of particle image velocimetry (PIV) technology
studied the structure of the flow near the oscillating beam and calculated the
hydrodynamic forces acting on the beam. The experiments were performed in the zone
of small and moderate oscillation amplitudes 0.06<KC< 5.7 in the frequency range
20 6 β 6 1800 for rectangular samples with relative thickness of ∆ = 0.04. Based
on the results, a flow regime map was constructed which includes five different
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regimes. The boundaries of the regimes are highly dependent on the frequency and
the amplitude of the oscillations. It should be noted that the upper boundary of
symmetry flows in the range of moderate frequencies β > 300 was localized in the
region KC< 0.8, which is at least 3.5 times less than the estimate of Singh (1979).

Along with experimental studies, the numerical methods for the solution of the
problem of flow past a harmonic oscillating thin plate has been developing for a
fairly long time. Significant progress in these studies was achieved for the region
of small oscillation amplitudes. In the works of Aureli & Porfiri (2010), Aureli,
Porfiri & Basaran (2012), Phan, Aureli & Porfiri (2013) on the basis of traditional
mesh methods the solution of the problem of the oscillations of rectangular plates
in the range of the parameters 0.1 6∆6 10.003 6< KC 6 0.3 was carried out. The
obtained results describe the beginning of the development of nonlinear hydrodynamic
processes near the plate and their influence on the hydrodynamic forces. All the
numerical data in this area have a good agreement with each other and almost
completely fill the gaps of experimental and analytical studies.

Numerical studies of flows in the region of large amplitudes do not have such
unambiguous results. The first attempts to simulate the separated flow for the
large amplitude vibrations of plates were taken by Graham (1980). Using the
discrete-point-vortex method the author described the development of the vortex
structure in the vicinity of the edges of the plate, that was similar to the observed in
the ‘cyclic’ flow regime of Singh (1979). However, the estimates of the drag forces
acting on the plate have the only qualitative agreement with the experimental data
of Singh (1979). The inviscid vortex-shedding model was used to describe the fluid
motion around the oscillating plate by Bidkar et al. (2009). The solutions found in
this study had a symmetric structure with respect to the oscillation axis in the range
0<KC<5. The calculated values of the hydrodynamic forces acting on the plate were
also significantly higher than estimates obtained in the experimental works.

Numerical models of Tafuni & Sahin (2015) (based on smoothed particle
hydrodynamics), De Rosis & Lévêque (2015) (based on Lattice Boltzmann method),
Egorov et al. (2014) (based on finite volume method) give a qualitatively better
agreement with experiments in the field of hydrodynamic force estimations. The
results of calculation of the drag force acting on oscillating rectangular plates,
performed in the paper Egorov et al. (2014) in the range of parameters 0< KC < 6,
50 < β < 1500, are in good agreement with the experimental results of Keulegan &
Carpenter (1958). At the same time, the data obtained in the work do not explain
more than 30 % of the difference from the results of Singh (1979), Egorov et al.
(2018) and do not describe the development of the flow structure. Representations
of flow regimes near the plate obtained by Tafuni & Sahin (2015) (200< β < 2000,
0.1 < KC < 4.4) and De Rosis & Lévêque (2015) (200 < β < 2000, 0 < KC < 4.4)
significantly differ from the experimental data of Singh (1979), Shrestha et al. (2018).
In Tafuni & Sahin (2015), as in De Rosis & Lévêque (2015) the symmetric flow
regimes remain stable throughout the investigated range of oscillation amplitudes.
This is an order of magnitude greater than the estimates of the boundary of the
symmetry regimes obtained by Shrestha et al. (2018).

From the above analysis of the literature we can reveal the following problematic
aspects in the study of fluid flows induced by the oscillations of thin plates and
evaluation of their influence on the oscillator: (i) the determination of the influence
of the parameters of the problem (including the geometric characteristics of the plate)
on the hydrodynamic forces; (ii) the determination of the structure of the flow around
the plates and their boundaries in the parametric domain of the problem; (iii) the
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FIGURE 1. Geometrical characteristics of plates.

determination of the reasons for the mismatch of estimates of hydrodynamic drag in
the experiments of Singh (1979), Egorov et al. (2018) and Keulegan & Carpenter
(1958), Egorov et al. (2014). These aspects form the subject of the present study.

In present work the hydrodynamic processes occurring during the oscillatory motion
of plates are studied numerically. The fluid motion around the plates is described
by a non-stationary system of Navier–Stokes equations. The numerical scheme of the
solution is constructed on the basis of the finite volume method.

The paper is organized as follows. The mathematical formulation of the problem is
given in § 2. In § 3 a numerical scheme and its verification are presented. The structure
of flows around the plates at different oscillation parameters are discussed in § 5, in
§ 6 the analysis of the influence of the oscillation parameters and the geometry of the
plates on the hydrodynamic forces is carried out. Concluding remarks are given in § 7.
In the Appendix the importance of three-dimensional effects which may appear in the
investigated range of parameters is also discussed.

2. Mathematical formulation of the problem
Consider a thin long plate that oscillates in a viscous incompressible fluid. The

velocity of oscillation varies according to the harmonic law

Up =U0 cos(ωt̃). (2.1)

The aims of the research are the study of two-dimensional flows which form around
the plate and the analysis of hydrodynamic forces caused by these flows for a wide
range of oscillation parameters and geometrical characteristics of the plate.

We consider three different types of plates: plates with a rectangular cross-section
(type I), plates with chamfered edges (type II) and plates with rounded edges (type III).
Schematic representation of the plates of each type is shown in figure 1. As geometric
similarity parameters, the relative thickness ∆ (for samples of all three types), the
vertex angle α= 60◦ for the plates with chamfered edges and the dimensionless corner
radius R= r/h for rounded samples are used.

We solve the problem in a moving Cartesian coordinate system rigidly connected
with the plate. The axis Ox of moving coordinate system coincides with the axis of
oscillation of the plate. Normalizing the spatial coordinates, time and velocity by b,
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bU0
−1, −U0, respectively, we write the system of equations of motion for the fluid in

the following form:

∂U
∂t
+U · ∇U=−∇p+

1
KCβ
∇

2U,

∇ ·U= 0.

 (2.2)

Here U = (u, v) is dimensionless velocity, p is fictitious pressure, that equals to the
sum of the true pressure p̃ and the inertial component p̄, which occurs as a result of
the transition to the moving coordinate system (see, e.g. Dutsch et al. 1998) and can
be defined as

p̄= x
2π

KC
sin
(

2π

KC
t
)
. (2.3)

Dimensionless parameters β and KC are defined according to the formulas (1.1).
On the boundary of the plate in the new coordinate system no-slip conditions are

specified,

uS = vS = 0. (2.4)

At infinity the change of the velocity is given by the harmonic law

u∞ = cos
(

2π

KC
t
)
, v∞ = 0. (2.5a,b)

The calculation of hydrodynamic forces and the moment acting on the plate in the
presented dimensionless formulation is carried out according to the formulas

F=
∫

S
pn ds−

∫
S

E · n ds,

M=
∫

S
r0 × pn ds−

∫
S

r0 × E · n ds,

 (2.6)

where E is a viscous stress tensor, S is the surface of the plate, n is the inward-
pointing unit normal vector to the plate surface and r0 is a radius vector directed
from the geometric centre the plate to its surface. It should be noted that the force
in the moving coordinate system is determined by the fictitious pressure and therefore
contains a contribution from the inertial component p̄ (2.3). This contribution can be
calculated as follows:

Ffk =
2π

KC
sin
(

2π

KC
t
) ∫

S
xn ds. (2.7)

It is also known as the Froude–Krylov force.
To analyse the in-line force, we use Morrison’s approximation (1.2). In dimension-

less variables, it can be rewritten as follows:

Fx =
π

2
CM

du∞
dt
+CD|u∞|u∞. (2.8)

The calculation of the hydrodynamic coefficients CD, CM is carried out at each
oscillation period T by integration

CM =−
1
π2

∫ T+t0

t0

Fx sin
(

2π

KC
t
)

dt, CD =
3π

8KC

∫ T+t0

t0

Fx cos
(

2π

KC
t
)

dt. (2.9a,b)
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FIGURE 2. The structure of the mesh in the vicinity of the plate edge.

Mesh N Vmin Vmax Np (lx, ly)

M1 ≈0.7× 105
≈6.7× 10−5

≈2.6 ≈280 (60, 40)
M2 ≈1.7× 105

≈3× 10−5
≈1.2 ≈430 (60, 40)

M3 ≈3.8× 105
≈1.3× 10−5

≈0.5 ≈640 (60, 40)
M4 ≈4.4× 105

≈1.3× 10−5
≈0.7 ≈640 (70, 50)

TABLE 1. The main parameters of the meshes.

3. Numerical scheme

The solution of the resulting governing system of (2.2), (2.4), (2.5) was carried
out numerically. For discretization of the equations we used the finite volume method.
The realization of the computation scheme was done on the basis of the OpenFOAM
package (Greenshields 2018).

The plane of flow xOy was limited to a rectangular region of size (lx, ly) which
sides were set parallel to the main axes of coordinates. The plate was placed in the
centre of the computational domain and coordinate system. The discretization of the
computational domain was carried out using block meshes. The cells of mesh in the
flow plane had a quadrilateral shape. The resolution near the plate was controlled by
the linear mesh grading in the directions normal to the sides of the plate and by
successive refinement of the cells in the vicinity of its boundaries by cutting them
into four parts (see figure 2).

Simulation of the flow around rectangular plates and plates with chamfered and
rounded edges were carried out on identical meshes. The differences between meshes
were only in the small zones near the edges of plates. The values of the main
parameters of the applied meshes are given in the table 1, where N is the total
number of cells, Vmin is the minimum volume of cells in the boundary layer of the
plate, Np is the number of cells on boundary of the plate, Vmax is the maximum
volume of cells in the computational domain. The mesh M3 is the main mesh used
for calculations. Meshes M2, M1 were obtained from M3 by a proportional decrease
by 2.25 and 5.06 times of the number of cells in each mesh block, respectively. They
are used for convergence tests (see § 4). The mesh M4 was constructed in a larger
computational domain than the other meshes, structurally it reproduces the mesh M3
near the plate; M4 is used to evaluate the influence of the external boundaries of the
domain on the solution (see § 4).

Discretization of the equations of motion was carried out using the finite volume
method in the orthogonal Cartesian coordinate system. Discrete values of the
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velocity components and the pressure were localized in the cell centres of the
computational mesh. The Gauss integral theorem was used to calculate the volume
integrals over a finite volume. For the approximation of the pressure gradient linear
interpolation was used. In the diffusion terms the normal velocity gradients on the
cell surface were approximated by a second-order symmetric scheme with correction
for non-orthogonality (see Jasak 1996; Greenshields 2018).

For the interpolation of variables in convective terms the hybrid Spalding scheme
(Patankar & Spalding 1972; Spalding 1972) was used (close analogue of the
‘streamline upwind’ (Brooks & Hughes 1982) scheme that is widely used in
finite-element methods). It is a combination of linear and upwind interpolations.
Linear interpolation is applied in the area where the cell Reynolds number (or Péclet
number) Reh < 2. In other cases, upwind interpolation is used. The scheme makes it
possible to avoid non-physical oscillations of the solution in regions with insufficient
resolution of the meshes (which is especially important near the outer boundaries
of the computational domain) and provides stability and convergence of the entire
solution process. The results of the works of Justesen (1991), Zhao et al. (2007),
An, Cheng & Zhao (2009), Guoqiang et al. (2018) show, that the hybrid scheme
provides good matching of numerical results with experimental data in a wide range
of Reynolds numbers for the considered class of problems. But the application of
the scheme requires special precautions, the first order of accuracy of the upwind
interpolation can lead to a significant influence of the numerical diffusion on the
solution. Such a negative influence can be minimized by increasing the resolution of
mesh near the body and by monitoring of the mesh convergence.

The implicit Euler scheme was used for the discretization of the time derivative. The
time step in all calculations was chosen to satisfy two conditions: (i) the maximum
Courant number does not exceed 0.1; (ii) the minimum number of steps per period
must be at least 500.

The discrete problem was solved using a pressure-implicit with splitting of operators
(PISO) method (Issa 1986; Ferziger & Peric 2002). The pressure equation was solved
by the conjugate gradient method (PCG) with a generalized geometric–algebraic
multigrid preconditioner (GAMG). The equations for the velocity components was
solved using the biconjugate gradient method (PBiCG) with a predictor based on
incomplete factorization (ILU). Domain decomposition techniques and MPI (message
passing interface) technology were used for the parallelization of the solution
algorithm.

4. Verification of the numerical scheme

To evaluate the accuracy of the numerical simulations, we undertook an analysis of
the influence of the resolution of the meshes and the size of computational domain
on the structure of the flows around plates and integral and local flow characteristics.

The comparison of instantaneous flow patterns and pressure distribution over the
surface of a rectangular plate, that were obtained on different meshes at the same
combination of parameters for the one moment of time, is shown in figures 3 and 4.
As can be seen, the more than five times increase in the number of cells which was
realized during the transition from the mesh M1 to M3 does not introduce significant
changes in the flow structure or in the pressure distribution on the surface of the plate.
Relatively small changes are also observed in the integral characteristics calculated
over the period of motion.
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FIGURE 3. The pressure distribution along the surface of the rectangular plate (type I)
with relative thickness of ∆= 0.1 for β = 55,KC= 7 at time t/T = 40. Solid (for x< 0)
and dashed (for x> 0) lines correspond to the mesh M3, round markers to the mesh M2,
triangular markers to the mesh M1.

(a) (b)

FIGURE 4. Comparison of instantaneous flow patterns at time t/T = 40 near a rectangular
plate (type I) with relative thickness ∆= 0.1 at β= 55,KC= 7 obtained on meshes M1 (a)
and M3 (b). The vorticity isolines Ωz = [−4,−2,−1,−0.5, 0.5, 1, 2, 4] are shown.

Table 2 shows the coefficients of the in-line component of the force calculated
according to Morison’s approximation (2.8), (2.9) for plates of type II on different
meshes for β=200 and various dimensionless amplitudes KC=1,3,7. The differences
between the values of CD and CM calculated on the M1,M2,M3 meshes do not exceed
3 %. The difference between the values calculated on the M2 and M3 meshes in all
control points is less than on the M1 and M2 meshes, which indicates the grid
convergence of the solution. The values of CD and CM calculated on M3,M4 meshes
have equal first three significant digits at all verified values of parameters, this
indicates that the influence of the outer boundaries is low.
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FIGURE 5. (Colour online) The flow regime map. The basic symmetric regime: u, the
symmetric regime with the attached vortices:p, the symmetric flow with vertical vortex
shedding: r, regime with a C-shaped structure of the flow: B, regime with a V-shaped
structure of the flow: @, one-sided diagonal regime: s, cyclic diagonal regime: f, the
intermittent diagonal regime:6. The boundaries of the flow regimes according to previous
research: — · —, Shrestha et al. (2018); ——, Singh (1979).

Mesh KC= 1 KC= 3 KC= 7
CD CM CD CM CD CM

M1 7.29 1.29 5.91 1.43 4.56 2.00
M2 7.37 1.28 6.0 1.41 4.65 2.02
M3 7.4 1.28 6.03 1.4 4.67 2.02
M4 7.4 1.28 6.03 1.4 4.67 2.02

TABLE 2. The coefficients CD and CM of the in-line force acting on the plate with
chamfered edges (type II) and relative thickness of ∆ = 0.25 for β = 200 calculated on
different meshes.

5. Structure of the flows formed by plate oscillations
5.1. The flow regime map

Let us consider in detail the evolution of the flow around the plate with chamfered
edges (II type) and a relative thickness of ∆ = 0.1. Simulations for this plate were
carried out in the range 20 6 β 6 500, 0.2 6 KC 6 10. The values of the parameters
of each of calculation are denoted in figure 5 using markers. The different types of
markers correspond to the various flow structures near the plate. The dense cloud
of the calculations thus allows us to obtain a flow regime map in the designated
parametric region.

Calculations show that the structure and the localization regions of the flow
regimes are practically identical for all types of plates for the same value of ∆. With
a change of the relative thickness, the flow regime map is reconstructed quantitatively,
remaining qualitatively identical. In this sense, the development of the flow structure
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around all investigated plates of any thickness occurs in a similar manner. Everywhere
it is possible to distinguish eight areas in which different flow regimes are observed.

The regimes on the map (figure 5) are denoted by the following markers:
(u) the basic symmetric regime,
(p) the symmetric regime with attached vortices,
(r) the symmetric flow with vertical vortex shedding,
(s) the one-sided diagonal flow regime,
(f) the cyclic diagonal flow regime,
(B) the regime with a C-shaped structure of the flow,
(@) the regime with a V-shaped structure of the flow,
(6) the intermittent diagonal flow regime.
Additionally, in figure 5 the boundaries of the flow regimes which were found by

Shrestha et al. (2018) (dash-dotted lines) and Singh (1979) (solid lines) are shown.
They will be discussed in the following sections.

Let us proceed to the description of the localized eight flow regimes. In general,
the identification of regimes was carried out by observing the distribution of the dye
in the domain spreading from the small neighbourhood of the plate. The motion
of the dye was described by a convection equation, which was solved at each time
step after the determination of the instantaneous velocity field of the main problem.
As boundary conditions at all boundaries constant values were set: equal to one on
the plate surface and to zero on the outer boundary of the computational domain.
This visualization method is well suited for observing fast currents near the body
and provides information on the transfer of fluid from the body to the outer region.
For relatively small values of KC, in addition to the instantaneous dye distribution,
secondary streaming flow patterns were analysed. Secondary streaming is the steady
flow which is formed around the oscillating body on the background of the primary
unsteady fluid motion. It can be calculated by averaging of the velocity field over
a period of oscillations. The analysis of the secondary flows (see, e.g. Wang 1968;
Tatsuno 1981; Riley 2001; An et al. 2009; Nuriev, Egorov & Zaitseva 2018) is a
powerful tool for understanding the specifics of the hydrodynamics around the body,
especially for small oscillatory velocities of the flow. Such analysis, in particular,
allowed us to isolate the three individual symmetric regimes (see below) and to study
the transition C-shaped and V-shaped flow regimes, which are associated with two
types of symmetry breaking.

5.2. The basic symmetric flow regime
The circle markers on the map (figure 5) indicate the zone of the basic symmetry
about the oscillation axis regime of the flow, which is observed at the lowest
amplitudes of the oscillation. The dynamics of the flow in this regime for the one
period of oscillation is shown in figure 7. The observed movement of dye around the
plate is determined by the action of two types of plane flow: non-stationary attached
flow which prevails when the plate moves with non-zero speed (see figure 6a), and
secondary steady flow that is responsible for the formation of large circulation cells
when the plate stops (see figure 6b). The concentration of the dye along the axis Oy
(see figure 7) shows that the secondary flow is also the main mechanism of fluid
transfer from the edges of the plate to the outer region.

In the low-frequency β < 50 range of the oscillations the boundary of the basic
symmetric regime is varied depending on the specific value of β. At β > 50, the
regime loses its stability at almost identical values of the dimensionless amplitude, in
the vicinity of KC= 1.
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(a) (b)

FIGURE 6. The basic symmetric flow regime at β = 300, KC = 0.2. (a) Instantaneous
streamlines at t/T − T0 = 0 (T0 = 30), (b) streamlines of the secondary flow.

5.3. The symmetric flow with attached vortices
Changes in the structure of the flow that occurs during the transition through the
boundary of the basic symmetric regime are determined by the range of the oscillation
frequencies. At low oscillation frequencies with increasing KC a symmetric local
vortex structure is developed around the plate (see figures 8, 9a). Unlike the basic
regime, immediately after the reverse near the edges the flow separation occurs
with the formation of the attached vortices behind the plate. The formed vortices are
developing and growing during a half-period until the plate completely stops and then
disappear when the direction of motion changes. In the next half-cycle everything
repeats on the other side of the plate. The described flow dynamics can be observed
in figure 8. This symmetric regime has a radically different structure of the secondary
flow (see figure 9b), which is divided into inner and outer circulation zones. As can
be seen in figure 8, the internal circulation zone prevents the transfer of fluid from
the plate to the outer flow region.

5.4. The symmetric flow with vertical vortex shedding
The formation of local vortices near the edges of the plate at high oscillation
frequencies (β>50) occurs in the vicinity of KC=1. Unlike the previous symmetrical
regime, the vortices that are formed near the edges do not disappear after the reversal,
they break away from the plate and move orthogonally to the main stream. The entire
cycle from formation to complete dissipation of the vortices takes slightly less than
one period. Observing the motion of the dye near the plate (figure 11), it is necessary
to pay attention to bright traces propagating from the plate edges along the vertical
axis. Colour saturation of the dye indicates a high velocity in these traces. These
high-speed flows are formed by secondary streaming. The structure of this streaming
is close to that observed in the basic symmetric regime. However, the core of the
circulation zones is divided into two parts, which have the same direction of rotation.
One of the parts of the divided core is located in the vicinity of the plate, the second
is removed to the boundaries of the computational domain.

5.5. The hydrodynamic forces acting on the plate in symmetric flow regimes
In symmetric flow regimes only the in-line force Fx, acting parallel to the oscillation
axis, has non-zero values. Variation of Fx with time is presented in figure 12.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.477


A numerical investigation of fluid flows induced by oscillations 1069

t/T - T0 = 0 t/T - T0 = 1/8 t/T - T0 = 2/8

t/T - T0 = 3/8 t/T - T0 = 1/2 t/T - T0 = 5/8

t/T - T0 = 6/8 t/T - T0 = 7/8 t/T - T0 = 1

FIGURE 7. Visualization of the basic symmetric flow regime at β = 300, KC= 0.5 using
dye. Flow structure at time moments t/T − T0, where T0 = 30.

For small values of dimensionless amplitude the fundamental harmonic is absolutely
dominated in the signal Fx (see figure 12a). In this case, the main contribution is
made by inertial forces proportional to the acceleration of motion. At KC< 0.5 they
give more than 80 % of the total force. With the growth of KC, the contribution
of inertial forces decreases, and additional harmonics appear in the signal. In the
vicinity of the boundary of the symmetric regimes (see figure 12b) the portion of
inertial forces becomes less than 60 %, the portion of the third harmonic in the signal
becomes more than 5 %.
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t/T - T0 = 0 t/T - T0 = 1/8 t/T - T0 = 2/8

t/T - T0 = 3/8 t/T - T0 = 1/2 t/T - T0 = 5/8

t/T - T0 = 6/8 t/T - T0 = 7/8 t/T - T0 = 1

FIGURE 8. Visualization of the symmetric flow with attached vortices at β= 20, KC= 2.5
using dye. Flow structure at time moments t/T − T0, where T0 = 30.

In symmetric flow regimes the in-line force is well approximated by the Morison
formula (2.8). The corresponding graphs are shown in figure 12. The expansion
coefficients were determined for each oscillation period using (2.9). Variation of drag
and inertia coefficients over time is shown in figure 13 for the cases KC=0.5, β=300
and KC = 1, β = 300. After 20 periods the coefficients practically cease to change
in time and can be considered as constants. These constants are further used to
determine the hydrodynamic coefficients CD, CM in symmetric flow regimes.
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(a) (b)

FIGURE 9. The symmetric flow with attached vortices at β = 25, KC = 2.5.
(a) Instantaneous streamlines at t/T − T0 = 0 (T0 = 30), (b) streamlines of the secondary
flow.

(a) (b)

FIGURE 10. The symmetric flow with vertical vortex shedding at β = 300, KC = 1.
(a) Instantaneous streamlines at t/T − T0 = 0 (T0 = 30), (b) streamlines of the secondary
flow.

5.6. The boundary of symmetric regimes and the mechanisms of symmetry loss

The interaction of vortices with the growth of KC at β > 50 leads to the formation
of vortex pairs near the edges (see figure 14a). Pairs are detached from the edges
with a small displacement to the left or right side of the vertical axis of symmetry
of the plate (in the first or second half-period, respectively), depending on the initial
conditions. The direction of vortex pair shedding remains stable for a large number
of periods. This significantly changes the structure of secondary flow around the plate
(see figure 14b). Secondary streams deviate from the vertical axis and take a C-shaped
form. As a result, the circulation zones on one side of the plate (in the right half-
plane x>0 in figure 14b) are converted into local super-vortices. C-shaped flow retains
symmetry with respect to the axis of oscillation. The stability of such a regime (for
the considered type of plate) is observed only in a small region in the vicinity of
the boundary of the basic symmetric regime. The points corresponding to this regime
are marked by unfilled circles in figure 5. With a slight increase of the oscillation
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t/T - T0 = 0 t/T - T0 = 1/8 t/T - T0 = 2/8

t/T - T0 = 3/8 t/T - T0 = 1/2 t/T - T0 = 5/8

t/T - T0 = 6/8 t/T - T0 = 7/8 t/T - T0 = 1

FIGURE 11. Visualization of the symmetric flow with vertical vortex shedding at β= 300,
KC= 1 using dye. Flow structure at time moments t/T − T0, where T0 = 30.

amplitude, one of the super-vortices starts to grow stronger than another, as a result,
the flow around the plate completely loses horizontal symmetry.

The mechanism of symmetry loss at low oscillation frequencies (β < 50) is different.
Vortices forming near the upper and lower edges become unequal in strength (see
figure 15a). This leads to a loss of the horizontal symmetry of the flow. The structure
of the motion of the secondary flow thus take the V-shaped form (see figure 15b). The
lifetime of both small and large vortices approximately equal the half-period of the
motion. The interactions of vortices formed on different sides of the plate do not occur.
The regime with the V-shaped flow structure is also borderline (the corresponding
points are denoted by square unfilled markers on the flow regime map in figure 5),
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FIGURE 12. Hydrodynamic forces acting on the plate in symmetric flow regimes.
(a) β = 300, KC = 0.5, (b) β = 300, KC = 1; ——, results of calculation; u, Morison
approximation.

6.5
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t/T
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FIGURE 13. The dependence of drag and inertia coefficients on the period of oscillations
in symmetric flow regimes:u, β = 300, KC= 0.5;p, β = 300, KC= 1.

with the small increase of KC vortices formed at different half-periods begin to form
pairs, this destroys the vertical symmetry of the flow.

The comparison of the results with previous studies shows that the obtained
estimates of the boundaries of symmetric regimes are close to the experimental
results of Shrestha et al. (2018) (see the boundaries of regimes B and C in figure 5).
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(a) (b)

FIGURE 14. C-shaped flow regime at β= 500, KC= 1. (a) Instantaneous structure of flow
obtained using dye; (b) secondary flow.

(a) (b)

FIGURE 15. V-shaped flow regime at β = 20, KC = 3.5. (a) Instantaneous structure of
flow obtained using dye; (b) secondary flow.

Note that the authors of this study also distinguish three types of symmetric flows
(A, B, C). The absence of a detailed description of the flow structure in the study
(Shrestha et al. 2018) does not allow us to produce a complete comparative analysis
between the regimes found. According to the localization zones, the A regime
corresponds to the basic symmetrical regime, the B regime to the regime with
vertical vortex shedding, the C regime to the regime with the attached vortices. The
incomplete correspondence between the boundaries of symmetric regimes is most
likely explained by the different relative thickness of the plates in the studies. As
will be shown later, for thinner samples the boundary of the basic symmetric regime
significantly shifts to the region of small amplitudes.

5.7. The one-sided diagonal flow regime
Leaving the zone of borderline regimes, the flow transforms into a regime with a
one-sided diagonal vortex shedding, which is observed in the whole range of values of
dimensionless oscillation frequency. The flow structure inherits the properties of both
V-shaped and C-shaped flows: vortices which are formed near the lower and upper
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edges are not equal in strength (as in V-shaped flow), vortices which are formed at
different half-periods interact with each other, forming vortex pairs (as in C-shaped
flow).
However, the complete separation of the vortex pair from the plate in this new
regime occurs only near the edge, where larger vortices are formed. The vortex pair
formed from the small vortices moves along the plate to the opposite edge (where
large vortices are formed), where it merges with the vortex formed at the new period
of oscillation. The described processes of formation and interaction of vortices can
be observed in figure 16, where the visualization of this regime for one period of
oscillation is presented.

The vortex pairs that are shed from the plate to the outer flow form a super vortex
on one side of the plate. The size of this secondary formation rapidly increases at
each oscillation period. In figure 16, comparing the flow structure at the beginning of
period t/T = T0 and at the end of the period t/T = T0 + 1, one can clearly see the
changes of the super-vortex to the left of the plate. As a result of the rapid growth
of the vortex, it begins to interact directly with the vortex structure on the plate. This
leads to a change of the direction of vortex shedding, or to the displacement of the
prevailing vortex to the opposite edge of the plate. In figure 16 to the right of the
plate one can see the spot left by the super vortex which was destroyed more than 5
periods ago as a result of a change of the direction of the vortex shedding. Thus, the
observed flow regime, which will be referred to hereinafter as a one-sided diagonal
flow regime, is not completely periodic.

The points corresponding to the one-sided diagonal regime in the parametric plane
(β, KC) are denoted by triangular markers (see figure 5). Description of the regime
with a similar structure can be found in experimental studies of Singh (1979) and
Shrestha et al. (2018). In the work of Shrestha et al. (2018) it corresponds to the
regime D (see figure 5, the boundary of the D regime). Note that Shrestha et al.
(2018) localized this regime at lower amplitudes KC< 1.5. Singh (1979) discovered a
similar asymmetric regime in the range 3< KC < 7. Thus, the estimates obtained in
this paper lie in the middle between the results of these experimental studies.

The structure of hydrodynamic forces and the moment acting on the plate in the
one-sided diagonal regime is shown in figure 17. As can be seen, an asymmetric
flow generates a non-zero lift and torque. As a result of the variation of the flow
structure on each period (caused by the development of a super-vortex near the plate)
the hydrodynamic influence on the plate also changes with time. The coefficients
of the hydrodynamic forces calculated from the Morison approximation also vary
from period to period (see figure 18). To determine their characteristic values for a
given combination of parameters the averages over the 50 last oscillation periods are
calculated.

5.8. The cyclic diagonal flow regime
The growth of vortices, which occurs with the increase of the oscillation amplitude,
leads to the formation of a new flow regime in the vicinity of KC=4. Its visualization
is shown in figure 19. As in the previous regime, at the moment before the beginning
of the reverse motion, large and small vortices are formed near the plate edges (see
figure 19 time moment 2/8, to the left of the plate). When the plate starts to move in
the opposite direction, a large vortex forms a pair with a new vortex that is generated
on the other side of the plate. The pair breaks away from the edge of the plate at an
angle to the direction of the main oscillatory motion (see figure 19 time moments
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t/T - T0 = 0 t/T - T0 = 1/8 t/T - T0 = 2/8

t/T - T0 = 3/8 t/T - T0 = 1/2 t/T - T0 = 5/8

t/T - T0 = 6/8 t/T - T0 = 7/8 t/T - T0 = 1

FIGURE 16. The one-sided diagonal flow regime at β = 300, KC= 2.5. Flow structure at
time moments t/T − T0, where T0 = 80.

3/8–5/8, to the right of the plate near the upper edge). A small vortex (that was
formed near the opposite edge before the reverse) is destroyed after the reversal by
the action of a new vortex forming on the other side of the plate. This new vortex in
the new half-period grows into the dominant vortex (see figure 19 time moment 6/8,
to the right of the plate near the lower edge). Thus, in the second half-period the
small and large vortices change places with each other. A flow pattern mirrors that
observed in the first half-period (see figure 19, time moments 6/8–1, 0–1/8). Vortex
pair detachment in this regime occurs alternately from the opposite edges, detached
pairs move away from the plate in different directions at an angle to the axis of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.477


A numerical investigation of fluid flows induced by oscillations 1077

-8

-4

0

8

Fx

Fy

Mz

-0.2

0

0.2

0.4

-0.1

0.1

0.3

0.5

4

75.0 75.5 76.0 76.5 77.0 77.5 78.0
t/T
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FIGURE 17. Hydrodynamic forces and moment acting on the plate in the one-sided
diagonal regime at β = 300, KC = 2.5: ——, results of calculation; u, Morison
approximation.

oscillation, forming two vortex streets. Further, this flow regime will be called the
cyclic diagonal regime.

In the range 4 6 KC< 6 (see the flow regime map, unfilled diamond markers) the
flow starts to transform from the one-sided diagonal regime to the cyclic diagonal
regime. The one-sided diagonal flow regime, after several oscillation periods, is
switched to a diagonal flow regime, then the flow pattern is again changed to
one-sided and so on. We will call this flow behaviour the intermittent diagonal
regime. At KC > 6 the cyclic diagonal regime is fully stabilized (on the flow regime
map the cyclic flow is indicated by filled diamond markers). The localized cyclic
diagonal regime corresponds exactly to the ‘cyclic flow regime’ described by Singh
(1979). The stable diagonal vortex shedding in the experiments (Singh 1979) was
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FIGURE 18. The dependence of the drag and inertia coefficients on the period of
oscillations in the one-sided diagonal regime at β = 300, KC= 2.5.

observed at KC > 7. Differences in the determination of the boundaries of regimes
between numerical and experimental data can be explained by additional perturbations
in the experiments.

The structure of the hydrodynamic forces and the moment acting on the plate in
the cyclic diagonal flow regime is shown in figure 20. The in-line component of the
force in this regime is almost completely determined by the drag force. For the case
presented in figure 20 the contribution of the drag is more than 94 %. The periodic
detachment of vortices from the edges of the plate also creates a torque, which
predominant frequency is twice as high as the fundamental frequency of oscillations.

The coefficients CD, CM computed at each period of oscillation are shown in
figure 21. As can be seen, the final stabilization of hydrodynamic coefficients (when
they take constant values) occurs after approximately 60 oscillation periods, that is
much longer than the stabilization time of symmetric regimes. The final constant
values are further used to determine the hydrodynamic coefficients CD, CM of the
cyclic diagonal flow regime. The stabilization of the inertia coefficient occurs much
faster than stabilization of the drag coefficient. After the fifth period CM is determined
with a relative error of 5 %. To achieve the same accuracy in the calculation of CD

it is necessary to employ at least 12 periods of oscillation.

6. The drag and added mass coefficients
6.1. The influence of the oscillation parameters on added mass and drag coefficients
In the first paragraph of this section we present the dependences of the coefficients
of inertia and drag forces on the oscillation parameters for the plate with chamfered
edges (II type) and a relative thickness ∆ = 0.1. The dependences of the drag
coefficient CD on dimensionless amplitude KC for different values of dimensionless
frequency β are shown in figure 22. All plotted curves have a typical S form. In the
range of low values of KC, where the flow near the plate is in the basic symmetric
regime, the behaviour of CD(KC, β) coincides well with the ‘Stokes’ approximation
of the drag forces (see Aureli et al. 2012)

KC→ 0 : CD = 28.97/(KC
√
β). (6.1)
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t/T - T0 = 0 t/T - T0 = 1/8 t/T - T0 = 2/8

t/T - T0 = 3/8 t/T - T0 = 1/2 t/T - T0 = 5/8

t/T - T0 = 6/8 t/T - T0 = 7/8 t/T - T0 = 1

FIGURE 19. The stable cyclic diagonal regime; β = 300, KC= 6. Flow structure at time
moments t/T − T0, where T0 = 56.

The range of applicability of the linear theory depends on the parameter β. After the
‘Stokes’ range, the phase of the growth of the drag coefficient begins. This phase is
associated with the development of nonlinear processes in the flow. Note that the flow
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FIGURE 20. Hydrodynamic forces and moment acting on the plate in the cyclic diagonal
regime at β = 300, KC= 6; ——, results of calculation;u, Morison approximation.

regime does not change. The growth phase ends near the stability boundary of the
basic symmetric regime, after that a further decrease of the drag coefficient begins. For
the large values of KC, where the flow is in of the cyclic diagonal regime, the curves
CD(KC) for different values of β have almost the same behaviour. The variation of
the coefficient in this zone is well described by the approximation proposed by Egorov
et al. (2018)

KC> 6 : CD ≈ 4.427(KC/2π)−0.58. (6.2)

The dependences of the inertia coefficient CM on KC for different values of β are
shown in figure 23. As can be seen, at low amplitudes of the oscillations in the basic
symmetric flow regime CM values for fixed β are almost constant. The behaviour of
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FIGURE 21. The dependence of the drag and inertia coefficients on the period of the
oscillations in the cyclic diagonal regime at β = 300, KC= 6.

CM in this range is well described by the ‘Stokes’ approximation (Aureli et al. 2012)

KC→ 0 : CM = 1.02+ 2.45β−1/2. (6.3)

After the loss of stability of the basic symmetric flow regime, the phase of growth of
the inertia coefficient begins, which is replaced by a phase of decrease in the vicinity
of KC= 6, where a diagonal flow regime is stabilized.

The presented data for the plate with chamfered edges agrees well with the
experimental estimates of CD and CM for samples with similar geometric characteristics
that were obtained by Singh (1979), Bearman et al. (1985), Egorov et al. (2018).
Moreover, in the whole range of parameters we get quite a good agreement between
our numerical results and the empirical formula proposed in Egorov et al. (2018)

CD(KC, β)=
28.97

KC
√
β
+ 0.171

(
KC
2π

)a−0.58

(
a+ 3.087+ 25.8

(
KC
2π

)a)
(

0.12+
(

KC
2π

)a)2 , (6.4)

where a= 1.03+ 16.61β−0.627.
Comparing with other data shown in figure 22, one could note the presence of a

number of results (e.g. Keulegan & Carpenter 1958; Egorov et al. 2014; Tafuni &
Sahin 2015) which give radically different estimates of the hydrodynamic coefficients.
These results were mainly obtained for plates with slightly different geometric
characteristics. Therefore, it is important to identify how the shape of the samples
influences the hydrodynamic forces.

6.2. The effect of the shape of the plate edges
Firstly we evaluate the hydrodynamic influence on the samples with the same
thickness ∆= 0.1, but with different shapes of edges. The results of calculations of
CD and CM for plates of three different types are shown in figure 24. The structure
of the flow and the boundaries of the flow regimes for the compared samples are
similar. However, the values of the hydrodynamic coefficients in the area of high
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Bearman et al. (1985)
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FIGURE 22. (Colour online) Drag coefficient CD as a function of KC for the plate of type
II with ∆= 0.1. (a) Graphs for different values of β, (b) comparison with the results of
other studies.

and moderate amplitude of oscillations have a visible difference. The results of the
measurements of CD for a plate with rectangular edges and a plate with a small
corner radius R= 0.1 are on average 13 % higher than the values of CD obtained for
a fully rounded plate (R= 0.5) and plate with chamfered edges at KC> 3.

To find the reasons for these differences, which occur after minor changes of the
geometry of the samples, we compare the flow structure around plates of different
cross-sections at KC= 7 and measure the pressure distribution over the surface of the
plates.

As can be seen in figure 25, the flows around plates of type I and type II in
general are very similar. In particular, the structure, the size and the position of
vortex pairs formed near the plates remain identical. However, in the vicinity of the
edges of the plates there are markable differences in the flow associated with the
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Linear approx (6.2) Present ı = 100
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Present ı = 300

CM

CM

KC

FIGURE 23. (Colour online) Inertia coefficient CM as a function of KC for the plate of
type II with ∆= 0.1. (a) Graphs for different values of β, (b) comparison with the results
of other studies.

shift of the flow separation points: for the plate with chamfered edges the separation
points are at the vertices of the sharp angles, for the plate with a rectangular
cross-section the separation occurs at the vertices of the right angles at the windward
side. The positions of the separation points for the plates of different types are shown
in figure 26.

The analysis of the pressure distribution over the plate surface allows us to
estimate the significance of the observed differences. As can be seen from the
presented pressure distribution plots (see figure 25), in almost all phases of the flow
development the difference between the pressure on the right and left sides of the
plate of type II in the vicinity of the edges is less than that of the plate of type I.
Since at these values of the amplitude the pressure force gives the main contribution
to the total hydrodynamic force, the observed differences fully explain the decrease
in the resulting aerodynamic drag of the plate with chamfered edges.
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FIGURE 24. (Colour online) Force coefficients CD and CM as a function of KC for β= 50
obtained for plates of different types with relative thickness of ∆= 0.1.

6.3. The effect of the relative thickness of the plate
Significant differences are found when comparing the hydrodynamic coefficients
calculated for plates with different thicknesses (see figure 27) for β > 50. The
maximum relative deviation (about 90 %) between the values of CD is observed for
the infinitely thin plate and plates with relative thickness ∆= 0.1, 0.25 in the range
0.2<KC< 1.

Such significant differences can be explained by various flow regimes observed in
the specified range for the plates with different thicknesses. The boundary value of KC
at which the transition from the basic symmetric regime to the regime with the vertical
shedding of vortices happens for the plates with relative thickness ∆ = 0.1, 0.25 is
practically the same and approximately equal to KC = 1 (see figure 5). For the
infinitely thin plate this transition occurs much earlier: for β = 200 the boundary is
below KC= 0.2.

The results of measurements of the pressure distribution on the surface of an
infinitely thin plate in the regime with the vertical shedding of vortices and on the
plate with thickness ∆ = 0.1 in the basic symmetric regime for the same values of
the oscillation parameters β = 200,KC= 0.8 are shown in figure 28. As can be seen,
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FIGURE 25. Comparison of flow structure and pressure distribution over the surface of
plates at β = 55, KC = 7 between a plate of type II (instantaneous flow patterns in the
left column, grey lines on the pressure distribution plot) and of type I (instantaneous
flow patterns in the right column, black lines on the pressure distribution plot) with the
same relative thickness ∆= 0.1 for the time moments (from top to bottom) t/T − T0 =

0, 1/7, 2/7, 3/7. The dotted lines on the pressure distribution plot correspond to the left
side of the plates (x< 0), the solid lines correspond to the right side of the plates (x> 0).
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(a) (b)

(c) (d)

FIGURE 26. (Colour online) Flow separation from the edges of plates of different shapes:
(a) type II, ∆= 0.1, α= 60◦; (b) type I, ∆= 0.1; (c) type III, ∆= 0.1, R= 0.1; (d) type
III, ∆= 0.1, R= 0.5.

the difference between the pressure on the right and left sides on an infinitely thin
plate is larger at all phases of motion.

Note that the data obtained for an infinitely thin plate coincide well with the
experimental results of Keulegan & Carpenter (1958) and numerical data of Egorov
et al. (2014), Tafuni & Sahin (2015). Thus, the presented results give an explanation
of the differences of the CD estimates that were obtained in different studies.

7. Conclusion
The data collected in the work allow us to fill in the large gaps indicated at the

beginning of the paper related to the problem of interaction of oscillating plates with
a fluid. The obtained results make it possible to classify practically all flow regimes
around the plate in the range 206β6500,0<KC610, which were discovered earlier
in various experimental studies. Thus the one-sided diagonal regime and the cyclic
diagonal regime formed near the plates at moderate and high oscillation amplitudes,
that were discovered earlier in the experiments by Keulegan & Carpenter (1958) and
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FIGURE 27. (Colour online) Force coefficients CD and CM as a function of KC for β =
200 obtained for plates of type II with relative thicknesses of ∆= 0, 0.1, 0.25.

Singh (1979), were simulated and described in detail for the first time. In the range
of low amplitudes of oscillation three symmetric flow regimes, localized earlier in the
experiments by Shrestha et al. (2018), were simulated and studied. We also discovered
for the first time the V-shaped and C-shaped transition regimes appearing in narrow
parametric regions along the stability boundary of symmetric flow regimes.

Some additional explanations should be provided on the questions about the limits
of applicability of the two-dimensional flow model used in the work and about the
development of the three-dimensional flow structures. Although previous studies on
the development of three-dimensional vortex structures in the flow around oscillating
thin long plates are not known to the authors, extensive information is available on
the development of three-dimensional flow instability around an oscillating circular
cylinder (see Honji 1981; Sarpkaya 2002; Nehari, Armenio & Ballio 2004; Elston,
Blackburn & Sheridan 2006; An, Cheng & Zhao 2011; Suthon & Dalton 2011; An,
Cheng & Zhao 2015). For a circular cylinder the dependence of the critical value of
the Keulegan–Carpenter number KCcyl on the parameter β at which the flow becomes
unstable to three-dimensional perturbations in the range of 60 < β < 1.4 × 106 can
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FIGURE 28. The distribution of the true pressure over the surfaces of an infinitely thin
plate (black lines) and a plate of type II with a thickness of ∆= 0.1 (grey lines) for the
oscillation parameters β = 200,KC= 0.8. Time moments t/T − T0: (a) 0, (b) 1/8, (c) 2/8,
(d) 3/8. Dotted lines correspond to the left side of the plates (x< 0), solid lines to the
right side of the plates (x> 0).

be approximated by the formula KCcyl = 12.5β−2/5 (proposed by Sarpkaya (2002)).
However, it is more important that the development of three-dimensional structures
in the flow (after passing through the stability boundary) in the region of moderate
β in a fairly wide range of amplitudes does not lead to a significant redistribution
of the kinetic energy of the currents near the cylinder, this is evidenced by the
results of three-dimensional modelling (see Nehari et al. 2004; An et al. 2011, 2015),
and a comparison of the results of two-dimensional models with experiments (see
Justesen 1991; Dutsch et al. 1998). Thus, planar structures remain predominant even
after the appearance of three-dimensional flows, which makes it possible to use
two-dimensional models for their analysis (albeit with some restrictions). Several
three-dimensional calculations in the Appendix of this paper show that for the
considered case a similar situation is observed: the two-dimensional model well
describes the flow dynamics in planes perpendicular to the plate axis and predicts
the forces acting on the plate even after the formation of three-dimensional structures.
This is also supported by the consistency of the results of two-dimensional simulations
with experiments.

It should be noted that the most of the observed flow regimes near the plates are
very similar to flows formed around a circular cylinder (see the studies of Tatsuno &
Bearman (1990), Justesen (1991), Dutsch et al. (1998), Elston et al. (2006), An et al.
(2009), Nuriev et al. (2018)). Comparing the flows near a circular cylinder and a plate,
one can find an almost identical structure of the symmetric regimes observed at small
values of KC and the diagonal regime formed at high values of the dimensionless
oscillation amplitude.

In spite of the similarity of the flow regimes observed at identical values of the
oscillation parameters, the hydrodynamical influence can be dramatically different even
for oscillating bodies with very similar shapes. The results of the present studies have
shown that the change of the shape of the plate edges has a noticeable effect on the
drag force in flow regimes with intense vortex formation observed at large KC. The
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(a) (b)

FIGURE 29. (Colour online) The instantaneous flow patterns. (a) C-shaped flow regime
at β = 64, KC = 1. Isosurfaces of the z component of the vorticity vector Ωz =

±[6, 4.66, 3.33, 2, 0.34] for the time moment t/T = 104. (b) The one-sided diagonal
flow regime at β = 64, KC = 2. Isosurfaces of the z component of the vorticity vector
Ωz =±[10, 8, 6, 4, 3] for the time moment t/T = 88.

thickness of the plates significantly affects the hydrodynamic forces in the range of
small oscillation amplitudes.

The established dependence between the shape of the oscillating plate and its
hydrodynamic drag made it possible to explain the difference between the estimates
of CD obtained in the classical experimental studies of Keulegan & Carpenter (1958)
and Singh (1979).
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Appendix. A comparison of the results of 2-D and 3-D simulations
In this appendix we consider the results of several three-dimensional calculations

and compare them with the results of two-dimensional simulations presented in the
main part of the article to determine the importance of three-dimensional effects,
which, as will be shown below, may appear in the investigated range of parameters.

The three-dimensional calculations are performed for a plate of zero thickness at the
four points of the parametric plane: β = 64, KC = 1, 2, 7 and β = 200, KC = 7. The
flow around a plate segment with a length of lz= 20 is considered. The computational
domain is bounded by a rectangular parallelepiped, which sides are chosen parallel to
the coordinate axes associated with the plate. The size of the computational domain is
(lx, ly, lz)= (60, 40, 20). At the ends of the plate segment (z= 0, 20) periodic boundary
conditions are set. The computational mesh consists of 4.5 × 106 cells; in the xOy
plane in the vicinity of the body it has the same structure as the M1 mesh (see § 3);
in the spanwise direction in the vicinity of the plate it has a uniform spacing equal
to 0.04.

The flow at the first examined point β = 64, KC = 1 does not have a three-
dimensional structure, so the results of three- and two-dimensional calculations are
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(a) (b)

FIGURE 30. Comparison of the instantaneous flow patterns of two-dimensional flow
(a) and span-averaged three-dimensional flow (b) in the xOy plane. Scalar field |Ωz|

visualization at the time moment t/T = 87 for β = 64,KC= 2.
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FIGURE 31. Forces acting on the plate in the one-sided diagonal regime for β = 64,
KC = 2. Two-dimensional calculation (dotted line), three-dimensional calculation (solid
line).

identical to each other. The instantaneous flow pattern is shown in figure 29, it
corresponds to a C-shaped flow which is typical for this range of parameters.

The second examined point β = 64,KC= 2 is in the area of the one-sided diagonal
flow regime. In the initial time interval (starting from the rest) at this point only a
two-dimensional flow structure is formed. At the 20th period in the boundary layer
of the plate weak three-dimensional structures become visible. They are similar to the
Honji vortices (see, for example, Honji 1981, Sarpkaya 2002, Suthon & Dalton 2011),
which are formed in the boundary layer of a oscillating circular cylinder when a plane
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(a) (b)

FIGURE 32. (Colour online) Cyclic diagonal flow regime at KC = 7, β = 64 (a),
β = 200 (b). Isosurfaces of the z component of the vorticity vector Ωz =±[5.55, 16.66,
27.77, 38.88, 50] for the time moment t/T = 48.

(a) (b)

FIGURE 33. Comparison of the instantaneous flow patterns of 2-D flow (a) and spanwise-
averaged 3-D flow (b) in the xOy plane. Scalar field |Ωz| visualization at the time moment
t/T = 47 for β = 64,KC= 7.

flow loses its stability. These three-dimensional (3-D) vortex structures grow over time
and interact with each other. The process of intensification of spanwise flow ends
closer to the 45th period. The resulting 3-D flow pattern near the plate is shown in
figure 29. Omitting a detailed discussion of the three-dimensional processes, we turn
to a comparison of the results of two-dimensional and three-dimensional simulations
for this case.

In figure 30 the structures of a two-dimensional flow and a spanwise-averaged three-
dimensional flow in the xOy plane for the same moment of time are compared. As can
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FIGURE 34. Forces acting on the plate in cyclic diagonal flow regime for β = 64,
KC= 7 (a,b) and β = 200,KC= 7 (c,d). Two-dimensional calculations (dotted lines), 3-D
calculations (solid lines).

be seen, the flows in both cases have an identical structure, although the position and
size of the vortices are slightly different. As was noted in § 5, the one-sided diagonal
regime is not completely periodic, the instantaneous flow depends on the changes that
occurred in previous periods. The synchronism of such changes in the 2-D and 3-D
calculations is broken. A comparison of the (spanwise-averaged) forces on one period
is shown in figure 31. As you can see the variation of the Fx component is fairly
well described in a 2-D simulation. Differences between the average values of the
hydrodynamic coefficients CD and CM are less than 3 % (see table 3). Consistency
of results for the component Fy (see figure 31) is much worse. If we compare the
maximum absolute values of the lifting force, the differences between 3-D and 2-D
data will be approximately 37 % (see table 3).

The last two points β = 64,KC= 7 and β = 200,KC= 7 belong to the area of the
cyclic diagonal flow regime. As you can see in figure 32 the flows here (as in the
previous point) are three-dimensional.

A comparison of the structure of a two-dimensional flow and a spanwise-averaged
three-dimensional flow in the xOy plane for the same moment of time is shown
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Case Coefficients β = 64 β = 64 β = 64 β = 200,
KC= 1 KC= 2 KC= 7 KC= 7

Two-dimensional
CD 10.54 9.84 6.14 6.4
CM 1.45 1.51 2.4 2.47

max |Fy| 0.0 0.3 0.13 0.071

Three-dimensional
CD 10.54 10.01 6.1 6.37
CM 1.45 1.61 2.35 2.4

max |Fy| 0.0 0.22 0.17 0.079

TABLE 3. The coefficients CD and CM for two- and three-dimensional cases.

in figure 33. As can be seen, the two-dimensional model qualitatively predicts
the dynamics of the flow. The quantitative results of the calculation of the in-line
component of force Fx (see figure 34), as well as the values of hydrodynamic
coefficients determined from them (see table 3) agree well. The lift force values (see
figure 34 and the data in table 3) calculated in 2-D and 3-D cases again have visible
differences. These errors of the two-dimensional model are not critical, since Fy has
a very weak effect on the plate.
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