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We consider asymmetric kernel density estimators and smoothed histograms when
the unknown probability density functionf is defined on@0,1`!+ Uniform weak
consistency on each compact set in@0,1`! is proved for these estimators whenf
is continuous on its support+Weak convergence inL1 is also established+We fur-
ther prove that the asymmetric kernel density estimator and the smoothed histo-
gram converge in probability to infinity atx 5 0 when the density is unbounded
at x 5 0+ Monte Carlo results and an empirical study of the shape of a highly
skewed income distribution based on a large microdata set are finally provided+

1. INTRODUCTION

The most popular nonparametric estimator of an unknown probability density
function f is the standard kernel estimator+ Its consistency is well documented
when the support of the underlying density is unbounded+ In the case of a
bounded support we know that there exists a boundary bias~see, e+g+, the esti-
mation of Figure 3 in Section 5!+ This problem is due to the use of a fixed
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kernel that assigns weight outside the support when smoothing is carried out
near the boundary+ It is further known that the expected value of the standard
kernel density estimator atx 5 0 converges to the half value of the underlying
density whenf is twice continuously differentiable on its support@0,1`!+ To
solve this problem many remedies have already been suggested~see, e+g+, Rice,
1984; Schuster, 1985; Müller, 1991; Marron and Ruppert, 1994; Jones, 1993;
Jones and Foster, 1996!+ They include use of particular kernels or bandwidths+

Recently, Chen~2000! has proposed a gamma kernel estimator, and Scaillet
~2004! has introduced inverse Gaussian~IG! and reciprocal inverse Gaussian
~RIG! estimators for densities defined on@0,1`!+ These estimators are based
on asymmetric kernels that have flexible form and location on the nonnegative
real line+ The kernel shapes are allowed to vary according to the position of the
data points, thus changing the degree of smoothing in a natural way, and their
support matches the support of the probability density function to be esti-
mated+ The gamma, IG, and RIG kernel density estimators are simple to imple-
ment, free of boundary bias, and always nonnegative, and they achieve the
optimal rate of convergence for the mean integrated squared error~MISE! within
the class of nonnegative kernel density estimators+ Furthermore, their variance
reduces as the position where the smoothing is made moves away from the
boundary+ This is an advantage in estimating densities that have sparse areas
because more data points can be pooled to smooth in areas with fewer obser-
vations+ As pointed out by Cowell~2000!, “Empirical income distributions typ-
ically have long tails with sparse data+” Hence it is expected that such estimators
should perform well in practice on income data~this will be confirmed by our
empirical results in Section 7!+ Note that, when the densities are defined on a
compact support, similar estimators based on the asymmetric beta kernel have
been proposed by Chen~1999! ~for regression curve estimation, see also Brown
and Chen, 1999; Chen, 2002! and have been applied in credit risk management
by Renault and Scaillet~2003! to estimate the probability density function of
recovery rates when corporate bonds default+

Although we concentrate in the sequel on the empirics of income distribu-
tions, the estimators considered in this paper are also relevant for applied work
in insurance and finance+ For example, Aït-Sahalia~1996a, 1996b! develops an
estimation and specification testing procedure for diffusion models of the short-
term interest rate+ In this framework, the nonparametric estimation of the sta-
tionary distribution of the interest rate process plays a key role+ Our results are
also potentially important for estimation and specification testing of the base-
line hazard function in autoregressive conditional duration~ACD! models+ In
this literature parametric models like the Burr and generalized gamma distribu-
tion are popular specifications for the baseline hazard+We refer to Engle~2000!
for an overview and to Fernandes and Grammig~2000! for exploitation of asym-
metric kernels in financial duration analysis+ In insurance, a good understand-
ing of the size of a single claim is of most importance+ Loss distributions describe
the probability distribution of a payment to the insured+ Traditional methods in
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the actuarial literature use parametric specifications to model single claims+ The
most popular specifications are the lognormal, Weibull, and Pareto distribu-
tions ~Klugman, Panjer, and Willmot, 1998!+ It is, however, unlikely that some-
thing as complex as the generating process of insurance claims can be described
by just a few parameters+ An incorrect parametric specification may lead to an
inadequate measurement of the risk contained in the insurance portfolio and
consequently to a mispricing of insurance contracts+ Nonparametric density esti-
mation is useful there also~see Bolancé, Guillen, and Nielsen, 2003, for a review;
and Hagmann and Scaillet, 2003, for use of asymmetric kernels in that area!+
Clearly the standard kernel estimator is again not appropriate in these contexts,
because it does not take into account that the underlying variables, interest rates,
durations, and losses, are nonnegative+

In this paper we first analyze convergence of the asymmetric kernel density
estimators for the class of density functions with support@0,1`!+ Then we exam-
ine convergence of the smoothed histograms proposed by Gawronski and Stadt-
müller ~1980, 1981!, which are also free of boundary bias and achieve the same
rate of convergence+

The paper is organized as follows+ In Section 2, we outline the framework and
present both estimators, namely, the asymmetric kernel density estimator and the
smoothed histogram+ Particular examples are developed+ Uniform weak consis-
tency on each compact set in@0,1`! is proved for both estimators in Section 3+
The L1 convergence of the two estimators is established in Section 4+ In Sec-
tion 5, the density functionf is assumed to beunboundedat x 5 0, and we ana-
lyze the weak convergence of the two estimators to infinity atx5 0+ To our best
knowledge it is the first attempt at providing a consistent estimator for such a
density~see, however,Marron and Ruppert, 1994; Bouezmarni and Rolin, 2002,
2003, but for densities defined on@0,1# !+ Relative consistency is also studied+
Section 6 provides Monte Carlo results concerning the finite sample properties
of the estimators for various distributions and parameter values+ An empirical
illustration on a large microdata set is provided in Section 7+ We examine the
shape of the Brazilian income distribution, which is notoriously known to be
highly skewed with an accumulation of observed points near the zero boundary+
In addition, a data-driven procedure based on theL1 distance~Hall and Wand,
1988! is discussed to select the bandwidth in practical situations+ Section 8 con-
tains some concluding remarks+ An Appendix gathers the proofs+ Finally, let us
remark that secondary results have been deleted from the main text to save space+
They are fully available in Bouezmarni and Scaillet~2003!+

2. ASYMMETRIC KERNEL DENSITY ESTIMATORS
AND SMOOTHED HISTOGRAMS

Let X1, + + + ,Xn be a random sample from a probability distributionF with an
unknown density functionf+ The most popular nonparametric estimator for the
unknown probability density functionf is the standard kernel estimator
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Zf ~x! 5
1

nh (
i51

n

K~~x 2 Xi !0h!,

where the kernelK is a symmetric density function andh is a smoothing param-
eter, called the bandwidth+ When the density is defined on@0,1`! the bound-
ary bias of the standard kernel estimator is due to weight allocation by the fixed
symmetric kernel outside the support when the estimation of density is made
near the boundary+ To overcome the problem a simple idea is to use a flexible
kernel, which never assigns weight outside the support of the density function+
This is the idea behind the first estimator considered in this paper, namely, the
asymmetric kernel density estimator

Zfb~x! 5
1

n (
i51

n

K~Xi ;x,b!, (1)

whereb is the bandwidth and the asymmetric kernelK is either a gamma den-
sity KG with parameters~x0b11,b!, an IG densityKIG with parameters~x,10b!,
or a RIG densityKRIG with parameters~10~x 2 b!,10b!+ These densities corre-
pond to
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Note that these asymmetric kernels do not take the formk~x 2 t,b! wherek is
an asymmetric function~instead of a symmetric one! and thus do not belong to
the class studied by Abadir and Lawford~2004!+

The estimator Zfb based on the gamma kernel was proposed by Chen~2000!,
whereas the IG and RIG kernel density estimators were proposed by Scaillet
~2004!+ Figure 1 plots the shapes of the gamma, IG, and RIG kernels for some
selected values ofx and b 5 0+2+ It can be noticed thatKG~t;x0b 1 1,b! for
x 5 0 is decreasing fort . 0 and becomes unbounded att 5 0 whenb shrinks
to zero+ This feature of the gamma kernel will be instrumental for convergence
when the density is unbounded atx 5 0 ~see Section 5!+ Let us also remark that
the asymmetric kernel density estimator is a particular case of the generalized
kernel density estimator~Foldes and Revesz, 1974; Walter and Blum, 1979!+

The second estimator considered in this paper is another particular case of
the generalized kernel density estimator and is inspired by a well-known approx-
imation theorem for continuous distribution~Feller, 1971, p+ 219!+ It was devel-
oped by Gawronski and Stadtmüller~1980, 1981! and is called a smoothed
histogram+ It is defined by
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Zfk~x! 5 k (
i50

1`

vi, k pki ~x!, (5)

where the weightsvi, k are random+ These weights are given by

vi, k 5 FnS i 1 1

k
D2 FnS i

k
D, (6)

whereFn is the empirical distribution function, the integerk is the smoothing
parameter, andpki~+! is based on use of either a family of lattice distribution or
integrals of continuous distributions and satisfies Gawronski and Stadtmüller’s
conditions~for further details, see Gawronski and Stadtmüller, 1980, 1981!+

Example 1

pki~x! corresponds to a Poisson distribution function with parameterkx, namely,

pki ~x! 5 e2kx
~kx! i

i!
i 5 0,1, + + + +

For this choice the smoothed histogramZfk can be viewed as a random weighted
sum~mixture! of Poisson mass functions or alternatively as a random weighted
sum~mixture! of gamma density functions

Figure 1. Shape of the gamma, IG, and RIG kernelsK~x,b! for b 5 0+2+
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Zfk~x! 5 (
i50

1`

vi, kG~x, i 1 1, k!,

whereG is the gamma density function

G~x, i 1 1, k! 5
xiki11

i!
e2kx+

Figure 2 shows the different shapes of the gamma densitiesG~x, i 1 1, k! 5
kpki~x! in the mixture fork 5 3, and i 5 0,1,2,3+ Let us point out the decreas-
ing shape of the gamma density fori 5 0 and its unboundedness atx 5 0 when
k goes to infinity+ We will come back to this characteristic in Section 5+

Example 2

pki~x! 5 *i0k
~i11!0k K~t;x,10k! dt whereK~t;x,10k! is either the IG kernel or the

RIG kernel defined in~3! and~4! with a bandwidth equal to 10k+

Gawronski and Stadtmüller~1980, 1981! found that smoothed histograms
are free of boundary bias and that their rate of convergence for the MISE is
O~n2405! for f in C2~ @0,1`!!+ Using the Hadamard product technique, Stadt-
müller ~1983! proved the uniform consistency in probability for the estimators

Figure 2. Shape of the gamma densitiesG~x, i 1 1, k! with k 5 3 andi 5 0,1,2,3+
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when the density functionf is continuous and bounded on@0,1`!+We provide
a simpler proof of this type of convergence in this paper+

3. UNIFORM WEAK CONVERGENCE OF ASYMMETRIC KERNEL
DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS

In this section, we show that both estimators have the same asymptotic behav-
ior+ More precisely, we prove the uniform weak convergence on each compact
set I in @0,1`! of the asymmetric kernel estimatorZfb and the smoothed histo-
gram Zfk under some conditions on the smoothing parameter+ To get our conver-
gence results, we rely mainly on a large deviation device+ Note further that the
proofs differ completely from the proofs in the symmetric case+ Here we can-
not use the symmetry of the kernel and a usual change of variable, which both
play a central role in deriving results for standard kernels+

The conditions on the bandwidth are as follows+

Condition 1~Asymmetric kernel density estimator!+

lim
nr`

b 5 0 and lim
nr`

nb2a 5 1` ~a . 0!+

Condition 2~Smoothed histogram!+

lim
nr`

k 5 1` and lim
nr`

nk22 5 1`+

The main result for the asymmetric kernel density estimator in this section is
its uniform weak consistency under Condition 1+

THEOREM 3+1+ ~Uniform weak consistency ofZfb!+ Let f be a continuous
and bounded probability density function on@0,1`!, Zfb the asymmetric kernel
density estimator, and I a compact set in@0,1`!. Then

sup
x[I
6 Zfb~x! 2 f ~x!6 P

&& 0 as nr `

under Condition 1 with a5 1 for the gamma kernel and a5 5
2
_ for the IG and

RIG kernels.

Remark 1+ We have the same result as that of Theorem 3+1 for a density
estimator based on a general kernelk~t;x,b! under the following conditions,
wherea is a strictly positive number:

1+ IE~jx! 5 x 1 O~b! and supx[I Var~jx! 5 O~b!, for any compact setI,
wherejx is a random variable with densityk~x,b!+

2+ *0
1`6dk~t;x,b!6 5 O~b2a!+

3+ limnr`b 5 0 and limnr`nb2a 5 1`+
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Note that we can also prove the uniform strong consistency on each compact
set of the asymmetric kernel density estimator under a stronger set of condi-
tions on the bandwidthb ~see Bouezmarni and Scaillet, 2003, Corollary 3+1!+

Similar results hold for smoothed histograms, namely, the following theorem+

THEOREM 3+2+ ~Uniform weak consistency ofZfk!+ Let f be a continuous
and bounded probability density function on@0,1`!, Zfk the smoothed histo-
gram, and I a compact set in@0,1`!. Then

sup
t[I
6 Zfk~x! 2 f ~x!6 P

&& 0 as nr 1`

under Condition 2.

Again uniform strong consistency on each compact set of the smoothed his-
togram can be obtained under a stronger set of conditions on the smoothing
parameterk ~see Bouezmarni and Scaillet, 2003, Corollary 3+2!+

4. WEAK CONVERGENCE IN L1 OF ASYMMETRIC KERNEL
DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS

The excellent monograph of Devroye and Gyorfi~1985! contains numerous
results for the standard kernel density estimator in theL1 case~for SNP density
estimators, see Fenton and Gallant, 1996!+ In particular many equivalences~types
of convergence, conditions on bandwidth, etc+! are shown to hold+ They advo-
cate theL1 approach for three main reasons+ First, it is a natural metric on the
space of density functions+ Second, it is proportional to the total variation met-
ric+ Finally, it is invariant under monotone transformations+ Note that Hall and
Wand~1988! ~see also the proposal of Devroye and Lugosi, 1996; and the sur-
vey in Devroye, 1997! have proposed an algorithm that permits minimization
of the L1 distance for different estimators, such as the standard kernel density
estimator and the histogram+ We investigate application of this type of algo-
rithm later in the paper+

Hereafter we prove the consistency inL1 of the asymmetric kernel density
estimator and the smoothed histogram+

THEOREM 4+1 ~Weak consistency inL1 of Zfb!+ Let f be a probability den-
sity function on@0,1`! and Zfb the asymmetric kernel density estimator. Then

E
0

`

6 Zfb~x! 2 f ~x!6 dx P
&& 0 as nr `

under Condition 1 with a5 1 for the gamma kernel and a5 5
2
_ for the IG and

RIG kernels.
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THEOREM 4+2 ~Weak consistency inL1 of Zfk!+ Let f be a probability den-
sity function on@0,1`! and Zfk the smoothed histogram. Then

E
0

`

6 Zfk~x! 2 f ~x!6 dx P
&& 0 as nr `

under Condition 2.

Let us remark that, if f is assumed to be twice continuously differentiable,
Chen ~2000! and Scaillet~2004! derive the rate of convergence of the MISE
for asymmetric kernel density estimators+

Similar results are available in Stadtmüller~1983! for the smoothed histo-
gram+ Their pointwise results can also be easily used to build confidence inter-
vals+ In L1, the rate of convergence of the mean integrated absolute error remains
an open question+ We leave this task for future research~for the symmetric
case where a complicated use of the slow convergence theorem is required, see
Devroye and Gyorfi, 1985!+

5. ESTIMATION OF UNBOUNDED DENSITIES AT x = 0

As already mentioned the standard kernel density estimator suffers from a bound-
ary bias for the class of density functions defined on@0,1`!+ Until now all
previous methods aimed at removing this boundary bias have been developed
under the assumption of aboundeddensity atx 5 0+ For such a class of density
functions, we have just proved the convergence properties of asymmetric ker-
nel density estimators and smoothed histograms+ In this section, we consider a
density functionf defined on@0,1`! andunboundedat x 5 0+ This obviously
should induce a clustering of observations near the boundary+ As shown in Fig-
ure 3 behaviors of the standard kernel density estimator and the true density
can be dramatically different+ This illustrative estimation has been performed
on n 5 200 data drawn from a gamma densityG~l,a! with a 5 0+7 andl 5 2+
We have used here a Gaussian kernel with a bandwidth minimizing the MISE+
As far as we know only two methods have been shown to accommodate the
case of an unbounded density: the complicated P and PD algorithms developed
by Marron and Ruppert~1994! and the Bernstein polynomial and beta kernel
estimators~Bouezmarni and Rolin, 2002, 2003!+ However the latter estimators
do not apply here because they are designed for density functions defined on
@0,1# ~the P, resp+ PD, algorithm further requires the presence of poles at both
boundaries, resp+ one boundary!+

Coming back to Figure 3 we may observe that the gamma kernel density
estimator and the smoothed histogram based on the Poisson distribution exhibit
the same behavior at the boundary point and interior points as the true gamma
density functionG~0+7,2!+ In fact these two estimators satisfy the additional
sufficient conditions needed to get weak convergence of the asymmetric kernel
density estimator and smoothed histogram to infinity atx 5 0+
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THEOREM 5+1+ Let f be a probability density function on@0,1`!, unbounded
at x 5 0, and Zfb the asymmetric kernel density estimator. Under Condition 1
we have

Zfb~0! P
&& 1` as nr `

if

for all d . 0, E
0

d

K~t;0,b! dt r 1 as br 0+

The additional condition in the preceding theorem can be checked for the
asymmetric kernel density estimator based on the gamma kernel+ Indeed we
have ford . 0: *0

d KG~t;0,b! dt 5 1 2 exp~2d0b! r 1, asb r 0+
Hence the gamma kernel density estimator gives almost all weight to the

boundary point when the bandwidth converges to zero+ This is due to the
particular behavior of the gamma kernel atx 5 0+ The two other asymmetric
kernels do not share this behavior and will not be suitable for estimation
of unbounded densities+ The second gamma kernel of Chen~2000!, namely,
KG~t;rb~x!,b! with rb~x! 5 x0b if x $ 2b andrb~x! 5 ~ 1

4
_!~x0b!2 1 1 if x [

@0,2b!, also satisfies the additional condition of Theorem 5+1+ As already men-

Figure 3. True densityG~0+7, 2! together with its gamma kernel, smoothed histogram,
standard kernel, and log-transformed kernel estimates, each based on 200 observations+
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tioned in Chen~2000!, we cannot useKG~t;~x0b!,b! on the whole support
because that kernel is unbounded on~0,b! and not defined atx 5 0+

Let us now examine the case of smoothed histograms+

THEOREM 5+2+ Let f be a probability density function on@0,1`!, unbounded
at x 5 0, and Zfk the smoothed histogram. Under Condition 2, we have

Zfk~0! P
&& 1` as nr `

if

pk0~0! r 1 as kr 1`+

Whenpki~x! corresponds to a Poisson distribution, we havepk0~0! 5 1, for
all k, and the additional condition of the last theorem is fulfilled+

This means that the smoothed histogram based on the Poisson distribution
gives a large weight to the boundary point+ The convergence result should not
come as a surprise in view of the particular behavior ofkpki~x! at i 5 0 ~cf+
Section 2!+

We may also get relative convergence results in the same spirit as the result
in Marron and Ruppert~1994!+ Note that these results hold trivially in the
bounded case+

THEOREM 5+3+ Let f be a density function in C1~0,1`!, unbounded at
x 5 0, and Zfb the asymmetric kernel density estimator. Then

6 Zfb~x! 2 f ~x!6

f ~x!
P
&& 0 as xr 0

under the following conditions:

A.1. *0
1`6dk~x,b!~t !6 5 O~b2a! for a strictly positive number a.

A.2. x6 f '~x!60f ~x! r C as xr 0 where C~C , `! is a constant.
A.3. for all d . 0, *0

d K~x,b!~t ! dt r 1 as b, x r 0.
A.4. br 0 such that nb2af 2~x! r ` as n,10x r `.
A.5. Var~jx! r 0, as b, x r 0, wherejx ; k~x,b!.

THEOREM 5+4+ Let f be a density function in C1~0,1`!, unbounded at
x 5 0, and Zfk be the smoothed histogram. Then

6 Zfk~x! 2 f ~x!6

f ~x!
P
&& 0 as xr 0

under the following conditions:

A.1. kr ` and nk22f 2~x! r ` as n,10x r `.
A.2. x6 f '~x!60f ~x! r C as xr 0, where C~C , `! is a constant.
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A.3. pki~x! r 1 as i r 0 and k,10x r 1`.
A.4. Var~Sk0k! r 0 as k,10x r 1`, where Sk ; pki~x!.

6. MONTE CARLO RESULTS

This section gathers some simulation results about the finite sample properties
of the gamma kernel estimator and the smoothed histogram based on the Pois-
son distribution+We compare their properties with those of the Gaussian kernel
estimator and a log-transformed Gaussian kernel estimator~transformation ker-
nel density estimator based on the Gaussian kernel and the logarithmic map-
ping!+ We consider 10 test densities with a left end boundary+ The group of
densities contains bounded and unbounded densities with either a single mode
or two modes:

~a! the standard lognormal density: f ~x! 5 ~10xM2p!exp~2~ ln x!202!,
~b! the chi-square density with one degree of freedom: f ~x! 5

~1YM2px!e2x02,
~c! the Maxwell’s density: f ~x! 5 x exp~2x202!,
~d! the gamma density with scalea 5 2 and shapel 5 2,
~e! the gamma density with scalea 5 2 and shapel 5 0+7,
~f ! the standard exponential density: f ~x! 5 exp~2x!,
~g! the asymmetric Pareto density with parameter3

2
_: f ~x! 5 10~2x302! on

@1,1`!,
~h! the inverse exponential density: f ~x! 5 10~2x302!exp~210Mx!,
~i! a gamma mixture: 2

3
_ weight is put on aG~0+7, 2! and 1

3
_ weight on a

G~20, 0+2!,
~ j! a lognormal mixture: 2

3
_ weight is put on aLN~0, 1! and 1

3
_ weight on a

LN~1+5, 0+1!+

Densities~e! and ~i! correspond to the unbounded cases, whereas densities
~i! and~ j! correspond to the bimodal cases+

The study is based on 100 simulations for each density+ For each simulation
the bandwidth minimizing theL1 norm among a grid of values is chosen+
Throughout we have a sample size ofn 5 200+ Global performance is assessed
in terms of the mean and variance of*6 Zf 2 f 6 on the 100 simulations+ Tables 1
and 2 list results+ They show that the gamma kernel estimator is always domi-
nated by the smoothed histogram in terms of the mean of*6 Zf 2 f 6+ Similar
results also hold for the median~see Bouezmarni and Scaillet, 2003!+ The vari-
ance for the smoothed histogram is smaller for the first five densities and larger
for the last five+When the shape is lognormal~density~a!! or close to~density
~h!!, the log-transformed kernel estimator performs better than the smoothed
histogram and the gamma kernel estimator in terms of the mean+ The variance
in the log-transformed case is smaller for distributions~ f !, ~g!, and ~i! when
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compared to the smoothed histogram and gamma kernel estimates+ It is also
smaller for distributions~b! and~c! with regard to gamma kernel estimates+

7. AN APPLICATION TO INCOME DATA

The empirical illustration concerns the analysis of the income distribution for
Brazil in 1981+ The estimation is performed on a comprehensive microdata set
~n 5 101, 864! already used in a study of the dynamics of income inequality by
Cowell, Ferreira, and Litchfield~1998!+ These authors were interested in these
data because of the importance of Brazil as a major world economy~ninth larg-
est GDP! and the presence of a strong inequality in terms of percentage shares
of income accruing to the richest and to the poorest of its population+ This strong
inequality is in fact revealed by the abnormal skewness of the income distribu-

Table 1. Mean of*6 Zf 2 f 6 on 100 simulations

Densities Smoothed histogram Gamma kernel Log-transformed kernel

~a! 0+09525606 0+1104269 0+08356177
~b! 0+0869127 0+1048551 0+1117045
~c! 0+06243878 0+09577176 0+1969462
~d! 0+0885472 0+1011263 0+1101729
~e! 0+1171365 0+1422371 0+16949476
~ f ! 0+07683467 0+0960356 0+1188438
~g! 0+03779601 0+0386833 0+04050847
~h! 0+0844546 0+08636857 0+0520408
~i! 0+08000198 0+09000876 0+142668
~ j! 0+06897213 0+07567178 0+08634281

Table 2. Variance of*6 Zf 2 f 6 on 100 simulations

Densities Smoothed histogram Gamma kernel Log-transformed kernel

~a! 0+000106 0+00097485 0+001203842
~b! 0+00055574 0+00067451 0+00065417
~c! 0+0002052549 0+00118107 0+000638013
~d! 0+001108625 0+00118664 0+001402027
~e! 0+000854753 0+000947512 0+002473
~ f ! 0+001962692 0+00140385 0+001184696
~g! 0+00064721 0+000457128 0+000187542
~h! 0+001064848 0+0009745832 0+001203842
~i! 0+001246965 0+001171683 0+000972848
~ j! 0+000487383 0+0004329083 0+0005053212
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tion ~see Table 3 for the descriptive statistics!+ Income should be understood as
gross monthly household income per capita denominated in 1981 cruzeiros,
where the income receiver is the individual+ Because lots of data are located
near the boundary it would not be surprising that the true density is unbounded
at the boundary+

Figure 4 compares the results of alternative estimation approaches+ Figure 4a
plots the gamma kernel estimator and the smoothed histogram based on the
Poisson distribution together with a pseudo-maximum-likelihood estimate under
a parametric assumption of a gamma distribution+

The smoothing parametersb and k have been chosen according to a band-
width selection method inspired by the proposal of Hall and Wand~1988!, which
leads to an asymptotically optimal window in the sense of minimizing theL1

distance+ For the gamma kernel density estimator it consists in settingb* 5
n2205~u*!4, whereu* is that value ofu that minimizes

l~u! 5 2E
e

`Su4B0~x!FSu3B0~x!

s0~x! D1 u21s0~x!fSu3B0~x!

s0~x! DD dx, (7)

wheree is a small strictly positive number, B0~x! 5 f '~x! 1 ~ 1
2
_!xf ''~x!, and

s0~x! 5 10~2Mp!102x2104f ~x!102, whereasf andF denote the normal density
and distribution functions, respectively+ The boundary valuee is set to avoid
any problems coming from potential undefined derivatives at zero when per-
forming numerical integration+We have takene 510215 in the simulation results
presented here+ The same procedure applies to the smoothed histogram based
on the Poisson distribution by takingk* 5 ~b*!21 with B0~x! 5 ~ 1

2
_!~ f '~x! 1

xf ''~x!!+ Unknown quantities in criterion~7! have been computed from the fitted
gamma distribution+

Table 3. Descriptive statistics of the
Brazilian income distribution in 1981

Mean income 12,147
Standard deviation 20,551
Skewness 7+737
Kurtosis 124+5
1st percentile 600
1st decile 1,733
1st quartile 3,116
Median income 6,000
3rd quartile 12,754
9th decile 26,954
99th percentile 95,097
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Figure 4. ~a! The gamma kernel, smoothed histogram, and pseudo-maximum-likelihood
estimates and~b! the standard kernel and log-transformed kernel estimates for the Bra-
zilian income distribution in 1981+
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Estimated values for the gamma distribution are 0+9233, resp+ 13,156, for
the shape, resp+ scale, parameter with standard deviation 1+59E-007, resp+ 44+64+
It is worth emphasizing that the estimate of the shape parameter yields an
unbounded density atx 5 0+ The smoothing parameter valuesb* andk* based
on thisL1 reference density method with a parametric assumption of a gamma
distribution~for further discussion in the context of standard kernel density esti-
mators, see Devroye, 1997! are found to beb* 5 0+02915 andk* 5 33+

To check whether the chosenL1 reference density method is a satisfactory
bandwidth selection procedure in practice, we have applied it on 10 simulated
samples from the distribution~e! ~unbounded gamma distribution! of Sec-
tion 6+ Table 4 shows that the values of the data-driven bandwidth are akin to
the values of the optimal bandwidth, which entails similar performance in terms
of *6 Zf 2 f 6+

Finally, Figure 4b plots standard nonparametric estimates performed with a
Gaussian kernel on the raw data and log-transformed data~transformation ker-
nel density estimator based on the logarithmic mapping!+ Bandwidth values are

Table 4. L1 errors for the gamma kernel density estimator and the smoothed
histogram under optimal and data-driven bandwidths

Sample bopt b* kopt k*

Sample 1 0+035261 0+04969 28 31
Sample 2 0+021161 0+030547 30 35
Sample 3 0+031567 0+045217 45 43
Sample 4 0+016124 0+0296718 35 39
Sample 5 0+041323 0+0396519 38 39
Sample 6 0+022657 0+044917 47 50
Sample 7 0+039185 0+050694 42 44
Sample 8 0+036283 0+0382074 25 28
Sample 9 0+030289 0+0372003 29 31
Sample 10 0+021792 0+034291 38 40

Sample *6 Zfk 2 f 6 *6 Zfk* 2 f 6 *6 Zfb 2 f 6 *6 Zfb* 2 f 6

Sample 1 0+1241102 0+137814 0+147992 0+172371
Sample 2 0+0893857 0+09611 0+1531942 0+208124
Sample 3 0+120691 0+13585 0+1311539 0+176137
Sample 4 0+1357063 0+15386 0+1146338 0+19931
Sample 5 0+11202135 0+131211 0+11300944 0+1766751
Sample 6 0+1381742 0+154867 0+1776474 0+207495
Sample 7 0+08927371 0+10473 0+1384143 0+17839
Sample 8 0+1147298 0+1238744 0+1257563 0+165952
Sample 9 0+11633368 0+123427 0+154371 0+184354
Sample 10 0+09401943 0+11728 0+122073 0+15041
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selected here by anL1 reference density method with a parametric assumption
of a normal distribution for the raw data or the log-transformed data+ This cor-
responds to takingh 5 2+3019 [sn2105, where [s denotes the empirical standard
deviation of the raw data or the log-transformed data+ The difference between
the two parts of the figure is striking and illustrates the practical relevance of
the asymmetric kernel density estimator and of the smoothed histogram+

8. CONCLUDING REMARKS

We have studied consistency of two types of density estimators when the den-
sity function is defined on@0,1`!+ These are the asymmetric kernel density
estimator and the smoothed histogram+ Simulation results show that they both
have good finite sample properties and are able to avoid boundary bias existing
in standard kernel density estimation+ We think that they should be of some
help in monitoring the evolution of the shape of density functions and that they
should therefore be useful in applied work involving such nonparametric tech-
niques~for example, see Härdle and Linton, 1994; Pagan and Ullah, 1999!+
This point has already been illustrated through a nonparametric estimation of
the income distribution from a Brazilian microdata set+ Nonparametric hazard
rate estimation should be another important area of application~for a convinc-
ing use in goodness-of-fit testing procedures for duration models, see Fernandes
and Grammig, 2000!+ Finally let us remark that the estimators examined in this
paper may also be relevant for estimating a density that is known to exhibit
symmetry with respect to a discontinuity point+ For example, the product of
two independent standard normal random variables has a density that is infinite
at the origin and that can be represented by use of some hypergeometric func-
tions ~for several examples arising in econometrics, see Abadir and Paruolo,
1997; Abadir, 1999; Abadir and Rockinger, 2003!+ One may then suggest esti-
mating the density on the absolute value of the observed data for points located
on the nonnegative part of the real line and reflecting the estimated values for
the points located on the negative part+
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APPENDIX

Without loss of generality, we suppose thatI 5 @h1,h2# , 0 , h1 , h2, andx [ I+

Proof of Theorem 3.1. We begin with the usual inequality:

sup
x[I
6 Zfb~x! 2 f ~x!6 # sup

x[I
6 Zfb~x! 2 IE~ Zfb~x!!61 sup

x[I
6 IE~ Zfb~x!! 2 f ~x!6+

Because the second term is nonstochastic and converges to zero~see Bouezmarni
and Scaillet, 2003, Proposition 3+1!, we only need to prove that supx[I 6 Zfb~x! 2
IE~ Zfb~x!!6 P

&&rn 0 asn tends to infinity+ For all x,

6 Zfb~x! 2 IE~ Zfb~x!!6 5 *E
0

1`

K~t;x,b! d @Fn~t ! 2 F~t !#*
# sup

t[@0,1`!

6Fn~t ! 2 F~t !6E
0

1`

6dK~t;x,b!6

# Cb2a sup
t[@0,1`!

6Fn~t ! 2 F~t !6,

whereC is a constant, a 5 1 for the gamma kernel, and a 5 5
2
_ for the IG and RIG

kernels+ In fact, we have for the gamma kernel

E
0

1`

6dKG~t;x,b!6 5 b21E
0

1`

6KG~t;x,b! 2 KG~t;x 2 b,b!6 dt

# 2b21,

and it can be found that*0
1`6dKIG ~t;x,b!6 5 *0

1`6dKRIG~t;x,b!6 5 O~b2502!+ Now,
applying the result in Massart~1990! on the Dvoretzky, Kiefer, and Wolfowitz ~1956!
inequality, we obtain
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IPSsup
x[I
6 Zfb~x! 2 IE~ Zfb~x!!6 $ eD # IPS sup

t[@0,1`!

6Fn~t ! 2 F~t !6$
eba

C D
# 2 expS2

2e2

C2 nb2aD+ n

Proof of Theorem 3.2. It is clear that

sup
x[I
6 Zfk~x! 2 f ~x!6 # sup

x[I
6 Zfk~x! 2 IE~ Zfk~x!!61 sup

x[I
6 IE~ Zfk~x!! 2 f ~x!6+

For the nonstochastic term~see Bouezmarni and Scaillet, 2003, Proposition 3+2!, there
exists an integern0~e! such that supx[I 6 IE~ Zfk~x!! 2 f ~x!6 , e02, for all n . n0~e!+
Then, for all n . n0~e!,

IPSsup
x[I
6 Zfk~x! 2 f ~x!6 . eD # IPSsup

x[I
6 Zfk~x! 2 IE~ Zfk~x!!6 . e02D+

But we have forx [ I

6 Zfk~x! 2 IE~ Zfk~x!!6 5 *k (
j50

1`

~Fn~Akj ! 2 F~Akj !!pkj ~x!*
# 2k sup

t[@0,1`!

6Fn~t ! 2 F~t !6,

whereAkj 5 ~ j0k, ~ j 1 1!0k# j 5 0, + + + + Hence the version of the inequality of Dvoretzky
et al+ ~1956! given in Massart~1990! yields

IPSsup
x[I
6 Zfk~x! 2 IE~ Zfk~x!!6 . «02D # 2 expS2

1

8
e2 nk22D+ n

Proof of Theorem 4.1. From the convergence inL1 of the bias~see Bouezmarni
and Scaillet, 2003, Proposition 4+1!, it is sufficient to prove that*0

`6 IE~ Zfb~x!! 2
Zfb~x!6 dx P

&& 0, asn r `+ We have

E
0

`

6 IE~ Zfb~x!! 2 Zfb~x!6 dx # E
0

1`E
0

1`

6Fn~t ! 2 F~t !6 dK~t;x,b! dx,

but **6dK~t;x,b!6dx5 O~b2a!, wherea 5 1 for the gamma kernel anda 5 5
2
_ for the IG

and RIG kernels+ Then

E
0

`

6 IE~ Zfb~x!! 2 Zfb~x!6 dx # b2aC1 sup
t
6Fn~t ! 2 F~t !6+

We finally get

IPSE
0

`

6 IE~ Zfb~x!! 2 Zfb~x!6 dx . eD # 2 expS22
e2

C1
2 nb2aD+ n

Proof of Theorem 4.2. From the convergence inL1 of the bias~see Bouezmarni
and Scaillet, 2003, Proposition 4+2!, it is sufficient to prove that*0

`6 IE~ Zfk~x!! 2
Zfk~x!6 dx P

&& 0, asn r `+ First, from the proof of Theorem 3+2 we know that
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E
0

1`

6 IE~ Zfk~x!! 2 Zfk~x!6 dx # E
0

1`

k (
j50

1`

6Fn~Akj ! 2 F~Akj !6pkj ~x! dx

# (
j50

1`

6Fn~Akj ! 2 F~Akj !6+

Second, from Devroye and Gyorfi~1985!, we deduce that the last term converges in
probability under Condition 2+ n

Proof of Theorem 5.1. From the proof of Theorem 3+1,we have6 Zfb~0!2 IE~ Zfb~0!!6 P
&& 0

as nb2a becomes large, i+e+, Zfb~0! and IE~ Zfb~0!! have the same asymptotic behavior as
nb2a r `+ Now we prove thatIE~ Zfb~0!! r 1` asb r 0, i+e+, for A . 0 there exists
h . 0 such thatIE~ Zfb~0!! . A for all b , h+ In fact, f ~t ! r 1`, ast r 0, and thus for
A . 0 there existsd~A! . 0 such thatf ~t ! . 2A for all 0 , t , d+ Now IE~ Zfb~0!! $
2A*0

d K~t;0,b! dt+ If we suppose that for alld . 0, *0
d k~t;0,b! r 1, as b r 0, we

get *0
d K~t;0,b! dt . 1

2
_ , for all b , h+ Then, for A . 0 there existsh such that

IE~ Zfb~0!! . A, for all b , h, which leads to the stated result+ n

Proof of Theorem 5.2. First, we show thatIE~ Zfk~0!! r 1`, ask r `, i+e+, for A .
0, there existsk0 such thatIE~ Zfk~0!! . A, for all k $ k0+ In fact, becausef ~t ! r 1`, as
t r 0, we havef ~t ! . 2A, for all k $ k1+ Now if pk0~0! r 1, as k r 1`, we have
pk0~0! . 1

2
_ , for all k $ k2+ Therefore,

6 IE~ Zfk~0!!6 $ kpk0~0!E
0

10k

f ~t ! dt

. A, for k $ k0 5 max~k1, k2!+

From the proof of Theorem 3+2, we know that6 Zfk~0! 2 IE~ Zfk~0!!6 P
&& 0, asnk22 r 1`,

which completes the proof+ n

Proof of Theorem 5.3. On one hand, we have

6 IE~ Zfb~x!! 2 f ~x!6

f ~x!
5 *E

0

1`S f ~t !

f ~x!
2 1DK~x,b!~t ! dt*

# E
6 t2mx 6#de

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt

1 E
0

mx2de * f ~t !

f ~x!
2 1*K~x,b!~t ! dt

1 E
mx1de

1`

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt+
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We get

E
6 t2mx 6#de

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt #

e

3
~continuity of f !,

E
0

mx2de * f ~t !

f ~x!
2 1*K~x,b!~t ! dt .

6 f '~x!6

f ~x!
E

0

mx2de

~x 2 t !K~x,b!~t ! dt

#
6x f '~x!6

f ~x!

Var~jx!

de
2 ~Chebyshev inequality!

#
e

3
asx,b r 0 from A+2 and A+5,

and finally

E
mx1de

1`

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt # E

mx1de

1`

K~x,b!~t ! dt

#
e

3
asx,b r 0 from A+3+

Hence we deduce

6 IE~ Zfb~x!! 2 f ~x!6

f ~x!
, e asb, x r 0+ (A.1)

On the other hand, we have

6 Zfb~x! 2 IE~ Zfb~x!!6

f ~x!
#

Cb2a

f ~x!
sup

t[@0,1`!

6Fn~t ! 2 F~t !6 from A+1+

Now, from Massart~1990!, we obtain

IPS 6 Zfb~x! 2 IE~ Zfb~x!!6

f ~x!
$ eD # 2 expS2

2e2

C2 nb2af 2~x!D+ (A.2)

Equations~A+1! and~A+2! yield the stated result+ n

Proof of Theorem 5.4. Let d be a small positive number+ We have

6 IE~ Zfk~x!! 2 f ~x!6

f ~x!
# kIExFE

Sk0k

~Sk11!0k 6 f ~t ! 2 f ~x!6

f ~x!
dt; * Sk

k
2 x* # dG

1 kIExFE
Sk0k

~Sk11!0k 6 f ~t ! 2 f ~x!6

f ~x!
dt;

Sk

k
2 x . dG

1 kIExFE
Sk0k

~Sk11!0k 6 f ~t ! 2 f ~x!6

f ~x!
dt;

Sk

k
2 x , 2dG

5 I 1 II 1 III +
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We get

I 5 kIExFE
Sk0k

~Sk11!0k 6 f ~t ! 2 f ~x!6

f ~x!
dt; * Sk

k
2 x* # dG

5 IExFE
0

1 1

f ~x! * fS Sk 1 s

k D2 f ~x!* ds; * Sk

k
2 x* # dG

#
e

3
~continuity of f !,

whereas

II 5 kIExFE
Sk0k

~Sk11!0k 6 f ~t ! 2 f ~x!6

f ~x!
dt;

Sk

k
2 x . dG

# IPS Sk

k
2 x . dD

#
e

3
asx, 10k r 0 from A+3

and

III 5 kIExFE
Sk0k

~Sk11!0k 6 f ~t ! 2 f ~x!6

f ~x!
dt;

Sk

k
2 x , 2dG

. kIExFE
Sk0k

~Sk11!0k 6 f '~x!~x 2 t !6

f ~x!
dt;

Sk

k
2 x , 2dG

#
6 f '~x!x6

f ~x!
IPF Sk

k
2 x , 2dG

#
6 f '~x!x6

f ~x!

Var~Sk!

~kd!2 ~Chebyshev inequality!

#
e

3
asx,10k r 0 from A+2 and A+4+

Besides as in the proof of Theorem 3+2, we have

IPS 6 Zfk~x! 2 IE~ Zfk~x!!6

f ~x!
. «02D # 2 expS2

1

8
e2nk22f 2~x!D+ n
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