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In this paper, we consider non-negative solutions of
ut = Au 4+ v?, v = Av in 2 x (0, 00),
ou O
(_l =0, (_)
ov ov
u(z,0) = uo(x), v(z,0) = vo(z) in £2.
We prove that if pg < 1, every solution is global while if pg > 1, all solutions blow up
in finite time. We also show that if p,¢ > 1, then blow-up can occur only on the
boundary.

=uf on 912 x (0, 00),

1. Introduction

This paper is concerned with a parabolic system coupled in an equation and a
boundary condition,

uy = Au+ vP, v = Av, T € (2, t>0,
0 0
==, S} z€dn,  t>0, (1.1)
ov ov
u(x70):u0(x)a ’U(J,‘,O)Z’Uo(l'), JIEQ,

where (2 is a bounded domain in R™ with boundary 902 C C*#(0 < pu < 1), v is
the outward normal, p,¢ > 0 and ug(z) and vo(x) are non-negative functions such

that

Qug vy _ 4

= 0 and 5, — "o for x € 012. (1.2)
Problem (1.1) is a special case of the following general system:
ur = V(a(u)Vu) f(u,v), vr =V (b(v)Vv) + g(u,v),
T € §2, t >0,
ou v (1.3)
5—¢(U,’U>, g_w(ufu)a .1‘689, t>03
u(x,O)zuO(x), ’U(J,‘,O)Z’Uo(l'), x € §2.

As is well known, system (1.3) has been formulated from physical models arising
in various fields of the applied sciences (cf. [13]). In [1], Acosta and Rossi obtained
certain results on the existence and non-existence of global solutions of (1.3).
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The direct motivation of considering problem (1.1) comes from [7], wherein the
same problem has been studied, with {2 replaced by

R} = {(21,2') | 2’ €R"", 21 > 0}.

In [7], Fila and Levine showed that for pg < 1, every non-negative solution is global.
Furthermore, for pg > 1, if max((p +2)/(pg — 1), (2¢+ 1)/(pg — 1)) = n, then all
non-trivial non-negative solutions are non-global, whereas if max((p +2)/(pg — 1),
(2¢+1)/(pg—1)) < n, there exist both global and non-global non-negative solutions.
Their result is interesting because it is ‘intermediate’ between the result for a system
coupled in the equations [6] and the result for a system coupled in the boundary
conditions [5]. However, due to the different nature of solutions on the half space,
their arguments cannot apply to problem (1.1).
Problem (1.1) is also closely related to other two problems,

uy = Au + P, vy = Av +uf, T € (), t >0,

0 0

— — e, t>0, (1.4)

ov ov

u(x,0) = uo(x), v(z,0) = vy (x), z e N
and

up = Au, vy = Av, T € 2, t>0,
ou ov
— =P, — =uf, T €0, t>0, (1.5)
ov ov

u(z,0) = ug(x), v(z,0) = vg(x), x € .

On the one hand, for problem (1.5) on Bg = {|z| < R} in the radially symmetric
case, Deng [2] showed that if pg < 1, all non-negative solutions are global, while if
pq > 1, there are no non-trivial non-negative global solutions. Later, among other
things, Deng [3] and Hu and Yin [11] independently extended this result to an
arbitrary bounded domain 2. On the other hand, arguing analogously as in [3], one
can easily see that the result for (1.5) holds for problem (1.4). Because problem (1.1)
is ‘intermediate’ between problems (1.4) and (1.5), we should expect the same result
for (1.1). However, there are significant differences at the technical level due to the
following facts. Problems (1.4) and (1.5) are symmetric in the sense that one may
always assume p < ¢, which cannot be assumed for (1.1). Also, the representation
formulae for both components u, v of solutions of (1.4) and (1.5) have the same
form, but solution components of (1.1) take different forms.

The plan of the paper is as follows. In § 2 we establish global existence and global
nonexistence results, and in § 3 we localize the blow-up points in the Lipschitz case.

2. Global existence and finite time blow-up

Let Gn(z,y,t,7) be Green’s function for the heat equation with a homogeneous
Neumann boundary condition. Then we have the following representation formulae
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for the solution components of (1.1):

t
wwt) = [ Gntatopata+ [ [ ovaeneeaan )
t

o(a,t) = /QGN<x7y,t,0)vo<y>dy+ /0 Gt () as,dr (22)

Using the above representation formulae and the contraction mapping principle, as
in [13], we can establish the local existence for solutions of (1.1). The argument is
rather standard and is therefore omitted here.

We first show the global existence for solutions of (1.1).

THEOREM 2.1. Assume pqg < 1. Then every solution of (1.1) is global, that is, for
any T > 0, -
u(z,t) < C and v(z,t) <C in 2 x[0,T],

with some positive C = C(T) < oo.
Proof. We seek a global supersolution (, ) of (1.1). From [4], we know that there
exists a function p(x) € C%(£2) satisfying
. Oy
0<p(x)<1l in 2 and o > 1 on 02 (2.3)
v

Let m1 = maxg |[Ve| and my = maxg [Ap|. We define
a(z,t) = Me’" and o(z,t) = Me ?H7%?,
where

M = maX(HuOHLOO(Q)a ||U0||L°<>(Q))a
v=M
o = max{(yma +~v*m?)/q, MP~ PV}
)

We then find that (u,v) satisfies
U > A+ 9P, v, > A, z € 0, t>0,
ou 0v
=y, = >, r €00, t>0, (2.4)
v v
a(x70) 2’&0(%’), 6('7370) 2’00(%’), .Z‘E.Q,
and hence (@, v) is a desired supersolution. |

To establish the blow-up result, we need the following relationship between solu-
tion components u and v.

LEMMA 2.2. Let (u,v) be a non-negative solution of (1.1). Then there exists a pos-
itive constant ¢ = c(p, q,§2) such that

(i) If p,g =1,

/BQ ul(x,t)dS, > c(/ot /Q ’Up(y,T)dydT>q fort>0. (2.5)

https://doi.org/10.1017/50308210500001426 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001426

1348 K. Deng and C.-L. Zhao
(ii) If p > 1 > q, with pg > 1,

t Pq
/ ul(z,t)dS, > ctq(l_p)(/ / v(y, T) dydT) fort > 0. (2.6)
o8 0 JN

(iii) If ¢ > 1 > p, with pg > 1,

t Pq
/ vP(z,t)dz > ctp(l_q)(/ / u(y,T)dSyd7'> fort > 1. (2.7)
Q 0 Jon

Proof. We first prove (2.5). Note that, as in [11], one can show
Gn(z,y,t,7)dS, > ¢y forye 2, t>72=0, (2.8)
on

with ¢g a positive constant. By means of (2.1), (2.8) and applying Jensen’s inequal-
ity, we have

t q
/ ui(x,£) dS, > / (/ GN(x,y,t,ﬂv”(y,T)dydT) as,
o1 o1 0 (9]
t q

>0 [ [ [ exutrro ) agaras, )

012 YJ0 (9]

t q
=|39|1“1[//v”(y,7)(/ GN(&y,t,T)de)dydT}

0 2 o1

t q
>cg|8(2|1_‘1(/ /vp(y,T)dyd7'>. (2.9)
0 2

We next prove (2.6). As is well known, Green’s function G satisfies
/Gny,tT r<cy forye, t>12>0, (2.10)

where ¢ and ¢y are positive constants. By (2.10) and Jensen’s inequality, we find

¢ t P
G t dyd
[ [ Gxtept. o) dyr > Hodp Gt oty 1) dudr)
0 2 (fonGN(x7yat?T)dydT)

t P
> Cé_ptl_”(/o /Q GN(%y,t,T)v(y,T)dydT) -

(2.11)

Then (2.1), together with (2.8) and (2.11), yields

/ ul(z,t)dS,
on

t prq
203(1_”)#1(1"’)/ (/ / GN(x7y,t,T)v(y,T)dydT> ds;,
on 0 J
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t pq
> cg(l"’>|a(2|l—mtq<1—1’> |:/ / v(y,T)(/ GN(x,y,t,T)de> dyd7'1|
0 /o a0

t Pq
Z ngcg(l_p)|89|l_pqtq(l_p)(/ / v(y,T) dydT) .
0J0
We then prove (2.7). Using the estimate of [8], as in [11], we can see
t —
/ Gn(z,y,t,7)dS,dr < ezt forxe 2, t2>1, (2.12)
0 Jog

with ¢z a positive constant. By (2.2), (2.10) and (2.12), we have that

/Q vP(z,t) dx

t p
2/ (/ GN(x,y,t,T)uq(y,T)dSydT> dz
2 0 Jon

> Jo(Js Jog On .y, t.7)uly, 7) dS,dr)™ da
(f3 fyo G (@, t,7) dS,dr) "V

t Pq
> Cg(l—q)|9|1—pqtp(1—q) |:/ / u(y, 7')(/ Gn(z,y,t,7) dx) dSydT]
0o Joo 2

t Pq
> C;ch;g(l—q) |Q|1—pqtp(1—q) (/ / u(y, ) dSyd7'> )
0 Jon

We are now in a position to present the following result.

THEOREM 2.3. Suppose pg > 1. Then all non-negative solutions of (1.1) blow up
in finite time.

Proof. In view of the preceding lemma, we consider three cases.

CAsSE 1 (p,q = 1). Introduce the function

F(t) = /O t /QU(x,T)dxdT.

By (2.2) and (2.10), F(t) satisfies

F(t) > /Ot /Q(/Q Gn(z,y,T, O)UO(y)dy> dzdr
> /Ot /Q UO(y)(/n Gn(z,y,T,0) dx) dydr

¢
> cl/ / vo(y) dydT = cqyt. (2.13)
0 Jo
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Moreover, integrating by parts and recalling (2.5), we have

F"(t) = /Q v (z,t) dz

= / ul(z,t)dS,
on

([ [ e

c|10=P)pa(l=p) pra g),

WV

WV

Since F’ > 0, we may multiply this last inequality by F’ and integrate by parts on
the right to obtain

- 2¢|2]2(1=p)

(F'(t))* > v $1(1=p) ppatl(p)

or, equivalently,
F'(t) > C5t‘1(1_p)/2F(”q+1)/2(t), (2.14)
where ¢5 = [2¢|2]9=P) /(pq + 1)]*/2. Choose a positive number § such that
1< 6 <min{5(pg+1),5(q+3)}

We then use the lower bound in (2.13) for F(P4tD/2=9(¢) to get

F/(t) > PrtD/2=0 4(at1) /2= o g (2.15)
that is,
5 ;((i)) > cgt@tD/2-5.
Integrating over (n,t) yields
1 L < oy (nat®/2-5 _ yla+s)/2-8) (2.16)

Fo=i() - PO (n)

with a positive fixed 7.
By virtue of (2.13), we find

Fé—l(t) > (0411—5771—6 + C,777(q+3)/2—6 _ C7t(q+3)/2_6)_1,
which implies that F' and hence the solution, cannot be global.

CASE 2 (p> 1> q). By letting

F(t) = /Ot /Q v(z,7)dzdr

and recalling (2.6), the proof is essentially the same as that in case 1, and hence is
omitted.
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CASE 3 (¢ > 1> p). On the one hand, by (2.1) and (2.8), we can see that for ¢ > 0,

/ u(x,t)d5x2/ /GN(xvyataO)UO(y)dder
an 0N J R

> /Q ug(y)(/aQ Gn(z,y,t, O)de> dy

> ¢ / un(y) dy
N
=& > 0. (2.17)

On the other hand, again by (2.1) and (2.8), we have

t
/ u(z,t)dS, > / / / Gx(z,y.t, 7)o (y, 7) dydrds,
on 012 YJ0 (9]
t
-[/ v”(y,T)( GN<x7y,t,T>dsr)dydT
0 (9] o1

t
200/ / vP(y, 7) dydr,
0 2

which, combined with (2.7), leads to

t T Pq
/ u(x,t)dSr>cco/ Tp(l_q)(/ / u(y,()dSydC> dr fort>1. (2.18)
o8 0 0 Jo
Set
t
H(t) :/ / u(z,7)dS,dr fort > 1.
0 Jon

From (2.17) and (2.18), it follows that H(t) satisfies
¢
H'(t) > ¢ + 52/ PU=D gra(rydr  for ¢t > 1. (2.19)
0

Integration of the above inequality over (1,¢) then yields
t T
H(t) > &t + ¢ / / ¢PU=D gPa(¢) d¢dr
1 J1

t
= et [ (- QOO
1
t

> G3t + 52#’“—‘1)/1 (t — Q) HPI(¢) d¢ (2.20)

for ¢t > 2. Assume on the contrary that (1.1) has a global solution (u,v). Then for
any positive number T' (greater than or equal to 2), we have

t

H(t) > T + 54TP<1—q>/ (t — O)HPI(C)d¢ for T <t < 2T. (2.21)
T
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Thus, by comparison, H(t) > h(t) on [T, 2T], where
¢
h(t) = T + 54TP<1—4>/ (t — ORPI(C)d¢  for T < t < 2T. (2.22)
T
Clearly, h(t) satisfies
B'(t) = e TP~ DpPI(t), T <t < 2T,
WT) = &5T, (2.23)

Multiplying the equation in (2.23) by h'(¢) and integrating from T to t, we obtain
W (t) = e TPA=D/2(ppatt(g) — ppati(T))1/2, (2.24)

Integration of this relation over (7', 27") then leads to

h(2T)
EsTP—Pat2)/2 — / (2Pa+L — pPati(T)) /2 42
mT)

2h(T)

< g+ 1)) [ ()

h(T)
+ 2(pa+1)/2 /Oo L= (Pat+1)/2 4,
2h(T)
= 2[(pg + 1)71% - 2(pg — )TN TPV, (2.25)
which is equivalent to
TEE2 < 2(pg + 1) + 2pg — 1)1 Tz, (2:26)

For sufficiently large T', inequality (2.26) yields a contradiction, which completes
the proof. O

3. Blow-up on the boundary

In [10], with a monotonicity assumption, Hu and Yin showed that for the heat
equation u; = Awu under the nonlinear boundary condition du/dv = u? (p > 1),
blow-up can occur only on the boundary. Later, Hu [9] proved the same result
without the assumption. Based on their general ideas, in this section we show that
for problem (1.1) in the Lipschitz case, blow-up cannot occur at the interior of the
domain. For definiteness, we may assume that T is the blow-up time.

THEOREM 3.1. If p,q > 1, then blow-up can occur only on the boundary.
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Proof. We first establish another relationship between the solution components u
and v of (1.1). By (2.2) and (2.10), we have

/va(x,t)dx>/n(/0t . GN(x,y,t,T)uq(y,T)dSydT>pdx
> |Q|1—p[/0t /BQ uq(y,T)(/n GN(x,y,t,T)dx> dsydTT
> c(/ot /BQ uq(y,T)dSydT>p. (3.1)

Let A(t) = ||u(-,t)l| L) and B(t) = |[v(-,t)||Lr (). By virtue of (2.5) and (3.1),
we find

A(t) > cl/q/t BP(r)dr = ¢9J(t) (3.2)
0
and
B(t) = /P /t Ad(r)dr = PK (1), (3.3)
0

As a consequence, we obtain
J'(t) = cKP(t) and K'(t) = cJ(t). (3.4)
From theorem 2.3 of [12], it follows that
Jt)<C(T -1t~ and K(t)<C(T—t)"? fortel0,T), (3.5)

where a = (p+1)/(pg — 1) and 5 = (¢ +1)/(pg — 1).

We now take an arbitrary 2’ CC 2 with dist(942,2') =€ > 0. For this (2,
we can further take 2”7 CC £ such that 2’ CC 2", dist(02",02') > 3¢ and
dist(942, £2") > 4e. It is well known that for any € > 0,

0< Gn(z,y,t,7) <C. for |z —ygy| > %e, r,ye N, 0<7t<t<T. (3.6)
Then, by (2.2) and (3.6), we can see that

n{ljz/m/xv(x,t) < Cy+C. /Ot Ad(r)dr < CL(T —t)~P. (3.7)
Proceeding similarly as in the proof of theorem 4.1 of [10], we find
Cs
[W(z) + (Co + 1)(T - 1)]P
where 1 (z) € C?({2') satisfies
P(z) >0 in 2, P(x)=0 on 7,

Ad— max(a + 1,54— 1)|Vy|? S

for some Cs > 0. Inequality (3.8) shows that v(x,t) cannot blow up in 2’ x (0,7).

v(z,t) < in 2’ x[0,7), (3.8)

—CQ in _Q/ (39)
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Next we turn our attention to u(z,t). Making use of (2.1), (2.10) and (3.5)—(3.7),

we have that in 2’ x [0,T)
t
u(z,t) < Cy —|—/ Gn(z,y,t,7)vP(y, 7) dydr
Q//
/ / (z,y,t, 7)o" (y,7) dydr
Q\Q//

<00+Cp/( T) pﬂ( GN(x,y,t,T)dy> dr
Q//

—|—C// Py, ) dydr
Q\Q//

SC}H—@C{’/( —7)" pﬂdT—FC/ /vp (y,7) dydr

0
P
< Co+ ‘3251 (T =)+ CC(T — 1)~
< CW(T —t)~™. (3.10)

Introduce the function ¥(z,t) = Cs[¢(x) + (C2 + 1)(T — t)]”* — u(x,t), where
Cj is a positive constant to be determined. Through a routine calculation, we find

1

T T (G DT D

p (a+ DVy[?
: [aC5 —03 —|—aC5(CQ—|—A1/)— w+(02+ 1)(T—t)>j| =0 (3.11)

if C5 > C%/a. )
On the parabolic boundary, ¥(x,0) > 0 for z € 2’ if

Cs > H}?%X(T/)(x) + (C2 + 1)T)%ug ()

and ¥(z,t) > 0 for (z,t) € 982" x (0,T) if C5 > (C2 + 1)*Cy4. Thus the maximum
principle implies that ¥ (x,t) > 0 in ' x [0,7T), that is,

Cs
[h(x) + (C2 + 1)(T = t)]*

Hence u(z,t) cannot blow up in £’ % (0,T). Since 2’ is an arbitrary compact subset
of £2, the proof is completed. O

u(x,t) < in 2" x[0,T). (3.12)
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