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The class of stochastically self-similar sets contains many famous examples of
random sets, for example, Mandelbrot percolation and general fractal percolation.
Under the assumption of the uniform open set condition and some mild assumptions
on the iterated function systems used, we show that the quasi-Assouad dimension of
self-similar random recursive sets is almost surely equal to the almost sure Hausdorff
dimension of the set. We further comment on random homogeneous and V -variable
sets and the removal of overlap conditions.
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1. Introduction

The Assouad dimension was first introduced by Patrice Assouad in the 1970s to
solve embedding problems, see [2,3]. It gives a highly localized notion of ‘thickness’
of a metric space and its study in the context of fractals has attracted a lot of
attention in recent years. We point the reader to [1,12,16–18,24–29] for many
recent advances on the Assouad dimension.

Let F be a totally bounded metric space and let 0 < r � R � |F |, where |.|
denotes the diameter of a set. Let Nr(X) be the minimal number of sets of diameter
r necessary to cover X. We write Nr,R(F ) = maxx∈F Nr(B(x,R) ∩ F ) for the min-
imal number of centred open r balls needed to cover any open ball of F of diameter
less than R. Let

h(δ, F ) = inf{α | ∃C > 0, ∀0 < r � R1+δ � |F | we have Nr,R(F ) � C(R/r)α}.

The Assouad dimension is given by dimA(F ) = h(0, F ); it is the minimal exponent
such that all open balls of F can be covered by a certain number of r balls relative
to the size of the ball of F . We note that δ = 0 gives no restriction on the ratio R/r
other than that it is greater or equal 1. For positive δ > 0 this means, however, that
there must be a gap between r and R that grows as R decreases. We immediately
conclude that h(δ, F ) � h(δ′, F ) for 0 � δ′ < δ. It was shown in [17] that h may
not be continuous in δ at 0 and the quasi-Assouad dimension is defined by the
limit dimqA F = limδ→0 h(δ, F ). This quantity was first introduced by Lü and Xi
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in [25] and differs from the Assouad dimension by ignoring values of r close to R.
It was also shown in [17] that in some self-similar deterministic settings this gap is
sufficient for the quasi-Assouad dimension to coincide with the upper box-counting
dimension irrespective of overlaps. Recently, Fraser and Yu [13,14] introduced the
notion of the Assouad spectrum, which is defined similarly. Here, the relative size
of r and R is fixed by a quantity θ ∈ (0, 1) and we restrict covers to r = R1/θ. We
define

dimθ
A(F ) = inf{α | ∃C > 0, ∀0 < rθ = R � |F | we have Nr,R(F ) � (R/r)α}.

For totally bounded metric spaces F the following inequalities are immediate,

dimH F � dimBF � dimθ
A F � dimqA F � dimA F (for all θ ∈ (0, 1)). (1.1)

Dimension theoretic results usually assume some separation condition and here
we will use the uniform open set condition. If one assumes that all iterated function
systems are self-similar and they satisfy the uniform open set condition, one can
easily determine the almost sure Hausdorff dimension of the associated stochasti-
cally self-similar attractors. Let L = {Iλ}λ∈Λ be a collection of iterated function
systems indexed by λ ∈ Λ. Let ci

λ be the contraction rate of the map f i
λ. Then the

almost sure Hausdorff dimension of random recursive sets is unique s satisfying

E

⎛⎝#Iλ∑
j=1

(cj
λ)s

⎞⎠ = 1,

with λ chosen according to some ‘nice’ probability measure on Λ, see for example,
[10,19]. Further, the authored proved in [31] that the Hausdorff, box-counting,
and packing dimensions all coincide for these sets, while the Assouad dimension is
‘maximal’ in some sense. For example, the limit set of Mandelbrot percolation of
the d-dimensional unit cube for supercritical probabilities has Assouad dimension
d, conditioned on non-extinction, see also Berlinkov and Järvenpää [9]; and Fraser,
Miao, and Troscheit [15] for earlier results. The notion of Assouad spectrum, dimθ

A

for θ ∈ (0, 1), was applied to Mandelbrot percolation by Fraser and Yu [13,14]
to obtain more information about its scaling. Surprisingly, they found that the
Assouad spectrum is constant and equal to the box-counting dimension for all
θ ∈ (0, 1) but their result relies on technical and difficult estimates.

In this paper, we show that this unexpected result is – in fact – a general fea-
ture of all random recursive sets that satisfy the uniform open set condition and
that the quasi-Assouad dimension is almost surely equal to the box-counting (and
hence Hausdorff) dimension of random recursive attractors. We use fundamental
results about Galton–Watson processes to provide a simple proof of this very gen-
eral result. To achieve this, we first obtain an approximation that allows us to talk
about a single contraction ratio rather than possibly uncountably many. We then
estimate and bound the number of overlapping intervals which allows us to focus
solely on an associated Galton–Watson process and we show that there cannot
be ‘too many’ descendants. This, in turn, gives us bounds for the quasi-Assouad
dimension sufficient to prove almost sure equality with the box-counting dimension.
The inequalities (1.1) then imply the constant spectrum as a corollary.
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2. Random recursive sets and main results

Let Λ be a compact subset of R
k for some k and let μ be a compactly sup-

ported Borel probability measure supported on Λ. We use Λ to index our choices
of iterated function systems, which we assume to have cardinality up to some
N ∈ N. We denote the iterated function system (IFS) associated with λ by
Iλ = {f1

λ, f2
λ, . . . , f

N (λ)
λ }, where N (λ) � N and f j

i are similarities. If 0 ∈ Λ, then
we assume without loss of generality that 0 is an isolated point (in Λ) and set
I0 = ∅. We further assume that 0 is the only point in Λ where the associated IFS
is empty. Let L = {Iλ}λ∈Λ. The random iterated function system (RIFS) is the
tuple (L, μ).

We use the construction of random code-trees, introduced by Järvenpää et al.
[21–23] and in § 4.2, we list several examples and implementations of code-trees
with the intent to make the abstract concept of random code-trees more accessible.
Consider the rooted N -ary tree T. We label each node with a single λ ∈ Λ, chosen
independently, according to probability measure μ. We denote the space of all pos-
sible labellings of the tree by T and refer to individual realizations by τ ∈ T . In
this full tree, we address vertices by which branch was taken; if v is a node at level
k we write v = (v1, v2, . . . , vk), with vi ∈ {1, . . . ,N} and root node v = (.). The set
of all tree levels T is then:

T = {{(.)}, {(1), (2), . . . , (N )}, {(1, 1), (1, 2), . . . , (1,N ), (2, 1), . . . , (N ,N )}, . . . }.

Alternatively, we can consider τ : T → Λ as a function assigning labels to nodes,
that is, τ(v) ∈ Λ is the label of the node v. Given a node v we define σvτ to be
the full subtree starting at vertex v, with σ(.)τ = τ . There exists a natural measure
P on the collection of trees induced by μ. Informally, this measure is obtained by
assigning a label λ ∈ Λ to each node of T independently according to μ. Formally,
let V ⊂ T be a finite collection of vertices. To each v ∈ V , we associate an open set
O(v) ⊆ Λ and define Ṽ = {τ ∈ T | τ(v) ∈ O(v) for all v ∈ V }. We define P for each
of these possible pairings by

P(Ṽ ) =
∏
v∈V

μ(O(v)).

We note that the collection of all Ṽ is a basis for the topology of T and, apply-
ing Caratheodory’s extension principle, P extends to a unique Borel measure
on T .

We write ej
λ for the letter representing the map f j

λ ∈ Iλ. By assumption, we take
I0 = ∅ and use the letter ∅ to represent the empty map. For each full tree τ that is
labelled by entries in Λ, we associate another rooted labelled N -ary tree Tτ to the
realization τ , where each node is labelled by a ‘coding’ describing a composition
of maps. Given two codings e1 and e2, we write e1e2 = e1 
 e2 for concatenation.
We let ε0 be the empty word and use the letter ∅ as a multiplicative zero, that is,
∅ 
 e = e 
 ∅ = ∅, to represent the extinction upon using the empty IFS. Similarly,
if {ei} is a collection of codings, then {ei} ∪ ∅ = {ei}.
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Definition 2.1. Let Tτ be a labelled tree. We write Tτ (v) for the label of node v
of the tree Tτ . The coding tree Tτ is then defined inductively:

Tτ ((.)) = ε0 and Tτ (v) = Tτ ((v1, . . . , vk)) = Tτ ((v1, . . . , vk−1)) 
 evk

τ(vk−1)

for 1 � vk � Nτ(vk−1) and evk

τ(vk−1)
= ∅ otherwise. This ‘deletes’ this subbranch as ∅

annihilates under multiplication. We refer to the set of all codings at the k-th level
by

Tk
τ =

⋃
1�v1,...,vk�N

Tτ ((v1, . . . , vk)).

To transition from these coding spaces to sets, we stipulate some conditions on
the maps f j

λ.

Condition 2.2. Let (L, μ) be a RIFS. We assume that all maps f i
λ : R

d → R
d are

similarities, that is, ‖f i
λ(x) − f i

λ(y)‖ = ci
λ‖x − y‖, where ‖.‖ denotes the Euclidean

metric. Further, they are strict contractions with contraction rates uniformly
bounded away from 0 and 1, that is, there exist 0 < cmin � cmax < 1 such that
cmin � ci

λ � cmax for all λ ∈ Λ \ {0} and 1 � i � N (λ).

We can now define the random recursive set.

Definition 2.3. Let (L, μ) be a RIFS and τ ∈ T . The random recursive set Fτ is
the compact set satisfying

Fτ =
∞⋂

k=1

⋃
e∈Tk

τ

fe1 ◦ fe2 ◦ · · · ◦ fek
(Δ),

where Δ is a sufficiently large compact set, satisfying fei
λ
(Δ) ⊆ Δ for all λ ∈ Λ and

1 � i � N (λ).

To give meaningful dimension results some assumptions have to be made on the
amount of overlap of the images. In the following, we also assume that our Random
Iterated Function System satisfies the Uniform Open Set Condition.

Definition 2.4. Let (L, μ) be a RIFS. If there exists an open set O ⊂ R
d

satisfying

(1) for all λ ∈ Λ \ {0} and 1 � i � N (λ), we have f i
λ(O) ⊆ O, and

(2) for all λ ∈ Λ \ {0} and 1 � i � N (λ), if f i
λ(O) ∩ f j

λ(O) �= ∅ then i = j,

we say that the RIFS satisfies the uniform open set condition (UOSC).

2.1. Main result

We note that from a dimension theoretical perspective, the subcritical and critical
cases are not interesting. In those cases, almost surely, only a finite number of
branches will survive. Since the associated maps are strict contractions, the resulting
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random set will be discrete and all dimensions coincide trivially. The supercritical
case ensures that there exists a positive probability that there is an exponentially
increasing number of surviving branches; we will focus on this case and stipulate
the following condition.

Condition 2.5. Let (L, μ) be a RIFS. We say that (L, μ) is non-extinguishing if

E(N (λ)) =
∫

Λ

N (λ) dμ > 1.

In particular, this means there exists ε > 0 such that μ({λ ∈ Λ | N (Λ) > 1}) � ε
and that μ({λ ∈ Λ | N (λ) � 1}) = 1 − μ({0}).

Theorem 2.6 (Main theorem). Let (L, μ) be a non-extinguishing RIFS that satisfies
the UOSC and condition 2.2. Then, for P-almost every τ ∈ T ,

dimqA Fτ = dimH Fτ .

We immediately obtain the following corollary.

Corollary 2.7. Let Fτ be as above. The dimension spectrum is constant and coin-
cides with the box-counting dimension and Hausdorff dimension, that is, for all
θ ∈ (0, 1) and almost every τ ∈ T ,

dimH Fτ = dimB Fτ = dimθ
A Fτ .

Proof. The Assouad spectrum is bounded below by the Hausdorff dimension and
above by the quasi-Assouad dimension, see (1.1). Since dimqA Fτ = dimH Fτ with
full probability, the Assouad spectrum must also coincide with these values. �

3. Proof of main theorem

Before we prove the main theorem, we prove some constructive lemmas and define
a stopping set where the contraction rates become roughly comparable. Recall that
O is the open set guaranteed by the uniform open set condition, with topological
closure O, and that |.| is the diameter of a set. Note further, that the main result fol-
lows trivially on extinction and we only consider the probability space conditioned
on non-extinction in this section.

Definition 3.1. Let ε > 0. The set of all codings that have associated contraction
of rate comparable with ε and do not go extinct are denoted by

Ξε(τ) = {e ∈ Tk
τ | k ∈ N and |fe1 ◦ · · · ◦ fek

(O)| < ε � |fe1 ◦ · · · ◦ fek−1(O)|} ∩ Σ,

where

Σ =

{
e ∈

⋃
k∈N

Tk
τ | for all m > k there exists ê ∈ Tm

τ

such that ei = êi for 1 � i � k and êi �= ∅
}

.

We refer to Ξε(τ) as the ε-codings and Σ as the non-extinguishing codings.
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We can limit the number of overlapping cylinders using the uniform open set
condition by a standard volume argument, which we include for completeness.

Lemma 3.2. Assume that (L, μ) satisfies the UOSC. Then

#{e ∈ Ξε(τ) | fe(O) ∩ B(z, r) �= ∅} � (4/cmin)d

for all z ∈ Fτ and ε ∈ (0, 1], where O is the open set guaranteed by the UOSC.

Proof. Fix z ∈ Fτ and ε > 0. Let Ξ = {e ∈ Ξε(τ) | fe(O) ∩ B(z, ε) �= ∅} and sup-
pose the ambient space is R

d. We have

#Ξ(εcmin)d =
∑
e∈Ξ

(εcmin)d �
∑
e∈Ξ

|fe(O)|d.

But since fe(O) ∩ B(z, ε) �= ∅ and |fe(O)| < r, we find fe(O) ⊆ B(z, 2ε) for all
e ∈ Ξ and since the sets fe(O) are pairwise disjoint by the UOSC we have

#Ξ(εcmin)d �
∑
e∈Ξ

|fe(O)|d � Ld(B(z, 2ε)) � (4ε)d,

where Ld is the d-dimensional Lebesgue measure. It follows that #Ξ � (4/cmin)d.
�

Clearly, the projections of these ε-codings are a cover of Fτ ,⋃
e∈Ξε(τ)

fe(O) ⊇ Fτ ,

and so Nε(Fτ ) � #Ξε(τ). Now every ε-coding has at least one descendant and by
lemma 3.2 there cannot be more than (4/cmin)d many ε-codings such that their
images intersect any ball of radius ε. Therefore there exists C > 0 independent of
τ and ε such that

C#Ξε(τ) � Nε(Fτ ) � #Ξε(τ). (3.1)

Further,

N−1
∑

e∈Ξε(τ)

#Ξδ(σeτ) � #Ξεδ(τ) � N
∑

e∈Ξε(τ)

#Ξδ(σeτ). (3.2)

Briefly, this is because joining appropriate δ-codings to ε-codings might not be εδ-
codings but their numbers may at most differ by a multiple of the maximal number
of descendants, N . Inductively, we obtain

#Ξεk(τ) � N k
∑

e1∈Ξε(τ)

∑
e2∈Ξε(σe1τ)

· · ·
∑

ek∈Ξε(σek−1τ)

#Ξδ(σekτ) (3.3)

from (3.2) with an analogous lower bound.
By definition the summands in (3.2) and (3.3) are i.i.d. random variables and,

fixing ε > 0, we write Xε = Xε(τ) = #Ξε(τ) for a generic copy of this random
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variable. We observe that Xε is a random variable taking values from 0 to some
M ∈ N with fixed probability and we consider the Galton–Watson process with that
offspring distribution. It is a basic result (see, e.g. [5]) that the Galton–Watson
process

Xε
k =

Xε
k−1∑

j=1

Xε

satisfies log Xε
k/k → E(Xε) as k → ∞ almost surely. In particular, there exists

a unique sε such that E(Xε) = E(#Ξε) = ε−sε . We now show that lim sε = sB .
Let δ > 0. Since sB = limε→0 log Nε(Fτ )/ log(1/ε) there exists εδ > 0 such that
Nε(Fτ ) ∈ [ε−(s−δ), ε−(s+δ)] for all ε � εδ. So, for all ε � εδ,

ε−k(s−δ) � Nεk(Fτ ) � #Ξεk(τ) � N k Xε
k(τ),

and

sε =
log E(Xε)
− log ε

= lim
k→∞

log Xε
k

−k log ε
� lim

k→∞

log
(
N−k ε−k(s−δ)

)
−k log ε

� s − δ +
logN
log ε

.

Similarly, sε � s + δ − logN/log ε. Since δ was arbitrary and the last term in the
bounds tends to zero as ε decreases, the desired conclusion that limε→0 sε = sB

holds.
We conclude that the Xε approximations give us a behaviour as close to the limit

behaviour as one desires and we will now analyse the associated Galton–Watson
process.

Lemma 3.3 (Athreya [4, theorem 4]). Let Xε
k be a Galton–Watson process with

mean m = E(Xε) < ∞. Suppose1 that E(exp(θ0X
ε)) < ∞ for some θ0 > 0. Then

there exists θ1 > 0 such that

sup
k

E(exp(θ1W
ε
k )) < ∞,

where W ε
k = Xε

k/mk is the associated normalized Galton–Watson process.

We can use this important result to prove this immediate lemma.

Lemma 3.4. Let Xε
k be a Galton–Watson process with mean m = E(Xε) < ∞ such

that C1 = supτ Xε(τ) < ∞. Let C > 0 be given and δ > 0 be arbitrary. There exist
t > 0 and D > 0 such that

P

{
Xε

k � Cm(1+δ)k
}

� De−tmδk

,

that is, the probability that Xε
k exceeds Cm(1+δ)k decreases superexponentially in k.

1We note that in [4] the expectation is conditioned on the first generation being 1. In our case
we always assume a rooted tree making this conditioning superfluous. Further, their paper mostly
considers the case where the probability of having no descendant is zero. However, this condition
is not used in this particular statement and we implicitly condition on non-extinction in this proof.
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Proof. Let W ε
k = Xε

k/mk. Then E(W ε
k ) = 1 for all k. Since C1 < ∞, we conclude

that E(exp(Xε)) � exp C1 < ∞ and the conditions of lemma 3.3 are satisfied for
θ0 = 1. Therefore there exist θ1 > 0 and D > 0 such that E(exp(θ1W

ε
k )) � D for all

k. We use the Chernoff bound to obtain

P

{
Xε

k � Cm(1+δ)k
}

= P
{
W ε

k � Cmδk
}

= P
{
exp(θ1W

ε
k ) � exp(Cθ1m

δk)
}

� E exp(θ1W
ε
k )

exp(Cθ1mδk)
.

So, using lemma 3.3,

P

{
Xε

k � Cm(1+δ)k
}

� De−tmδk

,

for t = Cθ1 > 0 as required. �

Given a starting vertex, we can thus bound the probability that the process will
eventually, exceed m(1+ε)k.

Corollary 3.5. Let Xε
k be a Galton–Watson process with mean m = E(Xε) < ∞

such that supτ Xε(τ) < ∞. Let C > 0 be given and δ > 0 be arbitrary, then

P{Xε
k > Cm(1+δ)k for some k � l} �

∞∑
k=l

De−tmδk � D′e−tmδl

for some D′ > 0 independent of l.

We are now ready to prove theorem 2.6.

Proof of main theorem. Fix ε > 0 and let η > 0 be small enough such that
− logN / log η < ε/4. Consider the probability that the quasi-Assouad dimension
exceeds the almost sure box-counting dimension s = dimB Fτ and note that for self-
similar random recursive sets the box-counting and Hausdorff dimension coincide
almost surely irrespective of overlaps, see [31].

P {dimqA Fτ � s + ε} � P

{
∀δ > 0, ∃(xi, ri, Ri)i∈N ∈ (Fτ × R

+ ×R
+)N

such that ri � R1+δ
i ,

Ri → 0 as i → ∞ and Nri
(B(xi, Ri) ∩ Fτ ) �

(
Ri

ri

)s+ε/2
}

.

(3.4)

By lemma 3.2 the number of words comparable with Ri that have non-trivial inter-
section with B(xi, Ri) ∩ Fτ is bounded above by (4/cmin)d and so we can get a new
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upper bound to (3.4).

� P

{
∀δ > 0, ∃(ri, ki)i ∈ (R+ ×N)N, ∃v ∈ Tki(τ) such that

ri � |fv(Fσvτ )|1+δ, ki+1 > ki

and Nri
(fv(Fσvτ )) � (cmin/4)d

(
|fv(Fσvτ )|

ri

)s+ε/2
}

Now Nri
(fv(Fσvτ )) � N ·Nri/dv

(Fσvτ ) � N ·#Ξri/dv
(σvτ) by (3.1), where dv =

|fv(Fσvτ )|. Expressing this in terms of the Galton–Watson process for approxi-
mation η, we obtain

Nri
(fv(Fσvτ )) � N kv+1 Xη

kv
(σvτ),

where kv is such that ηkv � ri/dv < ηkv−1. Therefore

P {dimqA Fτ � s + ε} � P

{
∀δ > 0 there exists (li, ki)i∈N ∈ (N×N)N, ∃v ∈ Tli(τ)

such that ηki � dδ
v and Xη

ki
(σvτ) � cd

min

4d N ki+1

(
η−ki

)s+ε/2
}

.

(3.5)

Now, fix δ > 0. We now estimate P{Xη
k (τ) � CN−kη−k(s+ε/2)}, where C > 0 is a

uniform constant. First, by the choice of η, we have CN−kη−k(s+ε/2) � Cη−k(s+ε/4)

and so

P{Xη
k (τ) � CN−kη−k(s+ε/2)} � P{Xη

k (τ) � Cη−k(s+ε/4)}.
Now consider W η

k = Xη
k/mk

η for mη = E(Xη). Clearly, mη � η−s = m, and so
E(Xη

k ) � η−sk. We can now apply lemma 3.4 and corollary 3.5 to obtain

P{Xη
k (τ) � CN−kη−k(s+ε/2)} � De−tmεk/(4s)

and

P{Xη
k (τ) � CN−kη−k(s+ε/2) for some k � l} � D′e−tmεl/(4s)

.

Now consider again the event in equation (3.5). First note that dv � cli
min and thus

the event with ηki � dδ
v replaced by ηki � cδli

min has greater probability. The last
condition is equivalent to ki � δli log cmin/ log η = δ′li, for some δ′ > 0 depending
on η and δ. So,

P {dimqA Fτ � s + ε} � sup
δ>0

P{ there exist infinitely many l ∈ N, ∃v ∈ Tl(τ),

∃k � δ′l such that Xη
k (τ) � CN−kη−k(s+ε/2)}. (3.6)

But for fixed δ and l,

P{ ∃v ∈ Tl(τ), ∃k � δ′l such that Xη
k (τ) � CN−kη−k(s+ε/2)}

� N l D′ exp
(
−tmεδ′l/(4s)

)
. (3.7)
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But since∑
l∈N

P{ ∃v ∈ Tl(τ), ∃k � δ′l such that Xη
k (τ) � CN−kη−k(s+ε/2)}

�
∞∑

l=1

N l D′ exp
(
−tmεδ′l/(4s)

)
=

∞∑
l=1

D′ exp
(
l logN −tmεδ′l/(4s)

)
< ∞,

we conclude that the right-hand side of (3.6) is zero for every δ > 0 by the Borel–
Cantelli lemma. Hence P{dimqA Fτ � s + ε} = 0 and so, by arbitrariness of ε, the
claim is proven. �

4. Other random models and overlaps

4.1. The random homogeneous and V -variable case

Random recursive sets are not the only natural way of defining random sets
with varying iterated function systems. Another important model is the random
homogeneous model, also referred to as the 1-variable model. This is in reference
to the more general V -variable model which we will also discuss in this section.

The random homogeneous model can – informally – be described as applying the
same IFS at every stage of the construction. In keeping with our flexible notation,
the random iterated function system (L, μ) has an associated random homogeneous
model that is also defined as the projection of randomly chosen τ ∈ T albeit with a
different measure P1. This measure is supported on the subset T1 = {τ ∈ T | τ(v) =
τ(w) whenever d(v) = d(w)}, where d(v) is the tree depth at which v occurs. Let
L ⊂ N be a finite set and associate an open set O(l) ⊆ Λ to each of these integers.
Write 1l = (1, . . . , 1) for the node consisting of l many 1s. The measure P1 is defined
on all L̃ = {τ ∈ T1 | τ(1l) ∈ O(l) for all l ∈ L} by

P1(L̃) =
∏
l∈L

μ(O(l)).

We refer the reader to [20] and [31] for more information on these sets.
The class of V -variable attractors were first introduced by Bransley et al. in [6–8]

with the aim to model more complicated natural processes. It is characterized by
allowing up to V different behaviours at every level of the construction and they
can be similarly defined with the notation of code-trees. First, we define the subset
of T of interest. Let

TV =
{

τ ∈ T
∣∣∣ sup

l
{σvτ | v ∈ T and d(v) = l} � V

}
,

be the subset of T such that at every tree depth there are at most V different sub-
trees. The measure PV is defined analogously to above, and we end their definition
by noting that random homogeneous sets are indeed V -variable sets for V = 1.

In light of our random recursive results, one would hope that V -variable sets also
have the coinciding Hausdorff and quasi-Assouad dimension. This indeed holds,
following a strategy close to the one employed in our main theorem. The cru-
cial difference is estimating the number of maximal descendants possible. While
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the associated process is no longer a Galton–Watson process, it can be modelled
by multiplication of positive i.i.d. variables. A standard Chernoff bound can be
established and the same conclusion achieved. We refer the reader to [30,31] for
an explanation of how V -variable sets can be modelled by multiplication of i.i.d.
variables and briefly prove the random homogeneous case for illustrative purposes.

Theorem 4.1. Let (L, μ) be a non-extinguishing RIFS that satisfies the UOSC and
condition 2.2. Additionally, assume that μ({0}) = 0. Then, for P1-almost every
τ ∈ T ,

dimqA Fτ = dimH Fτ .

Proof. Similarly, to the random recursive case one can show that there exists C > 0,
such that

C N−k
k∏

i=1

#Ξε(τi) � Nε(Fτ ) � N k
k∏

i=1

#Ξε(τi),

where the τi are chosen independently. Thus we want to find a bound on the prob-
ability that this product exceeds its geometric average. Write Y ε = #Ξε for the
generic random variable and Y ε

k =
∏k

i=1 Y ε. Then log Y ε
k � k log mε for some mε

and we find

P1{log Yk � (1 + δ)k log mε} � D exp(−tk)

for some D, t > 0 depending only on δ. The remaining argument now uses the
homogeneity to conclude that the probability that one cylinder at level k exceeds
the average is equal to the probability that all cylinders exceed the average using
the homogeneity. A standard Borel-Cantelli argument then allows the conclusion
as in theorem 2.6 upon noting that dimH Fτ = dimB Fτ almost surely, see [31]. �

4.2. Overlaps

We conjecture that it would be possible to remove the UOSC condition entirely
and we will briefly outline why we feel this should be the case. First, we alter our
definition of ε-codings to take into account the overlaps.

Definition 4.2. Let ε > 0. The set of all codings that have associated contraction
of rate comparable with ε and do not go extinct are denoted by

Ξε(τ) = {e ∈ Tk
τ | k ∈ N and |fe1 ◦ · · · ◦ fek

(O)| < ε � |fe1 ◦ · · · ◦ fek−1(O)|} ∩ Σ,

where

Σ =

{
e ∈

⋃
k∈N

Tk
τ

∣∣∣ for all m > k there exists

ê ∈ Tm
τ such that ei = êi for 1 � i � k} .

We refer to Ξε(τ) as the ε-codings and Σ as the non-extinguishing codings.
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We write Sε(τ) for the set of all subsets of Ξε(τ), that is, Sε(τ) = P(Ξε(τ)) and
write

S′
ε(τ) = {S ∈ Sε(τ) | fv(O) ∩ fw(O) = ∅ for all distinct v, w ∈ S}

for those collection of words such that their associated images under f are disjoint.
Finally, we write Ξ′

ε(τ) ∈ S′
ε(τ) for the element with maximal cardinality, choosing

arbitrarily if it is not unique.

This altered definition no longer requires lemma 3.2 to prove that Nε(Fτ ) and
#Ξ′

ε(τ) are comparable but allows for a simple geometric argument, see [30, Proof
of theorem 3.2.17]. However, only the lower bound to equations (3.2) and (3.3) will
hold. This no longer suffices to prove the main result, however, the only difficulty
arises in the path that were extinct in the ε-approximation, but became active
later. Our hope was to modify the Galton–Watson process slightly by uniformly
including a finite m extra (and normally redundant) paths. That is, we define
Xη(τ) = #Ξ′

η(τ) + m. For small enough η, the normalized growth of Xη
k is less

than s + ε/4 and we still obtain the same bound from lemma 3.4 and corollary 3.5.
It is our hope that these additional redundant paths take up the rôle of the codings
that ‘revive’ at some point in the process and this would prove the main theorem
without our overlap constraints.

Appendix: Examples of random recursive sets

We now give several examples to illustrate the flexibility of the construction and the
tree-codings being used. The first example is a random version of the middle-third
Cantor set, where one randomly discards the middle third interval. The second
is a Cantor set where three continuous parameters are chosen randomly at every
stage. We end by showing that Mandelbrot percolation is a random recursive set
for appropriately chosen maps and relate this to general fractal percolation.

Example 1 In its simplest form Λ is discrete and μ is the finite weighted sum of
Dirac measures. Let Λ = {1, 2} and μ = pδ1 + (1 − p)δ2 for 0 < p < 1, where δx

is the Dirac measure with unit mass on x ∈ R
k. Set I1 = {x/2, x/2 + 1/2} and

I2 = {x/3, x/3 + 2/3}. The first IFS gives rise to the unit interval, whereas the
second ‘generates’ the Cantor middle-third set. Since both IFSs have two maps, we
set N = 2 and consider the full binary tree. For any node v in the binary tree, the
value τ(v) is 1 or 2 with probability p and 1 − p, respectively, independent of any
other node. The resulting set is a subset of the unit line, where at each stage of the
construction we either

• divide the remaining line segments into halves with probability p, or

• divide the remaining line segments into thirds and discard the middle interval
with probability 1 − p.

We can easily find the almost sure Hausdorff and box packing dimension of
the attractor Fτ . It is given by the unique s such that p(2/2s) + (1 − p)(2/3s) =
1. It is elementary to show that log 2/ log 3 < s < 1 for 0 < p < 1. However, its
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Assouad dimension is almost surely the maximum of the two individual attractors,
that is, the Assouad dimension is 1 almost surely. Our main result shows then
that the quasi-Assouad dimension and Assouad spectrum equal to the Hausdorff
dimension s.

Example 2 The construction is flexible enough to allow for more complicated con-
structions. Let Λ = [1/4, 1/3] × [1/4, 1/3] × [1/2, 1] ⊂ R

3 and μ be the normalized
Lebesgue measure on Λ. For λ = (a, b, c) ∈ Λ, we set Iλ = {ax, bx + c}. This is an
infinite family of IFSs that each generate a Cantor set. The translations were chosen
such that the UOSC holds with the open unit interval as the open set. The almost
sure Hausdorff dimension is given by the unique s satisfying

1 = E(as + bs) =
8 · 3−s − 3 · 21−2s

1 + s
,

and we compute s ≈ 0.56187 . . .. The Assouad dimension does not fall under the
scope of Fraser et al. [15] and Troscheit [31], however, their methods can easily
be adapted to show that the Assouad dimension is almost surely the maximal
achievable value, log 3/ log 2.

Example 3 We now show that limit sets of Mandelbrot percolation are random
recursive sets. Recall that k-fold Mandelbrot percolation of the d-dimensional unit
cube for the threshold value 0 < p < 1 is defined recursively in the following way:
Let Q1 be the set containing the unit cube. The set Q′

k+1 is defined as the set
of all cubes that are obtained by splitting all cubes in Qk into kd smaller cubes
of the same dimensions to obtain (kd · #Qk) subcubes with sidelengths 1/k. For
each cube in Q′

k+1, we then decide independently with probability p to keep the
cube. We set Qk+1 to be the set of ‘surviving’ cubes. This process is called Man-
delbrot percolation and the random limit set one obtains is Q∞ =

⋂∞
k=1 Qk. For

p > 1/kd, there exists a positive probability that the limit set is non-empty. Con-
ditioned on non-extinction, we have dimqA Q∞ = dimH Q∞ = log(kdp)/ log k and
dimA Q∞ = d, since Q∞ is a random recursive set, a fact we now show.

For simplicity, we assume k = d = 2, that is, we percolate the unit square and
subdivide any subsquare into 2 × 2 squares, keeping each with probability 1/4 <
p < 1. Let f1 be the homothety that maps the unit square to [0, 1/2] × [0, 1/2], let
f2 be the homothety that maps [0, 1] × [0, 1] to [0, 1/2] × [1/2, 1] and similarly let f3

map [0, 1] × [0, 1] to [1/2, 1] × [1/2, 1] and f4 map [0, 1] × [0, 1] to [1/2, 1] × [0, 1/2].
We define Λ = {0, 1, . . . , 15}, L = {I0, I1, . . . , I15}, and μ =

∑15
i=0 qiδi, with Ii and

qi given in the table below.

i qi Ii

0 (1 − p)4 ∅

1 p(1 − p)3 {f1}
2 p(1 − p)3 {f2}
3 p(1 − p)3 {f3}
4 p(1 − p)3 {f4}
5 p2(1 − p)2 {f1, f2}

i qi Ii

6 p2(1 − p)2 {f1, f3}
7 p2(1 − p)2 {f1, f4}
8 p2(1 − p)2 {f2, f3}
9 p2(1 − p)2 {f2, f4}
10 p2(1 − p)2 {f3, f4}
11 p3(1 − p) {f1, f2, f3}

i qi Ii

12 p3(1 − p) {f1, f2, f4}
13 p3(1 − p) {f1, f3, f4}
14 p3(1 − p) {f2, f3, f4}
15 p4 {f1, f2, f3, f4}
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In a similar way, fractal percolation in the sense of Falconer and Jin, see [11],
is a random recursive construction. Let I

′ be an IFS and consider its deterministic
attractor F . Fix p > (#I)−1. The limit set of fractal percolation is obtained by
percolation of the tree associated with F , keeping subbranches with probability p
and deleting them with probability (1 − p).
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