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We theoretically study small-amplitude oscillations of permeable cylinders immersed
in an unbounded fluid. Specifically, we examine the effects of oscillation frequency,
permeability and shape on the effective mass and damping coefficients, the latter of
which is proportional to the power required to sustain the vibrations. Cylinders of
circular and elliptical cross-sections undergoing transverse and rotational vibrations
are considered. The dynamics of the fluid flow through porous cylinders is assumed
to obey the unsteady Brinkman–Debye–Bueche equations. We use a singularity
method to analytically calculate the flow field within and around circular cylinders,
whereas we introduce a Fourier-pseudospectral method to numerically solve the
governing equations for elliptical cylinders. We find that, if rescaled properly, the
analytical results for circular cylinders provide very good estimates for the behaviour
of elliptical ones over a wide range of conditions. More importantly, our calculations
indicate that, at sufficiently high frequencies, the damping coefficient of oscillations
varies non-monotonically with the permeability, in which case it maximizes when
the diffusion length scale for the vorticity is comparable to the penetration length
scale for the flow within the porous material. Depending on the oscillation period,
the maximum damping of a permeable cylinder can be many times greater than that
of an otherwise impermeable one. This might seem counter-intuitive at first, since
generally the power it takes to steadily drag a permeable object through a fluid is
less than the power needed to drive the steady motion of the same, but impermeable,
object. However, the driving power (or damping coefficient) for oscillating bodies is
determined not only by the amplitude of the cyclic fluid load experienced by them
but also by the phase shift between the load and their periodic motion. An increase
in the latter is responsible for the excess damping coefficient of vibrating porous
cylinders.

Key words: flow–structure interactions, particle/fluid flow, porous media

1. Introduction
Over the years, various motivations have prompted researchers to investigate the

dynamic response of fluid-submerged oscillating objects. A prominent example is

† Email address for correspondence: hmasoud@mtu.edu
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the theoretical work of Stokes (1851) in the mid-nineteenth century on the vibration
of a sphere in an unbounded fluid inspired by the motion of a simple pendulum
performing indefinitely small oscillations in air. Since then, there have been a number
of theoretical investigations focusing on the hydrodynamics of vibrating impermeable
particles of different geometries (Ray 1936; Kanwal 1955, 1964, 1970; Williams 1966;
Tuck 1969; Lai & Mockros 1972; Lawrence & Weinbaum 1986, 1988; Pozrikidis
1989; Loewenberg 1993; Avudainayagam & Geetha 1994; Zhang & Stone 1998; Shu
& Chwang 2001; Shatz 2004, 2005; Barta 2011). These studies are motivated by
applications ranging from the Brownian motion of microparticles and locomotion
of microorganisms to frequency response of cantilever beams used in atomic force
microscopes and design of bio-inspired swimming and flying robots.

A closer inspection of the literature indicates that oscillating motions of permeable
objects, compared to those of their impermeable counterparts, remain largely
unexplored. This is despite their importance in many conventional and emerging
applications, such as the design of stabilizers for offshore structures (Molin
2001), enhanced oil recovery (Graham & Higdon 2002), oscillatory rheology of
porous-particle suspensions (Looker & Carnie 2004) and aerodynamics of insect
flight (Santhanakrishnan et al. 2014). The existing studies, which almost all belong
to the current millennium, have only focused on the heaving motion of perforated
disks (Molin 2001, 2011; Liu et al. 2011; An & Faltinsen 2013) and translational
vibrations of porous spheres and spherical shells (Looker & Carnie 2004; Vainshtein
& Shapiro 2009; Tsai & Hsu 2010; Ollila, Ala-Nissila & Denniston 2012; Prakash,
Raja Sekhar & Kohr 2012). A missing elementary geometry in these investigations is
a cylinder (be it circular or otherwise). Identifying the hydrodynamic characteristics of
vibrating cylinders, however, has been shown to be the first step in understanding the
behaviour of two-dimensional-like flow structures that appear frequently in systems
of current interest (Sader 1998; Phan, Aureli & Porfiri 2013; Ahsan & Aureli 2015).

Here, we examine the hydrodynamics of porous cylinders vibrating in an infinite
fluid medium. We consider both transverse and rotational oscillations for circular
and elliptical cross-sections. Assuming small-amplitude oscillations, the unsteady
Brinkman–Debye–Bueche (BDB) and linearized Navier–Stokes (NS) equations are
solved for the fluid flow within and around cylinders, respectively. For circular
cylinders, analytical solutions are obtained using the method of fundamental solutions;
while for cylinders with elliptical cross-sections, a Fourier-pseudospectral method is
devised to numerically calculate the flow field. We present the results in terms of
the total forces and torques exerted on the oscillating cylinder. In particular, we
scrutinize the influence of oscillation frequency and permeability on the effective
mass and damping coefficients that are closely associated with the conservative
and dissipative components of the hydrodynamic load, respectively. The latter is
proportional to the power required to drive the vibrations. Our calculations reveal
that, when the oscillation frequency is high enough, there exists a permeability at
which the power (or damping coefficient) is maximum. Perhaps surprisingly, the
maximum power can be several times greater than the power expended during the
oscillations of an otherwise impermeable cylinder.

Below, we first describe the problem statement and modelling strategy. Details of
the analytical and numerical approaches are explained next, followed by a discussion
of the results, including the applicability range of the small-amplitude assumption.
A short summary and concluding remarks are given in the end and supplemental
information is provided in appendices A and B.
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2. Problem formulation and solutions
2.1. Governing equations

We consider an infinitely long porous cylinder of characteristic (cross-sectional)
length scale a and permeability κ that undergoes sinusoidal oscillations with constant
amplitude A and period T in an unbounded incompressible fluid of density ρ and
viscosity µ. We assume that the cylinder is neutrally buoyant and the amplitude of
oscillations compared to the characteristic length of the cylinder is very small, i.e.
λ = A/a� 1. Also, following Brinkman (1947, 1948) and Debye & Bueche (1948),
we model the flow through the porous cylinder by adding a term proportional to the
relative velocity of the cylinder to the momentum equation. This approach leads to a
set of unsteady BDB and linearized NS equations that can be written succinctly in
the dimensionless form as (see e.g. Vainshtein & Shapiro 2009; Ollila et al. 2012)

R
∂ũ
∂ t̃
= ∇2ũ−∇p̃− χβ2(ũ− ũc), (2.1a)

∇ · ũ = 0, (2.1b)

where t̃ denotes the time, p̃ represents the pressure field, ũ and ũc are the fluid and
cylinder velocities, respectively, and χ is a binary mask function that is one inside the
cylinder and zero in its exterior. As intended, χ = 1 and χ = 0 give, respectively, the
unsteady BDB and unsteady Stokes equations that are coupled through the continuity
of velocity and traction vector at the surface of the cylinder. The fluid velocity within
the porous region is an averaged quantity over a domain that is large compared to
the size of a single pore, but small compared to the cylinder itself. Furthermore, ũ is
assumed to vanish at infinity. In (2.1),

R= ρ$a2/µ and β2 = a2/κ (2.2a,b)

denote, respectively, the dimensionless frequency and permeability, with $ = 2π/T
being the angular frequency of the oscillations. The parameter R is also known as
the oscillatory Reynolds number Re$ . As we will discuss later in § 3, the values of
R and β determine how fast the oscillations of the surrounding fluid decay as the
distance from the cylinder increases and how deep the fluid flow penetrates into the
porous cylinder, respectively. The ratio

δ = β/
√
R (2.3)

will be shown to be an important factor in characterizing the hydrodynamic response
of the vibrating cylinder. Throughout the article, the length, time, velocity, stress, force
per unit length and torque per unit length are non-dimensionalized by a, 1/$ , A$ ,
µA$/a, µA$ and µaA$ , respectively.

Given the form of the cylinder motion, it is mathematically convenient to express
the velocities and pressure as real parts of complex quantities, i.e. ũc=Re(uceit̃), ũ=
Re(ueit̃) and p̃=Re(peit̃), with i2 =−1. Substituting in (2.1), we then have

∇2u−∇p = ξ 2
i [u− (β/ξi)

2uc] when χ = 1, (2.4a)
∇2u−∇p = ξ 2

o u when χ = 0, (2.4b)
∇ · u = 0, (2.4c)

where

ξ 2
i = iR+ β2 and ξ 2

o = iR. (2.5a,b)
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FIGURE 1. Schematic of a vibrating cylinder (depicted as a dark grey circle of
dimensionless radius one) immersed in a boundless fluid (shown in light grey). The dashed
enclosing contour highlights the lack of an outer boundary, and χ = 0 and χ = 1 denote
areas inside and outside of the cylinder, respectively. Also, double-headed arrows represent
transverse and rotational vibrations.

Here and throughout the article, we recognize the applicability domain of parameters
and variables, being inside or outside the cylinder, by subscripts i and o, respectively.
The time-independent equations (2.4a) and (2.4b) are in the form of the original
BDB equations with complex dimensionless permeabilities. In solving (2.4), we treat
circular and non-circular cross-sections separately, as only the former is amenable to
analytical solutions.

2.2. Analytical solutions for circular cylinders
A convectional approach to analytically calculate u for simple geometries, such as
spheres and circular cylinders, is to write (2.4) in terms of the streamfunction and
solve the corresponding equations by the method of separation of variables. This
method is used by Vainshtein & Shapiro (2009) and Ollila et al. (2012) to obtain
the velocity and pressure fields for an oscillating sphere. Alternatively, here, we
solve (2.4) for a circular cylinder of radius a (see figure 1) via the method of
fundamental solutions. In this approach, u− (β/ξi)

2uc when χ = 1 and u when χ = 0
are represented, respectively, by the solutions of the homogeneous part of (2.4a)
and (2.4b) that are in turn singular at infinity and the centre of the cylinder. The
fundamental singular solutions necessary for representing the flow within and around
the cylinder are analogues of stokeson, potential doubleton and roton for internal, and
stokeslet, potential doublet and rotlet for external Stokes flows. The terminologies are
adopted from those of Chwang & Wu (1975) and Pozrikidis (1992).

Let the subscripts SN, DN and RN denote the field variables for the equivalents
of stokeson, potential doubleton and roton, respectively. Also, suppose analogues of
stokeslet, potential doublet and rotlet are represented, respectively, by the subscripts
S, D and R. Following this convention, we write the fundamental singularities of the
BDB equations for internal and external flows as

uSN(r; α) =
[

I0(ρi)− I1(ρi)

ρi

]
α −

[
I0(ρi)− 2I1(ρi)

ρi

]
(α · r)r

r2
, (2.6a)

pSN(r; α) = 0, (2.6b)
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uDN(r; η) = η, (2.7a)
pDN(r; η) = −ξ 2

i (η · r), (2.7b)

uRN(r; γ ) = I1(ρi)

ρi
(γ × r), (2.8a)

pRN(r; γ ) = 0, (2.8b)

uS(r; α) =
[

K0(ρo)+ K1(ρo)

ρo
− 1
ρ2

o

]
α −

[
K0(ρo)+ 2K1(ρo)

ρo
− 2
ρ2

o

]
(α · r)r

r2
, (2.9a)

pS(r; α) = α · r
r2
, (2.9b)

uD(r; η) = −ξ
2
o

2

{[
K0(ρo)+ K1(ρo)

ρo

]
η−

[
K0(ρo)+ 2K1(ρo)

ρo

]
(η · r)r

r2

}
, (2.10a)

pD(r; η) = 0, (2.10b)

uR(r; γ ) = ξ 2
o

K1(ρo)

ρo
(γ × r), (2.11a)

pR(r; γ ) = 0, (2.11b)

where r is the position vector in the x–y plane with |r| = r = 1 representing the
surface of the cylinder, and In and Kn are modified Bessel functions of the first
and second kinds and of order n, respectively (Abramowitz & Stegun 1972). Also,
ρi = ξir, ρo = ξor and α, β and γ are constant vectors reflecting the strength of
the singular solutions. We note that α and β lie in the x–y plane, to which γ is
perpendicular. Equations (2.6a)–(2.11b) are derived in a similar fashion to their Stokes
flow analogues (see e.g. Chwang & Wu 1975; Pozrikidis 1992).

We first consider the translational oscillations where, without loss of generality, we
set uc = ey with ey being the unit vector in the y direction. In this case, we express
the flow field as

ui = uSN(r; αiey)+ uDN(r; ηiey)+ (β/ξi)
2ey, (2.12a)

pi = pSN(r; αiey)+ pDN(r; ηiey), (2.12b)

uo = uS(r; αoey)+ uD(r; ηoey), (2.13a)
po = pS(r; αoey)+ pD(r; ηoey), (2.13b)

where the complex constants αi, αo, ηi and ηo are determined by applying, at r= 1,

ui = uo and n · σi = n · σo, (2.14a,b)

with σ denoting the dimensionless (complex) stress tensor and n= er= r/r. Given the
first condition in (2.14) and recalling that ∇ · u= 0 everywhere, the continuity of the
surface traction condition can be replaced by the continuity of pressure and vorticity
ω=∇× u (see e.g. Pozrikidis 2011, p. 241), i.e.

pi = po and ωi =ωo. (2.15a,b)
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Note that, in two dimensions, the vorticity vector is effectively a scalar since it has
only one non-zero component, which is normal to the x–y plane.

Substitution of (2.11) and (2.12) into the left-hand equation of (2.14) and the two
equations of (2.15), yields, after some manipulations,

αi = A3

A2
, ηi =− A1

ξ 2
i A2

, αo = A1

A2
, ηo = 2(A1 + A4)

ξ 2
o A2

, (2.16a−d)

where

A1 = [2ξo(ξ
2
i − ξ 2

o )K1(ξo)+ ξ 2
i ξ

2
o K0(ξo)]I1(ξi)+ ξiξ

3
o K1(ξo)I0(ξi), (2.17a)

A2 = β−2 {[2ξo(ξ
2
i − ξ 2

o )K1(ξo)+ ξ 2
i (ξ

2
i + ξ 2

o )K0(ξo)]I1(ξi)

+ ξiξo(ξ
2
i + ξ 2

o )K1(ξo)I0(ξi)}, (2.17b)
A3 = −2ξiξoK1(ξo), (2.17c)
A4 = −2ξ 2

i I1(ξi). (2.17d)

The modified Bessel functions of complex argument can be evaluated using
conventional mathematical software packages such as MATLAB and Mathematica,
or independently using the definitions provided by Abramowitz & Stegun (1972).
Having determined u and p in the entire domain, the (complex) total force per unit
length of the cylinder is calculated as (see e.g. Felderhof 2014)

F= β2
∫

S
(ui − uc) dS= πβ2

ξ 2
i
[αiξiI1(ξi)+ ηiξ

2
i − iR]ey. (2.18)

The effective mass and damping coefficients are then obtained according to

Ct
e =−Im[F/(πR)] and Ct

d =−Re[F/(πR)], (2.19a,b)

respectively, where F = Fey and the superscript t underscores transverse oscillations.
We note that Ct

e represents both the inertia of the fluid mass within the porous cylinder
and that of the surrounding fluid.

Next, we consider the rotational vibrations of a porous circular cylinder about its
longitudinal axis. We set A= aΘ with Θ being the angular amplitude of oscillations.
Consequently, uc= ez× r, where ez is the unit vector in the z direction of the Cartesian
coordinate system (x, y, z). Here, the internal and external flows take the forms of

ui = uRN(r; γiez)+ (β/ξi)
2(ez × r), (2.20a)

pi = pRN(r; γiez), (2.20b)

uo = uR(r; γoez), (2.21a)
po = pR(r; γoez), (2.21b)

where γi and γo are complex constants. Following the procedure that led to (2.16), the
application of the continuity boundary conditions yields

γi = − ξoβ
2K2(ξo)

ξi[ξiI0(ξi)K1(ξo)+ ξoI1(ξi)K0(ξo)] , (2.22a)

γo = β2I2(ξi)

ξiξo[ξiI0(ξi)K1(ξo)+ ξoI1(ξi)K0(ξo)] , (2.22b)
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L

FIGURE 2. Schematic illustrating a periodic domain of length L (depicted as a thick
black square) that is uniformly discretized into an array of square elements. The dark
grey regions represent identical cylinders of non-circular cross-section that are spaced a
domain length apart from one another.

which, in turn, results in the following equation for the total torque per unit length of
the cylinder:

T= β2
∫

S
[r× (ui − uc)] dS= πβ2

2ξ 2
i
[4γiI2(ξi)− iR]ez. (2.23)

The effective mass and damping coefficients are derived from the complex torque as

Cr
e =−Im[T/(πRR2

g)] and Cr
d =−Re[T/(πRR2

g)], (2.24a,b)

respectively, where Rg is the radius of gyration of the cross-section, defined as R2
g =∫

S r2 dS/
∫

S dS, T= Tez, and the superscript r denotes rotational oscillations.

2.3. Numerical solutions for non-circular cylinders
Obtaining closed-form solutions for u and p for cylinders of non-circular cross-
sections is very challenging, if not impossible. Thus, we resort to numerics to study
their dynamic response under transverse and rotational oscillations. To this end, we
approximate the fluid flow within and around an isolated vibrating cylinder with that
through and surrounding each member of a periodic array of oscillating cylinders (see
figure 2). The latter is known to converge to the former as the spacing between the
cylinders in the array becomes very large. We then employ a Fourier-pseudospectral
method to calculate the velocity field and the resulting hydrodynamic loads.

We begin by taking the Fourier transform of (2.4), which, after rearranging, leads
to

(k2 + ξ 2
o )û+ ikp̂=−β2(χ̂u− χ̂uc) and ik · û= 0, (2.25a,b)
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where k is the two-dimensional wavevector with k= |k| and the hat overbar denotes
the transformed variables and terms. Taking the dot product of each side of the
momentum equation in (2.25) by ik (i.e. taking the divergence), we find

p̂= β2 ik
k2
· (χ̂u− χ̂uc), (2.26)

which, after substitution back into the momentum equation, results in

u+ F−1

{
ζ

[
χ̂u− k

k2
(k · χ̂u)

]}
= F−1

{
ζ

[
χ̂uc −

k
k2
(k · χ̂uc)

]}
, (2.27)

where F−1 represents the inverse Fourier transform and ζ = β2/(k2 + ξ 2
o ).

To solve this equation numerically, we first discretize the periodic domain (see
figure 2) into a uniform distribution of N square elements whose centres lie inside the
domain boundary. Then, we enforce (2.27) at the centre of the elements (also known
as the collocation points) while using a fast Fourier transform (FFT) to calculate the
direct and inverse transforms. This gives rise to a set of linear equations for u at the
centre of the grid cells, which can be solved iteratively via the generalized minimal
residual method (GMRES). Note that in this approach the continuity boundary
conditions at the surface of the cylinder are automatically satisfied since a single
velocity field represents the entire flow. Finally, we calculate the total force and
torque exerted on the cylinder using

F = β2
N∑

j=1

Sjχj(uj − uc), (2.28a)

T = β2
N∑

j=1

Sjχj[rj × (uj − uc)], (2.28b)

where Sj, χj, uj and rj denote the surface area, value of the mask function, velocity
and location of the centre of the jth element, respectively.

Throughout the calculations, we set the length of the periodic domain L and number
of grid points such that always 20 6 L/a and the size of the largest grid cell is
smaller than 0.01a. Recall that a is the characteristic length scale of the cross-section,
e.g. the radius for circular and semi-major axis for elliptical cylinders. Further, the
mask function is smoothed over five nodes by a Gaussian filter to avoid spurious
Gibbs oscillations that usually appear when taking the FFT of discontinuous functions
(see e.g. Kolomenskiy & Schneider 2009). We verify the accuracy of our numerical
approach by comparing its results for circular cylinders with the analytical formulae of
§ 2.2, and find that the relative errors of the effective mass and damping coefficients
for 0< β 6 102 and 10−1 6R6 103 are less than 2.2 %. Extending the upper limits
of β and R in numerical simulations requires finer grid resolutions, and reducing the
lower limit of R demands larger periodic domains. It is worth noting that the limit
of R→ 0 is logarithmically singular for the case of transverse oscillations (see e.g.
table 1 in appendix A), i.e. no steady-state solution exists for R= 0.

The methodology explained above can be applied to any cross-sectional geometry
(circular or otherwise), but here we focus only on ellipses due to their practical
significance. Furthermore, this numerical approach can be extended to solve the
coupled unsteady BDB–NS equations, including the nonlinear term we neglected

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.457


Optimal viscous damping of vibrating porous cylinders 347

so far thanks to the small-amplitude assumption. In its most simple form, the
vorticity–streamfunction formulation of the equations are first transformed into the
Fourier space. Then, the nonlinear advective and permeability-dependent terms are
treated explicitly (e.g. using a second-order Adams–Bashforth method), while the
linear diffusive term is integrated exactly via the integrating factor technique (see
e.g. Kolomenskiy & Schneider 2009). Note that the mask function is, in general,
time-dependent and varies according to the position of the object, unless the equations
are written in a non-inertial reference frame attached to the oscillating object. Here,
we use the extended approach to solve the full BDB–NS equations to find out (for
a few representative cases) how broadly applicable the predictions coming from the
solution of the linearized equations are.

3. Results and discussion
We begin by analysing the results for transverse oscillations of first circular and then

elliptical cylinders. Before we proceed, it is useful to remember that the magnitude of
the (real) force experienced by the cylinder can be written as

F̃ = |F̃| = |Re(Feit̃)| = |F| sin(t̃− φ)
= |F| cos φ sin t̃− |F| sin φ cos t̃=πR(Ct

e sin t̃−Ct
d cos t̃), (3.1)

where φ is the phase lag between the force and prescribed displacement ỹ= sin t̃. The
average power required to sustain the vibrations in one period can then be calculated
as

P̃ = 1
2π

∫ 2π

0
F̃ · ũc dt̃=−π

2
RCt

d. (3.2)

Equation (3.2) highlights the fact that the average power consumption is directly
proportional to the damping coefficient.

Figure 3(a,b) shows the variations of the effective mass and damping coefficients of
a circular cylinder as a function of δ=β/√R for different values of the dimensionless
frequency R. The parameter δ represents the ratio of two length scales, namely the
oscillation penetration length that scales with 1/

√
R and the characteristic permeation

length that scales with 1/β (see e.g. Vainshtein & Shapiro 2009). Dashed lines in the
insets are plots of the asymptotic expressions for the corresponding coefficients in the
limits of high/low oscillation frequency and permeability (see table 1 in appendix A).
The behaviour of the dimensionless force magnitude and phase shift between the force
and prescribed displacement (see (3.1)) associated with the plots of Ct

e and Ct
d are

shown in figures 3(c) and 3(d), respectively.
Inspecting figure 3(a), we see that the curves for the effective mass coefficient all

start as a nearly horizontal line when the permeability is very low (δ� 1). With an
increase in the permeability, as one might intuitively expect, Ct

e begins to decay. This
trend continues as Ct

e asymptotically approaches zero with a rate that is proportional to
δ4 (see table 1 in appendix A). The rapid decay in the magnitude of the effective mass
coefficient is due to two factors (see (3.1)): (i) the monotonic decrease of the force
magnitude with increasing permeability, as depicted in figure 3(c); and (ii) the rise of
the phase lag to π/2 at high permeabilities (see figure 3d). Each of these factors has
a δ2 contribution to the overall decay rate of Ct

e.
Similar to the effective mass plots, the curves for the damping coefficient plateau

in the zero-permeability limit (see figure 3b). However, unlike those plots, when
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FIGURE 3. (Colour online) Dimensionless (a) effective mass and (b) damping coefficients
of a transversely oscillating porous circular cylinder as a function of δ = β/√R for
different values of the dimensionless frequency R. Dashed lines in the insets are plots of
the asymptotic expressions in the limits of high/low oscillation frequency and permeability
(see table 1 in appendix A). Dimensionless (c) force magnitude and (d) phase shift
between the force and prescribed displacement associated with the plots in (a) and (b)
(see (3.1)).

the oscillation frequency is not too low, Ct
d initially increases on increasing

the permeability from nil, reaches a maximum and then approaches zero as the
permeability tends to infinity (see figure 3b). In this limit, all curves converge to a
single line of slope δ2 (see also table 1 in appendix A). The existence of a maximum
in Ct

d at moderate to high frequencies suggests that, in these regimes, the increase in
sin φ initially outweighs the drop in |F| and, by doing so, yields a greater damping
coefficient (see (3.1)). This trend reverses, of course, as the permeability continues
to increase. Evidently, the maximum Ct

d seems always to occur at δ ∼O(1). Perhaps
even more intriguing, the maximum Ct

d, depending on the frequency, may be many
times greater than the damping coefficient of the impermeable cylinder Ct

d,∞. For
instance, at R= 103, the ratio Ct

d,max/C
t
d,∞ is approximately 11.2, whereas it is close

to 3.8 for R = 102 (see figure 3b). Interestingly, the reduction in Ct
e, on the other

hand, is not typically as pronounced as the increase in Ce
d at low permeabilities. For

example, at R= 103 and δ = 3, Ct
d/C

t
d,∞ = 5.66 and Ct

e/C
t
e,∞ = 0.92 or, at R= 102

and δ = 3, Ct
d/C

t
d,∞ = 2.39 and Ct

e/C
t
e,∞ = 0.85.

Next, we consider transverse oscillations of elliptical cylinders in the direction of
their minor axes. The results are presented in figure 4. Here, the cylinder’s semi-major
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FIGURE 4. (Colour online) Dimensionless (a,c) effective mass and (b,d) damping
coefficients of transversely oscillating porous elliptical cylinders of various aspect ratio
ε. The dimensionless frequency is R= 10−1 in (a,b), and R= 103 in the primary plots
and R = 10 in the insets of (c,d). The results are plotted versus the modified δ, i.e. δ
multiplied by

√
ε.

axis is chosen as its characteristic length a and the ratio of the cylinder’s minor to
major axis (its aspect ratio) is denoted by ε. More importantly, the coefficients are
plotted versus δ

√
ε (the modified δ). Multiplying δ with

√
ε is equivalent to redefining

the dimensionless permeability as β2 = ab/κ (see Masoud, Stone & Shelley 2013),
where a and b represent the semi-major and semi-minor axes of the cross-section,
respectively. Remember that the original definition is β2 = a2/κ . We find that, when
the effect of inertia is weak (R � 1), the plots for various aspect ratios nearly
collapse onto a single master curve and, hence, are very well represented by the
analytical results for a circular cylinder (i.e. solid black lines in figure 4(a,b)). As
the frequency of the oscillations increases, deviations from a perfect collapse of data
begin to appear (see figure 4(c,d) and their insets). Mismatches in the Ct

d plots are
mainly limited to the range 0.56 δ6 10, whereas the deviations in the Ct

e curves are
more widespread, particularly at very large R. Overall, from figure 4, we learn that,
if adjusted properly, the closed-form expressions derived in § 2.2 for the effective
mass and damping coefficients of transversely oscillating circular cylinders can be
used to obtain very good estimates for the coefficients of similarly vibrating elliptical
cylinders over a broad span of conditions.
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FIGURE 5. (Colour online) Dimensionless (a) effective mass and (b) damping coefficients
of a rotationally oscillating porous circular cylinder as a function of δ = β/

√
R for

different values of the dimensionless frequency R. Dashed lines in the insets are plots of
the asymptotic expressions in the limits of high/low oscillation frequency and permeability
(see table 1 in appendix A). (c) Dimensionless torque magnitude and (d) phase shift
between the torque and prescribed angular displacement associated with the plots in (a)
and (b) (see (3.3)).

Having discussed the transverse oscillations, we now examine rotational vibrations.
Again, it is constructive to recall that

T̃ = |T̃| = |Re(Teit̃)| = |T| sin(t̃− φ)
= |T| cos φ sin t̃− |T| sin φ cos t̃=πRR2

g(C
r
e sin t̃−Cr

d cos t̃), (3.3)

P̃ = 1
2π

∫ 2π

0
T̃ · Ω̃c dt̃=−π

2
RR2

gCr
d, (3.4)

where Ω̃c= cos t̃ ez is the angular velocity of the cylinder. The results for circular and
elliptical cylinders are presented, respectively, in figures 5 and 6, whose formats are
identical to those of figures 3 and 4, in that order. As can be seen in these figures, the
plots for Cr

e and Cr
d exhibit many of the same features as those for Ct

e and Ct
d, chief

among which are the existence of a maximum in the Cr
d curves when inertial effects

are dominant and the overall decay of the coefficients with increasing permeability.
Despite close qualitative similarities, there are of course quantitative differences. Most
notably, at the same R, the ratio Cr

d,max/C
r
d,∞ is almost half of Ct

d,max/C
t
d,∞, and δ

corresponding to Ct
d,max is shifted towards one.
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FIGURE 6. (Colour online) Dimensionless (a,c) effective mass and (b,d) damping
coefficients of rotationally oscillating porous elliptical cylinders of various aspect ratio ε.
The dimensionless frequency is R= 10−1 in (a,b), and R= 103 in the primary plots and
R= 10 in the insets of (c,d).

A natural question that may present itself at this point is: How do the behaviour of
the effective mass and damping coefficients for vibrating cylinders compare with those
for an oscillating sphere? To answer this question, we have analytically solved for Ct

e,
Ct

d, Cr
e and Cr

d of a sphere using the method of § 2.2. The derivation details along
with the plots of the coefficients versus δ (see figure 8) are presented in appendix B.
To the best of our knowledge, these results have not been reported correctly or at
all elsewhere. The comparison of figures 3 and 5 against figure 8 reveals that there
is a strong resemblance between the behaviour of the effective mass and damping
coefficients of cylinders and spheres. It also indicates that the critical dimensionless
frequency Rc, beyond which the damping coefficient maximizes at a finite δ, is higher
for a sphere than it is for a circular cylinder. In addition, we observe that, at a given
R > Rc, the ratios Ct

d,max/C
t
d,∞ and Cr

d,max/C
r
d,∞ for a sphere are roughly 35 % and

20 % less than their counterparts for a circular cylinder, respectively.
In concluding this section, we examine the validity of the small-amplitude

assumption under which the presented results were obtained. Figure 7 shows the
percentage difference between the results of full and linearized NS calculations
for the damping coefficient of finite-amplitude transverse and rotational oscillations.
The results are shown for two representative cross-sections, circular and elliptical
with aspect ratio ε = 0.1, and for the highest frequency considered in this study,
i.e. R=103, where the largest deviations from the small-amplitude theory are expected

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

45
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.457


352 S. Jafari Kang, E. Dehdashti, V. Vandadi and H. Masoud

Ó = 0.1 Ó = 1 Ó = 0.1 Ó = 1

∂
√

Ó
10-2 10-1 100 101 102

∂
√

Ó
10-2 10-1 100 101 1020

2

4

6

0

Î
t d (

%
)

Î
r d (

%
)4

2

6(a) (b)

¬/Ó = 0.1 ¬/Ó = 0.2 ¬/Ó = 0.3

FIGURE 7. (Colour online) Percentage difference between the results of full and linearized
NS calculations for the damping coefficients of porous cylinders oscillating (a) transversely
and (b) rotationally with finite amplitudes. The primary plots belong to circular cylinders,
whereas those in the insets are for elliptical cylinders of aspect ratio ε = 0.1. The
dimensionless frequency is R= 103 in all plots.

to occur. When the cross-section is circular (ε = 1), we see that the difference stays
below 5 % for the dimensionless amplitude as high as λ= 0.3, which indicates how
wide the applicability range of the small-amplitude assumption can be. For the same
ratio of the amplitude to aspect ratio (i.e. λ/ε = 0.3), we see that the difference
is similarly low (less than 6 %) for the elliptical cross-section of ε = 0.1. That an
error of similar magnitude is reached at a lower amplitude for ε = 0.1, compared
to ε = 1, is due to the more vigorous vortex shedding from the sharp edges as the
cross-section gets thinner. This nonlinear phenomenon is not captured by the linearized
model.

4. Conclusion
We systematically investigated the dynamic response of fluid-submerged porous

(circular and elliptical) cylinders under periodic (transverse and rotational) oscillations
of small amplitude. Using analytical and numerical modelling, we demonstrated how
the oscillation frequency and permeability affect the hydrodynamic performance of
cylinders characterized by their effective mass and damping coefficients. Perhaps
surprisingly, we discovered that, at high enough oscillation frequencies, permeable
cylinders can significantly outperform their impermeable counterparts when used as
dampers to dissipate oscillatory mechanical energy. What is intriguing is that, in
those cases, a drastic change in the damping characteristics of impermeable cylinders
can be achieved by making them slightly permeable. Our calculations indicate that
the optimal damping occurs when the ratio of the characteristic length of oscillation
penetration and the characteristic permeation length is of order one. This and other
findings of our study can serve as engineering guidelines for designing porous
damping structures with superior hydrodynamic performance, which may be used,
for example, as stabilizers in deep-water offshore platforms to dampen unwanted
environmental disturbances. We also hope that the insights gained by our analyses
guide and/or motivate future theoretical and experimental investigations on the
subject. Potentially interesting directions to pursue are considering other geometries,
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δ→ 0 δ→ 0 δ→∞ δ→∞
R→ 0 R→∞ R→ 0 R→∞

Ct
e

π

16
Rδ4 δ4

2
1
Γ

(
π

R
+ 2Λ− 1+ π2

8
+ 2πΛ

R3/2Γ δ

)
2

(
1+

√
2
R
− 2√

Rδ

)

Ct
d δ2 δ2 1

Γ

[
−4Λ

R
+ π

2

(
1− Λ

Γ

)
+ 4Γ − 8Λ2

R3/2Γ δ

]
2

(√
2
R
+ 1

R
+ 2
δ2

)

Cr
e −Λ

16
R2δ4 δ4 1− 4Λ+ 16Λ√

Rδ
1+ 2

√
2
R
− 4√

Rδ

Cr
d δ2 δ2 8

R
+π− 16

R3/2δ
2

√
2
R
+ 6

R
+ 1
δ2

TABLE 1. Asymptotic expressions for the effective mass and damping coefficients of
transversely and rotationally oscillating porous circular cylinders. The new parameters Λ
and Γ are defined as Λ = ln(

√
R/2) + Υ and Γ = Λ2 + π2/16, where Υ is the Euler

constant.

large-amplitude oscillations and confinement effects. Performing pore-resolved
numerical simulations would be well worth while, too.
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Appendix A. Asymptotic expressions for the effective mass and damping
coefficients of circular cylinders

The expressions derived for the effective mass and damping coefficients of circular
cylinders in § 2.2 involve modified Bessel functions of complex arguments. To make
the intricate calculations more accessible and to gain additional physical insights, in
table 1 we present simplified formulae for the effective mass and damping coefficients
of circular cylinders in the asymptotic limits of high/low oscillation frequency and
permeability. Several considerations are made in deriving the asymptotic expressions.
First, in the two limits involving δ→ 0, only the largest non-zero terms are retained
(see the top two rows of table 1). Second, in the limit δ→∞ and R→ 0, we demand
that β = δ√R→∞. This additional restriction is not needed in the opposite limit
δ→ 0 and R→∞, because, in that situation, the magnitude of ξi goes to infinity
irrespective of whether δ

√
R is finite, decays to zero or blows up (see (2.5)). Third,

when δ→∞ and R→∞, it is assumed that δ and
√
R increase at about the same

rate. Lastly, in cases where δ→∞, we keep the largest terms involving δ (i.e. the
leading-order corrections due to the permeability of the cylinder) and δ-independent
terms of the same or greater order of magnitude (see the bottom two rows of table 1).
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Appendix B. Small-amplitude oscillations of a porous sphere
The solution approach adopted in § 2.2 to solve for the flow field within and

around a vibrating porous circular cylinder can also be used to derive closed-form
expressions for the velocity distribution in the interior and exterior of an oscillating
porous sphere of radius a when the amplitude of oscillations is small relative to
a. To proceed with the derivations, we need to first determine the fundamental
singularities of the BDB equations for three-dimensional internal and external flows.
The three-dimensional equivalents of stokeson, potential doubleton and roton, and
of stokeslet, potential doublet and rotlet (see § 2.2 for the name convention) can be
shown to be, respectively (see also Pozrikidis 1989),

uSN(r; α) = (ρi
2 + 1) sinh ρi−ρi cosh ρi

ρ3
i

[
α − 3ξ 2

i (α · r)r
ρ2

i

]
+ 2ξ 2

i sinh ρi(α · r)r
ρ3

i
, (B 1a)

pSN(r; α) = 0, (B 1b)

uDN(r; η) = η, (B 2a)
pDN(r; η) = −ξ 2

i (η · r), (B 2b)

uRN(r; γ ) = ρi cosh ρi − sinh ρi

ρ3
i

(γ × r), (B 3a)

pRN(r; γ ) = 0, (B 3b)

uS(r; α) = 2
[

e−ρo

(
1+ 1

ρo
+ 1
ρ2

o

)
− 1
ρ2

o

]
α

r

− 2
[

e−ρo

(
1+ 3

ρo
+ 3
ρ2

o

)
− 3
ρ2

o

]
(α · r)r

r3
, (B 4a)

pS(r; α) = 2(α · r)
r3

, (B 4b)

uD(r; η) = −e−ρo(1+ ρo + ρ2
o)

[
η

r3
− 3(η · r)r

r5

]
− 2e−ρoρ2

o(η · r)r
r5

, (B 5a)

pD(r; η) = 0, (B 5b)

uR(r; γ ) = 2e−ρo(ρo + 1)
r3

(γ × r), (B 6a)

pR(r; γ ) = 0. (B 6b)

As explained in § 2.2, for the translational oscillations, the velocity and pressure
fields take the forms of

ui = uSN(r; αiey)+ uDN(r; ηiey)+ (β/ξi)
2ey, (B 7a)

pi = pSN(r; αiey)+ pDN(r; ηiey), (B 7b)

uo = uS(r; αoey)+ uD(r; ηoey), (B 8a)
po = pS(r; αoey)+ pD(r; ηoey), (B 8b)
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FIGURE 8. (Colour online) Dimensionless (a,c) effective mass and (b,d) damping
coefficients of (a,b) transversely and (c,d) rotationally oscillating porous spheres as a
function of δ=β/√R for different values of the dimensionless frequency R. Dashed lines
in the insets are plots of the asymptotic expressions in the limits of high/low oscillation
frequency and permeability (see table 2).

where, upon the application of the continuity boundary conditions at r = 1, the
unknown coefficients are found to be

αi = A3

A2
, ηi =−β

2

ξ 2
i

(
1− A1

A2

)
, αo = β

2

2

(
1− A1

A2

)
, ηo = β

2

ξ 2
o

(
1− A1 + A4

A2

)
,

(B 9a−d)

with

A1 = 2ξ 4
i (ξi cosh ξi + ξo sinh ξi), (B 10a)

A2 = cosh ξi[3β2ξi(ξo + 1)+ ξ 3
i ξ

2
o + 2ξ 5

i ]
+ sinh ξi[−3β2(ξo + 1)+ ξ 2

i ξ
3
o + 2ξ 4

i ξ0], (B 10b)
A3 = −3β2ξ 3

i (ξo + 1), (B 10c)
A4 = 3ξ 2

i eξo(ξi cosh ξi − sinh ξi). (B 10d)

It then follows that

F= β2
∫

S
(ui − uc) dS= 4π

3
β2

ξ 2
i

[
2αi

ξi
(ξi cosh ξi − sinh ξi)+ ηiξ

2
i − iR

]
ey. (B 11)
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δ→ 0 δ→ 0 δ→∞ δ→∞
R→ 0 R→∞ R→ 0 R→∞

Ct
e

√
2

9
R3/2δ4 2

3
δ4 3

2

(
1+ 3√

2R
− 3
√

2
Rδ

)
3
2

(
1+ 3√

2R
− 3√

Rδ

)

Ct
d δ2 δ2 9

2

(
1√
2R
+ 1

R
− 1

R3/2δ

)
9
2

(
1√
2R
+ 1

R
+ 1

2δ2

)

Cr
e

1
32

R2δ4 δ4 6− 5

√
R
2
− 30√

Rδ
1+ 5√

2R
− 5√

Rδ

Cr
d δ2 δ2 5

(
3
R
+
√

R
2
− 9

R3/2δ

)
5√
2R
+ 10

R
+ 1
δ2

TABLE 2. Asymptotic expressions for the effective mass and damping coefficients of
transversely and rotationally oscillating porous spheres.

Again per § 2.2, the flow field for the rotational vibrations is expressed as

ui = uRN(r; γiez)+ (β/ξi)
2(ez × r), (B 12a)

pi = pRN(r; γiez), (B 12b)

uo = uR(r; γoez), (B 13a)
po = pR(r; γoez), (B 13b)

where

γi = −β2ξi(ξ
2
o + 3ξo + 3)

β2 sinh ξi + ξiξo(ξo cosh ξi + ξi sinh ξi)
, (B 14a)

γo = β2eξo[(ξ 2
i + 3) sinh ξi − 3ξi cosh ξi]

2ξ 2
i [β2 sinh ξi + ξiξo(ξo cosh ξi + ξi sinh ξi)] . (B 14b)

Hence, the torque exerted on the sphere is

T= β2
∫

S
[r× (ui − uc)] dS= 8π

3
β2

ξ 2
i

{
γi

ξ 3
i
[(ξ 2

i + 3) sinh ξi − 3ξi cosh ξi] − iR
5

}
ez. (B 15)

The corresponding effective mass and damping coefficients are obtained by
substituting F and T from above into

Ct
e =−Im[F/(4πR/3)] and Ct

d =−Re[F/(4πR/3)], (B 16a,b)

Cr
e =−Im[T/(4πRR2

g/3)] and Cr
d =−Re[T/(4πRR2

g/3)], (B 17a,b)

where

R2
g =

∫
V
(x2 + y2) dV∫

V
dV

. (B 18)
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Figure 8 shows the variations of Ct
e, Ct

d, Cr
e and Cr

d versus δ for various R. The figure
is supplemented by table 2, which presents simple expressions justifying the behaviour
of the plots in the asymptotic limits of low/high δ and R. The formulae are obtained
subject to the same considerations as in appendix A.
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