
ON PROVING CONSISTENCY OF EQUATIONAL THEORIES IN

BOUNDED ARITHMETIC

ARNOLD BECKMANN AND YORIYUKI YAMAGATA

Abstract. We consider equational theories based on axioms for recursively

defining functions, with rules for equality and substitution, but no form of
induction—we denote such equational theories as PETS for pure equational

theories with substitution. An example is Cook’s system PV without its rule

for induction.
We show that the Bounded Arithmetic theory S12 proves the consistency of

PETS. Our approach employs model-theoretic constructions for PETS based

on approximate values resembling notions from domain theory in Bounded
Arithmetic, which may be of independent interest.

1. Introduction

The question whether the hierarchy of Bounded Arithmetic theories is strict or
not, is an important open problem due to its connections to corresponding questions
about levels of the Polynomial Time Hierarchy [2]. One obvious way to address this
problem is to make use of Gödel’s 2nd Incompleteness Theorem, using statements
expressing consistency for Bounded Arithmetic theories. Early lines of research
aimed to restrict the formulation of consistency suitably to achieve this aim [2, 8],
with limited success.

One particular programme is to consider consistency statements based on equa-
tional theories. Buss and Ignjatović [4] have shown that the consistency of an
induction free version of Cook’s equational theory PV [5] is not provable in S12,
where S12 is the Bounded Arithmetic theory related to polynomial time reasoning.
Their version of induction free PV is formulated in a system that allows, in addition
to equations, also inequalities between terms, and Boolean formulas. Furthermore,
a number of properties have been stated as axioms.

On the other hand, in a pure equational setting, where lines in derivations are
equations between terms, where axioms are restricted to recursive definitions of
function symbols, and where induction is not allowed, consistency becomes provable
in Bounded Arithmetic: The first author has shown in [1] that the consistency of
pure equational theories, in which substitution is not allowed, is provable in S12 – in
particular this result applies to Cook’s PV [5] without substitution and induction.
The second author of this paper has improved on this result in [10] by showing that
the consistency of PV without induction but with substitution is provable in S22,
the second level of the hierarchy of Bounded Arithmetic theories.

In this paper, we extend both our previous results [1, 10]. With PETS(Ax) we
denote the pure equational theory with substitution but without induction, based
on a ’set of nice axioms Ax’ – we will make the notion of ’nice axioms’ precise in
Definition 6. Cook’s original PV [5] without induction but with substitution is one
example of a pure equational theory in this sense. The main aim of this paper
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is to show that the consistency of PETS(Ax) is provable in S12, thus improving
on both [1, 10]. To this end we employ a novel method of defining pre-models in
Bounded Arithmetic based on approximate values, which may be of independent
interest. Our approach resembles elements from domain theory, however we leave
a full treatment of domain theory in Bounded Arithmetic to future research.

In the next section, we briefly introduce Bounded Arithmetic and fix some no-
tions used throughout the paper. In Section 3 we define pure equational theories
PETS(Ax), which will be more general than PV without induction in that arbi-
trary recursive functions may be considered. This is followed in Section 4 by an
introduction of approximate values and semantics based on approximation, leading
to feasible evaluations of terms based on such approximation semantics. Section 5
then defines pre-models for equational theories based on approximation semantics,
including a suitably restricted version which can be expressed as a bounded formula
and used in induction arguments inside Bounded Arithmetic. A key notion will be a
way of updating such pre-models with further information about approximate val-
ues of functions, in a way that preserves the notion of being a pre-model, provably
in S12. In Section 6 we prove our first main theorem showing a form of soundness for
PETS(Ax) based on approximation semantics in S22– an immediate consequence
will be that S22 proves the consistency of PETS(Ax). The final sections improve
on this approach to obtain the main result in S12: In Section 7 we introduce in-
structions which are extracted from derivations in PETS(Ax) and store key steps
in the construction of updates of models. In this way we obtain an explicit way of
describing pre-model constructions related to PETS(Ax) derivations, which allows
us to reduce the bounded quantifier complexity of induction assertions in the proof
of our second main theorem in Section 8 to show an improved soundness property
for PETS(Ax) provable in S12.

2. Bounded Arithmetic

2.1. Language of Bounded Arithmetic. We give a brief introduction to Bounded
Arithmetic to support the developments in this paper. For more in depth discus-
sions and results we refer the interested reader to the literature [2, 6]. Theories of
Bounded Arithmetic are first order theories of arithmetic similar to Peano Arith-
metic, their domain of discourse is the set of non-negative integers. For the purpose
of this paper we can assume that the language of Bounded Arithmetic contains a
symbol for each polynomial time computable function, including 0, 1, +, ·, |.|, #,
representing zero, one, addition, multiplication, the binary length function |x| that
computes the number of bits in a binary representation of x and can be defined by
|x| = ⌈log2(x+ 1)⌉, and smash # computing x# y = 2|x|·|y|.

2.2. Theories of Bounded Arithmetic. Theories of Bounded Arithmetic con-
tain suitable defining axioms for their function symbols. The main differences are
various forms of induction for various classes of bounded formulas, which we will
define next.

Bounded quantifiers are defined as follows:

(∀x ≤ t)A abbreviates (∀x)(x ≤ t→ A)

(∃x ≤ t)A abbreviates (∃x)(x ≤ t ∧A)

If the bounding term t of a bounded quantifier is of the form |t′|, then the quantifier
is called sharply bounded.
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Classes of bounded formulas Σb
i and Πb

i are defined in [2] by essentially count-
ing alternations between existential and universal bounded quantifiers. Predicates
defined by Σb

i and Πb
i formulas define computational problems in corresponding

classes of the Polynomial Time Hierarchy of decision problems Σp
i and Πp

i , respec-
tively. For example, those defined by Σb

1 correspond exactly to Σp
1 , i.e. NP.

In particular, the Σb
i and Πb

i classes include the following formulas:

• Σb
0 = Πb

0 is the class of formulas built from atomic formulas and closed
under Boolean connectives and sharply bounded quantification.
• Σb

i+1 includes all formulas of the form (∃x ≤ t)A with A ∈ Πb
i .

• Πb
i+1 includes all formulas of the form (∀x ≤ t)A with A ∈ Σb

i .

The theories Si2, i ≥ 0, of Bounded Arithmetic have been defined in [2], estab-
lishing a close relationship between fragments of Bounded Arithmetic and levels
of the Polynomial Time Hierarchy of functions. More precisely, the Σb

i+1-definable

functions of Si+1
2 , that is the functions whose graph can be described by a Σb

i+1

formula, and whose totality is provable in Si+1
2 , form exactly the i+1-st level of the

Polynomial Time Hierarchy of functions, FPΣp
i .

Instead of defining the theory Si2, we state some characteristic properties about
induction provable in them. Let Σb

i -IND be the schema of induction for Σb
i -

properties, consisting of formulas of the form

A(0) ∧ (∀x)(A(x)→ A(x+ 1))→ (∀x)A(x)

for A ∈ Σb
i . The schema of logarithmic induction Σb

i -LIND is then obtained by
restricting the conclusion of induction to logarithmic values, that is

A(0) ∧ (∀x)(A(x)→ A(x+ 1))→ (∀x)A(|x|)

for A ∈ Σb
i . We have the following:

Theorem 1 ([2]). The instances of Σb
i -LIND and Πb

i -LIND are provable in Si2.

We already mentioned the intricate relationship between Bounded Arithmetic
theories and the Polynomial Time Hierarchy in terms of definable functions. Fur-
thermore, it is known that a collapse of the hierarchy of Bounded Arithmetic the-
ories is equivalent to the provability in Bounded Arithmetic of a collapse of the
Polynomial Time Hierarchy [3, 7, 11]. With Ti

2 denoting the theory defined by
Σb

i -IND, we have that Ti
2 = Si+1

2 is equivalent to Σp
i+1 ⊆ Πp

i+1/poly provable in Ti
2.

The Bounded Arithmetic theory S12 is able to formalize meta-mathematics and
essential constructions to prove Gödel’s Incompleteness Theorems [2]. A basis for
such formalization is a feasible encoding of sequences of numbers. For this paper
we assume that a suitable encoding of sequences and operations on them can be
formalized in S12 as done in [2]. We assume the following notation:

• With ⟨x1, . . . , xk⟩ we denote the encoding of sequence x1, . . . , xk. We will
use σ, τ etc to range over sequence encodings.
• With ‘ :: ’ we denote concatenation of sequences:

⟨x1, . . . , xk⟩ :: ⟨xk+1, . . . , xk+ℓ⟩ = ⟨x1, . . . , xk, xk+1, . . . , xk+ℓ⟩
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• With ‘ : ’ we denote the function that adds an element to the left or right
of a sequence:

x : σ = ⟨x⟩ :: σ
σ : x = σ :: ⟨x⟩

The predicate ‘being a sequence encoding’, as well as the operations ‘ : ’ and ‘ :: ’,
can be defined in S12 with their usual properties proven.

In the following, in order to argue that transformations and constructions in-
volving syntax (like terms, proofs, etc) can be conducted in Bounded Arithmetic,
we will focus on the length of objects, instead of their size as given by e.g. number
of bits in a suitable Gödelization. For an object o we will define its length l(o) to
be the number of symbols occurring in o. As all our constructions will happen in
the context of a given derivation D, we obtain that the size of the Gödelization of
object o can then be bounded by l(o) times the size of the Gödelization of D.

Furthermore, the constructions for defining o in the context of D will always
be explicit and simple enough to be formalizable in S12, similar to constructions in
[2] dealing with meta-mathematical notions. In those cases where more involved
induction is needed (as in Theorems 42 and 53) these will be analyzed carefully.

2.3. Notations. In the remaining part of this section we will fix some notation
used throughout this paper. We use ≡ for equality of syntax.

• With #S we denote the cardinality of a set S.
• For a function f , dom(f) denotes its domain, rng(f) its range.
• For a set S, tuples in Sn are denoted with (s1, . . . , sn).
• We use the notation s for a tuple (s1, . . . , sn) as well as a sequence s1, . . . , sn
of objects.
• max(X) computes the maximum (according to a given order) of the ele-
ments in X. max is applied to a tuple by computing the maximal compo-
nent in it.

Remark. Technically, there is a difference between a tuple of the form (s1, . . . , sn),
which is an element of Sn, and the sequence s1, . . . , sn, which is a formal list used
e.g. as the arguments to an n-ary function. We will identify both and write s ∈ Sn

and f(s) in the same context, as long as it does not lead to confusion, in which case
we will choose a more precise differentiation.

3. Equational Theories

3.1. Domain of discourse. The intended domain of discourse B are finite binary
strings representing numbers. B can be defined inductively as follows:

v ::= ϵ | v0 | v1
We will also use terms denoting binary strings, which are formed from constant ϵ

using unary function symbols s0 and s1 to add a single digit to the right of a string.
We also use t0 to denote s0(t), and t1 for s1(t) for terms t, following Cook [5]. We
will drop ϵ when writing explicit binary strings, e.g. writing 1101 instead of ϵ1101,
or s1(s0(s1(s1(ϵ)))).

Remark. There is a choice in notation in that bits can go to the right or left of v.
Going to the left would follow domain theory convention where the focus are infinite
binary strings. We decided to put them to the right, following Bounded Arithmetic
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convention as initiated by Cook [5], because the focus in this paper are finite binary
strings representing numbers.

Remark. Our results are not restricted to finite binary strings, but can be applied
to general free algebras as domains of discourse as done in [1]. However, for sake
of simplicity we will only consider binary strings in this paper.

3.2. Terms. We fix the language we use for equational theories.

Definition 2 (Language for Equational Theories). We have the following basic
ingredients:

• A countable set X of variables; we use x, y, x1, x2, . . . to denote variables.
• A countable set F of function symbols; we use f, g, h, f1, f2, . . . to denote
function symbols. Each function f ∈ F comes with a non-negative integer
ar(f) called its arity. We assume that ϵ, s0 and s1 are included in F ; ϵ, s0
and s1 form the set B of basic function symbols.

Remark. A function with arity 0 is called a constant. For example, ϵ is a constant.

Definition 3 (Terms). Let X ⊆ X and F ⊆ F . The set T (X,F ) of terms over F
and X, or simply terms, is defined inductively as follows:

• All variables in X are terms.
• If f ∈ F has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We will use s, t, u to denote terms.
The length l(t) of term t is defined in the following way: The length of a variable

is 1, and, recursively,

l(f(t1, . . . , tn)) = l(t1) + · · ·+ l(tn) + 1 .

With Var(t) we denote the set of variables that are occurring in a term t. For S a
set of terms, Var(S) denotes the union of Var(t) for t ∈ S.

Definition 4 (Substitution). Let t, u be terms and x be a variable. The substitution
of u for x in t, denoted t[u/x], is obtained by replacing any occurrence of x in t
by u.

We extend substitution to sequences of variables and terms of the same length
by successively substituting terms: t[u/x] stands for t[u1/x1][u2/x2] . . . [un/xn].

Definition 5 (Instance and injective renaming). A substitution instance, or in-
stance, of an equation s = t is any s[u/x] = t[u/x] for terms u.

An instance s[u/x] = t[u/x] is called an injective renaming of s = t, iff {x} =
Var(s) ∪Var(t), and u is a list of pairwise distinct variables.

3.3. Nice axiom systems. We will consider axioms consisting of equations that
satisfy particular conditions, which have been called nice in [1].

Definition 6 (Nice Axioms, [1]). Let Ax be a set of equations over F . Ax is called
a set of nice axioms for F , if the following is satisfied: Each equation in Ax must
be of one of the following forms, for some f ∈ F \ B, some t, tϵ ∈ T (F , {y}), and
t0, t1 ∈ T (F , {x, y}):

f(y) = t

f(ϵ, y) = tϵ

f(x0, y) = t0

f(x1, y) = t1.
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Furthermore, the left-hand side of an equation is occurring at most once among
equations in Ax, also modulo injective renamings.

Henceforth, Ax is a set of nice axioms.

Remark. The definition implies that for any t = u in Ax we have Var(u) ⊆ Var(t).

Remark. Consider a term f(s) with f ∈ F \ B. The property of Ax being nice
implies that there is at most one axiom t = u in Ax such that f(s) can be written
as a substitution instance of t.

Remark. For the reader familiar with term-rewriting we remark that the term
rewriting system induced by nice axioms is orthogonal, which follows from the
previous two remarks.

Remark. The definition of a nice axiom system in [1] also contains a completeness
condition, requiring that each function symbol in F \ B is defined by an equation,
and that the case distinction in the latter part is complete. We omit this form of
completeness, as it is not needed for our developments.

The left-hand side of an equation in Ax is of a very special form: an argument
to the outermost function symbol can either be a variable, ϵ, x0, or x1 for some
variable x. We capture these forms in the following definition.

Definition 7 (Generalized variable). A generalized variable is a term which either
is a variable, or ϵ, or of the form x0 or x1 for some variable x.

Remark. Consider an axiom t = u in Ax. It follows that t must be of the form f(s),
that each si is a generalized variable, hence each si contains at most one variable.
Furthermore, the same variable cannot occur simultaneously in si and sj for i ̸= j.

Definition 8 (Rules for equational reasoning). Let s, t, u represent terms, and x a
variable. The following are the rules that can be used to derive equations:

Axiom: ⊢ t = u, where t = u is an injective renaming of an equation in Ax.
Reflexivity: ⊢ t = t
Symmetry: t = u ⊢ u = t
Transitivity: t = s, s = u ⊢ t = u
Compatibility: t = u ⊢ s[t/x] = s[u/x]
Substitution: t = u ⊢ t[s/x] = u[s/x].

In the case of Substitution as stated above, we say that the application of Substi-
tution binds the variable x.

Remark. We also make use of a display style for presenting rules, like

Re t = t

for Reflexivity Rule, or

t = s s = u
Tr t = u

for Transitivity Rule. As indicated, we may abbreviate the rule that is used by its
first two letters.

Definition 9 (Derivations). A derivation is a finite tree whose nodes are labelled
with rules for equational reasoning, such that for each node, the premises of the rule
at that node coincide with the conclusions of rules at corresponding child nodes.
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Derivations can also be defined inductively from rules for equational reasoning:
Any Axiom or Reflexivity Rule is a derivation ending in the equation given by
that rule. If R is a unary rule (like Symmetry, Compatibility or Substitution) with
premise e′ and conclusion e, and D′ a derivation ending in e′, then

D′

e′
R e

is a derivation ending in e. The only binary rule we are considering is the Transi-
tivity Rule. If D1 a derivation ending in t = s, and D2 a derivation ending in s = u,
then

D1

t = s
D2

s = u
Tr t = u

is a derivation ending in t = u.
We tacitly assume that labels of rules carry information to uniquely identify

them. For example, in the case of Compatibility and Substitution in Definition 8,
the label would contain x and s.

Building on Definition 3, the length l(t = u) of an equation t = u is set to
l(t) + l(u) + 1. The length l(l) of a label l of a rule R is set to either l(s) + l(x) + 1
if R is Compatibility or Substitution involving x and s, or 1 otherwise. The length
l(D) of a derivation D is defined as the sum of the lengths of the equations and
labels of rules occurring in it.

With Var(D) we denote the set of variables occurring in D. BVar(D) is the set
of variables occurring in D that are bound by an application of the Substitution
Rule.

Definition 10 (Pure Equational Theories with Substitution). The pure equational
theory with substitution PETS(Ax) consists of all equations that can be derived
using the Axiom rules for Ax, as well as the Reflexivity, Symmetry, Transitivity,
Compatibility and Substitution Rules.

Definition 11 (Variable Normal Form). A PETS(Ax) derivation D is in variable
normal form if each variable occurring in D is either occurring in the equation in
which the derivation ends, or is removed in exactly one application of Substitution
(as the variable which is bound by that application of Substitution).

Proposition 12. Assume D ⊢ t = u, then there exists D′ in variable normal form
of same length as D such that D′ ⊢ t = u.

Proof. We observe that we can replace all occurrences of a fixed variable by a
fresh variable throughout a derivation ending in an equation e, obtaining a similar
derivation of the equation e, potentially with the former variable being renamed to
the latter fresh variable. This transformation works as our derivations are tree-like.
The above transformation does not change the length of the derivation. □

Remark. While the length does not change when transforming a derivation to vari-
able normal form, its size (in the sense of number of bits in a suitable Gödelisation)
in general will change due to the need of choosing new indices for fresh variables.
As remarked before, the size of the resulting derivation in variable normal form will
be bounded by a constant times the product of the length of the new and the size
of the original derivation.
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Definition 13 (Formal Consistency). With Cons(PETS(Ax)) we denote the sen-
tence in the language of Bounded Arithmetic which expresses that there is no
derivation in PETS(Ax) ending in 0 = 1, where 0, resp. 1, denotes ϵ0, resp. ϵ1.

We close the section with an example theory, PETSexp. The theory defines
a form of exponentiation, it will reoccur at later sections to explain terminology
defined there.

Example. Let Fexp be {ϵ, s0, s1,⊕,⊗, e} where ⊕,⊗, e are binary function symbols.
Let Axexp be the nice set of axioms given by

x⊕ ϵ = x x⊗ ϵ = ϵ e(x, ϵ) = 1

x⊕ yi = (x⊕ y)i x⊗ yi = (x⊗ y)⊕ x e(x, yi) = e(x, y)⊗ x

for i ∈ {0, 1}.
For a, b terms, consider the following PETSexp derivation of e(ϵ, a⊕b0) = ϵ. Let

D1 denote the derivation

Ax
e(x2, y20) = e(x2, y2)⊗ x2

Su
e(ϵ, (a⊕ b)0) = e(ϵ, a⊕ b)⊗ ϵ

Ax x3 ⊗ ϵ = ϵ
Su

e(ϵ, a⊕ b)⊗ ϵ = ϵ
Tr

e(ϵ, (a⊕ b)0) = ϵ

Then let Dexp be

Ax
x1 ⊕ y10 = (x1 ⊕ y1)0

Su
a⊕ b0 = (a⊕ b)0

Co
e(ϵ, a⊕ b0) = e(ϵ, (a⊕ b)0)

D1

e(ϵ, (a⊕ b)0) = ϵ
Tr

e(ϵ, a⊕ b0) = ϵ

We use a double line to indicate multiple applications of the indicated rule. Here,
two applications of substitution are used, one for each variable substituted for.

4. Approximation Semantics

A core idea in domain theory is to define finite approximations to function in a
way that is consistent with axioms and equational reasoning. Although we do not
develop domain theory fully in this paper, we will make use of some of its notions,
and show in particular that those notions can be defined and reasoned with in S12.
As constant functions are approximated by themselves, this allows us to conclude
that PETS will never derive 0 = 1, showing that the consistency of PETS is
provable in bounded arithmetic.

4.1. Approximate values. The notion of approximate values v is defined in [10],
which adds ‘unknown value’ of a term, as defined in [1] and denoted with ‘∗’, to bit-
strings. Infeasible values, although finite, can be considered as infinite bit strings
within theories of feasibility like Bounded Arithmetic. From the domain theoretic
view, the space of approximate values is a domain formed by infinite strings of bits.

Definition 14 (Approximate values). The set D of approximate values is defined
inductively as follows:

v ::= ϵ | v0 | v1 | ∗
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For the proofs of main theorems we will need a refined approach to measuring
length, so that inductive statements in those proofs lead to polynomial bounds.
The general principle will be that we think of a typing structure for our objects, so
that the i-length of an object of type i is defined in some natural way (like length
of a word, or cardinality of a set), while for j < i the j-length of a type i object
is given as the maximum of the j-lengths of its components. For example, our
basic objects will be words in D. They will be of type 0, and their 0-length is just
their standard length as words. A sequence of words is of type 1, its 1-length is its
sequence length, i.e. the number of occurrences of words in it, and its 0-length the
maximum of the lengths of words occurring in it. A set of sequences of words is
of type 2, its 2-length is its cardinality, its 1-length the maximum of the sequence
lengths of its elements, and its 0-length the maximum of the word lengths of its
elements. Etc.

It is then obvious that the length l(o) of an object o of type i is bounded by a
constant times the product of its j-lengths for j ≤ i.

Definition 15. For an approximate value v ∈ D, its 0-length l0(v) satisfies

l0(ϵ) = l0(∗) = 1

l0(v0) = l0(v1) = l0(v) + 1

For a tuple w = (w1, . . . , wn) ∈ Dn, its 0-length is given as

l0(w) = max{l0(w1), . . . , l0(wn)} ,

and its 1-length as

l1(w) = n .

The idea of an approximate value is that bits of higher significance may not be
known and are thus replaced by ∗.

Example. 1101, ∗01, ∗ are examples of approximate values, 1∗1, ∗∗ are not. Fol-
lowing the above intuition that ∗ replaces ’unknown’ bits of higher significance,
∗01 is an approximation to 1101. We will make this intuition precise in the next
subsection.

4.2. Approximation relation. A relation ⊴ has been defined in [1]. Here we will
consider the converse ⊑ of ⊴.

Definition 16 (Approximation relation). The approximation relation ⊑ is a binary
relation over D, defined inductively as follows:

• ∗ ⊑ v for any v ∈ D.
• ϵ ⊑ ϵ.
• if v1 ⊑ v2, then v10 ⊑ v20 and v11 ⊑ v21.

We pronounce ‘v ⊑ w’ as ‘v approximates w’.
We extend ⊑ to tuples: (v1, . . . , vn) ⊑ (w1, . . . , wn) iff vi ⊑ wi for each i.

Example. ∗ approximates any value in D. ∗01 approximates 1101, but does not
approximate 1010.

Proposition 17. ⊑ is a partial order on Dn, that is, it is reflexive, anti-symmetric
and transitive. □
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Definition 18 (Compatibility). u, v ∈ D are compatible if u ⊑ v or v ⊑ u.
(u1, . . . , un) and (v1, . . . , vn) in Dn are compatible if each ui and vi are. We denote
u and v being compatible with u△ v.

The following lemma follows immediately from the definition of compatibility,
by induction on the size of the set.

Lemma 19. Any non-empty finite subset S of D of pairwise compatible elements
has a maximal element w.r.t. ⊑. We denote the maximal element with max⊑(S).
We also set max⊑(∅) = ∗. □

The following lemma has already been proven in [1]:

Lemma 20. If u, v, w ∈ Dn and u, v ⊑ w, then u△ v. □

We introduce a couple of notions from the treatment of domain theory as intro-
duced by Vickers [9].

Definition 21 (Generator, [9]). A generator for Dn → D is a tuple (u, v), denoted
u 7→ v, with u ∈ Dn and v ∈ D \ {∗}.

Definition 22 (Consistent set, [9]). A consistent set f̃ of Dn → D is a finite set of
generators for Dn → D satisfying the following condition:

if x 7→ y, u 7→ v ∈ f̃ and x△ u, then y△ v.

We say that f̃ has arity n, denoted as ar(f̃) = n.

Definition 23 (Finitely generated maps, [9]). A consistent set f̃ defines a mapping

on Dar(f̃) → D, which we call a finitely generated map, via

f̃(x) = max⊑{v | ∃w,w ⊑ x and w 7→ v ∈ f̃} .

We sometimes write f̃ [x] to denote the set

{v | ∃w,w ⊑ x and w 7→ v ∈ f̃}
so that f̃(x) = max⊑ f̃ [x].

To see that finitely generated maps are well-defined, consider two generators
w 7→ v and w′ 7→ v′ in f̃ with w,w′ ⊑ x. With Lemma 20 we obtain w△w′. Hence
v△ v′ as f̃ is consistent. Thus, using Lemma 19, the set

f̃ [x] = {v | ∃w,w ⊑ x and w 7→ v ∈ f̃}
has a maximal element w.r.t. ⊑.

Example. Consider f̃ = {ϵ 7→ ϵ, ∗0 7→ ∗1, ∗00 7→ ∗11}. f̃ is a consistent set. We

compute f̃ [000] = {∗0 7→ ∗1, ∗00 7→ ∗11}, as ∗0, ∗00 ⊑ 000. Hence f̃(000) = ∗11, as
∗1 ⊑ ∗11. The set {ϵ 7→ ϵ, ∗0 7→ ∗1, ∗00 7→ ∗00} is not consistent, because ∗0 and
∗00 are compatible, but ∗1 and ∗00 are not.

Lemma 24 (Expansion property of finitely generated maps). Let f̃1 and f̃2 be

consistent sets of Dn → D. If f̃1 ⊆ f̃2, then f̃1(v) ⊑ f̃2(v) for v ∈ Dn.

Proof. From f̃1 ⊆ f̃2 we immediately obtain f̃1[v] ⊆ f̃2[v]. Hence the assertion
follows. □

For x ⊑ y we have f̃ [x] ⊆ f̃ [y], thus we obtain that finitely generated maps are
monotone.
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Lemma 25 (Monotonicity of finitely generated maps). Finitely generated maps
are monotone w.r.t. ⊑. □

Remark. There are monotone, finitely generated maps which cannot be represented
by finite consistent sets. For example, the identity function from D to D is monotone
but cannot be represented by a finite consistent set.

Definition 26. For a consistent set f̃ , we define its length measures as a type 2
object as follows:

• Its 0-length is given as

l0(f̃) = max{l0(v), l0(w) | v 7→ w ∈ f̃} .

• The 1-length is given as 1 plus its arity:

l1(f̃) = ar(f̃) + 1 .

• The 2-length is given by its cardinality:

l2(f̃) = #f̃ .

Remark. As discussed before, the length of a consistent set f̃ , is bounded by l(f̃) =

O(l2(f̃) · l1(f̃) · l0(f̃)).

Definition 27 (Frame). A frame F is a partial, finite mapping of function symbols
f ∈ F \ B to consistent sets. We extend F to all f ∈ F \ B by setting F (f) = ⊥
for f /∈ B ∪ dom(F ), where ⊥ denotes the empty set ∅.

The set of frames is partially ordered by

F1 ⊑ F2 ⇐⇒ ∀f, F1(f) ⊆ F2(f) .

A frame F defines an evaluation F (f)(v) for f ∈ F and v ∈ Dar(f) as follows:

• If f ∈ B, let F (f)(v) = f(v)

• If f /∈ B and F (f) = f̃ , let F (f)(v) = f̃(v).

Observe that for f /∈ dom(F ) ∪ B, we have F (f) = ⊥, hence F (f)(v) = ⊥(v) = ∗.

Definition 28. For a frame F , we use the following length measures, treating
frames as type 3 objects:

• The 0-length of F is given by l0(F ) = max{l0(F (f)) | f ∈ dom(F )}.
• The 1-length of F is given by l1(F ) = max{ar(f) + 1 | f ∈ dom(F )}.
• The 2-length of F is given by l2(F ) = max{#F (f) | f ∈ dom(F )}.
• The 3-length of F is given by l3(F ) = l(dom(F )), where l(dom(F )) is the
sum of the lengths of the objects in dom(F ).

Remark. The length of F can be bounded by

l(F ) = O(l3(F ) · l2(F ) · l1(F ) · l0(F )) .

Definition 29 (Assignments). An assignment ρ is a partial, finite mapping from
variables X to approximate values in D. We extend assignments outside their
domain to ’∗’, i.e. ρ(x) = ∗ for x /∈ dom(ρ).

We extend the approximation order ⊑ to assignments pointwise:

ρ1 ⊑ ρ2 iff ∀x, ρ1(x) ⊑ ρ2(x) .
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With ρ[x 7→ v] we denote the assignment that behaves like ρ except that it
maps x to v:

ρ[x 7→ v](y) =

{
v : if y = x
ρ(y) : otherwise.

We apply assignments to generalized variables in the obvious way, e.g., ρ(si(x)) =
si(ρ(x)).

Definition 30. For assignment ρ we define the following measures, treating as-
signments as type 1 objects:

• The 0-length of ρ is given by l0(ρ) = max{l0(v) | v ∈ rng(ρ)}.
• The 1-length of ρ is given by l1(ρ) = l(dom(ρ)), where l(dom(ρ)) is the sum
of the lengths of the objects in dom(ρ).

Remark. Using the above measures, the length of ρ, l(ρ), can be bounded by

l(ρ) = O(l1(ρ) · l0(ρ)) .

Definition 31 (Evaluation). Let ρ be an assignment, F a frame, and t a term.
The evaluation JtKF,ρ of t under F, ρ is defined recursively as follows:

JxKF,ρ = ρ(x) for a variable x ∈ X ;
Jf(t1, . . . , tn)KF,ρ = F (f)(Jt1KF,ρ, . . . , JtnKF,ρ) .

Example. We have J0KF,ρ = 0, J1KF,ρ = 1, as well as Jf(t)KF,ρ = ∗ if f /∈ dom(F ).

We have the following immediate properties of evaluations.

Lemma 32. (1) JtKF,ρ ∈ D
(2) JtKF,ρ is monotone in F and ρ w.r.t. ⊑.

Proof. (1) follows immediately from the definition.
We prove (2) by induction on t, showing that for F ⊑ F ′ and ρ ⊑ ρ′,

JtKF,ρ ⊑ JtKF ′,ρ′ .

If t ≡ x, the assertion holds because ρ(x) ⊑ ρ′(x). If t ≡ f(t1, . . . , tn), we compute

Jf(t1, . . . , tn)KF,ρ = F (f)(Jt1KF,ρ, . . . , JtnKF,ρ)

⊑ F ′(f)(Jt1KF,ρ, . . . , JtnKF,ρ)

⊑ F ′(f)(Jt1KF ′,ρ′ , . . . , JtnKF ′,ρ′) = JtKF ′,ρ′ ,

where the first approximation uses the expansion property of finitely generated
maps, Lemma 24, and the second the induction hypothesis and monotonicity of
finitely generated maps, Lemma 25. □

Lemma 33. Let ρ be an assignment, F a frame, and t a term. Then

l0(JtKF,ρ) ≤ max(l0(ρ), l0(F )) + l(t) .

Proof. By induction on t. If t is a variable x, we have

l0(JtKF,ρ) = l0(ρ(x)) ≤ l0(ρ) .

If t is ϵ we compute l0(JtKF,ρ) = 1 = l(t). For t of the form si(t1) we have

l0(JtKF,ρ) = l0(si(Jt1KF,ρ)) = l0(Jt1KF,ρ) + 1

≤ max(l0(ρ), l0(F )) + l(t1) + 1 = max(l0(ρ), l0(F )) + l(t) .
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Finally, assume t is of the form f(t1, . . . , tn) with f /∈ B. Then we have
l0(JtKF,ρ) ≤ l0(F ). □

Lemma 34 (Substitution Lemma). Jt(u)KF,ρ = Jt(x)KF,ρ[x7→JuKF,ρ]

Proof. The proof is by induction on t. □

We close the section with examples for computing evaluations.

Example. Consider the symbol flip, denoting the unary bit-flipping function.

(1) Let F0 = ∅ be the empty frame, and ρ0 : x 7→ ∗0. Then Jflip(x)1KF0,ρ0
=

F0(flip)(∗0)1 = ∅(∗0)1 = ∗1.
(2) Let F1 = {flip : ∗00 7→ ∗1}, and ρ1 : x 7→ ∗. Then Jflip(x)1KF1,ρ1 =

F1(flip)(∗)1 = ∗1.
(3) Let F2 = {flip : ∗00 7→ ∗1,flip : ∗0 7→ ∗1}, and ρ0 as before. Then

Jflip(x)1KF2,ρ0
= F2(flip)(∗0)1 = ∗11 as now F2(flip)[∗0] = {∗1}.

(4) Let F3 = {flip : ∗00 7→ ∗1,flip : ∗0 7→ ∗1,flip : ∗00 7→ ∗11}. We can com-
pute F3(flip)(∗00) = ∗11 and F3(flip)(∗0) = ∗1, as well as F3(flip)(1) = ∗
and F3(flip)(1100) = ∗11.

5. Frames as Pre-Models

As frames will only provide restricted approximations to function evaluation,
we cannot expect to achieve JtKF,ρ = JuKF,ρ for equations t = u occurring in a
derivation D. Instead, we will show for a given derivation D, suitable frame F , and
equation t = u occurring in D, that there are frames F ′, F ′′ such that F ⊑ F ′, F ′′,
JtKF,ρ ⊑ JuKF ′,ρ and JuKF,ρ ⊑ JtKF ′′,ρ. The idea is that the derivation D gives an
“instruction” of how to build frames such F ′ and F ′′ from F . It then follows that
D cannot end in 0 = 1, because J0KF,ρ = 0 ̸⊑ 1 = J1KF,ρ.

For axioms t = u it suffices to demand JtKF,ρ ⊑ JuKF,ρ, as their property of being
nice implies that t will have the restricted form of a function symbol applied to
generalized variables, hence the converse can always be enforced by constructing
a larger frame F ′ such that JuKF,ρ ⊑ JtKF ′,ρ. Frames of this form will be called
pre-models.

Definition 35 (Pre-Model). A frame F is a pre-model of Ax iff for any t = u in
Ax and any assignment ρ, JtKF,ρ ⊑ JuKF,ρ.

Remark. As the notion of being a pre-model contains an unbounded quantification
over assignments, it is not readily expressed as a bounded formula. However, we
do not expect being a pre-model to be Π1-complete, as evaluations based on finite
frames can only produce finitely many different values. Instead of analyzing the
complexity of being a pre-model further, we will define below a more restricted
version which contains explicit bounds and can be directly used for reasoning in
bounded arithmetic.

Lemma 36. The empty frame is a pre-model of Ax.

Proof. Let F be the empty frame. Consider t = u in Ax, and assignment ρ.
Then t is of the form f(s) for some f in F \ B. We have F (f) = ⊥, hence
Jf(s)KF,ρ = ∗ ⊑ JuKF,ρ. □
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We restrict the notion of being a pre-model to obtain a bounded property. Let
κ be a positive integer, which is intended to bound the 0-length of approximations
occurring in frames and assignments that need to be considered in the definition
of pre-models. Furthermore, we restrict the definition to a finite set of axioms,
intended to represent those used in a given derivation D.

Definition 37 (κ-Pre-Model). Let Ax0 be a finite subset of Ax. A frame F is a
κ-pre-model of Ax0 iff l0(F ) ≤ κ, and for any t = u in Ax0 and any assignment ρ
with dom(ρ) ⊆ Var(Ax0) and l0(ρ) ≤ κ, we have JtKF,ρ ⊑ JuKF,ρ.

Remark. The notion of F being a κ-pre-model of Ax0 can be written as a Πb
1

formula.

We will now define the notion of updates that can be used to expand pre-
models based on Ax0 as defined above. In line with our previous discussion, let
l0(v1, . . . , vn) = max{l0(vi) : i = 1, . . . , n}.

Definition 38 (Updates). Let Ax0 be a finite subset of Ax, and F a κ-pre-model
of Ax0. An update based on F , κ and Ax0 is any f ∈ F \ B and generator v 7→ w,
which we denote as f : v 7→ w, such that l0(v, w) ≤ κ, and there exists t = u in Ax0
and an assignment ρ satisfying that

• t is of the form f(s),
• vi = ρ(si) for i ≤ ar(f),
• and w = JuKF,ρ.

With F ∗ f : v 7→ w we denote the frame F ′ given by

F ′(g) = F (g) if g ̸= f

F ′(f) = F (f) ∪ {v 7→ w}

The 0-length of f : v 7→ w, denoted l0(f : v 7→ w), is given by l0(v, w), its 1-
length, denoted l1(f : v 7→ w), by ar(f) + 1.

Remark. The arguments s to f above are generalized variables, as Ax is nice. Thus
ρ(si) is well-defined. Furthermore, for each si at most one variable can occur, and
such variables are distinct for different sj ’s as Ax is nice, as remarked before. Hence,
an update uniquely determines an axiom in Ax on which it is based.

Remark. The length l(f : v 7→ w) of update f : v 7→ w can be bounded by

l(f : v 7→ w) = O(l(f) · l1(f : v 7→ w) · l0(f : v 7→ w)) .

Remark. For F ′ = F ∗ f : v 7→ w we compute

• l0(F
′) = max{l0(F ), l0(v, w)},

• l1(F
′) = max{l1(F ), ar(f)}.

• l2(F
′) ≤ l2(F ) + 1,

• #(F ′) ≤ #(F ) + 1,

We now formulate and prove a crucial property of updates: They can be used
to extend κ-pre-models for Ax0.

Proposition 39 (S12). Let Ax0 be a finite subset of Ax, F a κ-pre-model of Ax0,
f : v 7→ w an update based on F , κ and Ax0, and F ′ = F ∗ f : v 7→ w. Then F ′ is
a κ-pre-model of Ax0.
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Proof. We argue in S12. Let the assumption of the proposition be given, and assume
that f : v 7→ w is given via t = u in Ax0 and assignment ρ, where t is of the form
f(s) and v = ρ(s). W.l.o.g., dom(ρ) = Var(t). We have l0(ρ) ≤ κ.

In order to show that F ′ = F ∗ f : v 7→ w is a κ-model for Ax0, it suffices to
show that

(1) F ′(f) is a consistent set, and
(2) for any t′ = u′ in Ax0, and any assignment ρ′ with l0(ρ

′) ≤ κ, we have
Jt′KF ′,ρ′ ⊑ Ju′KF ′,ρ′ .

For (1), consider v′ 7→ w′ ∈ F (f) such that v′△ v. Then there exists y such that
v, v′ ⊑ y and l0(y) ≤ κ – we can choose yi to be max⊑{vi, v′i}, hence l0(yi) ≤ κ
follows from assumption l0(vi), l0(v

′
i) ≤ κ. Choose ρ̂ with dom(ρ̂) = Var(t) such

that yi = ρ̂(si), which is possible since v ⊑ y. We observe that ρ ⊑ ρ̂ and that
l0(ρ̂) ≤ κ.

Let S be F (f)[y], that is

S = {w̃ | ∃ṽ, ṽ ⊑ y and ṽ 7→ w̃ ∈ F (f)} .

We have w′ ∈ S as v′ ⊑ y, hence

w′ ⊑ max⊑ S = F (f)(y) = JtKF,ρ̂ ⊑ JuKF,ρ̂

as F is a κ-pre-model of Ax0. Furthermore,

w = JuKF,ρ ⊑ JuKF,ρ̂

as ρ ⊑ ρ̂. Hence w△ w′ using Lemma 20.
For (2), let t′ = u′ be in Ax0 and ρ′ be an assignment with l0(ρ

′) ≤ κ. If t′ = u′

is not identical to t = u, then the assertion follows from F being a κ-pre-model of
Ax0: Ax being nice implies Jt′KF ′,ρ′ = Jt′KF,ρ′ in this case, hence

Jt′KF ′,ρ′ = Jt′KF,ρ′ ⊑ Ju′KF,ρ′ ⊑ Ju′KF ′,ρ′

as F is a κ-pre-model of Ax0, and F ⊑ F ′.
Now consider t′ = u′ being identical to t = u. Let yi be ρ′(si). If v ̸⊑ y, then

again Jt′KF ′,ρ′ = Jt′KF,ρ′ and the assertion follows from F being a κ-pre-model of
Ax0 as before.

So assume v ⊑ y. Let x be the list of variables occurring in t, then we have
ρ↾x ⊑ ρ′↾x. We compute

F ′(f)(y) = max⊑ F ′(f)[y] = max⊑({w} ∪ F (f)[y]) = max⊑{w,F (f)(y)} .

We consider w and F (f)(y) in turns: For F (f)(y) we have

F (f)(y) = JtKF,ρ′ ⊑ JuKF,ρ′

as F is a κ-pre-model of Ax0. In case of w we have,

w = JuKF,ρ = JuKF,ρ↾x ⊑ JuKF,ρ′↾x = JuKF,ρ′

using ρ↾x ⊑ ρ′↾x. Hence F ′(f)(y) ⊑ JuKF,ρ′ . Thus

JtKF ′,ρ′ = F ′(f)(y) ⊑ JuKF,ρ′ ⊑ JuKF ′,ρ′

as F ⊑ F ′. □

Definition 40. Let Ax0 be a finite subset of Ax, and F a κ-pre-model of Ax0. A
sequence of updates based on F , κ and Ax0 is a sequence σ of the form

⟨ f1 : v1 7→ w1 , . . . , fℓ : vℓ 7→ wℓ ⟩
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such that for

F0 := F

Fi+1 := Fi ∗ fi+1 : vi+1 7→ wi+1

we have that

fi+1 : vi+1 7→ wi+1 is an update based on Fi, κ and Ax0.

Let F ∗ σ denote Fℓ.
The 0-length of σ is given by

l0(σ) = max{l0(v1, w1), . . . , l0(vℓ, wℓ)} ,

its 1-length by

l1(σ) = max{ar(f1), . . . , ar(fℓ)}+ 1 .

The domain sequence length of σ, denoted dom-l(σ), is given as l(f1) + · · ·+ l(fℓ).

Remark. The length of σ, l(σ), can be bounded by

l(σ) = O(l1(σ) · l0(σ) · dom-l(σ)) .

Remark. For F ′ = F ∗ σ we compute

• l0(F
′) = max{l0(F ), l0(σ)},

• l1(F
′) = max{l1(F ), l1(σ)}.

• l2(F
′) ≤ l2(F ) + dom-l(σ),

• #(F ′) ≤ #(F ) + dom-l(σ),

Corollary 41 (S12). Assuming the notions given by the previous definition, all Fi’s
are κ-pre-models of Ax0, for i ≤ ℓ.

Proof. The proof is by induction on i ≤ ℓ using Proposition 39. □

We extend our example of the bit-flipping function from the previous section to
compute updates.

Example. The bit-flipping function flip can be defined by a set of nice axioms
Axflip:

{ flip(ϵ) = ϵ, flip(x0) = flip(x)1, flip(x1) = flip(x)0 } .

Let Ax0 be a finite subset of Axflip given by Ax0 = {flip(ϵ) = ϵ,flip(x0) =
flip(x)1}. Let κ a large enough integer.

(1) Let F0 = ∅ be the empty frame. flip : ∗00 7→ ∗1 is an update based on F0,
κ and Ax0, by virtue of ρ0 : x 7→ ∗0 and flip(x0) = flip(x)1 in Ax0, because
ρ0(x0) = ∗00 and Jflip(x)1KF0,ρ0

= ∗1.
(2) Let F1 = F0 ∗ flip : ∗00 7→ ∗1. flip : ∗0 7→ ∗1 is an update based on F1, κ

and Ax0, by virtue of ρ1 : x 7→ ∗ and flip(x0) = flip(x)1 in Ax0, because
ρ1(x0) = ∗0 and Jflip(x)1KF1,ρ1 = ∗1.

(3) Let F2 = F1 ∗ flip : ∗0 7→ ∗1. flip : ∗00 7→ ∗11 is an update based on
F2, κ and Ax0, by virtue of ρ0 and flip(x0) = flip(x)1 in Ax0, because
ρ0(x0) = ∗00 and Jflip(x)1KF2,ρ0

= ∗11.
We have that

σ = ⟨flip : ∗00 7→ ∗1,flip : ∗0 7→ ∗1,flip : ∗00 7→ ∗11⟩
is a sequence of updates based on F0, κ and Ax0.

https://doi.org/10.1017/jsl.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.6


ON PROVING CONSISTENCY OF EQUATIONAL THEORIES 17

6. Soundness in S22

We prove a soundness property for equational reasoning using approximation
semantics. The proof will be formalizable in S22. This will be improved in the
remaining sections to a proof formalizable in S12 by introducing an additional prop-
erty. To keep the exposition clearer, we first prove soundness based on the notions
introduced so far.

Theorem 42 (S22). Assume D ⊢ t = u is in Variable Normal Form (see Def-
inition 11). Let Ax0 consist of those axioms in Ax that occur as injective re-
namings in D. Let ρ be an assignment, and F a pre-model for Ax. Let κ be
max{l0(F ), l0(ρ)}+ l(D). Then there are sequences σ1 and σ2 of updates based on
F , κ and Ax0 such that

JtKF,ρ ⊑ JuKF ∗σ1,ρ

JuKF,ρ ⊑ JtKF ∗σ2,ρ

The idea behind the proof of this theorem is that each subtree in D extends a
given sequence of updates with further updates linked to the subtree so that the
desired approximation properties hold. The proof will proceed by induction on the
structure of the derivation tree. The reason that the considered size measures stay
appropriately bounded is because the induction hypothesis is used for immediate
subtrees, and used only once for each subtree.

To prove the previous theorem, we consider the following more general claim.

Claim 43 (S22). Let D be a derivation in Variable Normal Form. Let Ax0 consist
of those axioms in Ax that occur as injective renamings in D. Let F be a pre-model
for Ax, and let U be an integer larger than l0(F ) + l(D).

Let D0 ⊢ t = u be a sub-derivation of D. Let ρ be an assignment, and σ a
sequence of updates based on F , U , Ax0, satisfying

dom(ρ) ⊆ Var(D)
l0(ρ), l0(σ), l1(σ),dom-l(σ) ≤ U − l(D0)

Then there are sequences σ1 and σ2 of updates based on F , U , Ax0 with

l1(σi),dom-l(σi) ≤ l(D0)

l0(σi) ≤ max{l0(F ), l0(σ), l0(ρ)}+ l(D0)

such that

JtKF ′,ρ ⊑ JuKF ′ ∗σ1,ρ

JuKF ′,ρ ⊑ JtKF ′ ∗σ2,ρ

for F ′ = F ∗ σ.

The Theorem follows from the Claim by letting D0 = D, ρ as given, σ = ⟨⟩, and
U = max{l0(F ), l0(ρ)}+ l(D).

Proof of Claim 43. We argue in S22. Fix D, F , Ax0 and U as in the Claim. We
prove that for any D0, ρ, σ satisfying the conditions of the Claim, there are σ1

and σ2 satisfying the assertion of the Claim, by induction on l(D0). Thus this is
proven by logarithmic induction (LIND) on a Πb

2-property, which is available in S22
by Theorem 1.
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Let D0, ρ, σ be given, that are satisfying the conditions in the Claim. Let F ′ be
F ∗ σ. then F ′ is a U -pre-model of Ax0 by Corollary 41.

We now consider cases according to the last rule applied in D0. If that is the
Reflexivity Rule ⊢ t = t, we can choose σ1 = σ2 = ⟨⟩ to satisfy the assertion of
the Claim.

Axiom Rule: More interesting is the case of Axiom Rule ⊢ t = u with t = u an
injective renaming of an equation in Ax0. W.l.o.g. we can assume that t = u is in
Ax, as renamings of variables would make no difference to the following argument.
As Ax is nice, we have that t is of the form f(s) for some f ∈ F \B and generalized
variables s. Let vi be ρ(si) and w = JuKF ′,ρ. We compute l0(vi) ≤ l0(ρ) + 1 and,
using Lemma 33,

l0(w) ≤ max{l0(ρ), l0(F ′)}+ l(u) < max{l0(ρ), l0(F ), l0(σ)}+ l(D0) .

Let σ1 = ⟨⟩ and σ2 = ⟨f : v 7→ w⟩, then
l1(σi) ≤ ar(f) < l(D0) ,

dom-l(σi) ≤ l(f) < l(D0) , and

l0(σi) ≤ max{l0(σ), l0(ρ), l0(F )}+ l(D0) .

Furthermore, JtKF ′,ρ ⊑ JuKF ′,ρ as F ′ is a U -pre-model of Ax0, which proves the
assertion for σ1. For σ2, let F

′′ be F ′ ∗ σ2, then we have

JuKF ′,ρ = w ⊑ max⊑ F ′′(f)[v] = F ′′(f)(v)

= F ′′(f)(. . . , ρ(si), . . . ) = JtKF ′′,ρ .

Symmetry Rule: For the case of Symmetry Rule, let D1 be the sub-derivation
of D0 ending in u = t. By induction hypothesis we obtain σ′

1 and σ′
2 satisfying

the assertion for D1. By choosing σ1 = σ′
2 and σ2 = σ′

1 we immediately fulfill the
assertion for D0.

Transitivity Rule: If D0 ends with an application of the Transitivity Rule, it must
be of the form

D1

t = s
D2

s = u
t = u

By induction hypothesis applied to D1, ρ and σ, we obtain some σ1
1 satisfying

l1(σ
1
1),dom-l(σ1

1) ≤ l(D1) ,

l0(σ
1
1) ≤ max{l0(σ), l0(ρ), l0(F )}+ l(D1) , and

JtKF ′,ρ ⊑ JsKF 1
1 ,ρ

for F 1
1 = F ′ ∗ σ1

1 .

We compute

l1(σ ∗ σ1
1) ≤ max{l1(σ), l1(σ1

1)} ≤ U − l(D0) + l(D1) < U − l(D2)

dom-l(σ ∗ σ1
1) ≤ dom-l(σ) + dom-l(σ1

1) ≤ U − l(D0) + l(D1) < U − l(D2)

and

l0(σ ∗ σ1
1) ≤ max{l0(F ), l0(ρ), l0(σ)}+ l(D1)

≤ U − l(D0) + l(D1) < U − l(D2)
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because l(D0) > l(D1) + l(D2). Thus, we can apply i.h. to D2, ρ and σ ∗ σ1
1 ,

obtaining σ2
1 satisfying

l1(σ
2
1),dom-l(σ2

1) ≤ l(D2) ,

l0(σ
2
1) ≤ max{l0(ρ), l0(F ), l0(σ ∗ σ1

1)}+ l(D2) , and

JsKF 1
1 ,ρ
⊑ JuKF 1

1 ∗σ2
1 ,ρ

.

Let σ1 be σ1
1 :: σ2

1 , then we compute

l1(σ1) = max{l1(σ1
1), l1(σ

2
1)} ≤ l(D1) + l(D2) < l(D0)

dom-l(σ1) = dom-l(σ1
1) + dom-l(σ2

1) ≤ l(D1) + l(D2) < l(D0)

and

l0(σ1) = max{l0(σ1
1), l0(σ

2
1)}

≤ max{l0(σ1
1),max{l0(ρ), l0(F ), l0(σ :: σ1

1)}+ l(D2)}
= max{l0(ρ), l0(F ), l0(σ), l0(σ

1
1)}+ l(D2)

≤ max{l0(F ), l0(ρ), l0(σ)}+ l(D1) + l(D2)

< max{l0(F ), l0(ρ), l0(σ)}+ l(D0)

Furthermore, JtKF ′,ρ ⊑ JsKF 1
1 ,ρ
⊑ JuKF 1

1 ∗σ2
1 ,ρ

= JuKF ′ ∗σ1,ρ, because

F 1
1 ∗ σ2

1 = (F ′ ∗ σ1
1) ∗ σ2

1 = F ′ ∗ (σ1
1 :: σ2

1) = F ′ ∗ σ1

which proves the assertion for σ1. The construction for σ2 is similar, starting
with D2.

Compatibility Rule. In case of the last rule being the Compatibility Rule, D0

will have the form:

D1

t = u
s[t/x] = s[u/x]

Applying the i.h. to D1, ρ and σ, we obtain σ1 and σ2 satisfying the assertion
for D1. Let ρ

1
1 = ρ[x 7→ JtKF,ρ] and ρ21 = ρ[x 7→ JuKF ′ ∗σ1,ρ]. Then we have ρ11 ⊑ ρ21.

Employing the Substitution Lemma 34, we obtain

Js[t/x]KF ′,ρ = JsKF ′,ρ1
1
⊑ JsKF ′ ∗σ1,ρ2

1
= Js[u/x]KF ′ ∗σ1,ρ

which shows that σ1 also satisfies the assertion for D0. Similar for σ2 and D0.

Substitution Rule. If D0 ends in an application of Substitution, it will have the
following form:

D1

t = u
t[s/x] = u[s/x]

We only consider the case that x is occurring in t = u, the other case is trivial.
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Let ρ′ be ρ[x 7→ JsKF ′,ρ], then clearly dom(ρ′) ⊆ dom(ρ) ⊆ Var(D). Furthermore,
using Lemma 33, we obtain

l0(ρ
′) ≤ max{l0(ρ), l0(JsKF ′,ρ)}
≤ max{l0(ρ),max{l0(ρ), l0(F ′)}+ l(s)}
= max{l0(ρ), l0(F ′)}+ l(s)

= max{l0(ρ), l0(F ), l0(σ)}+ l(s)

hence

l0(ρ
′) ≤ U − l(D0) + l(s) < U − l(D1)

because

l(D0) = l(D1) + l(t[s/x] = u[s/x]) > l(D1) + l(s) .

Thus we can apply the i.h. to D1, ρ
′ and σ, obtaining σ1 and σ2 such that

l1(σi),dom-l(σi) ≤ l(D1) < l(D0)

and

l0(σi) ≤ max{l0(F ), l0(σ), l0(ρ
′)}+ l(D1)

≤ max{l0(F ), l0(σ), l0(ρ)}+ l(s) + l(D1)

< max{l0(F ), l0(σ), l0(ρ)}+ l(D0) .

Furthermore,

JtKF ′,ρ′ ⊑ JuKF ′ ∗σ1,ρ′ .

Now we can compute, employing the Substitution Lemma 34,

Jt[s/x]KF ′,ρ = JtKF ′,ρ′

⊑ JuKF ′ ∗σ1,ρ′ = JuKF ′ ∗σ1,ρ[x7→JsKF ′,ρ]

⊑ JuKF ′ ∗σ1,ρ[x 7→JsKF ′ ∗ σ1,ρ]
= Ju[s/x]KF ′ ∗σ1,ρ ,

which proves the assertion for σ1 and D0. Similar for σ2 and D0. □

Corollary 44. The consistency of PETS(Ax) is provable in S22.

Proof. We argue in S22. Assume for sake of contradiction, that D is a PETS(Ax)
derivation ending in 0 = 1. Using Proposition 12 we can assume that D is in
Variable Normal Form. Let Ax0 consist of those axioms in Ax that occur as injective
renamings in D. Let ρ be the empty assignment, and F be the empty pre-model
for Ax. Let κ = l(D). By the previous Theorem 42, there is a sequence σ1 of
updates based on F , κ and Ax0 such that

0 = J0KF,ρ ⊑ J1KF ∗σ1,ρ = 1

which is impossible. □

To finish this section, we apply the construction of the proof of Claim 43 to the
example derivation Dexp from Section 3.

Example. Consider the derivation Dexp of e(ϵ, a ⊕ b0) = ϵ from Section 3. Let
F0 = ∅ and ρ0 = ∅. We construct an update σ such that

ϵ = JϵKF0,ρ0
⊑ Je(ϵ, a⊕ b0)KF0 ∗σ,ρ0
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by following the proof of Claim 43. Hence, as we are considering the approximation
assertion from right to left in relation to the conclusion of Dexp, we also need to
traverse the derivation in the same order from right to left.

Starting from the right in Dexp, consider

Ax x3 ⊗ ϵ = ϵ
Su

e(ϵ, a⊕ b)⊗ ϵ = ϵ

For the application of substitution rule, we let

ρ1(x3) = Je(ϵ, a⊕ b)KF0,ρ0 = ∗ .

From the axiom we obtain the update σ1 = ⟨⊗ : (∗, ϵ) 7→ ϵ ⟩ and compute

Jx3 ⊗ ϵ)KF0 ∗σ1,ρ1 = ϵ ,

hence
Je(ϵ, a⊕ b)⊗ ϵ)KF0 ∗σ1,ρ0

= ϵ .

To continue in the derivation according to transitivity, consider

Ax
e(x2, y20) = e(x2, y2)⊗ x2

Su
e(ϵ, (a⊕ b)0) = e(ϵ, a⊕ b)⊗ ϵ

and define ρ2 via x2 7→ ϵ and y2 7→ Ja⊕ bKF0 ∗σ1,ρ0 = ∗ following substitution. The
axiom gives rise to an update e : (ϵ, ∗0) 7→ ϵ, as Je(x2, y2)⊗ x2KF0 ∗σ1,ρ2 = ϵ. Let
σ2 = ⟨⊗ : (∗, ϵ) 7→ ϵ, e : (ϵ, ∗0) 7→ ϵ ⟩, then

Je(ϵ, (a⊕ b)0))KF0 ∗σ2,ρ0
= ϵ .

Again continuing in the derivation to the left according to transitivity, consider

Ax
x1 ⊕ y10 = (x1 ⊕ y1)0

Su
a⊕ b0 = (a⊕ b)0

Co
e(ϵ, a⊕ b0) = e(ϵ, (a⊕ b)0)

From the application of composition and substitution rules, we let ρ3 be given by
x1 7→ JaKF0 ∗σ2,ρ0

= ∗ and y1 7→ JbKF0 ∗σ2,ρ0
= ∗. Then the axiom gives rise to an

update ⊕ : (∗, ∗0) 7→ ∗0 as J(x1 ⊕ y1)0KF0 ∗σ2,ρ3
= ∗0. Let

σ = ⟨ ⊗ : (∗, ϵ) 7→ ϵ, e : (ϵ, ∗0) 7→ ϵ, ⊕ : (∗, ∗0) 7→ ∗0 ⟩ ,

then Je(ϵ, a⊕ b0))KF0 ∗σ,ρ0
= ϵ.

7. Instructions and Frame Pre-Models

In this and the next section, we prove our main theorem in S12. The idea is
that the proof of Claim 43 follows a simple, explicit procedure to construct the
new update sequences σ1 and σ2, which can replace the existential quantifier of
the induction statement of Claim 43. In fact, the derivation from which the up-
date sequences are constructed, contains explicitly all information needed in the
constructions. We make this extraction explicit in this section, in form of so called
’instructions’. In the following Section 8, we will use instructions to transform the
statement and proof of Claim 43 into a similar statement and proof (in Claim 54),
where the proof now is in S12.

We start by naming the instructions that will be considered.
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Definition 45 (Instructions). We define a set of instructions and their length as
follows:

Axiom: A[t → u] and A[t ← u] are instructions, for any axiom t = u ∈ Ax.
Their length is l(t) + l(u) + 1.

Substitution: S↑[s, t/x] and S↓[s, t/x] are instructions, for terms s, t and
variable x. Their length is l(s) + l(t) + 1.

Sequences of instructions will be denoted with τ . With dom-l(τ) we denote the
sequence length of τ , that is the number of instructions occurring in τ . With l(τ)
we denote the length of τ given as the sum of lengths of instructions occurring in
them.

We now define the process of turning derivations into sequences of related in-
structions.

Definition 46. For a derivation D, we define sequences of instructions
−−→
InstD and←−−

InstD by recursion on D as follows.

Axiom Rule: If D is of the form

Ax t = u

let
−−→
InstD := ⟨A[t→ u]⟩
←−−
InstD := ⟨A[t← u]⟩ .

Reflexivity Rule: If D is of the form

Re t = t

let −−→
InstD :=

←−−
InstD := ⟨⟩ .

Symmetry Rule: Consider D of the form

D1

u = tSy
t = u

Let
−−→
InstD1

and
←−−
InstD1

be given by i.h., then define
−−→
InstD :=

←−−
InstD1

←−−
InstD :=

−−→
InstD1

.

Transitivity Rule: Consider D of the form

D1

t = s
D2

s = u
Tr t = u

Let
−−→
InstD1

,
←−−
InstD1

,
−−→
InstD2

and
←−−
InstD2

be given by i.h. Define
−−→
InstD :=

−−→
InstD1

::
−−→
InstD2

←−−
InstD :=

←−−
InstD2 ::

←−−
InstD1 .

Compatibility Rule: Consider D of the form

D1

t = u
Co

s[t/x] = s[u/x]
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Let
−−→
InstD1 and

←−−
InstD1 be given by i.h., then define

−−→
InstD :=

−−→
InstD1

←−−
InstD :=

←−−
InstD1

.

Substitution Rule: If D is of the form

D1

t = u
Su

t[s/x] = u[s/x]

then let

−−→
InstD := S↑[t, s/x] :

−−→
InstD1 : S↓[u, s/x]

←−−
InstD := S↑[u, s/x] :

←−−
InstD1

: S↓[t, s/x] .

Remark. We observe that l(
−−→
InstD) = l(

←−−
InstD) ≤ l(D).

We will now describe a process of evaluating terms using approximations along
sequences of instruction. We start with the most basic and also most interesting
step of the reverse direction of an axiom instruction.

For the remainder of this section, let κ and D be given. Let Ax0 consist of those
axioms in Ax that occur as injective renamings in D.

Definition 47. Let t = u be an axiom in Ax0, ρ an assignment, and F a κ-pre-
model of Ax0. Define Ψ(t← u, ⟨F, ρ⟩) to be f : v 7→ w satisfying

• t is of the form f(s) for some terms s;
• vi = ρ(si) for i ≤ ar(f);
• and w = JuKF,ρ.

For a sequence σ of updates based on F , κ and Ax0, let Ψ(t ← u, ⟨F, σ, ρ⟩) be
Ψ(t← u, ⟨F ∗ σ, ρ⟩).

Lemma 48. Let t = u be an axiom in Ax0, κ
′ a positive integer with κ′ ≤ κ− l(u),

ρ an assignment with l0(ρ) ≤ κ′, and F a κ-pre-model of Ax0 with l0(F ) ≤ κ′. Let
f : v 7→ w be given by Ψ(t← u, ⟨F, ρ⟩). Then f : v 7→ w is an update based on F , κ
and Ax0, satisfying that l0(v, w) ≤ κ′ + l(u) and

JuKF,ρ ⊑ JtKF∗f :v 7→w, ρ .

Proof. As Ax is nice, we have that t is of the form f(s) for some f ∈ F \ B and
generalized variables s (see Definition 7). Then vi = ρ(si) and w = JuKF,ρ. We
compute l0(vi) ≤ l0(ρ) + 1 ≤ κ′ + l(u) ≤ κ, and, using Lemma 33,

l0(w) ≤ max{l0(ρ), l0(F )}+ l(u) ≤ κ′ + l(u) ≤ κ

Hence, f : v 7→ w is an update based on F , κ and Ax0.
Furthermore, for F ′ = F ∗ f : v 7→ w, we have

JuKF,ρ = w ⊑ max⊑ F ′(f)[v] = F ′(f)(v)

= F ′(f)(. . . , ρ(si) . . . ) = JtKF ′,ρ .

□
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Definition 49. Let τ be a sequence of instructions, ρ an assignment, F a κ-
pre-model for Ax0, and σ a sequence of updates based on F , κ and Ax0. Let
α = ⟨F, σ, ρ⟩. We define Φ(τ, α) = ⟨F, σ′, ρ′⟩ by induction on τ :

If τ is the empty sequence, let Φ(⟨⟩, α) = α
Otherwise, τ is of the form τ ′ : I for some instruction I. Let ⟨F, σ′, ρ′⟩ = Φ(τ ′, α)

by i.h. We consider cases according to the form of I:

Axiom: For I = A[t→ u] let Φ(τ, α) = ⟨F, σ′, ρ′⟩.
For I = A[t← u] let ν = Ψ(t← u, ⟨F, σ′, ρ′⟩), and define

Φ(τ, α) = ⟨F, σ′ ∗ ν, ρ′⟩ .

Substitution: If I = S↑[t, s/x], let

Φ(τ, α) = ⟨F, σ′, ρ′[x 7→ JsKF∗σ′, ρ′ ]⟩ .

If I = S↓[t, s/x], let ρ′′ be ρ′ with x removed from its domain: ρ′′ =
ρ′ ↾dom(ρ′)\{x}. Then let

Φ(τ, α) = ⟨F, σ′, ρ′′⟩ .

Lemma 50. Let τ be a sequence of instructions for D, ρ an assignment, F a
κ-pre-model of Ax0, and σ a sequence of updates based on F, κ and Ax0, satisfying

max{l0(ρ), l0(F ), l0(σ)}+ l(τ) ≤ κ .

Let ⟨F, σ′, ρ′⟩ be Φ(τ, ⟨F, σ, ρ⟩). Then we have

(1) σ′ is a sequence of updates based on F , κ and Ax0;
(2) dom-l(σ′) ≤ dom-l(σ) + l(τ);
(3) l0(ρ

′), l0(σ
′) ≤ max{l0(ρ), l0(F ), l0(σ)}+ l(τ).

(4) l1(σ
′) ≤ l1(σ) + l(τ);

Proof. Assume τ = ⟨I1, . . . , Iℓ⟩. Let τi be the sequence consisting of the first i
elements in τ , for i = 0, . . . , ℓ. Let ⟨F, σi, ρi⟩ be Φ(τi, ⟨F, σ, ρ⟩). We can show by
induction on i that

(1) σi is a sequence of updates based on F , κ and Ax0;
(2) dom-l(σi) ≤ dom-l(σ) + l(τi);
(3) l0(ρi), l0(σi) ≤ max{l0(ρ), l0(F ), l0(σ)}+ l(τi).
(4) l1(σi) ≤ l1(σ) + l(τi);

For i = 0 there is nothing to show as σ0 = σ and ρ0 = ρ.
In the induction step from i to i+1 we have τi+1 = τi : I for some instruction I.

We consider cases according to I.
If I = A[t → u] or I = S↓[t, s/x], there is nothing to show as σi+1 = σi and

l0(ρi+1) ≤ l0(ρi).
In case I = S↑[t, s/x] we have σi+1 = σi and ρi+1 = ρi[x 7→ JsKF ∗σ,ρi

]. Thus
assertion (1) and (2) follow immediately from i.h. For assertion (3) we compute,
using Lemma 33,

l0(JsKF ∗σ,ρi
) ≤ max{l0(F ), l0(σi), l0(ρi)}+ l(s) .
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Hence, using i.h.

l0(ρi+1) ≤ max{l0(ρi), l0(JsKF ∗σ,ρi
)}

≤ max{l0(F ), l0(σi), l0(ρi)}+ l(s)

≤ max{l0(F ), l0(σ), l0(ρ)}+ l(τi) + l(s)

< max{l0(F ), l0(σ), l0(ρ)}+ l(τi+1) .

In case I = A[t ← u] we have ρi+1 = ρi. Let ν = Ψ(t ← u, ⟨F, σi, ρi⟩). By
Lemma 48 we obtain that ν is an update based on F , κ and D, and that

l0(ν) ≤ max{l0(F ), l0(σi), l0(ρi)}+ l(u) .

The former immediately implies assertion (1) for σi+1. The latter implies, using
i.h.

l0(σi+1) ≤ max{l0(σi), l0(ν)}
≤ max{l0(F ), l0(σi), l0(ρi)}+ l(u)

≤ max{l0(F ), l0(ρ), l0(σ)}+ l(τi) + l(u)

< max{l0(F ), l0(ρ), l0(σ)}+ l(τi+1) .

Thus assertion (3) follows.
For assertion (2) we compute using i.h.

dom-l(σi+1) = dom-l(σi) + l(Ii+1)

≤ dom-l(σ) + l(τi) + l(Ii+1) = dom-l(σ) + l(τi+1) .

For assertion (4) we compute using i.h.

l1(σi+1) = max{l1(σi), l1(ν)} ≤ l1(σ) + l(τi) + l(t) < l1(σ) + l(τi+1) .

□

Lemma 51. Consider τ = τ1 :: τ2. Then

Φ(τ, ⟨F, σ, ρ⟩) = Φ(τ2,Φ(τ1, ⟨F, σ, ρ⟩))

Proof. Immediate by induction on τ1. □

We finish this section by applying the construction of sequences of instructions
and their evaluation (Definitions 45, 46 47, 49) to the example derivation Dexp from
Section 3.

Example. To align to the application of the proof of Claim 43 the example derivation

Dexp from Section 3 as worked out at the end of Section 6, we compute
←−−
InstDexp as

defined in Definitions 45, 46.
Considering D1 given by

Ax x3 ⊗ ϵ = ϵ
Su

e(ϵ, a⊕ b)⊗ ϵ = ϵ

we compute
←−−
InstD1

as

⟨ S↑[ϵ, e(ϵ, a⊕ b)/x3], A[x3 ⊗ ϵ→ ϵ], S↓[x3 ⊗ ϵ, e(ϵ, a⊕ b)/x3] ⟩
To continue we consider D2 given by

Ax
e(x2, y20) = e(x2, y2)⊗ x2

Su
e(ϵ, (a⊕ b)0) = e(ϵ, a⊕ b)⊗ ϵ
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and compute
←−−
InstD2 as

⟨ S↑[e(ϵ, y2)⊗ ϵ, a⊕ b/y2], S↑[e(x2, y2)⊗ x2, ϵ/x2],

A[e(x2, y20)→ e(x2, y2)⊗ x2],

S↓[e(x2, y2)⊗ x2, ϵ/x2], S↓[e(ϵ, y2)⊗ ϵ, a⊕ b/y2] ⟩

Similarly, for derivation D3 given by

Ax
x1 ⊕ y10 = (x1 ⊕ y1)0

Su
a⊕ b0 = (a⊕ b)0

Co
e(ϵ, a⊕ b0) = e(ϵ, (a⊕ b)0)

we compute
←−−
InstD3

as

⟨ S↑[(a⊕ y1)0, b/y1], S↑[(x1 ⊕ y1)0, a/x1],

A[x1 ⊕ y10→ (x1 ⊕ y1)0],

S↓[(x1 ⊕ y1)0, a/x1], S↓[(a⊕ y1)0, b/y1] ⟩

As Dexp is formed from derivations D1, D2, D3 by applications of transitivity,

we obtain
←−−
InstDexp as

←−−
InstD1

::
←−−
InstD2

::
←−−
InstD3

.

Let α0 be ⟨∅, ∅, ∅⟩, then we can compute Φ(
←−−
InstDexp , α0) according to Defini-

tions 47 and 49: We have

Φ(⟨S↑[ϵ, e(ϵ, a⊕ b)/x3]⟩, α0) = ⟨∅, ∅, {x3 7→ ∗}⟩

as Je(ϵ, a⊕ b)K∅,∅ = ∗.
For A[x3 ⊗ ϵ→ ϵ] we consider

Ψ(x3 ⊗ ϵ→ ϵ, {x3 7→ ∗}) = ⊗ : (∗, ϵ) 7→ ϵ

hence

Φ(⟨ S↑[ϵ, e(ϵ, a⊕ b)/x3], A[x3 ⊗ ϵ→ ϵ], ⟩, α0)

= ⟨∅, ⟨⊗ : (∗, ϵ) 7→ ϵ⟩, {x3 7→ ∗}⟩ .

Hence

Φ(
←−−
InstD1

, α0) = ⟨∅, ⟨⊗ : (∗, ϵ) 7→ ϵ⟩, ∅⟩ .

Observe that this matches with the construction in the example at the end of
Section 6. Indeed, continuing the computation yields

Φ(
←−−
InstDexp , α0) = ⟨∅, σ, ∅⟩

for the same

σ = ⟨ ⊗ : (∗, ϵ) 7→ ϵ, e : (ϵ, ∗0) 7→ ϵ, ⊕ : (∗, ∗0) 7→ ∗0 ⟩

as computed at the end of Section 6. We will make use of this relation in the next
section.
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8. Soundness in S12

We are now in the position to prove a form of soundness of pure equational
reasoning in S12. As a reminder, BVar(D) denotes the set of variables occurring
in D that are bound by an application of substitution, see Definition 9.

Lemma 52. Let D be a derivation in Variable Normal Form (see Definition 11),

ρ an assignment such that dom(ρ) and BVar(D) are disjoint. Let τ be
−−→
InstD or

←−−
InstD, and let ⟨F, σ′, ρ′⟩ be Φ(τ, ⟨F, σ, ρ⟩). Then ρ′ = ρ.

Proof. By induction on D. We only consider the case for
−−→
InstD, the case of

←−−
InstD

will be similar. The only rule which changes ρ is an application of Substitution. In
this case, D will be of the form

D1

t = u
t[s/x] = u[s/x]

and
−−→
InstD has the form

S↑[t, s/x] :
−−→
InstD1

: S↓[u, s/x]

By assumption we obtain x /∈ dom(ρ) as x ∈ BVar(D). The i.h. shows that the

evaluation of
−−→
InstD1

does not change the assignment. Evaluating S↑[t, s/x] changes
ρ by mapping x to some value, while evaluating S↓[u, s/x] removes x from the
domain of the assignment. Hence, the resulting overall assignment will be ρ again.

□

The following theorem is a refinement of Theorem 42 in that the claimed exis-
tence of update sequences is replaced by an explicit computation based on instruc-
tion sequences extracted from the derivation.

Theorem 53 (S12). Let D be a derivation of t = u in Variable Normal Form. Let
Ax0 consist of those axioms in Ax that occur as injective renamings in D, ρ an
assignment with dom(ρ) ⊆ Var(t, u), and F a κ-pre-model for Ax0. Let σ1, σ2 be
given by

⟨F, σ1, ρ⟩ = Φ(
−−→
InstD, ⟨F, ⟨⟩, ρ⟩)

⟨F, σ2, ρ⟩ = Φ(
←−−
InstD, ⟨F, ⟨⟩, ρ⟩)

Then

JtKF,ρ ⊑ JuKF ∗σ1,ρ

JuKF,ρ ⊑ JtKF ∗σ2,ρ

Instead of proving the theorem directly, we prove the following stronger claim,
similar to Claim 43.

Claim 54 (S12). Let D be a derivation in Variable Normal Form. Let Ax0 consist of
those axioms in Ax that occur as injective renamings in D. Fix some κ-pre-model
F for Ax0, and some integer U such that l0(F ) + l(D) ≤ U . Let X = Var(D).
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Let D0 ⊢ t = u be a sub-derivation of D. Let ρ be an assignment, and σ a
sequence of updates based on F,U and Ax0 such that

dom(ρ) ⊆ X \ BVar(D0)

l0(ρ), l1(σ), l0(σ),dom-l(σ) ≤ U − l(D0)

Let σ1, σ2 be given by

⟨F, σ1, ρ⟩ = Φ(
−−→
InstD0

, ⟨F, σ, ρ⟩)

⟨F, σ2, ρ⟩ = Φ(
←−−
InstD0

, ⟨F, σ, ρ⟩)

Then

JtKF ∗σ,ρ ⊑ JuKF ∗σ1,ρ

JuKF ∗σ,ρ ⊑ JtKF ∗σ2,ρ .

Theorem 53 follows from Claim 54 by letting D0 = D, ρ as given, σ = ⟨⟩, and
U = max{l0(F ), l0(ρ)}+ l(D),

Proof of Claim 54. We argue in S12. Let D, F , κ, and X be given as in the Claim.
We prove that for any D0, ρ, σ, σ1 and σ2 satisfying the conditions of the Claim,
the assertion of the Claim holds, by induction on l(D0). Thus this is proven by
logarithmic induction (LIND) on a Πb

1-property, which is available in S12 by Theo-
rem 1.

We consider cases according to the last rule applied in D0. The details for each
case follow the same lines as in the proof of Claim 43, except that now σ1 and σ2

are not chosen but given by the Φ-function applied to sequences of instances that
are extracted from derivations. Details are left to the reader. □

Corollary 55. The consistency of PETS(Ax) is provable in S12.

Proof. We argue in S12. Assume D is a PETS(Ax) derivation ending in 0 = 1.
Using Proposition 12 we can assume that D is in Variable Normal Form. Let ρ be
the empty assignment, and F the empty pre-model for Ax. Let σ1 be given by

⟨F, σ1, ρ⟩ = Φ(
−−→
InstD, ⟨F, ⟨⟩, ρ⟩)

By the previous Theorem 53, we obtain

0 = J0KF,ρ ⊑ J1KF ∗σ1,ρ = 1

which is impossible. □
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