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We consider asymmetric kernel density estimators and smoothed histograms when
the unknown probability density functidnis defined on0,+c0). Uniform weak
consistency on each compact seflnco) is proved for these estimators when

is continuous on its suppoVeak convergence ih, is also establishedVe fur-

ther prove that the asymmetric kernel density estimator and the smoothed histo-
gram converge in probability to infinity at = 0 when the density is unbounded

at x = 0. Monte Carlo results and an empirical study of the shape of a highly
skewed income distribution based on a large microdata set are finally provided

1. INTRODUCTION

The most popular nonparametric estimator of an unknown probability density
functionf is the standard kernel estimattts consistency is well documented
when the support of the underlying density is unboundadthe case of a
bounded support we know that there exists a boundary(b&sse.g., the esti-
mation of Figure 3 in Section)5This problem is due to the use of a fixed
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kernel that assigns weight outside the support when smoothing is carried out
near the boundaryt is further known that the expected value of the standard
kernel density estimator at= 0 converges to the half value of the underlying
density wherf is twice continuously differentiable on its suppd@ +o0). To
solve this problem many remedies have already been suggesied.g., Rice
1984 Schuster1985 Miiller, 1991 Marron and Ruppertl994 Jones 1993
Jones and Fostet996. They include use of particular kernels or bandwidths
Recently Chen(2000 has proposed a gamma kernel estimaaod Scaillet
(2009 has introduced inverse Gaussid) and reciprocal inverse Gaussian
(RIG) estimators for densities defined @, +o0). These estimators are based
on asymmetric kernels that have flexible form and location on the nonnegative
real line The kernel shapes are allowed to vary according to the position of the
data pointsthus changing the degree of smoothing in a natural,\&ay their
support matches the support of the probability density function to be esti-
mated The gammalG, and RIG kernel density estimators are simple to imple-
ment free of boundary bigsand always nonnegatiyeand they achieve the
optimal rate of convergence for the mean integrated squared(8t8E) within
the class of nonnegative kernel density estimatBusthermoretheir variance
reduces as the position where the smoothing is made moves away from the
boundary This is an advantage in estimating densities that have sparse areas
because more data points can be pooled to smooth in areas with fewer obser-
vations As pointed out by Cowel(2000, “Empirical income distributions typ-
ically have long tails with sparse ddt#lence it is expected that such estimators
should perform well in practice on income ddathis will be confirmed by our
empirical results in Section)7Note thaf when the densities are defined on a
compact supporisimilar estimators based on the asymmetric beta kernel have
been proposed by Chéh999 (for regression curve estimatipsee also Brown
and Chen1999 Chen 2002 and have been applied in credit risk management
by Renault and Scaillg2003 to estimate the probability density function of
recovery rates when corporate bonds default
Although we concentrate in the sequel on the empirics of income distribu-
tions the estimators considered in this paper are also relevant for applied work
in insurance and financ&or exampleAit-Sahalia(19963 19960 develops an
estimation and specification testing procedure for diffusion models of the short-
term interest rateln this framework the nonparametric estimation of the sta-
tionary distribution of the interest rate process plays a key. @le results are
also potentially important for estimation and specification testing of the base-
line hazard function in autoregressive conditional durati@@D) models In
this literature parametric models like the Burr and generalized gamma distribu-
tion are popular specifications for the baseline haZéfel refer to Englé2000
for an overview and to Fernandes and Gram(2i@g00 for exploitation of asym-
metric kernels in financial duration analysla insurancea good understand-
ing of the size of a single claim is of most importanktess distributions describe
the probability distribution of a payment to the insur&daditional methods in
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the actuarial literature use parametric specifications to model single cléivas
most popular specifications are the lognormakibull, and Pareto distribu-
tions (Klugman Panjerand Willmot 1998. It is, however unlikely that some-
thing as complex as the generating process of insurance claims can be described
by just a few parameterén incorrect parametric specification may lead to an
inadequate measurement of the risk contained in the insurance portfolio and
consequently to a mispricing of insurance contradtsnparametric density esti-
mation is useful there algsee BolancgGuillen, and Nielsen2003 for a review
and Hagmann and Scaille2003 for use of asymmetric kernels in that ayea
Clearly the standard kernel estimator is again not appropriate in these contexts
because it does not take into account that the underlying varjablegest rates
durations and lossesare nonnegative

In this paper we first analyze convergence of the asymmetric kernel density
estimators for the class of density functions with supp@rt c0). Then we exam-
ine convergence of the smoothed histograms proposed by Gawronski and Stadt-
muiller (198Q 1981), which are also free of boundary bias and achieve the same
rate of convergence

The paper is organized as follows Section 2we outline the framework and
present both estimatgnsamely the asymmetric kernel density estimator and the
smoothed histogranfParticular examples are developébhiform weak consis-
tency on each compact set[i®y+c0) is proved for both estimators in Section 3
The L, convergence of the two estimators is established in Sectidm 8ec-
tion 5, the density functiori is assumed to benboundedat x = 0, and we ana-
lyze the weak convergence of the two estimators to infinity=at0. To our best
knowledge it is the first attempt at providing a consistent estimator for such a
density(see howevey Marron and Ruppeyt994 Bouezmarni and Rolir2002
2003 but for densities defined of0,1]). Relative consistency is also studied
Section 6 provides Monte Carlo results concerning the finite sample properties
of the estimators for various distributions and parameter valiesmpirical
illustration on a large microdata set is provided in SectiokVé examine the
shape of the Brazilian income distributiowhich is notoriously known to be
highly skewed with an accumulation of observed points near the zero boundary
In addition a data-driven procedure based on thedistance(Hall and Wand
1988 is discussed to select the bandwidth in practical situatiastion 8 con-
tains some concluding remark®n Appendix gathers the proafsinally, let us
remark that secondary results have been deleted from the main text to save space
They are fully available in Bouezmarni and Scai2003.

2. ASYMMETRIC KERNEL DENSITY ESTIMATORS
AND SMOOTHED HISTOGRAMS

Let X4,..., X, be a random sample from a probability distributiBrwith an
unknown density functiof. The most popular nonparametric estimator for the
unknown probability density functiohis the standard kernel estimator
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f0 = 3 Kx = X)/),

1
nhi=
where the kernek’ is a symmetric density function afds a smoothing param-
eter called the bandwidthWhen the density is defined df),-+) the bound-
ary bias of the standard kernel estimator is due to weight allocation by the fixed
symmetric kernel outside the support when the estimation of density is made
near the boundaryfo overcome the problem a simple idea is to use a flexible
kernel] which never assigns weight outside the support of the density function
This is the idea behind the first estimator considered in this pajaenely the
asymmetric kernel density estimator

- 12
i=1
whereb is the bandwidth and the asymmetric kerKeis either a gamma den-

sity K¢ with parameter$x/b + 1,b), an IG densityK,¢ with parameter$x,1/b),
or a RIG densityKg,¢ with parametergl/(x — b),1/b). These densities corre-

pond to
X tx/bg=t/b
Ko <“E +1 b) T b I (x/b+ 1) )
Kig (t-x :—L> = ! exp<—i<E -2+ )—(>> 3)
b \27bt? 2bx \ x t))
KR|G<t- ! }> = ! exp(—ﬂ)<L -2+ Lb)) (4)
'x—b’b)  V2=bt 2b \x—b t

Note that these asymmetric kernels do not take the fe(m— t,b) wherex is
an asymmetric functiofinstead of a symmetric onand thus do not belong to
the class studied by Abadir and Lawfo{2004).

The estimatof, based on the gamma kernel was proposed by G2@60,
whereas the IG and RIG kernel density estimators were proposed by Scaillet
(2004). Figure 1 plots the shapes of the gamn, and RIG kernels for some
selected values of andb = 0.2. It can be noticed thakKg(t;x/b + 1,b) for
x = 0 is decreasing for > 0 and becomes unboundedtat 0 whenb shrinks
to zera This feature of the gamma kernel will be instrumental for convergence
when the density is unboundedxat 0 (see Section)b Let us also remark that
the asymmetric kernel density estimator is a particular case of the generalized
kernel density estimatgiFoldes and Reves1974 Walter and Blum 1979.

The second estimator considered in this paper is another particular case of
the generalized kernel density estimator and is inspired by a well-known approx-
imation theorem for continuous distributioReller, 1971, p. 219). It was devel-
oped by Gawronski and Stadtmiillet98Q 1981 and is called a smoothed
histogram It is defined by
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where the weights; , are randomThese weights are given by

i+ |
wi,k_Fn<T>_Fn<E>’ 6)

whereF, is the empirical distribution functigrthe integerk is the smoothing
parameterandpy(.) is based on use of either a family of lattice distribution or
integrals of continuous distributions and satisfies Gawronski and Stadtmuller’s
conditions(for further details see Gawronski and Stadtmiilldi98Q 1981).

Example 1

p«i(X) corresponds to a Poisson distribution function with parametgnamely

(kx)'

P (X) = e~ i=01,....

For this choice the smoothed histogrgman be viewed as a random weighted
sum(mixture) of Poisson mass functions or alternatively as a random weighted
sum (mixture) of gamma density functions
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+oo
ﬁ((x) = 2 wi,kr(x’i + 1, k)7
i=0

whererl is the gamma density function

iei+1

T(xi+1,k) = e

i!

Figure 2 shows the different shapes of the gamma denditigs + 1,k) =
kpqi (x) in the mixture fork = 3, andi = 0,1,2,3. Let us point out the decreas-
ing shape of the gamma density for 0 and its unboundednessxat 0 when

k goes to infinity We will come back to this characteristic in Section 5

Example 2

Pa(X) = [ K (t;%,1/k) dt whereK (t;x,1/k) is either the IG kernel or the

RIG kernel defined in3) and(4) with a bandwidth equal to/k.

Gawronski and Stadtmllef198Q 1981) found that smoothed histograms
are free of boundary bias and that their rate of convergence for the MISE is
O(n~#®) for f in C2([0,+c0)). Using the Hadamard product technig&tadt-
mdller (1983 proved the uniform consistency in probability for the estimators
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FiGuURE 2. Shape of the gamma densitiesx, i + 1, k) with k = 3 andi = 0,1,2,3.
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when the density functiohis continuous and bounded §@,+o0). We provide
a simpler proof of this type of convergence in this paper

3. UNIFORM WEAK CONVERGENCE OF ASYMMETRIC KERNEL
DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS

In this sectionwe show that both estimators have the same asymptotic behav-
ior. More preciselywe prove the uniform weak convergence on each compact
setl in [0,+00) of the asymmetric kernel estimatfyrand the smoothed histo-
gramf, under some conditions on the smoothing param@&teget our conver-
gence resultswe rely mainly on a large deviation deviddote further that the
proofs differ completely from the proofs in the symmetric cadere we can-
not use the symmetry of the kernel and a usual change of variahleh both
play a central role in deriving results for standard kernels

The conditions on the bandwidth are as follows

Condition 1(Asymmetric kernel density estimajor

limb=0 and limnb% =+ (a>0).

n—oo n—oo

Condition 2(Smoothed histogram

lim k= +0c0 and limnk 2= +oco.
n—oo n—o0

The main result for the asymmetric kernel density estimator in this section is
its uniform weak consistency under Condition 1

THEOREM 31. (Uniform weak consistency dfa); Let f be a continuous
and bounded probability density function fi+o0), f, the asymmetric kernel
density estimator, ahl a compact set ifi0,+0c0). Then

sup f,(x) — f(x)| =50 asn— o
XE|

under Condition 1 with a 1 for the gamma kernel and & 3 for the I1G and
RIG kernels.

Remark 1 We have the same result as that of Theorei f8r a density
estimator based on a general kerkél; x,b) under the following conditions
wherea is a strictly positive number

1. E(&) = x + O(b) and supe, Var(é,) = O(b), for any compact sel,
whereé, is a random variable with densit(x, b).

2. [oZ|dK(t;x,b)| = O(b~3).

3. lim,_.b =0 and lim,_,nb? = +oo.
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Note that we can also prove the uniform strong consistency on each compact
set of the asymmetric kernel density estimator under a stronger set of condi-
tions on the bandwidth (see Bouezmarni and Scaill@003 Corollary 31).

Similar results hold for smoothed histogramamely the following theorem

THEOREM 32. (Uniform weak consistency of,). Let f be a continuous
and bounded probability density function @,+c0), f, the smoothed histo-
gram, ard | a compact set if0,+o0). Then

sup f(x) —f(x)] 250 asn— +ow
tel

under Condition 2.

Again uniform strong consistency on each compact set of the smoothed his-
togram can be obtained under a stronger set of conditions on the smoothing
parametek (see Bouezmarni and Scaill@003 Corollary 32).

4. WEAK CONVERGENCE IN L; OF ASYMMETRIC KERNEL
DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS

The excellent monograph of Devroye and Gyaife85 contains numerous
results for the standard kernel density estimator inLthease(for SNP density
estimatorssee Fenton and Gallgrit996. In particular many equivalencétypes
of convergenceconditions on bandwidthetc) are shown to holdThey advo-
cate thel; approach for three main reasofdrst, it is a natural metric on the
space of density functionSecondit is proportional to the total variation met-
ric. Finally, it is invariant under monotone transformatioh®te that Hall and
Wand (1988 (see also the proposal of Devroye and LugdSi9g and the sur-
vey in Devroye 1997 have proposed an algorithm that permits minimization
of the L, distance for different estimatqgrsuch as the standard kernel density
estimator and the histograriVe investigate application of this type of algo-
rithm later in the paper

Hereafter we prove the consistencylip of the asymmetric kernel density
estimator and the smoothed histogram

THEOREM 41 (Weak consistency il of f,). Let f be a probability den-
sity function on 0,+c0) andf, the asymmetric kernel density estimator. Then

J |f,(x) — f(X)]dx >0 asn— o
0

under Condition 1 with a 1 for the gamma kernel and & 3 for the I1G and
RIG kernels.
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THEOREM 42 (Weak copsistency i, of f). Let f be a probability den-
sity function on0,+c0) andf, the smoothed histogram. Then

f 1f.(x) — f(x)|dx=>0 asn— oo
0

under Condition 2.

Let us remark thatif f is assumed to be twice continuously differentiable
Chen (2000 and Scaillet(2004) derive the rate of convergence of the MISE
for asymmetric kernel density estimators

Similar results are available in Stadtmullgl983 for the smoothed histo-
gram Their pointwise results can also be easily used to build confidence inter-
vals In L4, the rate of convergence of the mean integrated absolute error remains
an open questior\We leave this task for future resear¢tor the symmetric
case where a complicated use of the slow convergence theorem is regeied
Devroye and Gyorfi1985.

5. ESTIMATION OF UNBOUNDED DENSITIES AT x=0

As already mentioned the standard kernel density estimator suffers from a bound-
ary bias for the class of density functions defined [6n+co). Until now all
previous methods aimed at removing this boundary bias have been developed
under the assumption oftmundeddensity atx = 0. For such a class of density
functions we have just proved the convergence properties of asymmetric ker-
nel density estimators and smoothed histogrdmshis sectionwe consider a
density functionf defined on[0,+c0) andunboundedat x = 0. This obviously
should induce a clustering of observations near the boundarghown in Fig-
ure 3 behaviors of the standard kernel density estimator and the true density
can be dramatically differenthis illustrative estimation has been performed
onn = 200 data drawn from a gamma dendityA, ) with a = 0.7 andA = 2.
We have used here a Gaussian kernel with a bandwidth minimizing the . MISE
As far as we know only two methods have been shown to accommodate the
case of an unbounded densitlie complicated P and PD algorithms developed
by Marron and Ruppertl994 and the Bernstein polynomial and beta kernel
estimatorg Bouezmarni and Rolin2002 2003. However the latter estimators
do not apply here because they are designed for density functions defined on
[0,1] (the R resp PD, algorithm further requires the presence of poles at both
boundariesresp one boundary

Coming back to Figure 3 we may observe that the gamma kernel density
estimator and the smoothed histogram based on the Poisson distribution exhibit
the same behavior at the boundary point and interior points as the true gamma
density functionI'(0.7,2). In fact these two estimators satisfy the additional
sufficient conditions needed to get weak convergence of the asymmetric kernel
density estimator and smoothed histogram to infinity at O.
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True density
'yl - Gamma kernel estimate

<4 I ----8Smoothed histogram
¥ ———- Standard kernel estimate
------ Log-transformed kernel estimate

f(x)

FiGcure 3. True density’ (0.7, 2) together with its gamma kernedmoothed histogram
standard kernelnd log-transformed kernel estimateach based on 200 observations

THEOREM 51. Let f be a probability density function ¢0,+c0), unbounded

at x = 0, and f, the asymmetric kernel density estimator. Under Condition 1
we have

f.(00 2 +o0 asn— oo

if
o)

for all 8>O,J K(t;0,b)dt—1 asb— 0.
0

The additional condition in the preceding theorem can be checked for the
asymmetric kernel density estimator based on the gamma kdnused we
have fors > 0: [ Kg(t;0,b) dt =1 — exp(—8/b) — 1, asb — 0.

Hence the gamma kernel density estimator gives almost all weight to the
boundary point when the bandwidth converges to zdius is due to the
particular behavior of the gamma kernelxat 0. The two other asymmetric
kernels do not share this behavior and will not be suitable for estimation
of unbounded densitieShe second gamma kernel of Ch&000, namely
Ka(t; pp(X),b) with py(x) = x/b if x = 2b andp,(x) = (3)(x/b)? +1if x €
[0,2b), also satisfies the additional condition of Theorerh Bs already men-
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tioned in Chen(2000, we cannot useég(t;(x/b),b) on the whole support
because that kernel is unbounded(6rb) and not defined ax = 0.
Let us now examine the case of smoothed histograms

THEOREM 52. Letf be a probability density function ¢0,+oc), unbounded
at x = 0, andf, the smoothed histogram. Under Condition 2, we have

f.(0) 2 40 asn— o
if
Pw(0) — 1 as k— +oco.

Whenp,;(x) corresponds to a Poisson distributiome havep,((0) = 1, for
all k, and the additional condition of the last theorem is fulfilled

This means that the smoothed histogram based on the Poisson distribution
gives a large weight to the boundary poiihe convergence result should not
come as a surprise in view of the particular behaviokf(x) ati = 0 (cf.
Section 2.

We may also get relative convergence results in the same spirit as the result
in Marron and Ruppert1994. Note that these results hold trivially in the
bounded case

THEOREAM 53. Let f be a density function in ¥0,+c0), unbounded at
x = 0, andf, the asymmetric kernel density estimator. Then

() = F9] P50 asx—0
f(x)

under the following conditions:

A.l. [ |dk(x,b)(t)| = O(b~?) for a strictly positive number a.
A.2. X f'(x)|/f(x) - C as x— 0 where QC < o) is a constant.
A3. foralld >0, [CK(x,b)(t)dt - Las hx — 0.

A.4. b— 0 such that nB?f ?(x) — oo as n1/x — co.

A.5. Var(&,) — 0, as hx — 0, whereé, ~ k(x,b).

THEOREM 54. Let f be a density function in &0,+o0), unbounded at
x = 0, andf, be the smoothed histogram. Then

(%) — F(X)]
—f(x) —>0 asx—0

under the following conditions:

A.1l. k— oo and nk ?f2(x) — co as n1/x — co.
A.2. X f'(x)|/f(x) = C as x— 0, where GC < c0) is a constant.
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A.3. pi(x) > lasi— 0and k1/x —» +oo.
A.4. Var(S./k) — 0 as k1/x — +oo, where § ~ pi(X).

6. MONTE CARLO RESULTS

This section gathers some simulation results about the finite sample properties
of the gamma kernel estimator and the smoothed histogram based on the Pois-
son distributionWe compare their properties with those of the Gaussian kernel
estimator and a log-transformed Gaussian kernel esting@orsformation ker-

nel density estimator based on the Gaussian kernel and the logarithmic map-
ping). We consider 10 test densities with a left end bound@ihe group of
densities contains bounded and unbounded densities with either a single mode
or two modes

(a) the standard lognormal density(x) = (1/x\27)exp(—(Inx)%2),

(b) the chi-square density with one degree of freedofifx) =
(1/\] 2mwx)e 2

(c) the Maxwell’'s densityf(x) = xexp(—x?/2),

(d) the gamma density with scate= 2 and shapea = 2,

(e) the gamma density with scate= 2 and shape = 0.7,

(f) the standard exponential densifyx) = exp(—x),

(g) the asymmetric Pareto density with paramejerf(x) = 1/(2x¥?) on
[1,+0c0),

(h) the inverse exponential densiti(x) = 1/(2x¥?)exp(—1/vX),

(i) a gamma mixture3 weight is put on ar'(0.7,2) and 3 weight on a
I'(20,0.2),

(j) a lognormal mixture 3 weight is put on aN(0, 1) and 3 weight on a
LN(1.5,0.1).

Densities(e) and (i) correspond to the unbounded casebereas densities
(i) and(j) correspond to the bimodal cases

The study is based on 100 simulations for each densiy each simulation
the bandwidth minimizing thé.;, norm among a grid of values is chosen
Throughout we have a sample sizerof 200 Global performance is assessed
in terms of the mean and variance dff — f| on the 100 simulationgables 1
and 2 list resultsThey show that the gamma kernel estimator is always domi-
nated by the smoothed histogram in terms of the meafi| 6f— f|. Similar
results also hold for the medidsee Bouezmarni and Scaill@003. The vari-
ance for the smoothed histogram is smaller for the first five densities and larger
for the last five When the shape is lognormalensity(a)) or close to(density
(h)), the log-transformed kernel estimator performs better than the smoothed
histogram and the gamma kernel estimator in terms of the nf@snvariance
in the log-transformed case is smaller for distributidris, (g), and (i) when
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TABLE 1. Mean off| f — f| on 100 simulations

Densities

Smoothed histogram

Gamma kernel

Log-transformed kernel

(@
(b)
(0
(d)
(e)
(f)
(9)
(h)
(i)

(J)

0.09525606
0.0869127
0.06243878
0.0885472
0.1171365
0.07683467
0.03779601
0.0844546
0.08000198
0.06897213

(1104269
01048551
09577176
01011263
01422371
0960356
(0386833
(08636857
(09000876
D7567178

008356177
01117045
(1969462
(01101729
016949476
(1188438
(04050847
(0520408
(142668
(08634281

TABLE 2. Variance off|f — f| on 100 simulations

Densities

Smoothed histogram

Gamma kernel

Log-transformed kernel

€)
(b)
(o)
(d)
(e)
(f)
(9)
(h)
(i)

()

0.000106
0.00055574
0.0002052549
0.001108625
0.000854753
0.001962692
0.00064721
0.001064848
0.001246965
0.000487383

000097485
D0067451
®0118107
00118664
M00947512
0140385
(00457128
M009745832
01171683
M004329083

(001203842
00065417
(000638013
(001402027
M02473
(001184696
M00187542
01203842
M00972848
005053212

compared to the smoothed histogram and gamma kernel estinftaiesalso
smaller for distributiongb) and(c) with regard to gamma kernel estimates

7. AN APPLICATION TO INCOME DATA

The empirical illustration concerns the analysis of the income distribution for
Brazil in 1981 The estimation is performed on a comprehensive microdata set
(n =101 864 already used in a study of the dynamics of income inequality by
Cowell, Ferreira and Litchfield(1998. These authors were interested in these
data because of the importance of Brazil as a major world ecoriomth larg-

est GDP and the presence of a strong inequality in terms of percentage shares
of income accruing to the richest and to the poorest of its populafias strong
inequality is in fact revealed by the abnormal skewness of the income distribu-
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TaBLE 3. Descriptive statistics of the
Brazilian income distribution in 1981

Mean income 1247
Standard deviation 2651
Skewness 737
Kurtosis 1245
1st percentile 600
1st decile 1733
1st quartile 3116
Median income 00
3rd quartile 12754
9th decile 26954
99th percentile 9m97

tion (see Table 3 for the descriptive statisjideicome should be understood as
gross monthly household income per capita denominated in 1981 cruzeiros
where the income receiver is the individuBlecause lots of data are located
near the boundary it would not be surprising that the true density is unbounded
at the boundary

Figure 4 compares the results of alternative estimation approdeigese 4a
plots the gamma kernel estimator and the smoothed histogram based on the
Poisson distribution together with a pseudo-maximum-likelihood estimate under
a parametric assumption of a gamma distribution

The smoothing parametebsand k have been chosen according to a band-
width selection method inspired by the proposal of Hall and Wa8&8), which
leads to an asymptotically optimal window in the sense of minimizinglLthe
distance For the gamma kernel density estimator it consists in setbihg
n—%5(u*)%, whereu* is that value ofu that minimizes

%) 3 3
=2 (u“Bo(x)cb(“B"(x))w1ao<x>¢<w>>dx, @

op(X) oo(X)

wheree is a small strictly positive numbgBy(x) = f'(x) + (3)xf”(x), and

oo(X) = 1/(2\7)Y2x V41 (x)V/2, whereasp and® denote the normal density
and distribution functionsrespectively The boundary value is set to avoid

any problems coming from potential undefined derivatives at zero when per-
forming numerical integratia'We have takeis = 10~*° in the simulation results
presented herélfhe same procedure applies to the smoothed histogram based
on the Poisson distribution by takifg = (b*)™* with Bo(x) = (3)(f'(x) +
xf”(x)). Unknown quantities in criteriofi7) have been computed from the fitted
gamma distribution
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——— Standard kernel
~-=+= Log-transformed kernel estimate
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Ficure 4. (a) The gamma kerngsmoothed histogranand pseudo-maximume-likelihood
estimates angb) the standard kernel and log-transformed kernel estimates for the Bra-
zilian income distribution in 1981
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Estimated values for the gamma distribution ar8233 resp 13,156 for
the shapgresp scale parameter with standard deviatiorbQE-007 resp 44.64.

It is worth emphasizing that the estimate of the shape parameter yields an
unbounded density at= 0. The smoothing parameter valubs andk* based

on thisL, reference density method with a parametric assumption of a gamma
distribution(for further discussion in the context of standard kernel density esti-
mators see Devroygl1997) are found to bé* = 0.02915 andck* = 33,

To check whether the chosén reference density method is a satisfactory
bandwidth selection procedure in practieee have applied it on 10 simulated
samples from the distributiofe) (unbounded gamma distributiprof Sec-
tion 6. Table 4 shows that the values of the data-driven bandwidth are akin to
the va}lues of the optimal bandwidtivhich entails similar performance in terms
of [|f —f|.

Finally, Figure 4b plots standard nonparametric estimates performed with a
Gaussian kernel on the raw data and log-transformed (di@asformation ker-
nel density estimator based on the logarithmic mappiBgndwidth values are

TABLE 4. L, errors for the gamma kernel density estimator and the smoothed
histogram under optimal and data-driven bandwidths

Sample Bopt b* Kopt k*
Sample 1 035261 004969 28 31
Sample 2 021161 0030547 30 35
Sample 3 031567 0045217 45 43
Sample 4 016124 00296718 35 39
Sample 5 041323 00396519 38 39
Sample 6 ®M22657 0044917 47 50
Sample 7 (39185 0050694 42 44
Sample 8 (036283 00382074 25 28
Sample 9 030289 00372003 29 31
Sample 10 021792 0034291 38 40
Sample JIfc—fl e = 1| JIfo— 1 S fpe = £
Sample 1 (1241102 0137814 0147992 0172371
Sample 2 (0893857 09611 01531942 08124
Sample 3 120691 013585 01311539 0176137
Sample 4 Q357063 015386 01146338 019931
Sample 5 (11202135 31211 011300944 766751
Sample 6 (1381742 0154867 01776474 ®07495
Sample 7 08927371 (L0473 01384143 017839
Sample 8 (1147298 01238744 01257563 0165952
Sample 9 (11633368 23427 0154371 0184354
Sample 10 09401943 1728 0122073 015041
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selected here by aln, reference density method with a parametric assumption
of a normal distribution for the raw data or the log-transformed .d&tés cor-
responds to taking = 2.3019n"Y5, whered denotes the empirical standard
deviation of the raw data or the log-transformed datae difference between
the two parts of the figure is striking and illustrates the practical relevance of
the asymmetric kernel density estimator and of the smoothed histogram

8. CONCLUDING REMARKS

We have studied consistency of two types of density estimators when the den-
sity function is defined on0,+o0). These are the asymmetric kernel density
estimator and the smoothed histogre®imulation results show that they both
have good finite sample properties and are able to avoid boundary bias existing
in standard kernel density estimatide think that they should be of some
help in monitoring the evolution of the shape of density functions and that they
should therefore be useful in applied work involving such nonparametric tech-
niques(for example see Hardle and Lintgnl994 Pagan and Ullah1999.

This point has already been illustrated through a nonparametric estimation of
the income distribution from a Brazilian microdata.9dbnparametric hazard

rate estimation should be another important area of applicéfitwra convinc-

ing use in goodness-of-fit testing procedures for duration modetsFernandes

and Grammig2000. Finally let us remark that the estimators examined in this
paper may also be relevant for estimating a density that is known to exhibit
symmetry with respect to a discontinuity pairtor example the product of

two independent standard normal random variables has a density that is infinite
at the origin and that can be represented by use of some hypergeometric func-
tions (for several examples arising in econometrisse Abadir and Paruaglo
1997 Abadir, 1999 Abadir and Rockinger2003. One may then suggest esti-
mating the density on the absolute value of the observed data for points located
on the nonnegative part of the real line and reflecting the estimated values for
the points located on the negative part
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APPENDIX

Without loss of generalitywe suppose thdt= [711,71,], 0 < 11 < 15, andx € I.

Proof of Theorem 3.1. We begin with the usual inequality

supl fo(x) = F(x)| = sup fy(x) — E(f,(x)] + sug E(f,(x) — f(x)].
& xE| XEI

Because the second term is nonstochastic and converges to(mrdSOUAezmarni
andA Scaillet 2003 Proposition 31), we only need to prove that syp|f,(x) —
E (fp(x))]| L5 5,0 asntends to infinity For all x,

|00 — E(f,(0)]

f Kt b) dIFA (D) - F(t)]‘
0

I

sup [Fa(t) — F()| f K (t:,b)

te[0,+c0)

=Ch 2 sup |F,(t)—F(t)],

te[0,+0)

where C is a constanta = 1 for the gamma kernglnda = 3 for the IG and RIG
kernels In fact, we have for the gamma kernel

+oo +oo
j |dKs (1%, b)| = b’lf [Kg(t;x,b) = Kg(t;x — b, b)| dt
0 0

=2b%

and it can be found thaf, ”|dKg (t;x,b)| = [, |dKgis(t;X,b)| = O(b~%2). Now,
applying the result in Massaftii990 on the DvoretzkyKiefer, and Wolfowitz (1956
inequality we obtain
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IP(sun £00 — E(f,(0)] = ) - |p< sup |Fat) — F(1)] = i)

xel tE[0,+00) C
2e?
=2 exp<—§ nb2a>. u
Proof of Theorem 3.2. It is clear that

sup f (x) — f(x)| = sulpl f.(x) — E(f(x)] + sulﬁ E (f(x) — f(x)].

xEl S

For the nonstochastic terfsee Bouezmarni and Scaill&003 Proposition ), there
exists an integeng(e) such that sug, |E( f(x)) — f(x)| < €/2, for all n > ny(e).
Then for all n > ng(e),

P <su!q f(x) — f(x)] > e) =P <su|p| f(x) — E(f(x)] > e/2>.

But we have fox € |

| () — E(f ()| =

k%(Fn(Akj) — F(Ag))p (%)
i=

=2k sup |F,(t) = F(t)],
te[0,+c0)

whereAy; = (j/k,(j +1)/k] j =0,.... Hence the version of the inequality of Dvoretzky
et al (1956 given in Massarf1990 yields

P <sup| f.(x) — E(f(x)] > e/2> =2 exp(—é;L €2 nk’2>. [ |
&

Proof of Theorem 4.1. From the convergence ih; of the bias(see Bouezmarni
and Scaillet 2003 Proposition 41), it is sufficient to prove thatf;"| E( fy(x)) —
fo(x)| dx 2> 0, asn — co. We have

fllE(fL(x))—f;(x)ldxsf f [Fa(t) — F(1)] dK(t; x, b) dx,
0 0 0

but [f]dK(t;x, b)|dx = O(b~2), wherea = 1 for the gamma kernel aral= 3 for the |G
and RIG kernelsThen

J 1B 00 00l dx = b5, surlFy 0 ~ o)
We finally get
oo . N e2
P<f0 IE(fb(x))fb(x)dx>e> SZexp(ZC—lz nbza>. m

Proof of Theorem 4.2. From the convergence ih; of the bias(see Bouezmarni
and Scaillet 2003 Proposition 4), it is sufficient to prove thatf;"|E(f(x)) —
fi(x)| dx 250, asn — oo. First, from the proof of Theorem.2 we know that
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+oo  +oo

J [E( fAk(X)) - fAk(X)| dx= f k> “:n(Akj) — F(A)| Py (x) dx
0 0 j=0

= 2)|Fn(Akj) — F(Ay)I.
i=

Second from Devroye and Gyorfi1985, we deduce that the last term converges in
probability under Condition .2 n

Proof of Theorem 5.1. From the proof of Theorem3 we have f,(0) — E ( f,(0))| >0
asnb? becomes largd.e., f,(0) and E ( f,(0)) have the same asymptotic behavior as
nb?2 — co. Now we prove thafE ( f,(0)) — +oo asb — 0, i.e, for A > 0 there exists
1 > 0 such thate ( f,(0)) > Afor all b < 7. In fact, f(t) —» +oo0, ast — 0, and thus for
A > 0 there exists5(A) > 0 such thaf (t) > 2A for all 0 < t < §. Now E( f,(0)) =
2A [ K(t;0,b) dt. If we suppose that for alb > 0, [ k(t;0,b) — 1, asb — 0, we
get f(fK(t;O, b)dt > 3, for all b < 7. Then for A > 0 there existsy such that
E(fy(0) > A, for all b < 7, which leads to the stated result n

Proof of Theorem 5.2. FirsAt, we show thatE ( f,(0)) — +oo, ask — o, i.e., for A >
0, there exist, such thatE ( f,(0)) > A, for all k = ko. In fact, becausé (t) — +oo, as

t — 0, we havef(t) > 2A, for all k = k;. Now if pgo(0) — 1, ask — +oo, we have
Pro(0) > 2, for all k = k,. Therefore

R 1/k
E(£,(0)] = kpo(0) f f(t) dt
> A, for k= ko= max(ky,ky).

From the proof of Theorem.3, we know that f(0) — IE ( fx(0))| = 0, asnk 2 — +oo,
which completes the proof n

Proof of Theorem 5.3. On one hangdwe have

[ECo0 100l _| [~ (ff; ) 1)K<x (1) dt
0

f(x)
= J @—1‘K(x,b)(t)dt
te=s. | F(X)
2 | f(t)
+ fo ) ’K(X b)(t) dt
+oo f(t)
+ LX+5£ m—l‘K( b)(t)dt
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We get

f\t*#xlﬁi
f/J'X7BE
0

w—l‘K b)(t) dt = = (continuity off
(%) (x,b)(t) _3(con|nU|yo ),

Mx— O

f(t)
(x— DK(x,b)(t) dt

m - 1‘ K(x,b)(t) dt =

[T/ (X)]
f(x)

_ X[ Var(€,)
T f(x) 82

asx,b— 0 from A.2 and A5,

wim

and finally

[ i
xt8e

1‘K(X,b)(t)dt§ fﬁo K(x,b)(t)dt

pxtOe

prs, | FOO

asx,b— 0 fromA.3.

wIim

Hence we deduce

[E(f0) 100 _

) ash, x — 0.

On the other handve have

1600 = BCRODL _ CO% e () Foo)

= from A.1.
f(x) f(X) te[o,+o0)

Now, from Massart1990, we obtain

| fo(x) — E(f(X)] 2¢?
P (% = e) =2 exp<—é nb2af 2(x)).

Equations(A.1) and(A.2) yield the stated result

Proof of Theorem 5.4. Let 6 be a small positive numbewe have

S

dt; — X
f(x) S/k f(x) k

[E (fi(x) — f(x)] _ kEXU(S‘HW [f(t) — (x|

Sk

g

f(x) "k

(Sc+D/k _
+k|Ex{f Mdt‘i—x>6]

Su/k

f(x) a; k

(Sc+1)/k —
[ [0 S

=1+ +1I.
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We get
| = KE J(S(+l)/kwdt. E‘_X =5
* Se/k f(x) |k B
11 S +s S
=E — | f —f ds | — —x| =6
*Uofm (%) (X)‘ S’k X<}
€ -
55 (continuity off),
whereas
(SHD/K | f(1) — f
Il = KIE, f Mdt;ﬁ—x>5
Se/k f(x) k
sP(%—x>6>
sg asx, 1/k— 0 fromA.3
and
(SHD/K [ (1) — f
Il = KE, f Mdt;i—x<—6
S/k f(x) kK
~ KE fww gt X o s
* Se/k f(x) "k
[T/ (x)X] [SK ]
= — —x< -
= ) P " X 8
[ (X)x]| Var(S,) . :
= ™ k8)2 (Chebyshev inequalily
= % asx,1/k - 0 from A.2 and A4.

Besides as in the proof of Theoren23we have

(IfL(X) — E(fi(x)]

= _} 20—2f 2 >
0 >a/2>_2exp< 86 nk=4f 2(x) ).
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