
An empirical generative framework for computational
modeling of language acquisition*

HEIDI R. WATERFALL

Department of Psychology, Cornell University and Department of Psychology,

University of Chicago

BEN SANDBANK

School of Computer Science, Tel Aviv University

LUCA ONNIS

Department of Second Language Studies, University of Hawaii

AND

SHIMON EDELMAN

Department of Psychology, Cornell University and Department of Brain

and Cognitive Engineering, Korea University

(Received 22 December 2008 – Revised 10 August 2009 – Accepted 24 December 2009)

ABSTRACT

This paper reports progress in developing a computer model of

language acquisition in the form of (1) a generative grammar that is (2)

algorithmically learnable from realistic corpus data, (3) viable in its

large-scale quantitative performance and (4) psychologically real. First,

we describe new algorithmic methods for unsupervised learning of

generative grammars fromrawCHILDESdata andgive an account of the

generative performance of the acquired grammars. Next, we summarize

findings from recent longitudinal and experimental work that suggests

how certain statistically prominent structural properties of child-directed

speech may facilitate language acquisition. We then present a series of

new analyses of CHILDES data indicating that the desired properties
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are indeed present in realistic child-directed speech corpora. Finally,

we suggest how our computational results, behavioral findings,

and corpus-based insights can be integrated into a next-generation

model aimed at meeting the four requirements of our modeling

framework.

INTRODUCTION AND OVERVIEW

Inpsycholinguistics, themain challenge is to discover the nature of grammar –

the knowledge of language as it is represented in the brain – subject to the

constraint that it be simpler than the corpus of linguistic experience from

which it is induced and which it in turn explains (Chomsky, 1957). A

concomitant challenge in developmental psycholinguistics and computational

linguistics is to discover the algorithms – precisely and exhaustively specified

computational procedures – through which grammar is constrained by the

learner’s innate biases and shaped by experience.

The conceptual framework for developmental computational

psycholinguistics adopted in this paper construes language acquisition by

infants as an interplay of (i) the information available in the regularities

in the corpus that the learner encounters as a part of its socially situated

experience and (ii) the probabilistic structure discovery algorithms charged

with processing that information. In the modeling of language acquisition,

work on algorithmic techniques for grammar induction has often advanced

independently of the traditional psycholinguistic characterization of the role

of corpus regularities in acquisition (e.g. Solan, Horn, Ruppin & Edelman,

2005). Consequently, one of our main goals in the present paper is to argue

for a greater integration of computational and behavioral developmental

psycholinguistics.

In this paper, we lay the foundation for a novel framework for modeling

language acquisition, which calls for the creation of (1) a fully generative

grammar that is (2) algorithmically learnable from realistic data, (3) that can

be tested quantifiably and (4) that is psychologically real. In the first section

of this paper, we motivate these four requirements. Second, we detail our

progress to date in creating algorithms that acquire a generative grammar

from corpora of child-directed speech. In particular, it outlines a new

algorithm for grammar induction, and states its performance in terms of

recall and precision. Third, we address the requirement of learnability from

realistic data and summarize recent findings from observational studies and

artificial language studies which examine variation sets, a highly informative

cue to language structure. In the fourth section, we offer an extensive

analysis of a large subset of the English CHILDES corpus in terms of

variation set structure. Finally, we discuss potential future research in

which our results could be integrated into a comprehensive computational
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model of language acquisition that would meet all four requirements stated

above.

The need for a generative grammar

Much of the effort in the computational modeling of language development

focuses on understanding specific phenomena, such as word segmentation

(e.g. Batchelder, 2002). More general and abstract work typically involves

computational models capable of learning certain classes of formal languages

generated by small artificial grammars (e.g. Christiansen & Chater, 2001;

Elman, Bates, Johnson, Karmiloff-Smith, Parisi & Plunkett, 1996). A

considerably more ambitious goal, and the only one commensurate with the

achievement inherent in language acquisition by human infants, is to develop

an algorithm capable of learning a grammar that is GENERATIVE of the target

language, given a realistic corpus of child-directed speech (normally

supplemented by a plethora of cues stemming from the embodiment and

social situatedness of language, which are outside the scope of the present

paper).

Formally, a grammar is generative of a language if it is capable of

producing all and only the acceptable sentences in it (Chomsky, 1957). The

growing realization in psycholinguistics that acceptability judgments offered

by subjects are better described as graded rather than all-or-none (e.g.

Schütze, 1996) is spurring an ongoing revision of the classic notion of

generativity. The emerging modified version requires that the grammar

reproduce the natural probability distribution over sentences in the linguistic

community (instead of a binary parameter that represents idealized

‘grammaticality’). This approach (e.g. Goldsmith, 2007) is compatible with

the standard practice in natural language processing (NLP, a branch of

artificial intelligence), where one of the goals of learning is to acquire a

probabilistic language model (e.g. Chater & Vitányi, 2007; Goodman, 2001;

other NLP tasks for which effective learning methods have been developed,

such as word sense disambiguation or anaphora resolution, are only

indirectly related to generativity and are therefore of less relevance to the

present project). A language model is a probability distribution over word

sequences (i.e. partial and complete utterances). Given a partial utterance,

a language model can be used to estimate the probabilities of all possible

successor words that may follow it. One family of such models that is

generative in the required sense is the Probabilistic Context Free Grammar

(PCFG), discussed later in this paper.

The need for a realistic corpus of language data

In order to integrate computational and behavioral approaches to language

acquisition, it is necessary to use a common corpus of recorded language
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that is natural enough to support valid psycholinguistic research and

extensive enough to afford automatic learning of grammar, the algorithms

for which tend to be data-hungry. A large and growing collection of corpora

that is getting better and better at meeting both requirements is freely

available from the CHILDES repository (MacWhinney & Snow, 1985;

MacWhinney, 2000).

The need for an empirical evaluation of the resulting grammar

As any other science, psycholinguistics is expected to garner empirical support

for the conceptual structures – in the present case, the grammar, whether

acquired algorithmically or constructed by hand – in terms of which it

attempts to explain its primary data. Good scientific practice requires,

therefore, that the following two questions be addressed: (1) How well does

the constructed or learned grammar perform? (2) Are the structures posited

by the grammar psychologically real?

Measuring the performance of a grammar

A grammar that has been induced from a corpus of language must be capable

of accepting novel utterances not previously encountered in that corpus;

moreover, any utterances that it generates must be acceptable to native

speakers of the language in question. (Here we intentionally gloss over the

distinction between acceptability and grammaticality.) This consideration

suggests that the generative performance of a grammar could be measured

by two figures: RECALL, defined as the proportion of unfamiliar sentences

that a parser based on the grammar accepts, and PRECISION, defined as the

proportion of novel sentences generated by the grammar that are deemed

acceptable by native-speaker subjects, preferably in a blind, controlled test

(Solan et al., 2005). These definitions of recall and precision are related but

not identical to those used in NLP (Klein & Manning, 2002). Specifically,

most acquisition-related work in NLP is concerned with learning manually

defined gold-standard tree structures and thus measures recall and precision

in terms of the proportion of correct constituent trees relative to such a

standard; in comparison, we focus on the acceptability of entire utterances.

Furthermore, we insist on excluding training utterances from this evaluation,

so as better to assess the innovative generative performance of the learned

grammars. Thus, our recall and precision figures tend to be more

conservative than those in the literature.

It is worth noting that neither high recall nor high precision suffices on its

own: it is trivially easy to construct a grammar that has recall of 1 (the

grammar should simply accept all possible sequences of words) or conversely

precision of 1 (the grammar should simply consist of the test corpus); the
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precision of the former grammar and the recall of the latter will be very poor.

A perfectly performing grammar will have both precision and recall of 1 on

a convincingly large, statistically representative test corpus. Furthermore,

as mentioned above, an ideal probabilistic language model associated with the

grammar that is under evaluation should approximate closely the probability

distribution over utterances that prevails in the language community (a

COMPLETE situated language model would be able to approximate the joint

probability over utterances and behavioral/social contexts).

Assessing the psychological reality of a grammar

A final requirement of an ideal probabilistic language model is that it should

be psychologically real. It is conceivable that a grammar for a particular

language could do well on all the dimensions of performance mentioned

above, and yet rely on structures (e.g. rewriting rules) that have no

counterpart in the brains of the speakers of that language (cf. Chomsky,

1995). Thus, if the goal of a study is to develop a cognitively valid model of

grammar rather than a descriptively adequate one, it is important to ask

whether the structures constituting a grammar have a grounding in

psychological (and, ultimately, neurobiological) reality.

The question of psychological reality applies not only to the structures

posited by a grammar but also to the mode of their acquisition and

subsequent use in processing language. We note that the grammars induced

by the algorithms mentioned later in this paper have not been vetted for

psychological reality, nor do we address issues of language processing. Insofar

as psychological reality is concerned, the purpose of the present paper is to

serve merely as an illustration of the feasibility of unsupervised learning of

high-performance generative grammars from realistic, unannotated corpus

data.

Effective learning of psychologically real grammars from naturalistic

corpus data

We now briefly summarize the main tenets of the proposed framework

for modeling language acquisition, which is still under construction: its

goal is to specify a grammar that is (1) fully generative, (2) algorithmically

learnable from realistic data, (3) quantifiably successful and (4) psycho-

logically real. In the rest of this paper, we describe working algorithms

capable of unsupervised grammar induction from raw CHILDES data,

which constitute significant progress in achieving the first three of these

objectives. We also describe a set of novel quantitative analyses of

CHILDES data that suggest how the new algorithmic techniques can be
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made to model language acquisition in children, thus laying the groundwork

for meeting objective #4.

ALGORITHMIC INDUCTION OF GENERATIVE GRAMMARS FROM

TRANSCRIBED CHILD-DIRECTED SPEECH DATA

In this section, we approach the problem of grammar induction from first

principles (motivated by the insights of Zellig Harris, 1954).

The task

Grammar induction algorithms typically assume that natural sentences are

generated from some well-defined probabilistic distribution (a common

assumption in the field of machine learning; cf. Valiant, 1984). The grammar

induction task is to infer the underlying sentence distribution from a

(potentially large) sample of sentences, called the training corpus. (All

grammar induction algorithms implemented to date treat sentences as

independent of each other, ignoring supra-sentential discourse structure.

As we show later in this paper, this assumption throws away valuable

information that can in principle be used to boost learning – such as variation

sets, which naturally occur in child-directed speech, described below.)

This inference would be impossible without assuming some restrictions

on the class of possible distributions of those sentences. Several such classes

have been studied in the past. The class that is important to us, which

seems to capture a substantial portion of natural language phenomena, is

PROBABILISTIC CONTEXT FREE GRAMMARS (PCFGs), a probabilistic extension

of the classic context free grammars. Most of the early work in this field

produced algorithms that were demonstrated to work only for very small

corpora generated by simple artificial grammars (e.g. Stolcke &

Omohundro, 1994; Wolff, 1988). More recently, proofs of convergence of

the learning algorithm to the correct grammar given certain constraints on

the training corpus were published for certain subclasses of PCFGs (e.g.

Adriaans, 2001; Clark, 2006).

Given the present framework’s focus on psychological reality, the

approaches to grammar acquisition that are of most interest to us are those

that work in a completely unsupervised fashion on completely unannotated

corpora – that is, algorithms that start with no explicit knowledge of

potential structures and no data beyond the raw text or transcribed speech.

Most existing algorithms for grammar induction have not been designed or

tested for operation that is realistic in that sense (e.g. the highly successful

algorithm ofKlein andManning (2002) learns structures from data annotated

for part of speech information). A most notable exception in this respect is

the Unsupervised Data-Oriented Parsing (U-DOP) algorithm developed by
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Bod (2009). The DOP approach uses the tree-substitution grammar

formalism, representing the structure of a novel sentence in terms of

probabilistically weighted structural analogies to trees gleaned from a

training corpus. In the unsupervised version, these trees are obtained by

simply listing all the possible binary tree descriptions of sentences in

the training corpus. As reported by Bod (2009), the U-DOP algorithm

performs well in the task of learning a grammar from CHILDES data

annotated with part of speech information, as assessed by comparing the

structures it induces to those from a hand-annotated gold-standard syntactic

parse of the corpus (its performance on raw CHILDES data is somewhat

lower). The resulting grammar has been shown capable of replicating a

number of syntactic phenomena long considered to be central to language

acquisition (Bod, 2009).

With the exception of U-DOP and the ADIOS algorithm (Solan et al.,

2005; see below), none of the previously published algorithms for grammar

acquisition were shown to scale up well to raw natural language corpora.

Furthermore, no published algorithm except ADIOS had its performance

assessed on the generativity dimensions of entire-sentence unseen-corpus

precision and recall for realistic corpora such as CHILDES. We describe

the ADIOS algorithm briefly in the next section.

The ADIOS algorithm

ADIOS (for Automatic Distillation Of Structure) is a fully unsupervised

algorithm for grammar inference from unannotated text data (Solan et al.,

2005). The ADIOS algorithm rests on two principles : (1) probabilistic

inference of pattern significance and (2) recursive construction of complex

patterns. ADIOS starts by representing a corpus of sentences as an initially

highly redundant directed graph, in which the vertices are the lexicon

entries and the paths correspond to corpus sentences.

The graph can be informally visualized as a tangle of sentences (i.e. paths)

that are partially segregated into bundles (i.e. two or more sentences

containing the same word or words). The bundle unravels when the sentences

diverge – that is, contain different words. In a given corpus, there will be

many bundles, with each sentence possibly participating in several. The

algorithm iteratively searches for SIGNIFICANT bundles (i.e. collocations)

using a simple context-sensitive probabilistic criterion defined in terms of

local flow quantities in the graph (cf. Solan et al., 2005). A distinctive feature

of ADIOS is that it only admits equivalence classes (e.g. lexical categories,

verb phrases, etc.) that appear inside statistically significant collocations.

The ADIOS graph is rewired every time a new pattern (collocation and/

or equivalence class) is detected, so that a bundle of element sequences

subsumed by it is represented by a single new vertex or node. Following
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the rewiring, which is specific to the context in which the pattern was

discovered, potentially far-apart symbols that used to straddle the newly

abstracted pattern become close neighbors. Patterns thus become

hierarchically structured in that their elements may be either terminals (i.e.

fully specified strings) or non-terminals (i.e. partially specified strings that

include some variables). The ability of new patterns and equivalence classes

to incorporate those added previously leads to the emergence of recursively

structured units that support generalization. Moreover, patterns may refer

to themselves, which opens the door for true recursion.

The main goal of the ADIOS project was to test the ability of

unsupervised grammar induction methods to learn from realistic large-scale

corpora. To that end, the ADIOS algorithm has been tested on corpora

generated by large artificial context-free grammars, as well as on natural

language corpora of moderate size, achieving impressive scores on the

precision (0.63) and recall measures (0.50) (on a portion of the English

CHILDES; comparable performance was achieved on the Mandarin

CHILDES corpora; cf. Brodsky, Waterfall & Edelman, 2007).

The ConText algorithm

ConText, a much simpler algorithm developed in response to ADIOS,

operates directly on the distributional statistics of the corpus and

characterizes words and phrases by the local linguistic contexts in which

they appeared. Distributional statistics, a major cue in language acquisition,

were also instrumental for the automatic acquisition of syntactic categories

(Redington, Chater & Finch, 1998), the grouping of nouns into semantic

categories (Pereira, Tishby & Lee, 1993), unsupervised parsing (Clark,

2001; Klein & Manning, 2002) and text classification (Baker & McCallum,

1998).

In ConText, the distributional statistics of a word or a sequence of words

(w) are determined by the surrounding words (i.e. local context). The width

of this local context, L, is a user-specified parameter, set in most of our

experiments to be two words on either side of w. To calculate the dis-

tributional statistics of w, ConText constructs its left and right context

vectors. For each L that appears in the corpus, there is a corresponding

coordinate in the left (right) context vector indicating how many times it

appears to the left (right) of w. The left and right context vectors are then

concatenated to form a single vector representation of the context distribution

of w. ConText constructs these context vectors for each word sequence that

occurs more than K times in the corpus, K being another user-specified

parameter.

Thus, like ADIOS, ConText aligns word sequences to perform

DISTRIBUTIONAL CLUSTERING of progressively more complex structures. Like
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ADIOS, this distributional clustering creates equivalence classes. The

distance between two word sequences is defined as the distance between

their corresponding vectors. Sequences that are closer than D (a user-

defined parameter) are viewed as equivalent and are clustered together. At

the end of the clustering procedure, sequences belonging to the same cluster

are assumed to be substitutable or equivalent.

In preliminary experiments, we found that choice of clustering procedure

made little or no difference in the performance of the algorithm. Therefore,

ConText uses the following simple clustering scheme. First, it selects a

sequence and iteratively compares it to subsequent sequences. Whenever

another sequence is found whose distance to the current one is smaller than

D, ConText adds it to the current cluster and removes it from the list of

sequences. If no such sequence is found, the current sequence is maintained

as a lexical item or string of lexical items. This process repeats until the list

of possible sequences is empty. The order of the sequences in the list was

also found to have little effect and so they are randomly ordered.

In contrast to the clustering procedure, the choice of distance metric did

alter the algorithm’s performance. During the development of ConText, we

empirically surveyed a number of measures commonly used in NLP (e.g.

Lee, 1999) on artificial corpora, and found that the angle between context

vectors provided the best results. This is the measure we use to assess recall

and precision, described below.

For each cluster found using the above procedure, a new non-terminal

symbol is introduced into the current grammar, along with rules that

rewrite it as each of the sequences in the cluster. All occurrences of these

sequences in the corpus are replaced with the non-terminal symbol. The

probabilities assigned to each of its rewrite rules correspond to the

frequencies of each of the corresponding sequences in the training corpus.

This process is repeated until no new clusters are formed.

A single iteration of the algorithm on a very simple corpus is demonstrated

in Figure 1. Figure 1(1) presents the initial grammar – that is, the sentences

that appear in the training corpus. Figure 1(2) shows two sequences that

appear at least three times in the corpus. For each sequence, the tokens to

its immediate left and right are presented. Lastly, Figure 1(3) displays the

new non-terminals and rewrite rules associated with each cluster, along with

their associated frequencies.

Performance of ConText on CHILDES: recall

Out of the large English CHILDES collection, we chose eight corpora

collected in relatively naturalistic settings (Bloom, 1970; 1973; Brown,

1973; Demuth, Culbertson & Alter, 2006; Hall, Nagy & Linn, 1984; Hall,

Nagy & Nottenburg, 1981; Hall & Tirre, 1979; Higginson 1985;
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MacWhinney, 1995; Sachs, 1983; Suppes, 1974). Together, these totaled

349,187 adult utterances, comprising 2,426,578 word tokens. The resulting

corpus was used for the present experiment in grammar induction, as well

as for a set of detailed analyses of its discourse structure (described below).

For this grammar induction experiment, the corpus was split into three

sets: a 300,000 sentence training set (203,405 unique sentences), a 15,000

sentence test set and a set of 34,000 sentences used for tuning the

parameters of the learning algorithm, as described below. Each utterance

in the corpus was regarded as a separate unit. Some utterances correspond

to complete sentences (e.g. Mommy’s tired, honey) and some to noun

phrases, etc. (e.g. the red ball). The test set did not include any of the

sentences in the training set and was used to calculate the resulting

grammar’s recall.

(2) (1)  S → The girl likes to play # 0.16 

S → The boy hates to run # 0.16 

S → A girl hates to play # 0.16 

S → A boy likes to run # 0.16 

S → A girl hates to run # 0.16 

S → The boy likes to play # 0.16 

(3) S → D A B to C # 1.0 

A → girl 0.5 

A → boy 0.5 

B → hates 0.5 

B → likes 0.5 

C → run 0.5 

C → play 0.5 

D → A 0.5 

D → The 0.5 

likes

hatesA

The girl

likes

hatesA

The boy

Fig. 1. Sample ConText grammar of a miniature artificial language. (1) The grammar is
initially capable of reproducing only the sentences in the input. (2) The algorithm clusters
sequences based on their distributional properties. (3) The final grammar consists of rewrite
rules with their associated probabilities.
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As noted above, ConText has two main parameters influencing its

operation: K, the minimum number of times sequences must appear in the

training corpus in order to participate in clusters, and D, the maximum

distance between two sequences that can still be clustered together. Pilot

data indicated thatK has little influence on the performance of the algorithm,

as long as it is not set too high. For the present study, we set it to 50.

However, the algorithm is sensitive to the value of the parameter D, which

provides a means to trade off between recall and precision: the higher D is,

the more the algorithm generalizes – hence, the higher the recall of the

resulting grammar and the lower its precision. To choose a working value

for D, we conducted several runs of the algorithm, each with a different

value of D, starting from 0.3 and moving up to 0.7 in 0.05 increments. After

each run, we informally assessed the resulting grammar’s precision on 100

generated sentences (a final assessment of precision using judgments

provided by human subjects is described later). The highest value for D

that still yielded a precision level above 0.5 was selected. This was attained

for D=0.65. (For further details on the effects of parameter settings on the

performance of ConText, see the Appendix.)

The initial grammar, prior to learning, contained a single non-terminal

‘S’ and 203,405 rewrite rules, one for each unique sentence in the training

set. Hence, this grammar could produce all of the sentences in the training

set, and none other. After learning, using the final settings for K and D

reported above, the non-terminal ‘S’ participated in 169,228 rewrite rules,

including 1,202 equivalence classes (e.g. noun phrases, verb phrases, etc.).

Thus, ConText meets our requirement that the grammar derived from the

data be simpler than the corpus itself : the total size of the grammar reflected

a compression (i.e. generalization) of roughly 17% of the original corpus.

Note that this grammar contains a large number of rewrite rules, compared

to the textbook notions of syntax (but not when compared to the grammar

learned by U-DOP from comparable data; cf. Bod, 2009). This may result

from several causes. First, the 0.22 recall suggests that learning uncovered

only a small proportion of the structural regularities present in the corpus.

A more sophisticated approach to learning (e.g. one that uses discourse

structure found in natural caregiver–child interactions, as suggested in later

sections) applied to larger training corporamay lead to smaller final grammars.

Second, it is possible that the PCFG formalism does not capture well the

regularities inherent in language (e.g. Joshi & Schabes, 1997).

Figure 2 provides some examples of equivalence classes inferred by

ConText from CHILDES corpora. The figure reveals that ConText is

sensitive to both syntactic distributions (i.e. word classes), but also,

indirectly, towordmeanings.Thus, drink and eat are clustered together under

the equivalence class E32 because of their highly similar local contexts (L),

but other verbs are not. Similarly, equivalence class E23 can be rewritten as
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a number of positive adjectives, but not other adjectives. The equivalence

class E15 seems to be an exception to this, clustering together a wide variety

of nouns without an obvious semantic relationship. Higher-level equivalence

classes provide a glimpse of the grammatical structure inferred by ConText.

Some of those correspond to classical syntactic constituents (e.g. E943, of

which only a small portion is shown, roughly corresponds to NP, complete

with an optional adjective preceding the noun). Note also that at this level

of generalization, the semantic similarity between the nouns is far less

pronounced than at lower levels. Some equivalence classes, such as E89,

correctly classify multiword sequences as substitutable, yet treat the

sequence as an unanalyzable whole, without inferring its internal structure.

Rule  Equivalence classes 

E11 →  we | well we 

E15 →  bowl | refrigerator | oven | house |  

    mirror | country | corner | sky |  

    basket | living room | kitchen | barn | 

    bath tub | snow | closet | carriage | 

    world | box | bag | bedroom | car | sink  

    air | water | movie | forest | sand | drawer 

E18 →  am I | is he | is she | were you |

    were they | are you | are they 

E23 →  wonderful | neat | great | good 

E32 →  eat | drink 

E68 →  warm | hot | cold 

E89 →   to the bath room | to the store | 

    to bed | to sleep 

E103 →  choo | choo choo | choo choo choo 

E104 →  hold on | listen 

E943 → the boy | your little girl | santa-claus … 

Fig. 2. Sample ConText equivalence classes. The grammar generates new sentences by
selecting elements chosen from equivalence classes and putting them into novel contexts.
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This is probably because this multiword phrase is idiomatic in the training

corpus. While a more thorough syntactic analysis is possible, it is not

warranted by the corpus in the sense that other syntactically plausible

variants (e.g. to the bedroom) do not appear.

Lastly, we note that many equivalence classes seem to cross traditional

constituent boundaries. This is not surprising, as ConText was not designed

with the purpose of inferring constituent boundaries as such. Indeed, in

order to optimize its ability to infer a highly generative grammar, we elected

not to use a constituency test. Although previous work suggests that such a

criterion is beneficial when using distributed clustering for unsupervised

parsing (Clark, 2001; Klein & Manning, 2001), we have found that using

such a criterion severely interferes with the resulting grammar’s generative

capacity, which was our goal here.

Performance of ConText on CHILDES: precision

To estimate the precision performance of the grammar learned by ConText,

we asked participants to judge the acceptability of 100 sentences generated

by ConText, mixed randomly with 100 sentences from the CHILDES

corpus.

Participants. Fourteen students, all native speakers of English at the

University of Hawaii, were paid $5.

Methods. Participants were asked to rate, on a scale from 1 to 7 (7 being

perfectly plausible), how likely each target utterance was to appear in normal

child-directed speech. We used the R procedure LMER (e.g. Baayen, 2006) to

fit a mixed-effects linear model to the ratings produced by participants, with

Subject and Item as random effects and Source (CHILDES/ConText) and

Phrase Length as fixed effects. Phrases up to ten words long were included

in the analysis (beyond that length, the data were very sparse).

Results. The Source effect was significant at p<0.033; the interaction

between Source and Phrase Length was highly significant at p<0.0001 (all

significance estimates were obtained by the MCMC procedure; Baayen,

2006). The original CHILDES sentences were better on average (6.12 on a

scale of 1–7, SD=1.64) compared to ConText (4.99, SD=2.30) (see

Figure 3). This is especially true for longer phrases – our results suggest

that speakers’ judgments of ConText sentences were similar to those for

CHILDES sentences for Phrase Length between 1 and 6, beyond this

ConText increasingly often failed to generate grammatical utterances.

Grammar induction: concluding remarks

We have presented two grammar induction algorithms and demonstrated

their usefulness for inferring a generative grammar for English given a
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corpus of child-directed speech. ConText, by far the simpler of the two,

was developed to overcome the shortcomings of its predecessor, and

was demonstrated to outperform it on a variety of corpora. On the subset

of CHILDES that we studied, the performance of the two algorithms

seems comparable. We believe that in order to achieve qualitative

improvements in grammar induction performance, statistical cues present

in child-directed speech but not currently utilized by the existing

algorithms, such as temporal ordering of sentences, will have to be used.

For example, ConText and ADIOS both have access to the entire corpus

when making clustering decisions. Taking advantage of context-local

discourse structure such as variation sets (described below) could lead to the

development of algorithms that are incremental and therefore more

psychologically real.

VARIATION SETS AND LEARNABILITY

Having summarized the findings of two algorithms that apply alignment and

comparison to child-directed speech, we now describe observational and

experimental studies relevant to our goal of developing more realistic

algorithms for grammar induction. Specifically, we examine a property of

spontaneous caregiver speech – the use of VARIATION SETS – and its

implications for both language acquisition and language-learning

algorithms. Variation sets are clusters of caregiver utterances occurring
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Fig. 3. Mean plausibility ratings plotted against utterance length for a sample of 100
caregiver utterances (CHILDES) and 100 utterances generated by a ConText-learned
grammar. Error bars denote 95% confidence intervals.
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within a conversational turn that share some (but not all) lexical items and

structures:

(1) Mother 12, talking to her child aged 1;2, pushing dolls in a stroller :

You got to push them to school.

Push them.

Push them to school.

Take them to school.

You got to take them to school.

These adjacent utterances in caregiver input exhibit some of the properties

that could be used by the processes of language structure induction outlined

by Harris (1954) – namely, the ALIGNMENT of repeated parts of the utterances

(e.g. you got to; push them, take them, to school), which in turn may facilitate

the COMPARISON of those utterances. These naturally occurring groupings of

related utterances are a well-known property of how parents talk to young

children, yet they have received relatively little attention. Waterfall (2006;

submitted) was the first to investigate variation sets longitudinally and their

relation to child language. Here, we summarize the relevant results of those

observational studies and briefly discuss the results of subsequent artificial

language studies that also investigate variation sets (Onnis, Waterfall &

Edelman, 2008).

Previous research on variation sets

The presence of partial repetitions/overlapping utterances in caregiver

speech to young children has been known for quite some time (e.g. Brown,

Cazden & Bellugi, 1969). These types of utterances have also been found to

be relatively common in child-directed speech: roughly 20 percent of

utterances in caregiver speech are in variation sets (e.g. Küntay & Slobin,

1996; Waterfall 2006; submitted). Variation sets, which involve a care-

giver’s partial self-repetitions, are to be distinguished from caregiver–child

interaction, where the caregiver expands, repeats or corrects a previous

child utterance (e.g. Sokolov 1993; Stine & Bohannon, 1983). That type of

interaction, while important for language acquisition, typically involves

older children (e.g. Sokolov 1993; Stine & Bohannon, 1983). Variation sets,

however, occur in caregiver speech before the child starts speaking (e.g.

Waterfall, 2006) and their study thus complements previous expansion

research. Moreover, while expansions are necessarily related to child speech,

caregivers can use structures in variation sets that the child has yet to produce

and thusmay lead child production of those structures (Waterfall, submitted).

Similar to caregiver expansions, variation sets change over time: the

proportion of speech in variation sets decreases as children age (Waterfall,

2006; submitted), and this decrease may be related to the rise in

caregiver–child expansion interactions.
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Partial self-repetitions in the speech of parents may be important in

language development, although previous studies of partial repetitions

typically also include expansions. Nelson (1977) experimentally manipulated

input to toddlers by increasing the number of partial repetitions of adult

utterances and expansions. This kind of input had a positive effect on

children’s production of questions with inverted auxiliaries. Hoff-Ginsberg

(1985) found that alternations in maternal self-repetitions and expansions

that conformed to major constituent boundaries were related to growth in

children’s verb use while those repetitions and expansions that altered

material within a phrasal constituent aided noun phrase growth. Later

studies confirmed that the frequency of self-repetitions and expansions was

positively correlated with verb phrase development (e.g. Hoff-Ginsberg,

1990).

Although many researchers have noted the presence of partial repetitions

in caregiver speech, Küntay & Slobin (1996) were the first to systematically

examine the real-time ordering of these overlapping utterances, introducing

the term ‘variation sets’ in their study of child-directed speech in Turkish.

They hypothesized that variation sets may be useful to children for ac-

quiring verbs and verb subcategorization frames. Waterfall (2006; submit-

ted) investigated variation sets in English-speaking caregiver–child dyads,

exploring these hypotheses.

Waterfall (2006; submitted) examined longitudinal use of variation sets

by caregivers and their relation to children’s development of vocabulary and

syntax. The speech of twelve English-speaking caregiver–child dyads was

analyzed, starting when the children were 1;2 and continuing to 2;6.

Families were controlled for child birth order (six first-borns), child gender

(six girls) and maternal educational level (four high-school graduates, four

college graduates and four mothers with graduate degrees). Families were

visited every four months for a total of five observations. Dyads were

observed interacting naturally in their homes for 90 minutes.

When caregiver and child speech from the same observation was

analyzed, Waterfall (2006; submitted) found that more of children’s noun

and verb types were related to variation sets than to ordinary child-directed

speech, even when the frequency of the lexical items themselves was

accounted for. Thus, variation sets seem to be related to contemporaneous

child speech. When caregiver speech from earlier observations was compared

to child speech at later observations, caregiver verb use from earlier variation

sets was significantly correlated with later child production of verbs,

indicating that variation sets are predictive of child verb production. Further,

caregivers’ earlier variation of certain syntactic structures in variation sets

(e.g. syntactic subjects and direct objects) was predictive of later child

production of those structures. These findings suggest that variation sets

not only contribute to the acquisition of specific lexical items, but may also
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facilitate the acquisition of lexical classes as well as larger syntactic

structures.

Lastly, Onnis, Waterfall & Edelman (2008) investigated the role of

variation sets in acquisition by manipulating their distribution in two

artificial language experiments with adults. In each experiment, there were

two conditions: a VarSet condition in which 20 percent of the data were

presented in variation sets – a proportion based on observational data

(Waterfall 2006; submitted); and a Scrambled condition in which there

were no adjacent utterances with lexical overlap. In both conditions,

participants received the exact same input: only the order of presentation

differed. In Experiment 1, when given a forced-choice task, participants in

the VarSet condition identified words more successfully than participants in

the Scrambled condition. In Experiment 2, when given a forced-choice task,

participants in the VarSet condition were more successful at identifying

phrases than those in the Scrambled condition. While not directly

comparable to child language acquisition, these experiments suggest that

variation sets may aid the acquisition of words and multiword phrases.

The results of the observational and artificial language studies seem

to suggest that Harris’ initial suppositions on the role of alignment and

comparison – the two key computational operations behind both the

ADIOS and the ConText algorithms – were not only correct in the abstract

context of grammar discovery but also applicable to everyday interactions

between caregivers and children. Below, we support this conclusion by

conducting a large-scale statistical analysis of variation set structure in select

English CHILDES corpora.

STATISTICAL CUES TO STRUCTURE AVAILABLE IN TRANSCRIBED

CHILD-DIRECTED SPEECH

Computational definition of variation sets

Variation sets can be defined according to contextual and linguistic criteria

as well as computational criteria. Few computational studies have examined

variation sets to date (Brodsky et al., 2007; Sokolov & MacWhinney 1990).

Brodsky et al. (2007) proposed the following definition: a variation set is

a contiguous sequence of utterances produced by a single speaker in a

conversation and each successive pair of utterances has a lexical overlap of

at least one element (excluding a few highly frequent words and clitics: a,

an, the, ’ll ’m, ’re, ’s, ’t, ’ve, um). According to this definition there is no

need for the same word to appear in each of the member utterances in a

variation set. Although this computational definition differs from the one

employed by Waterfall (2006; submitted), the resulting percentage of

utterances in variation sets in the present large-scale corpus study (about 20

percent) was similar.
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The above definition of variation set may be extended by allowing for

intervening utterances (or ‘gaps’) between utterances sharing a lexical item.

Later in this section, we state the results for values of gap ranging from 0

(strictly adjacent utterances) to 2 (up to two intervening utterances).

Optimal variation

Computational work to date has focused on exploring broad characteristics

of variation sets (e.g. Brodsky et al., 2007), in particular the (dis)similarity

between utterances within variation sets in terms of the Levenshtein (edit)

distance (Ristad & Yianilos, 1998). The edit distance between two sentences

is defined as the number of elementary edit operations (insertion, deletion

or substitution of individual words) needed to transform one sentence into

the other. Brodsky et al. (2007) found that the Levenshtein edit distance

was significantly smaller for utterances in variation sets than for adjacent

utterances not in variation sets. In addition, variation sets were analyzed for

their information value – that is, the amount of structure that could be

determined by analyzing a pair of sentences. Completely non-overlapping

utterances or exact repetitions are not informative: there is nothing to

compare or contrast. In contrast, a pair of utterances that combines some

repetition with some change can be informative. The authors found that

variation set use by caregivers in the Waterfall corpus (2006; submitted)

was correlated with child vocabularies and that those variation sets with a

novelty value of 0.487 (defined in information-theoretic terms) were the

most strongly correlated with child vocabularies. This suggests that those

variation sets where roughly 50 percent of the material changes may be

optimally informative for children.

Variation sets in CHILDES

Using the above definition of variation sets, we conducted a set of novel

analyses of caregiver speech from the CHILDES database. We chose the

same eight naturalistic corpora selected for the ConText experiments

(Bloom, 1970; 1973; Brown, 1973; Demuth et al., 2006; Hall et al., 1984;

Hall et al., 1981; Hall & Tirre, 1979; Higginson, 1985; MacWhinney, 1995;

Sachs, 1983; Suppes, 1974). We calculated the proportion of caregiver

speech in variation sets and the average length of variation sets (in utterances).

We then performed two sets of structural analyses on variation sets. The

first set of analyses seeks to determine characteristics of variation sets

derived from the data – namely, the most frequent bi-grams and tri-grams

(i.e. two- and three-word sequences) in variation sets and their position

within utterances. The second set of analyses seeks to determine whether

or not variation sets are informative with respect to specific linguistic

phenomena (i.e. dative alternation and clausal complementation).
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Methods: statistical properties of variation sets and analysis of most frequent

n-grams. We first identified all the variation sets in caregiver speech for

our corpora and computed five principal statistics : (1) the proportion

of utterances in variation sets; (2) the proportion of word types in variation

sets; (3) the average length of variation sets; (4) the Levenshtein edit

distances for utterances in variation sets; and (5) the significance of

utterances in variations – that is, the probability of chance alignment.

The search for variation sets was controlled by two parameters: (1) the

maximum allowed gap between successive utterances with partial lexical

overlap, which ranged from 0 (no intervening lexically unrelated utterance)

to 2 (at most two intervening lexically unrelated utterances) ; and (2) the

number of lexical items (i.e. the length of the n-gram) shared by the pair of

utterances under consideration, which ranged from 1 (a single shared word)

to 6 (six words in the same order but possibly with intervening unrelated

words).

We then used the resulting variation set to identify the most frequent

lexical bi-grams and tri-grams and the position of the bi- and tri-grams in

the utterance. We also sampled a random 110 utterances for each of the five

most frequent n-grams and determined the part of speech for the immediately

following word. Note that as this is a preliminary investigation, we did not

examine whether the prevalence of variation sets changed with child age or

whether the prevalence changed from corpus to corpus.

Results: statistical properties of variation sets. Figure 4 presents the results

of the first four principal statistics of variation sets – the proportion of

utterances in variation sets; the proportion of word types in variation sets;

the average length of variation sets; and the Levenshtein edit distances for

utterances in variation sets. The percentage of utterances in variation sets is

reported in Figure 4a for values of gap=0, 1, 2 and values of n-gram n=1,

2, 3, 4, 5, 6. For n-gram n=1 (a single lexical item in common), the

percentage of utterances in variation sets ranges from 50.8% for gap=0 (no

intervening unrelated utterances) to 82.5% for gap=2 (up to 2 intervening

utterances in the middle of a variation set). For two-word variation sets

(n-gram n=2) and gap=0, the figure is 21.3%, which is very close to that

reported by previous studies (e.g. Küntay & Slobin, 1996; Waterfall 2006;

submitted). Increasing n-gram length resulted in progressively smaller

proportions of variation sets.

We found that the word types that define variation sets are far from rare

(Figure 4b). For all values of gap tested (0, 1, 2), the proportion of word

types (relative to the total number of word types in caregiver speech) ranges

from about 33% for n-gram n=1 (single-word overlap) to about 10% for

n-gram n=6 (six-word overlap). Thus, for the most common variation sets,

between one-quarter and one-third of all word types serve as anchors in a

variation set.
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Fig. 4. Four prinicipal statistics for variation sets. (4a) Percentage of caregiver utterances
in variation sets in the CHILDES corpora. (4b) Percentage of word types in variation sets
the CHILDES corpora. (4c) Mean variation set length in the CHILDES corpora (in
utterances). (4d) Mean variation set diameter (in terms of Levenshtein distance normalized
to 1) in the CHILDES corpora. For 4a–d, we report six values of n-gram n overlap and three
values of allowed intervening unrelated utterances (gap).
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With n-gram set to 2, the mean length of a variation set in utterances

ranged from 2.33 (SD=0.004) for gap=0 to 3.72 (SD=0.032) for gap=2

(for the full range of data for gap=0, 1, 2 and n-gram n=1, 2, 3, 4, 5, 6, see

Figure 4c). The first of these figures is similar to that of Waterfall (2006;

submitted), who found that caregiver speech variation sets were on average

2.24 utterances long (SD=0.13).

We also identified the diameter of variation sets, which we quantified in

terms of normalized Levenshtein distance (Ristad & Yianilos, 1998). To

allow comparison of edit distance across sentences of different lengths, we

normalized it by dividing the raw edit distance by the length of the longest

of the two sequences, which brings it into the range between 0 and 1. For

the present corpus, with n-gram n=2 and gap=0, we found that the average

diameter of a variation set in terms of normalized edit distance was 0.703

(SD=0.001). Not surprisingly, for higher-overlap variation sets the diameter

shrank, to 0.376 (SD=0.006) for n-gram n=6 and gap=0 (see Figure 4d).

Lastly, to assure safe generalization, any corpus-based inference about

structure entertained by the learning algorithm needs to pass a test of

statistical significance (Edelman & Waterfall, 2007). Given a variation set,

the null hypothesis is that of a chance partial alignment of utterances (Onnis

et al., 2008). The learner may test the null hypothesis by comparing the

distance between the utterances participating in a variation set to a baseline

value – e.g. the cumulative average dissimilarity for the corpus at hand.

Figure 5 provides a sample analysis of the data on which such a test could

be based: a plot of edit distances between successive sentences in the

beginning of our corpus (the first 400 utterances). Specifically, the figure

plots edit distances dn between successive utterances (n and n+1) in

the corpus, against utterance index n. The solid line in the plot indicates

the cumulative average davg=(1=n)
Pn

i=1 di. An utterance pair for which the

between-utterance distance is significantly smaller than the cumulative

average according to a t-test (dn<davg, indicated in the plot by an asterisk)

immediately becomes a candidate for a significant variation set (as opposed

to a chance alignment). A learner can rely on this feature of the training

corpus in distinguishing between significant and spurious patterns in

structure discovery. In Figure 5, which is representative of the corpus at

large, this distinction is very easy, the relevant mean distances being many

standard deviations apart.

Results: most frequent n-grams in variation sets. Having outlined five

principal statistics of variation sets, we now address empirically motivated

characteristics of variation sets that focus on particular words and phrases.

Table 1 shows the results of the most frequent bi-grams and tri-grams in

variation sets in the CHILDES corpora. First, with the exception of what

you, the words in n-grams are contiguous within an utterance. Furthermore,

the phrases typically appear at the beginning of the utterance. Roughly 50%
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of the most frequent bi- and tri-grams appear utterance-initially.

Approximately 76% of the bi-and tri-grams are either the first or second

word in the utterance. This is substantially different from chance, suggesting

that the constant part of a variation set is remarkably consistent in position

within utterances. These characteristics, contiguity and utterance position,

may facilitate children’s ability to identify the repetitive part of a variation

set while also serving to highlight the novel part (see Lieven, Pine & Baldwin

(1997) for similar results on child speech using different analyses).

When the word immediately following the most frequent bi- or tri-gram

is analyzed for part of speech (Table 2), it is clear that the frames are highly

predictive of specific word classes – this finding parallels one of the key

observations behind the development of highly successful statistical part-

of-speech taggers in the past two decades (e.g. Charniak, 1997). For example,

the word immediately following are you is a verb for 90% of the utterances

analyzed while what is is followed by a pronoun for 63% of the utterances

analyzed. This suggests that variation sets, with their rapid succession of

related utterances, could be related to the acquisition of specific lexical

classes.
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Fig. 5. Edit distances dn between successive utterances (n and n+1) in the CHILDES
corpora, against utterance index n, for the first 400 utterances. Solid line shows the
cumulative average davg=(1=n)

Pn
i=1 di: Crosses (r) mark utterance pairs for which dn and

davg do not differ significantly according to a 2-sided t-test. Asterisks (*) mark pairs for
which dn<davg. Circles (o) mark pairs for which dn>davg.
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Methods: linguistic phenomena in variation sets. In addition to investigating

the statistical properties and n-gram patterns of variation sets, we examined

variation sets for the presence of well-studied linguistic phenomena: dative

alternation verbs and object-complement verbs. As with our data-driven

analyses, we first identified all the variation sets in the caregiver speech

portion of the corpus, using the same two parameters : gap length between

successive utterances in a variation set and the number of lexical items

shared by a pair of utterances in a variation set.

For this set of analyses, we first determined the proportion of variation

sets containing dative alternation verbs and object-complement taking

verbs. Next, we calculated the frequency of a list of common verbs for our

syntactic phenomena in variation sets. For the five most frequent dative

alternation verbs, we determined how frequently each verb occurred with

either a double-object dative construction (e.g. give Mommy the ball) or a

prepositional object construction (e.g. give the ball to Mommy). For the five

most frequent clausal-complement verbs, we analyzed the following word

for part of speech as well as the presence of an object complement clause or

TABLE 1. Frequent n-grams and their position in utterances in variation sets

bi-grams
Utterances

in VS
% 1st

position
% 2nd
position

% 1st+
% 2nd

did you 2410 49% 36% 85%
what you 3520 74% 13% 87%
are you 1924 35% 47% 83%
what is 1633 64% 12% 76%
that’s a 1064 43% 26% 69%
you want 2448 35% 33% 68%
you have 2338 34% 29% 63%
it’s a 1107 33% 23% 57%
you know 1665 32% 34% 66%
you can 1749 40% 26% 66%
I think 1414 65% 22% 86%

tri-grams

I don’t know 243 69% 20% 88%
what are you 447 83% 12% 95%
you want to 963 35% 36% 71%
you’re going to 547 29% 28% 56%
you have to 576 40% 24% 64%
I don’t think 217 62% 30% 92%
do you think 257 47% 40% 86%
what did you 378 78% 13% 91%

Average 50% 26% 76%
Standard Deviation 0.176 0.1 0.126

NOTE : VS=variation set; 1st position=first word in n-gram is the first word in the utter-
ance; 2nd position=first word in n-gram is the second word in the utterance.
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a noun phrase direct object. In short, we determined the degree to which

the utterances in variation sets were informative of dative alternation

structures and object-complement clauses.

Results: linguistic phenomena in variation sets. Approximately 12 percent

of sentences in variation sets contain dative alternation verbs (gap=0,

n=6). The proportion is highest for n-grams where n=6 with a gap value of

0, suggesting that dative alternation verbs occur most frequently in variation

sets where a large portion of the utterance remains the same and the utterances

are immediately adjacent in caregiver speech. As indicated in the section

above, the consistency between utterances and their immediate juxtaposition

may make these verbs and their accompanying syntactic frames particularly

salient to children.

In analyzing the structures following the verb (Table 3), we find that

individual dative alternation verbs differ with respect to whether they

primarily occur with a double-object dative or a prepositional object. For

example, bring occurs roughly equally frequently with both structures,

while make occurs predominately with a prepositional object and tell

overwhelmingly occurs in a dative-shift construction. It may be the case that

different distributions of words within the same paradigm could facilitate

the acquisition of those words. For example, the adjacent presentation of

these verbs within a variation set might highlight these distributions (e.g.

you have to tell him a story/tell him the whole story). Alternatively, alternations

of structure within a variation set might facilitate children’s use of these

verbs in both frames (e.g. give me that/give it to me). Much more research

TABLE 2. Part of speech following frequent n-grams in variation sets

bi-grams
Coded

utterances

Followed by:

Wh/C.V. Art. Pro. Adj. N.

did you 110 82% – – – – –
are you 110 90% – – – – –
what is 110 – 13% 63% – – –
that’s a 110 – – – 32% 40% –
You want 110 58% 11% 25% – – –

tri-grams

I don’t know 110 – 2% 12% – 3% 35%
What are you 110 97% – – – – –
you want to 110 68% – 23% – – –
you’re going to 110 89% – – – – –
you have to 110 26% – – – – –
I don’t think 110 – 5% 54% – – 2%

NOTE : V.=verb, Art.=article, Pro.=pronoun, N.=noun; Wh/C.=wh-word or com-
plementizer (e.g. that).
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will be needed to determine whether variation sets play a role during the

acquisition of these structures. Specifically, it would be important to

understand the distributional statistics of these same verbs occurring outside

variation sets. It may be the case that variation sets provide more frame

alternations, thereby possibly facilitating children’s use of multiple syntactic

frames with a particular word. On the other hand, variation sets may provide

more frame consistency than the rest of the corpora, thereby facilitating

children’s use of a particular word’s most frequent syntactic frame. Thus,

future work will have to address whether the statistics of variation sets are

different from the corpora as a whole and whether this affects language

acquisition.

The results for object complement verbs are similar to those of dative

alternations. Approximately 27% of sentences in variation sets contain object

complement verbs. Once again, the highest proportion is for n-grams where

n=6 and gap=0, suggesting that when caregivers produce variation sets

involving object-complement verbs, much of the utterance remains the

same and the utterances occur sequentially in speech (e.g. Who do you think

started the whole thing?/Who do you think started it?). Our analyses of the

structures following the verbs in question (Table 3) further indicate that

not all object-complement-bearing verbs are used equally with object

complements. For example, see, say and want are followed by an embedded

TABLE 3. Linguistic phenomena in variation sets

Structure
Utterances

in VS
Analyzed
utterances

Occurs with :

Dative
alternation

% dative
structures

% PP/ dative
structures

% shift/dative
structures

make 239 239 7% 76% 24%
tell 223 223 14% 6% 94%
give 129 129 81% 20% 80%
show 91 91 45% 22% 78%
bring 70 70 27% 42% 58%

Object
complement % VP % NP % OC % Formulaic

see 598 100 0% 72% 14% 0%
want 457 100 53% 36% 10% 0%
know 456 100 0% 34% 41% 0%
think 348 100 5% 6% 59% 0%
say 302 100 2% 36% 19% 29%

NOTE : VS=variation set; PP=prepositional dative (give the ball to Mary) ; shift=dative shift
structures (give Mary the ball) ; VP=verbs and verb phrases; NP=noun phrases, pronouns;
OC=object-complement clauses; Formulaic=formulaic speech (e.g. thank you, please, moo,
etc.).
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clause in fewer than 20% of uses, while think and know are followed by

clauses in over 40% of uses. There are also uses that are unique to particular

words: want is followed by to+a verb phrase in roughly 50% of uses, while

say is followed by formulaic speech (e.g. yes, no, please, thank you, etc.) in

nearly 30% of uses. Because these diverse uses occur within variation sets,

they may be attentionally highlighted or salient for the child. As noted

above, in order to evaluate the role of variation sets in the acquisition of

verbs and their complements, it is important that future work also examine

the distributional statistics of these same verbs occurring outside variation

sets. Once again, it is not yet known whether variation sets provide more or

less frame consistency than the corpus at large. This question will have to

be addressed in order to understand what role, if any, variation sets play in

acquisition.

CONCLUSIONS

As suggested in the ‘Introduction’, the culmination of an empirically

minded computational inquiry into language acquisition would be a grammar

that is (1) fully generative, (2) algorithmically learnable from realistic data,

(3) quantifiably successful and (4) psychologically real. In this paper, we

reported some progress in this research program. Specifically, we described

two algorithms that, when exposed to the transcribed child-directed speech

from a subset of the English CHILDES, acquired a generative grammar.

We also detailed findings from longitudinal and experimental studies that

explore the role of variation sets in acquisition. Lastly, we provided novel

analyses of variation sets using the CHILDES database. We determined

that variation sets could be useful not only for acquiring high-frequency

n-grams (collocations) but also for investigating traditional linguistic

phenomena such as the dative alternation.

Our goal for the immediate future is to link the computational and

behavioral findings surveyed in this paper. In re-examining ADIOS and

ConText, we note that although the patterns (‘rules’) comprising the

acquired grammars subsequently proved capable of transcending the original

corpus as measured by the standard quantitative means (recall and precision),

testing their psychological reality would be a vast undertaking. We believe

that this undertaking, while necessary, should be postponed until a

computational model of grammar induction aimed explicitly to account for

human developmental psycholinguistics becomes available. Although our

algorithms were loosely based on the general principles of language discovery

intimated by linguists and developmental psychologists, neither of themmade

use of certain potentially very important characteristics of child-directed

speech, such as the variation set patterns revealed by our corpus studies. We

now list some suggestions for the design of a novel algorithm that would
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integrate the behavioral and computational findings and that may eventually

come close tomeeting the research criteria (1–4) laid out in the ‘Introduction’,

thereby contributing to the development of a comprehensive computational

model of human language acquisition.

Focus on the conversation

Inspired by the approach pioneered by Zellig Harris (e.g. 1954), we have

argued that variation sets should be beneficial to learning the patterns of

substitution classes and syntactic constituents. As noted by several

researchers (e.g. Pickering & Garrod, 2004; Szmrecsanyi, 2005), natural-

language speech, even that between adult interlocutors, involves many kinds

of coordination, including partially aligned strings, all of which can be used

to scaffold the acquisition of linguistic constructions. By admitting as primary

linguistic data the coordinated utterances produced by ALL the participants

in an ‘overheard’ conversation, a grammar induction algorithm intended to

model human language acquisition can be made both more realistic and,

presumably, more powerful – that is, capable of learning from more

impoverished data. In particular, when learning from a corpus of child-

directed speech, the model should make use of variation sets and expansions,

just as human infants and adults appear to do.

Incremental learning

One significant limitation of the current algorithms such as ConText stems

from the amount of statistical power necessary to determine the significance

of candidate patterns. Specifically, such algorithms have difficulties with

smaller corpora (and more generally with corpora in which the ratio of

lexicon size to the number of utterances is high), because they must compute

equivalence classes from the corpus before they can take advantage of the

highly significant information inherent in alignment. It may be possible to

address this issue by replacing equivalence classes with banks of n-gram

patterns. As sentences pass through the learning mechanism, each one will

be simultaneously represented by a set of unigrams, bi-grams, tri-grams,

etc., as well as n-grams that contain gaps. For example, the phrase a furry

marmot when considered as an instance of a tri-gram with a gap in position

2 would be analyzed as a __ marmot ; this would render a furry marmot and

a cuddly marmot equivalent. Each n-gram and gapped n-gram will maintain

a tally of its occurrences and its co-occurrences with other n-grams. A

co-occurrence of two distinct n-grams is almost always significant, given

their a priori probability. Because aligned utterances in variation sets contain

the same set of co-occurrences more than once, the baseline probability of

this event being due to chance is squared (if not raised to a higher power),
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greatly reducing the likelihood of the null hypothesis in the significance test

for an individual construction that the algorithm encounters.

Moreover, the use of multiple n-grams and gapped n-grams creates an

instant ‘template’ where the gaps can be filled by leveraging the transitional

probabilities already known for their flanking members. In addition, this

approach allows the process of constructing the grammar to be recursive:

transitional probabilities and gaps can reference other sets of n-grams and

gapped n-grams, much as equivalence classes in learned by ADIOS or

ConText are currently capable of referencing other equivalence classes. In

other words, traditional units like nouns, verbs, noun phrases, verb phrases

and clauses can be built up by referencing n-grams and their clustering.

Additional possible uses of the new insights from developmental

psycholinguistics in devising more powerful and psychologically relevant

algorithms for empirical generative grammar learning are the subject of

ongoing research (Edelman, 2010).

In conclusion, we propose that a key principle for linking computational

structure-acquiring algorithms and insights from behavioral data is to rely

explicitly on naturally occurring discourse structures that facilitate alignment,

thereby reducing the power needed to encounter statistically significant

patterns and allowing the algorithms to operate in a more psychologically

real way.
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APPENDIX

We explored the performance of ConText for a range of settings of its three

parameters by estimating recall and precision of the learned grammars

(Figure A1). In estimating precision, because of the large number of

sentences (a total of 1,800 sentences in this experiment) a single native

speaker of English rated 100 sentences for acceptability on a scale of one to

seven.
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Fig. A1. ConText performance for a range of values of K, L, and D parameters. A1a. The
precision and recall of grammars inferred by the ConText algorithm for a range of values of
the parameter K (the minimum number of times a sequence must appear in the corpus for
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The first parameter,K, controls the minimum number of times a sequence

must appear in the corpus to be considered for clustering. As K grows

larger, the number of sequences not captured by the grammar increases.

Therefore we expected recall decrease, with a corresponding increase

in precision, as indicated by Figure A1a. Note that L=2 and D=0.65,

described below.

As the value of the parameter L, which controls the size of the context

window around each sequence, grows larger, we expected lower recall and

higher precision, as the vector representation of each word sequence

becomes more fine-grained. As Figure A1b shows, this is precisely what

happened when L changed from 1 to 2. Increasing L further made no

differences, presumably because of the relatively small average sentence

length of this corpus. Note that K=80, D=0.65.

Increasing the value of the third parameter, D, which controls the

maximumdistance between two sequences that can still be clustered together,

allows more sequences to be clustered together, leading to more, larger

equivalence classes. Thus, the resulting grammar is expected to be more

generative, corresponding to higher recall. At the same time, precision is

expected to decrease with a larger D : as the criterion for substitutability

becomes more lenient, more sequences are erroneously clustered together.

Both these trends are clearly visible in Figure A1c. Note that K=50, L=2.

clustering). Note that the x-axis is logarithmic. A1b. The precision and recall for a range
of values of the parameter L (the size of the context window around the sequence under
consideration). A1c. The precision and recall for a range of values of the parameter D (the
maximum distance between two sequences that can still be clustered together).
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