
J. Fluid Mech. (2021), vol. 922, A28, doi:10.1017/jfm.2021.557

On the roughness instability of growing
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The streamwise vortex instability of boundary layers caused by wall roughness in the
form of surface undulations is investigated. The instability is characterised by a roughness
parameter Γ depending on the geometry and fluid properties. At O(1) values of Γ
disturbances develop on the same length scale as the basic boundary layer flow. The
instability is driven by a boundary condition relating the disturbance wall shears in the
streamwise and normal directions. The undulations have a wavelength comparable with
the boundary layer depth and the amplitude is asymptotically small compared with the
depth. If the roughness parameter is large then, apart from a narrow window of vortex
wavenumbers, the instability responds in a quasi-parallel manner. Falkner–Skan boundary
layers are considered in detail and the dependence on the angle of the wedge associated
with the flows investigated. A particular susceptibility to roughness instabilities of flows
past 90◦ wedges is uncovered. The limits of small and large wavenumbers are considered
and universal results given for the critical roughness height h and wavelength b needed for
instability.

Key words: Taylor–Couette flow, shear-flow instability, boundary layer stability

1. Introduction

Our concern is with the development of streamwise vortex instabilities caused by wall
roughness in growing boundary layers. The instability we investigate here is a direct
consequence of wall waviness; we are not concerned with the effect of wall waviness on
Tollmien–Schlichting waves or crossflow vortices. The reader interested in those problems
is referred to, for example, Wie & Malik (1998) and Thomas et al. (2016). For definiteness,
we will focus on Falkner–Skan boundary layers and, following Gajjar & Hall (2020), Hall
(2020, 2021) and Hall & Ozcakir (2021), wall roughness is modelled by small amplitude
wall undulations in the streamwise direction.
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P. Hall

In pipes and channels motivation to investigate the effect of wall undulations comes
from the heat transfer community where wavy walls have long been used as an aid to
mixing; see, for example, Gschwind, Regele & Kottke (1995), Kandlikar (2008), Ligrani,
Oliveira & Blaskovich (2003) and Nishimura, Yoshino & Kawamura (1987). Often these
devices operate at Reynolds numbers where turbulence in smooth channels or pipes
occurs; therefore, there is a strong interest in the question of how wall undulations
influence transition to turbulence in such shear flows. We note here that our concern is
with instabilities caused by roughness rather than the receptivity problem where roughness
is the enabler of instabilities present in the absence of roughness; see, for example, Ruban
(1984), Goldstein (1985) and Hall (1990).

Instabilities of the flows in pipes of radii varying periodically in the streamwise direction
have been considered by Cotrell, McFadden & Alder (2008) and Loh & Blackburn (2011).
It was found that wall waviness can destabilise the flows through what was described
as a centrifugal instability mechanism. More recent work by Hall (2020, 2021) and Hall
& Ozcakir (2021) shows that the instability mechanism is in fact of the vortex-wave
interaction type facilitated by wall waviness rather than finite amplitude effects. Cotrell
et al. (2008) focused on axisymmetric disturbances but reported that non-axisymmetric
modes were more stable, however, Loh & Blackburn (2011) found that non-axisymmetric
modes were the first to become unstable. Hall & Ozcakir (2021) considered both two- and
three-dimensional roughness in the form of surface undulations in both the streamwise
and azimuthal directions and, like the case with Loh & Blackburn (2011), found that the
two-dimensional case is more unstable.

Related problems in channel flow of periodically varying widths have been considered
by Floryan (2002, 2003, 2015) using large-scale global instability computations of the
linearized Navier–Stokes equations. Recently Hall (2020) has shown how the small
amplitude case, which is in fact the case of most practical interest, can be described by a
variant of vortex-wave interaction theory. Henceforth, we refer to the latter as VWI theory.
Hall (2020) used the theory to predict the critical Reynolds number for fully developed
flows in channels with walls having small amplitude undulations. Here we will extend
that theory to growing boundary layer flows. The mechanism uncovered in Hall (2020)
is operational whenever a shear flow interacts with a wavy wall and so it is relevant to
both internal and external flows, but various modifications are needed to allow for the
change in geometry. For channels with walls having wall undulations of wavelength slowly
varying in the streamwise direction, Gajjar & Hall (2020) showed that the disturbance
equations reduce to a spatially modulated form of the Görtler vortex equations. In the
regime considered by Gajjar & Hall (2020) the VWI mechanism is not operational and
the instability in that case is centrifugal in origin. Floquet theory was used in the latter
paper to show that both subharmonic and synchronous instabilities are possible. Hall
(2021) investigated the Görter vortex mechanism at long wavelengths and gave limited
results for roughness instabilities in that limit for Blasius flow. As part of the present
investigation, we extend the latter long wavelength results to Falkner–Skan flows and
consider all wavenumber regimes.

In VWI theory streamwise vortices are sustained by wave–wave interactions in the
critical layer associated with the wave. The wave exists as a neutral disturbance of
the streaky part of the flow; see Hall & Smith (1989), Hall & Smith (1991), Hall &
Sherwin (2010), Deguchi & Hall (2014) and Hall (2018). The linear instability mechanism
uncovered by Hall (2020) replaces the wave–wave interaction of a disturbance of the shear
flow within VWI by an interaction between the wavy mean flow corrections produced
by the wall undulations and the streamwise vortex. Thus, the mechanism of Hall (2020)
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Rough wall boundary layer instability

is a hybrid form of VWI. An alternative derivation of what was exactly the VWI theory
description of exact coherent structures had been uncovered numerically by Nagata (1990)
and subsequently Waleffe and colleagues who described it as a ‘self-sustained process’;
see, for example, Waleffe (2001) and Wang, Gibson & Waleffe (2007).

In the mechanism given by Hall (2020) a streamwise vortex consisting of an O(1)
streamwise velocity component, which we refer to as the streak, and a smaller roll flow in
the spanwise and normal directions are driven by interactions caused by the wall waviness.
In the absence of roughness or curvature, the roll and streak equations are decoupled, but
in the presence of roughness a boundary condition links the shear at the wall of the roll
and streak. Here we will generalize the fully developed case considered by Hall (2020) to
growing boundary layers. The instability, though not of centrifugal type, satisfies the linear
Görtler vortex equations of Hall (1983) with zero Görtler number and a stress boundary
condition replacing the no-slip condition on the spanwise roll velocity at the wall. Not
surprisingly the instability will be seen to have some similarities with Görtler vortices. It
should be noted that in some shear flows where the roughness instability considered here
is operational Tollmien–Schlichting or other instabilities might be more unstable, on the
other hand in Hagen–Poiseuille flow or Couette flow no alternative linear instability is
present.

Streamwise vortex instabilities in boundary layers over curved walls are referred to as
Görtler vortices following the work of Görtler (1940). The instability grows more slowly
than Tollmien–Schlichting waves or crossflow vortices, indeed it grows on the same length
scale as the unperturbed flow, and must be described using a non-parallel theory. For
that reason, attempts to describe Görtler vortices by a quasi-parallel flow approximation
produced inconsistent and what turned out to be physically unrealistic results; see, for
example, Smith (1955) or, for a comprehensive review of the parallel flow work, Floryan
(1991). The issues associated with the parallel flow theories in both the linear and nonlinear
regimes were resolved by Hall (1982, 1983, 1988, 1990) and Hall & Lakin (1988). It was
shown that the instability equations cannot be reduced in a quasi-parallel manner unless
the Görtler number is large. Therefore, the instability problem must be solved by marching
in the streamwise direction. Thus, Hall (1982), Denier, Hall & Seddougui (1991) and
Choudhari, Hall & Street (1994) gave a comprehensive description of the different regimes
at high Görtler numbers. More recently, Wu, Zhao & Luo (2011) repeated the analysis of
Hall (2021) using the streamwise coordinate as the large parameter but, as pointed out
in Hall (2021), overlooked the most unstable mode in the left-hand branch regime. Some
preliminary observations on the long wavelength roughness instability for Blasius flow
are given in Hall (2021). Henceforth, we will refer to the papers Denier et al. (1991) and
Choudhari et al. (1994) as DHS and CHS, respectively, and refer to Hall (2020) as H1.
We will refer to the small and large wavenumber branches at large values of the roughness
parameter as the left- and right-hand branches.

Our analysis will show that the small wavenumber regime where the flow develops
in a non-parallel manner selects the disturbance generated downstream. We show that,
for some Falkner–Skan flows, a disturbance imposed sufficiently close to the leading
edge grows algebraically before roughness comes into play and converts that growth
into more explosive exponential growth. If the initial development is for a flow where
only decaying algebraic solutions are possible, the least stable such solution is selected
and once again roughness then stops that decays and ultimately produces exponential
growth. We show that, for a Falkner–Skan flow with free stream varying like Xn, where
X denotes scaled downstream distance, the exponential growth is like exp(dX((3n+1)/2)),
where d is a constant. Thus, for stagnation point flow, the argument of the exponential
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P. Hall

is proportional to X2 and the growth is unusually rapid. We will show that Falkner–Skan
flows corresponding to 90◦ wedges are uniquely susceptible to the roughness mechanism
and lead to indefinite exponential growth at the largest rate available. By way of contrast,
the flows past wedges of angles less than 90◦ are unstable for only a finite downstream
extent. Wedges of an angle greater than 90◦ remain unstable indefinitely as X increases but
do not grow at the fastest rate possible at a given high value of the roughness amplitude.

The procedure adopted in the remainder of the paper is as follows. In § 2 we will
formulate the roughness-induced instability problem for a two-dimensional boundary layer
over a wavy wall. In § 3 we will solve the instability equations for asymptotic suction
flow. The asymptotic structure uncovered there is then used as a framework to investigate
growing boundary layers in § 4. In § 5 we will discuss numerical solutions of the roughness
instability equations at O(1) values of the roughness parameter. In § 6 we will use the
theory to predict universally valid results concerning roughness instabilities in shear flows.
In § 6 we also briefly describe how the model used to represent roughness can be made
more realistic. In § 7 we draw some conclusions and show how the instability mechanism
discussed relates to instabilities of triple-deck flows. In an appendix we briefly describe
how the structure discussed in CHS can be adapted to the present problem to give the link
between the small and O(1) wavenumber regimes.

2. The disturbance equations for roughness-induced instability

Consider the viscous incompressible flow of a fluid with viscosity ν over the semi-infinite
flat plate x∗ > 0, y∗ = 0. We take L as a typical length scale in the x∗ direction so that
if the free-stream speed is U0ue(x∗/L) the boundary layer thickness is Δ = √

νL/U0. We
define a Reynolds number based on the boundary layer thickness by

Re = U0Δ

ν
=
√

UL
ν

=
√

R. (2.1)

UsingΔ as the length scale we define (x, y, z) = (x∗, y∗, z∗)/Δ, and taking U0 as a typical
velocity we define (u, v,w) = (u∗, v∗,w∗)/U0. If we then define the scaled pressure p =
p∗/ρU2

0, where ρ is the density, then the steady momentum and continuity equations take
the form

[u · ∇]u = −∇p + 1
Re

∇2u, (2.2)

∇ · u = 0, (2.3)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z). We restrict our attention to the high-Reynolds-number
limit so that the leading order approximation to the equations of motion in the boundary
layer, i.e. the region y = O(1), X = x/Re = O(1), is given by

u = ub =
(

ū(X, y),
1

Re
v̄(X, y), 0

)
+ · · · , (2.4)

p = pb = −ue
2

2
+ · · · , (2.5)

where (ū, v̄) satisfies the boundary layer equations

ūūX + v̄ūy = ueueX + ūyy, (2.6)

ūX + v̄y = 0, (2.7)
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Rough wall boundary layer instability

subject to the conditions

ū = v̄ = 0, y = 0, ū → ue, y → ∞. (2.8)

Now we perturb the above flow to a steady streamwise vortex disturbance of size δ � 1.
We assume the vortex is periodic in the spanwise direction with wavelength scaled on the
boundary layer thickness and write

u = ub + δ

(
U(X, y) cos kz,

V(X, y)
Re

cos kz,
W(X, y)

Re
sin kz

)
, (2.9)

p = pb + δ
P(X, y)

Re2 cos kz. (2.10)

The relative scalings of the perturbation velocity components are the usual ones for
Taylor–Görtler vortices as first indicated by Taylor (1923). Substituting into the equations
of motion and linearizing with respect to the vortex amplitude δ, we find that the
perturbation equations are

ūUX + v̄Uy + UuX + Vuy = Uyy − k2U, (2.11)

ūVX + v̄Vy + UvX + Vvy = −Py + Vyy − k2V, (2.12)

ūWX + v̄Wy = kP + Wyy − k2W, (2.13)

UX + Vy + kW = 0. (2.14)

In the absence of destabilising effects due to wall curvature all perturbations inserted into
the flow at some location will ultimately decay, though long wavelength perturbations
inserted close to the leading edge can initially undergo weak algebraic growth; see Bassom
& Hall (1993) and Luchini (1996). If the wall is curved then a term proportional to ūU is
inserted into the left-hand side of (2.12). That term provides a coupling between (2.11) and
(2.12)–(2.13), thus enabling a centrifugal instability to occur in some boundary layers; see
Hall (1983).

The destabilisation due to wall undulations couples (2.12)–(2.13) to (2.11) through
the boundary conditions at the wall. The analysis of H1 was for fully developed flow
in a channel and so must be adapted to deal with a spatially evolving mean flow. The
mechanism which produces the coupling is a hybrid form of VWI theory as described by
Hall & Smith (1991) and Hall & Sherwin (2010). The mechanism is crucially dependent
on the roll part of the vortex being of size 1/Re smaller than the streamwise component
which we will refer to as the streak.

Before writing down the appropriate modifications of (2.9) and (2.10) to take account
of the undulating wall we explain the mechanism which will lead to the instability. As
mentioned above, the key to understanding the origin of the instability is the fact that at
high values of Re the roll part of a streamwise vortex is small compared with the streak
part, and that imbalance is exactly the same for the mean state ub. The upshot of this is
that in the viscous wall layer where ub and the streak part of the streamwise vortex adjust
to satisfy no-slip on the undulating wall, the normal and spanwise velocity components
of the corrections caused by the waviness are bigger than the corrections associated with
vb and the roll part of the vortex. An examination of the nonlinear terms in the spanwise
momentum equation averaged over the wavelength of the wall fixes the size of ε which
enables the spanwise component of the roll to be driven at leading order by the interaction
of the X dependent basic and vortex flows in the y–z plane. Thus, the Reynolds stresses
associated with the flow driven by the wall waviness induce a streamwise vortex flow.
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O(R–1/3) Viscous sublayer

L

u

� = (νL/U0)1/2

y∗ = ε�cos(αx∗/L)

Figure 1. The regions of interest for the flow over a wavy wall. Note that the wavelength is comparable with
the boundary layer thickness, wave amplitude scales like R−(1/3) times the boundary layer thickness. The vortex
wavelength scales on the boundary layer thickness.

This is of course just the steady-streaming effect well known in the context of time periodic
flows; see, for example, Stuart (1966).

Suppose that the undulating wall has wavenumber α and amplitude ε and so is defined
by

y = 2ε cosαx. (2.15)

Note here that the wall shape is a function of the fast variable x rather than X, thus, we
have taken the wall wavelength to be comparable to the boundary layer depth rather than
L. Because the wall varies on the boundary layer scale in the streamwise direction, the
adjustment of the flow given by (2.9) and (2.10) to account for the undulating wall requires
a viscous layer where (1/Re)(∂2/∂y2) ∼ ub(∂/∂x) so that it is of thickness Re−(1/3), and
we assume that this is large compared with ε the amplitude of the wall waviness; see
figure 1. We define a wall layer variable η = Re1/3y and expand the streamwise velocity
component in the wall layer in the form

u = Re−(1/3)η[λ+ μδ cos kz] + · · · + ε(u1(X, η)E + c.c.

+ δ[U1(X, η)E + c.c.] cos kz)+ · · · . (2.16)

Here we have defined E = eiαx, c.c. denotes complex conjugate and λ = uy(X, 0), μ =
Uy(X, 0) are the shears of the basic boundary layer and streak at the wall. The terms
proportional to ε are needed so as to satisfy the no-slip condition at the undulating wall.
Note that the above expansion is only valid if ε << Re−(1/3) and if ε is increased until
ε ∼ Re−(1/3) the flow in the wall layer and the main part of the boundary layer couple and
cannot be solved for independently, this type of interactive regime is discussed in Smith
(1982). In the wall layer ∂/∂x ∼ ∂/∂z ∼ O(1), ∂/∂y = O(Re1/3) so that the expansion of
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Rough wall boundary layer instability

v in the wall layer takes the form

v = O(Re−(5/3))+ · · · + εRe−(1/3)(v1(X, η)E + c.c.

+ δ[V1(X, η)E + c.c.] cos kz)+ · · · . (2.17)

The first term above corresponds to the local expansion of the y component of the
unperturbed boundary layer in the wall layer whilst the second and third terms are driven
by the O(ε) terms in (2.16). The expansion of w is

w = ε[δW1(X, η)E + c.c.+] sin kz + δε2Re1/3W(X, η) sin kz + · · · . (2.18)

The order ε term once again has its size fixed by the O(ε) term in the streamwise velocity
through the continuity equation. The last term arises from the nonlinear interaction of the
order ε terms in the velocity field and we will fix ε by making the term of the same size as
the spanwise component of the roll outside the wall layer. Note that the last term depends
on the slow variable X rather than the faster streamwise variable. Finally, we write down
the expansion of the pressure

p = −ue
2

2
+ · · · εRe−(1/3)(p1(X, η)E + c.c. + δ[P1(X, η)E + c.c.] cos kz)+ · · · .

(2.19)
Substituting the above expansions of u, v,w, p into the equations of motion in the wall
layer, we find the following leading order problem to determine u1, v1, p1:

iαλu1η + λv1 = −iαp1 + u1ηη, (2.20)

p1η = 0, (2.21)

iαu1 + v1η = 0, (2.22)

which is to be solved subject to
u1 = −λ, v1 = 0, η = 0, u1 → 0, η → ∞. (2.23)

The condition on u1 when η → ∞ is necessitated by the corresponding inviscid problem
for y = O(1) which has no solution with the normal velocity vanishing at the wall. The
required solution is given by

v1 = −3γ 2/3
∫ ξ

0
dφ
∫ φ

∞
Ai(θ) dθ. (2.24)

Here γ = iαλ, Ai is the Airy function, and the variable ξ is defined by ξ = γ 1/3η. We
deduce from the above equation that

v1 → −3γ 2/3Ai′(0), ξ → ∞. (2.25)

The leading-order approximation to the terms proportional to δε in the equations of motion
in the wall layer gives

iαλU1η + λV1 + iαμηu1 + v1μ = −iαP1 + U1ηη, (2.26)

P1η = 0, (2.27)

iαλW1η = kP1 + W1ηη, (2.28)

iαU1 + V1η + kW1 = 0, (2.29)

which are to be solved subject to
U1 = −μ, V1 = 0, η = 0, U1,→ 0, η → ∞. (2.30)

The condition on U1 at ∞ arises because V1ξ must tend to zero at infinity because the
corresponding motion induced in the main part of the boundary layer is inviscid and cannot
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have its normal velocity reduced to zero as the wall is approached. That is because the
boundary layer is inviscidly stable to travelling wave perturbations on the boundary layer
length scale. In order to solve (2.26)–(2.29), we multiply (2.26) and (2.28) by iα and k,
respectively, and add before eliminating [iαU1 + kW1] using (2.29). If we then eliminate
P1 by differentiating with respect to η we find that, written in terms of ξ , V1ξξ satisfies the
Airy equation. The required solution for V1 has

V1ξ = −3μγ 2/3

λ

∫ ξ

∞
Ai(θ) dθ − μγ 2/3

λ
Ai′′(ξ). (2.31)

If W1 is not to grow exponentially for large ξ , we can then solve the spanwise momentum
equation to give

W1 = −kγ−(2/3)P1L(ξ), (2.32)

where the Scorer function L satisfies L′′ − ξL = 1, with L(0) = L(∞) = 0. The
corresponding pressure field is found by combining (2.26) and (2.28), setting ξ = 0 to
give

(α2 + k2)P1 = −γ 2/3(iαU1 + kW1)ξξ (X, ξ = 0) = γV1ξξξ (X, ξ = 0)

= −5μγ 5/3Ai′(0)
λ

. (2.33)

It follows from (2.31) and the z momentum equation that

V1 → −2μλ−1γ 2/3Ai′(0), W1 ∼ −5kμγ 2/3Ai′(0)
ηλ[α2 + k2]

, η → ∞. (2.34a,b)

Now consider the integral I given below and integrate by parts and use continuity to give

I =
∫ 2π/α

0
(uwx + vwy + wwz) dx =

∫ 2π/α

0
([vw]y + 2wwz) dx + · · · . (2.35)

Here the terms denoted by · · · are present because the integrand depends on both the
fast x variable and the slow variable X. It follows from the above result together with
(2.16)–(2.18) that

∂2W
∂η2 = v1W̄1η + c.c. (2.36)

where an overbar denotes the complex conjugate. For large values of η, we then see using
(2.34a,b) that

∂2W
∂η2 � −30Ai′2(0)λ1/3α4/3kμ

η2[α2 + k2]
. (2.37)

Integrating twice with respect to η and writing the leading-order term in terms of y rather
than η we obtain

W → 10α4/3λ1/3kμAi′2(0)
α2 + k2 [log Re + 3log y] + · · · , η → ∞. (2.38)

Neglecting the term proportional to log y, the above provides an inner boundary condition
for the spanwise velocity component of a roll flow in the main part of the boundary layer.
The latter roll flow will be of the same size as the assumed roll flow in the main boundary
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layer in (2.9) if we choose ε appropriately. More precisely, if we define an O(1) parameter
κ by

ε2 log Re = κ

Re4/3 , (2.39)

and note that μ = Uy(X, 0), then (2.38) implies that the vortex equations (2.11)–(2.14)
must be solved subject to

U,V,W,→ 0, y → ∞, (2.40)

U = V = 0, W = 10κα4/3λ1/3kAi′2(0)
α2 + k2 Uy(X, 0), y = 0, (2.41)

which closes the problem for the streamwise vortex disturbance (2.9)–(2.10). In effect then
we have coupled the roll and streak equations in the assumed vortex disturbance (2.9) by
increasing the wall amplitude to a size where the Reynolds stresses associated with the
wall undulation-induced flow in the viscous wall layer drive a roll flow in the wall layer
comparable to that in the boundary layer. Using (2.14) we can instead replace (2.41) by

U = V = ∂

∂y

[
10κα4/3λ1/3k2μAi′2(0)

α2 + k2 U + V
]

= 0, (2.42)

so that the condition on W is in fact a relationship between the wall shear of the vortex
in the y, z directions. The control parameter in the problem is therefore κ and we can
effectively scale α out of the problem by writing α = km so that the wall condition can be
written as

Γ k4/3λ1/3Uy(X, 0)+ Vy(X, 0) = 0, (2.43)

or
Γ k1/3λ1/3Uy(X, 0)− W(X, 0) = 0, (2.44)

where the new effective control parameter is

Γ = 10κAi′2(0)m4/3

m2 + 1
. (2.45)

It follows that, for a given roughness wavenumber, the quantity Γ is maximised and
κ minimised by a vortex with spanwise wavenumber α/

√
2. Moreover, the instability

problem can be described in terms of the two parameters k, Γ without reference to α. We
will see that, for a given spanwise wavenumber, roughness becomes progressively more
destabilising as the parameter Γ increases. Thus, for a given k, instability will occur at the
lowest value of Γ when the streamwise roughness wavenumber α = √

2k.
The equations (2.11)–(2.14) and (2.40)–(2.41) share with the Görtler vortex problem

the property that, in general, they cannot be treated in a quasi-parallel manner in the
same way that Tollmien–Schlichting or crossflow vortices can be treated. The latter two
instabilities grow on length scales shorter than that over which the basic flow develops
and so can be treated locally; see, for example, Gaster (1974) and Smith (1979) for the
Tollmien–Schlichting wave, and Hall (1986) for crossflow vortices. For the Görtler case,
it turns out that in the highly unstable regime corresponding to high Görtler numbers
the vortices can be described by a quasi-parallel approach unless the vortex wavenumber
is sufficiently small; see Hall (1982, 1983), Hall & Lakin (1988) and DHS. We shall
investigate the corresponding issue for roughness instabilities. However, it is clear from
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P. Hall

the outset that, because of the form of the disturbance equations, the Görtler case is likely
to be pertinent to the present investigation.

At this stage it is instructive to comment further on (2.39) which fixes the wall amplitude
which is needed to trigger the roughness instability. For the Taylor–Görtler problem, the
control parameter corresponding to Γ has a simple physical interpretation in terms of the
ratio of the destabilising centrifugal and stabilising viscous forces in the flow. Here there
is no similar simple physical interpretation, but the origin of the instability is clearly the
Reynolds stresses associated with the flow driven by the wall waviness. But, neglecting the
weak logarithmic effect, we see from (2.39) that at a fixed large value of Re, the control
parameter governing the instability increases like the square of the wall amplitude.

In order to see the fundamental asymptotic framework of the roughness instability, we
begin by considering the asymptotic suction boundary layer which is of constant thickness.
We then use the large roughness structure of the instability in the latter flow to lay down a
framework to describe the instability in growing boundary layers.

3. Roughness instabilities in the asymptotic suction boundary layer

The basic flow in this case is given by

ub = (1 − e−y,−1, 0), (3.1)

and so is independent of X. The disturbance equations are separable in the
slow variable X so the disturbance can be taken in the form (U,V,W,P) =
[U( y),V( y),W( y),P( y)] eβX , where the growth rate β is a function of the parameters
k and Γ . The growth rate β is constant and determined by an eigenvalue problem
associated with a sixth-order differential equation. The eigenvalue problem is solved by
first eliminating W,P from (2.11)–(2.14) to obtain a fourth-order equation for V. That
problem is then solved subject to

V = 0,
dV
dy

= 1, y = 0, V → 0, y → ∞. (3.2)

Note that we impose a normalisation condition on dV/dY rather than make it vanish
because W does not satisfy the no-slip condition at y = 0. Having computed V we can
then integrate the equation for U subject to U(0) = U(∞) = 0. We then iterate on β until
(2.43) is satisfied. Figure 2 shows results for β as a function of k for Γ = 50, 75, 100.
The right-hand branch of the neutral curve is defined by the points where the growth rate
changes from being positive to negative. At smaller values of k the curves also pass from
positive to negative values of β as k decreases, that behaviour is too localized to be seen in
the figure. This second zero of the growth rate defines the left-hand branch of the neutral
curve. We see that the growth rates are numerically large and that the maximum growth
rate, and the wavenumber where it occurs, increase with Γ . The neutral case can be solved
in closed form, we find that the eigenvalue problem reduces to solving[

d2

dy2 + d
dy

− k2

]
U = e−yV, (3.3)[

d2

dy2 + d
dy

− k2

][
d2

dy2 − k2

]
V = 0, (3.4)
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β

Figure 2. The growth rate β as a function of the vortex wavenumber k for different values of the roughness
parameter Γ = 50, 75, 100 for the asymptotic suction boundary layer.

U = V = d
dy

[Γ k4/3U + V] = 0, y = 0, (3.5)

U,V → 0, y → ∞. (3.6)

The required solution, normalised such that V ′(0) = 1, is

U = eqy − e[q−1]y

2q(k + q)
+ eqy − e−[k+1]y

k(k + q)
, V = eqy − e−ky

k + q
, (3.7a,b)

where 2q = −1 − √
1 + 4k2. The roughness boundary condition then gives the equation

for the neutral curve in the form

Γ = [1 + √
1 + 4k2][2k − 1 − √

1 + 4k2]

2k4/3[2k − √
1 + 4k2]

. (3.8)

The above result confirms that, as found in the computations of the non-neutral case, there
is a single unstable mode. We deduce from the above result that Γ ∼ 2/k4/3, k � 1 and
γ ∼ 4k2/3, k � 1. These asymptotic results for asymptotic suction flow are used in the
following section to motivate the appropriate expansions for growing boundary layers.
By way of contrast, the high Görtler number structure described by DHS has left- and
right-hand branches having Γ ∼ k−2, Γ ∼ k4, respectively.

An important point to notice is that, for any (k, Γ ), there is at most one unstable
eigenvalue. By way of contrast, the Taylor–Görtler problem typically has an infinite
spectrum of unstable modes. Figure 3 shows the neutral curve in the k–Γ plane together
with the asymptotic predictions of the curve for large Γ. The minimum of the neutral curve
occurs when k ∼ 1.098, Γ ∼ 8.45. We see that the asymptotic predictions give excellent
agreement with the finite Γ solution.
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Figure 3. The neutral curve in the Γ –k plane for the asymptotic suction boundary layer. The red and yellow
curves denote the large/small wavenumber asymptotic predictions Γ ∼ 4k2/3, Γ ∼ 2/k4/3, respectively.

Figure 4 illustrates the change in the non-neutral eigenfunctions at a fixed value of Γ
for different values of k. We see that as the wavenumber increases, the eigenfunctions
become progressively concentrated near the wall. That behaviour is different from the
Görtler problem where for O(1) wavenumbers the most dangerous mode occupies the
whole of the boundary layer. This means that for the large roughness problem, the structure
of the disturbance becomes relatively universal and independent of the particular form of
the boundary layer. Figure 5 shows the neutral eigenfunctions for k = 0.1, 1.098, 10 which
correspond to points on the left-hand branch, the critical value of Γ and a point on the
right-hand branch, respectively. We see that for the smallest k, the y velocity component
decays more slowly to zero than does the X component. For the highest value of k, we
observe that both eigenfunctions shrink into a thin layer near the wall. This behaviour will
also be found for the growing boundary layer problem.

4. The large roughness limit

Now let us consider growing boundary layers and use the large Γ structure found
in the previous section for a parallel boundary layer to develop an asymptotic theory
which accounts for boundary layer growth. For many boundary layers, the length
scale in the streamwise direction is arbitrary and so instability predictions need to be
interpreted in terms of local flow quantities; see Smith (1979) and Hall (1982, 1983) for
Tollmien–Schlichting and Görtler instabilities in Blasius flow. We anticipate that the same
situation will arise for roughness instabilities and so, where appropriate, we will express
our results in terms of local flow quantities.

Suppose then that the local boundary layer thickness at position X is Δ̂(X) and the local
free-stream speed is ue(x). It follows that the local wavenumber kX is given by

kX = Δ̂(X)k, (4.1)
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Figure 4. Asymptotic suction flow roughness instability non-neutral eigenfunctions U,V for Γ = 50 and
k = 1, 20, 40 in (a,b), (c,d) and (e, f ), respectively.

and the local roughness parameter ΓX is defined by

ΓX = u4/3
e

Δ̂2/3
Γ, (4.2)

Eliminating X between (3.1) and (3.2) gives the path in the kX–ΓX plane traced out
by a disturbance as it evolves downstream. Thus for a Falkner–Skan boundary layer
corresponding to ue = Xn, we take Δ̂(X) = X(1−n)/2 so that a disturbance moving
downstream follows the path

ΓX = Ck2[5n−1]/3[1−n]
X , (4.3)

where C is a constant. Note that the choice ue = Xn corresponds to the flow past a wedge of
angleΘ = (2n/(n + 1))π. Moving downstream the flow becomes more or less unstable to
roughness instabilities depending on whether (5n − 1)/(1 − n) is positive or negative. For
a Blasius boundary layer, the path traced out has ΓX ∼ k−(2/3)

X so the flow becomes more
stable as X increases. For stagnation point flow, the path taken is kX = constant since the
boundary layer thickness is constant. The other two significant cases are n = 1

5 which has
the path ΓX = constant and n = 1

3 . The latter path is of importance because a disturbance
moving downstream follows a path having the same asymptotic form as the right-hand
branch of the neutral curve. Since the maximum growth for roughness disturbances for
large Γ will be found to be in the vicinity of the right-hand branch, we conclude that
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Figure 5. Asymptotic suction flow roughness instability neutral eigenfunctions U,V for
(k, Γ ) = (0.1, 48.3), (1.098, 8.45), (10, 20.02) in (a,b), (c,d) and (e, f ), respectively.

90◦ wedges are uniquely susceptible to roughness instabilities because disturbances travel
downstream along trajectories which maximise disturbance growth. Figure 6 illustrates the
paths taken by disturbances in Blasius flow, stagnation point flow and 60◦, 90◦ wedges, the
arrows show the direction taken along each path moving downstream. The neutral curve
for asymptotic suction flow is shown as a reference for the paths.

Based on the results found for asymptotic suction flow, we expect that at high values of
Γ growing boundary layers will have distinct asymptotic behaviours where Γ ∼ k−(4/3)
and Γ ∼ k2/3; we will refer to these parameter ranges as the left- and right-hand branch
regimes. If neutral disturbances exist in those parameter ranges they can be used to
define branches of the neutral curve. Between these two distinguished limits suggested
by our results for asymptotic suction flow there is essentially just one asymptotic structure
connecting them, we will refer to this as the intermediate wavenumber regime. At the small
wavenumber limit of this intermediate regime a subtle change in structure arises with
the disturbance developing an interactive structure similar to that described for Görtler
vortices in CHS. We will now describe the intermediate wavenumber regime.

4.1. The intermediate wavenumber regime
Here we consider the limit Γ → ∞ with Γ −(3/4) � k � Γ 3/2. This includes the k =
O(1) case which in the corresponding Görtler problem corresponds to the inviscid limit
and an exact solution exists; see DHS. But the Görtler problem instability is associated
with centrifugal effects whereas here the instability is generated by the roughness
boundary condition which depends on viscosity for its existence. We see below that the
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Figure 6. The paths in the ΓX–kX plane for different shaped wedge flows. Note horizontal and vertical paths
for the 60◦ wedge and Hiemenz flow and the path for a 60◦ wedge locked in the most dangerous wavenumber
regime. The black curve is the neutral curve for asymptotic suction flow and the crosses correspond to the high
wavenumber approximation to that curve.

disturbance adjusts to this reality by becoming inviscid over most of the flow apart from a
thin wall layer where it is generated.

The thickness of the wall layer can be inferred from the disturbance equations
(2.11)–(2.14). Suppose then that the X-disturbance velocity is U(X, y) exp(

∫ X
β(X) dX),

where the growth rate β is large. Within the momentum equations a balance between
diffusion in Y and advection in X requires ū(∂/∂X) ∼ (∂2/∂y2), so that

βy ∼ 1
y2 , (4.4)

on the assumption that y is small. The continuity equation and the roughness boundary
condition respectively require

V
U

∼ βy,
V
U

∼ Γ k4/3. (4.5a,b)

These three balances are consistent if

β ∼ k2Γ 3/2, y ∼ Γ −(1/2)k−(2/3). (4.6a,b)

Within the wall we are therefore led to the expansions

U = exp
(

k2Γ 3/2
∫ X

β̃(X) dX
)

[Ũ0(X, Ȳ)+ · · · ], (4.7)

V = Γ k4/3 exp
(

k2Γ 3/2
∫ X

β̃(X) dX
)

[Ṽ0(X, Ȳ)+ · · · ], (4.8)
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W = Γ 3/2k exp
(

k2Γ 3/2
∫ X

β̃(X) dX
)

[W̃0(X, Ȳ)+ · · · ], (4.9)

P = k4/3Γ 5/2 exp
(

k2Γ 3/2
∫ X

β̃(X) dX
)

[P̃0(X, Ȳ)+ · · · ], (4.10)

where we have defined the wall layer variable Ȳ = (λΓ 3/2k2β̃)1/3y. The leading-order
equations in the wall layer are

β̃Ũ0 + (λβ̃)1/3Ṽ0Ȳ + W̃0 = 0, (4.11)[
∂2

∂Ȳ2
− Ȳ

]
Ũ0 = λ

1/3

β̃2/3
Ṽ0, (4.12)

∂P̃0

∂Ȳ
= 0, (4.13)[

∂2

∂Ȳ2
− Ȳ

]
W̃0 = − 1

λ2/3β̃2/3
P̃0. (4.14)

The solution of the above equations satisfying Ṽ0 = W̄0 = 0, Ȳ = 0 with Ṽ0Ȳ = 0 for large
Ȳ is

Ṽ0 = B
∫ Ȳ

0
dφ
∫ φ

∞
Ai(θ) dθ, (4.15)

W̃0 = B

[
− P0

λ2/3β̃2/3
L(Ȳ)+ λ

1/3β̃1/3

3Ai(0)
Ai(Ȳ)

]
, (4.16)

P̃0 = λβ̃BAi′(0), (4.17)

Here Ai,L are the Airy and Scorer functions, B is an arbitrary constant and Ũ0 is then
found using (4.11). Note that we require a solution for Ṽ0 which is finite for large Ȳ
because the disturbance in the main part of the boundary layer is inviscid but, since that
inviscid problem cannot support a neutrally stable disturbance, the normal velocity at the
bottom of the main boundary layer remains finite. It remains to satisfy the leading-order
approximation to the roughness boundary condition, this takes the form

Ṽ0Ȳ + λ1/3Ũ0Ȳ = 0, Ȳ = 0, (4.18)

and is satisfied if

β̃ = λ
[
−3Ai(0)− 2Ai′(0)

Ai(0)

]3/2

� 0.246λ. (4.19)

It follows that in the intermediate wavenumber regime the disturbance evolves in a
quasi-parallel manner and the local growth rate is

β = 0.246λk2Γ 3/2. (4.20)

Above the wall layer for y = O(1), the disturbance velocity is passive and driven by the
matching condition at y = 0 found from the wall layer solution as Ȳ → ∞, but by rescaling
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B we can take this to be unity. So for y = O(1), the normal velocity component of the
disturbance expands as

V = Γ k4/3 exp
(

k2Γ 3/2
∫ X

β̃(X) dX
)

[V̂0(X, y)+ · · · ], (4.21)

and V̂0 satisfies the inhomogeneous Rayleigh equation problem

ū(V̂ ′′
0 − k2V̂0)− ū′′V̂0 = 0, (4.22)

V̂0 = 1, y = 0, V̂0 → 0, y → ∞. (4.23)

We see then that in the intermediate wavenumber regime the disturbance is inviscid almost
everywhere but with the instability sustained by the roughness within a viscous wall layer.
The upper range of validity of the above structure occurs when diffusion in z is comparable
with diffusion in y. This occurs when ∂/∂y ∼ k which gives Γ ∼ k2/3, and this is the
right-hand branch regime. Hence, for O(1) spanwise wavenumbers, the growth rate is of
size Γ 3/2 and rises to O(Γ 9/2) when k increases to O(Γ 3/2). At small values of k the
breakdown is more subtle and is associated with the small k behaviour of (4.22). We can
see from (4.22) that for small k, a double layer structure develops with layers of thickness
O(1),O(k−1). Initially the behaviour remains passive but, for sufficiently small k, these
two layers and the wall layer interact and there develops a three-layer interactive structure
akin to that discussed by CHS for Görtler vortices. That structure will be described in
Appendix A. Now let us examine the right-hand branch regime where the intermediate
wavenumber problem breaks down.

4.2. Large wavenumbers: the fastest growing mode and the neutral curve
We saw in the previous section that asymptotic suction flow has a right-hand branch with
Γ ∼ k2/3 and an examination of the calculated growth rates suggests the fastest growing
mode occurs in the same regime. In the intermediate wavenumber regime we saw that at
large wavenumbers the structure fails when Γ ∼ k2/3; this also suggests the right-hand
branch and fastest growing mode both occur where Γ ∼ k2/3. We define the wall layer
variable Y by

Y = Γ 3/2y, (4.24)

and note that for spatially growing modes, the operator ū(∂/∂X) is comparable with the
viscous operator ∂2/∂y2 − k2 if ∂/∂X ∼ Γ 9/2. Thus, we seek a solution in the wall layer
of the form

U = [Ũ(Y,X)+ · · · ] exp
(
Γ 9/2

∫ X
β(X) dX

)
, (4.25)

V = [Γ 3Ṽ(Y,X)+ · · · ] exp
(
Γ 9/2

∫ X
β(X) dX

)
, (4.26)

W = [Γ 3W̃(Y,X)+ · · · ] exp
(
Γ 9/2

∫ X
β(X) dX

)
, (4.27)

P = [Γ 9/2P̃(Y,X)+ · · · ] exp
(
Γ 9/2

∫ X
β(X) dX

)
, (4.28)
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so that the local growth rate at station X is Γ 9/2β(X). If we then write k = k̄Γ 3/2 then the
leading-order approximation to (2.11)–(2.14) is

βŨ + ṼY + k̄W̃ = 0, (4.29)[
∂2

∂Y2 − βλY − k̄2
]

Ũ = Ṽλ, (4.30)[
∂2

∂Y2 − βλY − k̄2
]

Ṽ = P̃Y , (4.31)[
∂2

∂Y2 − βλY − k̄2
]

W̃ = k̄P̃, (4.32)

which must be solved subject to

Ũ = Ṽ = ∂

∂Y
[Ṽ + λ1/3k̄4/3Ũ] = 0, Y = 0, Ũ → 0, Y → ∞. (4.33)

Here λ(X) = uy(X, 0) is the wall shear associated with the X velocity component of the
basic flow and can be scaled out of (4.29)–(4.33) by making the transformations

Y → λ−2Y, k̄ → λ2k̄, β → λ5β, Ṽ → λ3Ṽ. (4.34a–d)

Therefore, we need only solve (4.29)–(4.33) with λ = 1 to find the growth rate
dependences on wavenumber and roughness parameter Γ for an arbitrary boundary layer.
However, we first observe that the neutral value of k̄, which corresponds to the right-hand
branch of the neutral curve, is readily found from (4.29)–(4.33) by setting β = 0. The
system (4.29)–(4.33) can then be solved analytically to give the neutral wavenumber
k̄ = λ2/8 which corresponds to Γ λ4/3 = 4k2/3.

The eigenvalue problem (4.29)–(4.33) is solved numerically by first eliminating W̃, P̃
from (4.31 and (4.32) to obtain a fourth-order ordinary differential equation for Ṽ . That
equation is then solved using finite differences subject to Ṽ vanishing at Y = 0,∞ with the
normalisation Ṽ ′(0) = 1. The solution for Ṽ is then substituted into (4.30) which is then
solved using finite differences subject to Ũ = 0 at Y = 0,∞. We then iterate on β at each
k̄ until the roughness boundary condition is satisfied. Our computations found a single
unstable mode in the interval 0 < k̄/λ2 < 1

8 . Figure 7 shows β1 = β/λ5 as a function of
k1 = k̄/λ2. The maximum of β1 as a function of k1 occurs at k1 = 0.079. For small values
of k1, we observe that the growth rate goes to zero, more precisely, the calculations show
that, for small k1, the growth rate β1 goes to zero like k2

1, and, therefore, is consistent with
the limiting large wavenumber form of the growth rate in the intermediate wavenumber
range. Note that the small k̄ limit of (4.29)–(4.33) shows that the disturbance here develops
the double layer structure found in the intermediate wavenumber regime. Also shown
in figure 7 for the smaller values of k1 is the growth rate predicted by the intermediate
wavenumber solution, we see that, for small enough k1, the results coincide.

Figure 8 shows the eigenfunctions U1 = Ũ, V1 = Ṽ/λ3 as functions of Y1 = λ2Y. Note
that the eigenfunctions decay to zero more slowly as the wavenumber decreases so that
there is non-zero vortex activity over a bigger region adjacent to the wall. The spreading
of the eigenfunctions to large values of the scaled variable Y again enables a matching
with the large k intermediate wavenumber solution of the previous subsection.

Now let us determine how the intermediate wavenumber solution develops at small
wavenumbers. As pointed out already, the breakdown occurs when the originally passive
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Figure 7. The growth rate β1 = β/λ5 of the fastest growing mode as a function of the wavenumber k1 = k̄/λ2.
The growth rate passes through zero at k1 = 1

8 . Also shown is the prediction from the intermediate wavenumber
problem.

layer occupying the main part of the boundary layers splits into two layers and eventually
couples the wall layer with the two upper layers. Thus, the solution for small k becomes
interactive and the situation is similar to that first described by Rozhko & Ruban (1987).
The structure in the interactive regime is relatively straightforward but plays the crucial
role of connecting the most unstable mode, which is of course the only unstable mode,
in the left-hand branch regime with the only unstable mode at higher wavenumbers. That
connection problem was recently described for the Görtler problem in H1, that connection
was overlooked in the analysis of Wu et al. (2011). Rather than discuss the interactive
regime at this stage we now consider the left-hand branch regime Γ ∼ k−(4/3). This regime
is the only one which remains intrinsically non-parallel at large values of the roughness
parameter and plays the crucial role in selecting the size of the vortex to be amplified as
the disturbance moves downstream into higher local wavenumber regimes.

4.3. The non-parallel evolution in the left-hand branch regime
Here we will concern ourselves with the asymptotic solution of (2.11)–(2.14) in the limit
k → 0 with Γ = O(k−(4/3)). The latter distinguished limit defines the left-hand branch
for asymptotic suction flow and we anticipate that it is also relevant to growing boundary
layers. We write

Γ = Γ1k−(4/3), (4.35)

and look for solution of the equations of motion with the disturbance varying on the
same length scale as the unperturbed boundary layer, so we are assuming the disturbance
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Figure 8. The eigenfunctions U1 = Ũ, V1 = Ṽ/λ3 of the fastest growing mode eigenvlaue problem
(4.29)–(4.33) for k1 = 0.125, 0.079, 0.004 in (a,b), (c,d) and (e, f ), respectively.

develops in a non-parallel manner. The appropriate expansions for the disturbance are

U = U0(X, y)+ · · · , (4.36)

V = V0(X, y)+ · · · , (4.37)

W = k−1W0(X, y)+, (4.38)

P = k−1P0(X, y)+ · · · . (4.39)

Here the relative size of the velocity components is fixed by the equation of continuity
whilst the size of P is fixed by the fact that V cannot be constrained to the main part of
the boundary layer and so there is a pressure driven roll field in an outer layer of depth
O(k−1). Note that Luchini (1996), in an analysis for the flat plate case without roughness,
claimed V cannot be reduced to zero within the context of (2.11)–(2.14). However, that is
only the case for the reduced system in the long-wave limit. The leading-order problem
is found from substituting the above expansions into (2.11)–(2.14) and the corresponding
boundary conditions to give

ūU0X + v̄U0y + U0uX + V0uy = U0yy, (4.40)

P0y = 0, (4.41)

ūW0X + v̄W0y = W0yy, (4.42)

U0X + V0y + W0 = 0, (4.43)

922 A28-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.557


Rough wall boundary layer instability

U0, V0,
∂

∂y
[V0 + Γ1λ

1/3U0] = 0, y = 0, (4.44)

U0,
∂V0

∂y
, W0 → 0, y → ∞. (4.45)

Note that the above system can only be solved subject to V0y tending to zero at large y and
so outside the boundary layer there exists a passive outer region defined by the stretched
variable ψ = ky, where

V = V00(X, ψ)+ · · · , W = W00(X, ψ)+ · · · , P = k−1P00(X, ψ)+ · · · ,
(4.46a–c)

and it is readily shown that

V00 = V0(X,∞) e−ψ. (4.47)

Equations (4.40)–(4.45) must be solved subject to a disturbance imposed at an initial
value of X, and then the disturbance in the free stream responds with the above normal
velocity component in an outer layer where it decays to zero. For the Görtler problem,
Bassom & Hall (1993) found that the full Görtler equations subject to an initial disturbance
imposed close to the leading edge do not support a left-hand branch to the neutral curve
because disturbances grow algebraically even without curvature. This was explained by
Luchini (1996) who showed that, for Blasius flow, the system (4.40)–(4.45) with Γ1 = 0
supports an algebraically growing disturbance with U0 ∼ Xω with ω � .213. It would
seem likely that more general boundary layers might support similar algebraic growth of
disturbances. In order to check for that possibility, and to see how the roughness boundary
condition impacts on possible algebraic growth, we seek algebraically growing solutions
of (4.40)–(4.45) with Γ1 = 0 for Falkner–Skan boundary layers.

Suppose then that, for large y, the streamwise velocity ū approaches the free-stream
speed ue = Xn, we define a similarity variable η by

η =
√

n + 1
2

yX(n−1)/2, (4.48)

and let

ū = Xnf ′(η), v̄ = − 1√
2[n + 1]

([n + 1] f (η)+ [n − 1]ηf ′(η))X(n−1)/2, (4.49a,b)

where f (η) satisfies

f ′′′ + βH[1 − f ′2] + ff ′′ = 0, (4.50)

f (0) = f ′(0) = 0, f ′(∞) = 1. (4.51)

Here βH = 2n/(n + 1) is the Hartree parameter. We now write (4.40)–(4.45) in terms of
X, η to give[
∂2

∂η2 − 2
f ′

n + 1
X
∂

∂X
+ f

∂

∂η

]
U0 = 2nf ′ + [n − 1]ηf ′′

n + 1
U0 +

√
2

n + 1
f ′′V0X(n+1)/2,

(4.52)[
∂2

∂η2 − 2
f ′

n + 1
X
∂

∂X
+ f

∂

∂η

]
W0 = 0, (4.53)
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∂U0

∂X
+ n − 1

2X
η
∂U0

∂η
+
√

n + 1
2

X(n−1)/2 ∂V0

∂η
+ W0 = 0, (4.54)

U0 = V0 = 0, V0η(0)+ Γ1X(3n−1/6)

[
f ′′(0)

√
n + 1

2

]1/3

U0η(0) = 0, (4.55a,b)

U0, W0 → 0, y → ∞. (4.56)

In the zero roughness case, Γ1 = 0, the above system supports the similarity solution

U0 = (XωU00(η), Xω−[n+1]/2V00(η), Xω−1W00(η)), (4.57)

where ω satisfies the ordinary differential equation eigenvalue problem found by
substituting the above into (4.52)–(4.56). The similarity solution is an exact solution of the
long-wave disturbance equations and generalizes the Blasius case investigated by Luchini
(1996) who found a single positive unstable eigenvalue ω = 0.213. It is important to note
that Luchini’s solution, and the generalization above, are similarity solutions for all X > 0
of the long-wave equations for streamwise vortices in the case Γ1 = 0. But the normal
velocity V0 associated with the similarity solution does not vanish for large η and so
it drives an outer roll in the region y = O(k−1). The latter flow is not self-similar and
it produces a correction to the flow in the wall layer which turns out to be of relative
size O(kX) smaller, so that the long-wave similarity solution is the first term in a series
expansion of the Navier–Stokes equations in terms of the small local wavenumber kX .

If Γ1 /= 0 the above similarity solution of the roughness-free problem fails. However,
we can instead construct a small X series solution with the leading-order terms in the
velocity and the pressure given by the Γ1 = 0 similarity solution. The next order terms in
the series expansions for the velocity and pressure are each of size O(Xn+1/3) smaller than
the leading-order terms so that the roughness-free similarity solution valid for all X now
becomes the leading-order part of a small X solution when Γ1 /= 0.We conclude then that
in the presence of roughness disturbances imposed on the flow sufficiently close to the
leading edge are modified only at second order by roughness and, thus, develop initially as
if there is no roughness.

The eigenvalue ω is determined by the ordinary differential equation eigenvalue problem
found by substituting for U0 into (4.52)–(4.56) with Γ1 = 0. Rather than solve the
eigenvalue problem we solved the partial differential system (4.52)–(4.56) numerically
by marching in the X direction from an initial disturbance with Γ1 = 0. We found that
any initial perturbation with W0 /= 0 quickly evolved into the similarity form and we then
extracted ω from the solution. Notice that if W0 is zero for the initial perturbation then W0
remains zero for all X and U0,V0 decay algebraically as Libby–Fox eigenfunctions.

Whilst it is common in transient growth problems to define the flow as being unstable
when the parameter ω is positive, it is perhaps not the best measure of growth. We can
measure the algebraic growth relative to the algebraically growing unperturbed flow but,
following Hall (1983), it is perhaps physically more relevant to look at the disturbance
energy

E(X) =
∫ ∞

0
U2

0 dy. (4.58)

For a streamwise vortex flow, the spanwise and normal velocity components of the
disturbance are of relative size O(1/Re) smaller than the streamwise component and so
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Figure 9. The local spatial growth rate of the algebraic eigensolutions of the roughness-free problem. Also
shown is the curve ωc = ω(βH) and the index j associated with the large X exponentially growing solutions
proportional to ecx j

.

the energy is predominantly in the streamwise velocity component. Based on the energy
of the disturbance a local spatial growth rate βL(X) can be defined by

βL = E′

2E
, (4.59)

and, for the exact similarity solution, we obtain

XβL = ω + 1 − n
4

. (4.60)

Thus, the energy of the disturbance is growing if

ω >
n − 1

4
= βH − 1

2[2 − βH]
= ωc(βH). (4.61)

The eigenvalue ω was calculated as indicated above for 0 < βH < 1.3 and the results are
shown in figure 9. Also shown is the curve ωc = ωc(βH) and algebraic growth occurs
when the later curve is below the curve ω = ω(βH). The switch from algebraic growth to
decay occurs when βH � 0.57 whereas ω becomes negative when βH � 0.37. Therefore,
in terms of n the algebraic eigensolution is unstable only for n < 0.39. Figure 9 indicates
that the energy growth of the exact algebraic solutions is a maximum for Blasius flow.
Figure 10 shows the functions U00(η),V00(η),W00(η), for n = 0, 1

3 , 1. We see that these
functions are qualitatively similar as n varies but with the sizes of V00,W00 increasing
relative to U00 as n increases.
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Figure 10. The functions U00(η),V00(η),W00(η), for n = 0, 1
3 , 1 from (a–i).

For large values of X, algebraic solutions can be found but these all decay with
increasing X. Those solutions are of no physical interest because we now show that there
exists a rapidly growing exponential solution available for large X. We shall once again
consider Falkner–Skan profiles and uncover subtle differences in the large X downstream
growth of the disturbances as the Hartree parameter varies. In fact, the exponential growth
we find applies to all boundary layers with shear λ� 1, and we will see that the local
growth rate is proportional to λ.

Consider then (4.52)–(4.56) the disturbance equations in terms of X and η the similarity
variable for an external flow ∼ Xn. For the Görtler problem, there are in fact two types of
exponential solutions: firstly a family of solutions occupying the main part of the boundary
layer and a single mode, the most unstable one, localized in a thin layer near the wall. As
mentioned earlier, Wu et al. (2011) overlooked that mode. Here the roughness boundary
condition precludes the possibility of exponentially growing solutions occupying the main
part of the boundary layer so we seek solutions localized at η = 0.

Suppose then that (4.52)–(4.56) support an exponentially growing solution localized in a
layer of thickness X−k near the wall. For large X, we anticipate that the disturbance will be
proportional to eΦ(X) where the phase functionΦ(X) ∼ X j. If the first two terms inside the
operator acting on the left-hand sides of (4.52) and (4.53) are in balance in the wall layer
with X large, we require 3k = j. The largest terms proportional to U0,V0 in (4.52) balance
if X2kU0 ∼ X(n+1)/2V0, and the roughness condition in (4.55a,b) gives V0 ∼ X(3n−1)/6U0.
It follows that k = n/2 + 1

6 and j = 3k. For convenience, we now take the phase function
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Φ in the form

Φ = 2ω0

3n + 1
X(3n+1)/2 + · · · . (4.62)

The phase function satisfies Φ ′(x) = ω0X(3n−1)/2 so the local growth rate associated with
Φ is proportional to the shear stress at the wall. Moreover, for n < 1

3 , the exponential
growth is slower than the more usual case Φ ∼ X and, for n = 1, the disturbance is
growing like eω0X2

. Thus, the roughness induces growth like exp(2ω0X1/2) for a flat plate
whilst flows past a right-angled wedge and against a flat plate have disturbance growth like
eω0X , exp(ω0X2/2), respectively.

We define a wall layer variable ξ̄ = Xkη and seek a solution in the wall layer of the form

U0 = [U00(X, ξ̄ )+ · · · ] eΦ, (4.63)

V0 = Xn/2−1/6[V00(X, ξ̄ )+ · · · ] eΦ, (4.64)

W0 = X(3n−1)/2[W00(X, ξ̄ )+ · · · ] eΦ, (4.65)

and the leading-order approximation to the equations of motion in the wall layer is[
∂2

∂ξ̄
2 − 2ω0f ′′(0)

n + 1
ξ̄

]
U00 =

√
2

n + 1
f ′′(0)V00, (4.66)[

∂2

∂ξ̄
2 − 2ω0f ′′(0)

n + 1
ξ̄

]
W00 = 0, (4.67)

ω0U00 +
√

n + 1
2

∂V00

∂ξ̄
+ W00 = 0. (4.68)

The solution of the above equations must satisfy V00 = U00 = 0, ξ̄ = 0 with V00ξ ,W00
bounded for ξ̄ → ∞. We eliminate U00,W00 from (4.66)–(4.68) to obtain Airys equation
for V00ξ̄ ξ̄ . The solution of that equation together with W00 obtained from (4.67) can then
be substituted into (4.68) to give U00. If U00 is to vanish at the wall, we find the required
solution of (4.66)–(4.68) is

V00 = Dξ̄ , U00 = − D
ω0Ai(0)

√
n + 1

2

[
Ai(0)− Ai

([
(
2ω0f ′′(0)

n + 1

]1/3

ξ̄

)]
, (4.69)

W00 = − D
Ai(0)

√
n + 1

2
Ai

([
(
2ω0f ′′(0)

n + 1

]1/3

ξ̄

)
. (4.70)

Here D is a constant and the roughness boundary condition is then satisfied if

ω0 =
[

n + 1
2

]1/2

f ′′(0)
[
−Γ1Ai′(0)

Ai(0)

]3/2

� 0.44f ′′(0)Γ1
3/2(n + 1)1/2. (4.71)

In the main part of the boundary layer the disturbance matches onto a simple
displacement flow with U0 ∼ f ′′(η) which then drives a roll flow in a passive upper layer
of depth O(k−1) where it decays to zero. Thus, the disturbance now has a triple-layer
structure but the upper two layers are passive with the eigenrelation determined completely
by the flow in the wall layer. The key point about this large X regime is that the instability
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problem has now become quasi-parallel, and indeed the problem remains quasi-parallel as
the disturbance moves further downstream. Therefore, at high values of Γ , non-parallelism
occurs only in the initial stages of the left-hand branch regime where algebraic growth is
converted into exponential growth. In fact, the large X structure described above applies
to any boundary layer having large wall shear λ. In terms of the phase function Φ, (4.71)
gives Φ ′(X) = [−(Γ1Ai′(0)/Ai(0))]3/2λ(X) and an analysis similar to that above for any
boundary layer, not necessarily a self-similar one, based on λ(X) � 1 as the expansion
parameter yields the same result. Now consider the local spatial growth rate βL = E′/2E
for the large X solution. Here we find that

βL � 1 − n
4X

+ ω0X(3n−1)/2. (4.72)

The first term is due to the growth of the boundary layer and the second arises from the
exponential growth of the streamwise velocity component. The growth rate is therefore
dominated by the second term so for Blasius flow the growth rate ∼ X−(1/2). When n = 1

3 ,
the second term is constant so a 90◦ wedge gives the more usual exponential growth found
in parallel flow stability problems. For stagnation point flow, the second term behaves
like X and the disturbance energy is growing like ecX2

, where c is a constant. The 90◦
wedge also has the unique property that as a disturbance moves downstream it remains
indefinitely in the right-hand branch regime where the maximum growth rate occurs. In
contrast to that behaviour, Tollmien–Schlichting waves or Görtler vortices over walls of
constant curvature remain in the unstable region for only a finite distance. This result
suggests that roughness on a 90◦ wedge is potentially much more likely to cause transition
than roughness on other wedges.

The next distinguished limit in the k–Γ plane can be inferred from the large X form
described above or from the small wavenumber limit of the solution in the intermediate
regime. The crucial stage which arises as X increases is when the two passive layers on
top of the wall layer support a pressure perturbation which enters the wall layer problem
at leading order. This is also the manner in which the intermediate wavenumber solution
discussed earlier falls as the wavenumber becomes small. It is found that the wavenumber
regime k ∼ Γ −(3/10) leads to the interactive structure involving all three layers. Taking
the small or large wavenumber limit of the solution there yields the exponentially growing
structure just described above or the small wavenumber limit of the intermediate solution.
The interactive structure closely follows that used in the Görtler vortex problem by CHS,
the details of the solution in that layer can be found in Appendix A.

Let us summarize the previous discussion concerning solutions of the long-wave system
(4.52)–(4.56) for Falkner–Skan flows at small and large X. In the absence of roughness,
we extended the analysis of Luchini (1996) to show that the exact algebraically growing
similarity solution found by the latter author to show that, in the absence of roughness,
Falkner–Skan flows with 0 < n < 0.39 also have algebraically growing solutions. The
growth is associated with the streamwise velocity component which grows like Xω and
ω begins at ω = 0.213 for Blasius and decreases monotonically to zero at n = 0.39. At
higher values of n the similarity solution exists but it decays algebraically.

If roughness is present the similarity solution now persists only as a small X solution
relevant to disturbances initiated sufficiently close to the leading edge. For small enough
X, the similarity solution, whether growing or decaying, is corrected at higher order
by roughness effects. Thus, a disturbance initiated very close to the leading edge is
initially unaffected by roughness and can grow as a roughness-free similarity solution.
But as X increases, the higher-order terms due to roughness come into play and destroy
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self-similarity. The roughness then dominates the evolution of a disturbance and, for
large X, disturbances grow exponentially like eΦ(X) with Φ ∼ X(3n+1)/2 so the rate of
growth increases with n. Moreover, for n > 1

3 , that growth is faster than the usual spatial
growth where Φ is linear in X. Thus, in summary, our analysis suggests that arbitrary
disturbances initiated sufficiently close to the leading edge in the first instance evolve into
the algebraically growing or decaying self-similar solution modified at higher order by
roughness. However, further downstream as roughness becomes important disturbances
take on the three-layer structure associated with the exponentially growing solutions. The
local growth rate at that stage is proportional to the wall shear associated with the basic
flow.

We observed at the beginning of this section that a disturbance moving downstream
moves on the path ΓX = Ck2[5n−1]/3[1−n]

X as X increases. Hence, if n > −1
3 a disturbance

beginning at a sufficiently small X always passes through the left-hand branch regime
ΓX ∼ k−(4/3)

X , through the interactive regime and into the small k limit of the intermediate
wavenumber regime. Thus, all Falkner–Skan flows of physical interest have the latter
behaviour. The development beyond the small k regime then depends crucially on n, we
restrict attention to the case n > 0. Firstly, we note that if 0 ≤ n < 1

5 the path taken by
a disturbance has ΓX tending to zero and so the right-hand regime is not reachable. For
1
5 < n < 1

3 , the right-hand branch regime can be reached but ultimately the path takes
the disturbance into the stable area to the right of the neutral curve. The case n = 1

3
has already been commented on; in this case the disturbance ultimately moves on a path
maximising the downstream growth. Finally, for n > 1

3 , a disturbance originating in the
small wavenumber regime moves on a path steeper than ΓX ∼ k2/3

X and grows indefinitely
but not at the fastest possible rate.

4.4. Numerical solution of the long-wave evolution equation
The long-wave evolution equations (4.52)–(4.56) are solved numerically using finite
differences in the X, η directions. Assuming that U0,V0 and W0 are known at say X = X̄,
we first step (4.52), (4.53) forward to the new X location using an implicit finite difference
scheme to find U0,W0. We then integrate the continuity equation (4.54) with respect to
η to find V0 at the new location. The energy of the disturbance is monitored and the
local growth rate βL = E′/2E calculated. The calculations are initiated at a sufficiently
small value of X using the least stable algebraic eigensolution discussed previously in this
section. The initial X is chosen to be sufficiently small that the roughness gives only a
second-order correction to the eigensolution.

Figure 11 shows |βL| for four representative values of n. Unstable solutions are
represented by continuous curves, stable ones are represented by dashed curves. The red
curves denote the large X prediction of growth rates given by (4.72). For the first two
values n = 0, 1

3 , the algebraic solution is unstable and so we observe the disturbance is
unstable for all X shown. We see in both cases the solution initially follows a line of
slope −1 corresponding to the algebraic eigensolution before switching to the exponential
solution. In other words, the algebraic eigensolution, which in the presence of roughness is
valid only at small X, deforms into the large X exponentially growing solution as it moves
downstream. Note also that, for n = 1

3 , the exponential solution varies like ec0X , where c0
is a constant.

The other two cases correspond to n = 2
3 , 1 and here the algebraic solution is stable

so the growth rate is initially negative before going through zero and increasing until it
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Figure 11. The log of the absolute value of the local growth rate βL as a function of log X for n = 0, 1
3 , (a,b)

and n = 2
3 , 1 (c,d). Note that in the top row βL is always positive whilst in the second row it is positive only to

the right of the cusp. Continuous curves denote positive values of βL (unstable) whilst dashed curves denote
negative values (stable). The calculation for n = 1 is for Γ1 = 1, and the other cases all have Γ1 = 0.00125.
The red curves correspond to the large X prediction of the growth rate.

asymptotes onto the exponentially growing solution. Thus, for n > 0.39, we can define
a neutral point and, hence, neutral curve, associated with the zero of βL. Since we are
plotting log |βL|, the cusps correspond to zeros of the growth rate.

The neutral configuration is independent of the choice of Γ1 used in the calculations
provided that we express the neutral configuration in terms of the local values of ΓX, kX .
We recall that the latter are as defined in (4.1) and (4.2) from which we deduce that

ΓXk4/3
X = Γ1Xn−(1/3) = Γc(n), (4.73)

so that for a given n > 0.39, the neutral curve associated with disturbances originating
near the leading edge has a left-hand branch defined by the above equation with Γc fixed
by the choice of Γ1 and the value of X where the growth rate changes sign. The fact that Γc
above is independent of the choice of Γ1 is readily seen from (4.52)–(4.56) by rescaling X
to set Γ1 = 1. Figure 12 shows Γc as a function of n and we see it increases monotonically
with n from n = 0.39 where it can be first defined. For n < .39, disturbances initiated
close to the leading edge evolve into algebraically growing similarity solutions before
roughness comes into play. The algebraic growth is then converted into exponential growth
as the effect of roughness increases, that growth continues as the disturbance enters the
interactive regime and then into the intermediate wavenumber regime. Beyond that stage
the behaviour will depend on n as to whether the disturbance stabilises reaching the
right-hand branch regime.
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Figure 12. The constant Γc which defines the left-hand branch of the neutral curve as a function of n.

It follows from the above discussion that if n < 0.39, a left-hand branch of the neutral
curve cannot be defined since the algebraic solution is itself already unstable when it
is initiated. But at finite values of the roughness parameter we would expect that the
algebraically growing solution might be stabilised and a neutral curve might be defined
by where the ultimate exponential growth of the disturbance begins. We will return to that
issue later.

It is also of interest to compare the left-hand branch predictions with the large k
asymptotic predictions for Falkner–Skan flows. We saw earlier that, for a boundary layer,
the right-hand branch neutral curve is given by Γ λ4/3 = 4k2/3, where λ is the base flow
wall shear. In terms of local values of ΓX, kX for Falkner–Skan flow we obtain

ΓX

k2/3
X

= 4
[

2
n + 1

]2/3

[F′′(0)]−(4/3), (4.74)

which defines the right-hand branch of the neutral curve for n > 0.
Figure 13 shows the left- and right-hand branches of the neutral curves when

they exist for the Falkner–Skan flows with n = 0, 1
3 ,

2
3 , 1. For large values of the

roughness parameter Γ , we anticipate that the right-hand branches shown will give good
approximations to the curves to be obtained in the next section by integrating the full
equations without any assumption on the size of k. Likewise we might expect that the
left-hand branches for the two larger values of n accurately predict the results of the full
calculations to be discussed in the next section.

5. Numerical solution for O(1) wavenumbers

We now discuss the numerical solution of the evolution equations (2.11)–(2.14) subject to
the boundary conditions (2.40), (2.41) and (2.43) for O(1) wavenumbers. The equations
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Figure 13. Plots (a,b) show the right-hand branches of neutral curves for n = 0, 1
3 , no left-hand branch exists.

Plots (c,d) show left and right-hand branches for n = 2
3 , 1.

are parabolic in x and so must be solved subject to an appropriate initial condition at
some location X = X̄. As is the case for the closely related Görtler vortex problem, initial
conditions appropriate to free-stream disturbances, localized bumps at the wall or spanwise
periodic wall suction can be found; see Hall (1990) and Bassom & Hall (1993).

We restrict our attention to the case of Falkner–Skan boundary layers and integrate the
equations of motion using the finite difference scheme given by Hall (1983). The first
step is to eliminate the pressure and spanwise disturbance velocity from the disturbance
equations; we then write the resulting equation for V and the x momentum equation in the
form

Uyy − ūUX − k2U = Q1, (5.1)

Vyyyy −
(

ū
[
∂2

∂y2 − k2
]

− uyy

)
VX − 2k2Vyy + k4V = Q2 + Q3. (5.2)

Here Q1,Q2,Q3 are defined by

Q1 = UuX + Vuy + v̄Uy, (5.3)

Q2 = −V(uXyy + k2vy)+ v̄Vyyy + vyVyy − (uXy + k2v̄)Vy, (5.4)

Q3 = −vXUyy − (uXXy + k2vX)U − 2
(

uxy + uX
∂

∂y

)
UX. (5.5)

The above equations are to be solved subject to

U = V = ∂

∂y
[Γ k4/3λ1/3U + V] = 0, y = 0, (5.6)

U,V,W → 0, y → ∞. (5.7)
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In order to account for boundary layer growth, we solved the disturbance equations in
terms of the similarity variables X, η = √

(n + 1)/2yX(n−1)/2. Thus, (5.1) and (5.2) are
first rewritten in terms of X, η. The decay of the disturbance velocity far from the wall is
effectively fixed by the solutions of (5.1) and (5.2) with the right-hand sides set to zero.
For O(1) local wavenumbers, both U and V decay to zero for large y. If kX � 1 then U
tends to zero for y � 1, but V now has an outer layer of depth O(k−1

X ) so that V has a
double layer structure with layers of depth O(1) and O(k−1

X ) adjacent to the wall. Note that
the vanishing of ūy at large y means that the term proportional to V in Q1 does not force a
double layer structure for U.

If the local wavenumber kX � 1, we know from the discussion of the previous section
that U,V both decay to zero in a layer of depth O(kX

−1) adjacent to the wall. Since the
behaviour in y of the disturbance depends on the local wavenumber kX , any numerical
scheme used to solve the disturbance equations must account for such variations as the
disturbance evolves downstream. Thus, if, for example, we wish to follow the evolution
of disturbances originating near the leading edge, then kX will initially be small but
sufficiently far downstream kX will be large and so the numerical scheme must allow the
for the fact that the disturbance will initially extend well beyond the boundary layer whilst
further downstream it will become localized near the wall.

The first step in solving the disturbance equations is to choose an initial disturbance at
some X = X̄. We then step forward (5.1) written in terms of X, η with an Euler step in
X with the terms on the left-hand side treated implicitly and the right-hand side treated
explicitly. Once U is known at the next location we can then step (5.2) forward in X with
the left-hand side treated implicitly and the right-hand side terms not involving the X
derivative on U treated explicitly. The last term in Q3 in (5.5) is evaluated using U at the
original and new X values. The method is efficient since marching the U,V equations
forward over one step just requires the solution of a tri-diagonal and a penta-diagonal
system of equations, respectively. The numerical value of η∞ used to approximate η → ∞
must be chosen so that the corresponding value of y = y∞ is sufficiently large to capture
the different possible disturbance behaviours in the wall-normal direction. In all of the
calculations reported on below, the initial disturbance was taken to be

U = 0, V = η2 e−(η2/4), X = X̄. (5.8a–c)

The choice of initial condition is to a certain extent arbitrary but the vanishing of Vη at
the wall means that all of the boundary conditions are satisfied at the initial step. The
code was verified by inserting a centrifugal term into the equations, setting Γ = 0 and
comparing the results with Hall (1983) and other published solutions of the non-parallel
Görtler problem.

We recall that, for a Falkner–Skan boundary layer, the path in the local wavenumber-
local roughness parameter traced out by a disturbance has ΓXk−(2[5n−1]/3[1−n])

X = constant.
In the case of a 60◦ wedge, i.e. n = 1

5 , the roughness parameter stays fixed and the
local wavenumber increases like X2/5 as X increases. The other extreme case is n = 1,
i.e. stagnation point flow, which has the local wavenumber constant and the roughness
parameter increasing like X4/3 as X increases. We will present results for the cases n = 1

5 , 1
and for Blasius flow which corresponds to n = 0.

From our discussion of the large roughness limit in the previous section we know
that, for each of these flows, the right-hand branch of the neutral curve has ΓX ∼ kX

2/3.
However, there is a significant difference at small wavenumbers where a left-hand branch
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of the neutral curve can only be defined for Falkner–Skan profiles with n > 0.39. Thus, of
the three flows to be considered, only stagnation point flow has a well-defined left-hand
branch.

5.1. Results for Blasius flow
Here the initial disturbance was inserted at X̄ = 1 for various values of k. For sufficiently
small values of k, the disturbance quickly evolves into the algebraically growing solution
of Luchini (1996). We again monitored the growth of the disturbance by evaluating the
growth rate of the energy E = ∫∞

0 U2 dy and we defined the neutral position to be the
point where dE/dx = 0. For Blasius flow, a disturbance inserted at X = X̄ will move on
the curve ΓX = CX−(2/3) in the kX–ΓX plane as it evolves in the X direction. We give
results for the three cases ΓX = 30, 60, 90 evaluated at the initial location X = X̄ = 1.
Hence, with X, ΓX fixed at the initial location we vary k to begin the calculations at varying
values of the local wavenumber kX . Results are shown in figure 14 for the case ΓX = 30
at the initial location. The three dashed magenta curves indicate typical paths taken by a
disturbance in the kX–ΓX plane as it moves downstream.

The neutral curve is computed by varying k at the initial location, neutral positions
correspond to the solid black curves in figure 14. We see that, for disturbances initiated at
X = 1 with ΓX = 30, varying k produces a neutral curve with upper and lower branches,
these are best explained by reference to the paths taken by a disturbance. On path (a) and
nearby paths the flow is immediately unstable and remains unstable until the right-hand
branch of the upper part of the neutral curve is crossed. The dashed red curve is the
asymptotic prediction of the right-hand branch and we see it is in excellent agreement
with the numerical results.

For paths (b,c), the local initial wavenumbers are sufficiently small that the algebraically
growing solution of Luchini is quickly established and roughness is a second-order effect.
However, subsequently finite wavenumber effects stabilise the evolution of disturbances
along these paths between the upper and lower neutral curves for a short interval where
the flow is stable. Entering and leaving these regions defines neutral points on the upper
and lower branches of the neutral curve. Note that there will also be paths to the right of (b)
which cross the left-hand branch of the upper neutral curve and pass into the stable region
without crossing the upper part of the lower neutral curve. On paths (b,c), having passed
through the short region of stability between the two neutral curves, the local roughness
parameter is now smaller and the disturbance begins to grow again. That growth is neither
algebraic or exponential and continues until the disturbance crosses the part of the lower
neutral curve to the left of the cusp. However, similar paths taken at progressively smaller
initial kX stay progressively closer to the ΓX axis and the growth is close to that of the
algebraic similarity solution until the path bends and moves close to the kX axis. These
paths cross into the stable region at values of kX close to 0.48. Clearly as the initial kX
approaches zero, the effect of the roughness disappears and the growth rate behaviour is
simply that of a disturbance over a smooth wall with algebraic growth being eventually
stopped by finite wavenumber effects.

Figures 15 and 16 illustrate how the results obtained for ΓX = 30 at the initial location
change when the latter is increased to 60 and 90, respectively. The results are qualitatively
similar but some clear trends can be observed. Firstly, we note that the distance between
the two upper branches of the neutral curve to the left of kX = 1 become progressively
closer together, and on the scale of figure 16 the separation between the curves is hardly
visible. Likewise, if we focus on the two lowest branches of the neutral curve terminating
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Figure 14. The neutral curve (upper and lower branches) for roughness-induced instability in Blasius flow with
ΓX = 30 at the initial location X = X̄. The neutral curve is in solid black, the dashed red curve corresponds to
the high wavenumber approximation. The dashed magenta lines labelled a, b, c are typical paths taken in the
kX–ΓX plane as a disturbance moves downstream.

in a cusp in figure 14, we see that the distance between the curves shrinks as the initial
ΓX increases and the cusp eventually appears to become rounded as the lowest neutral
curve begins to initially hug the high wavenumber approximation to the neutral curve.
Calculations at higher values ΓX produced results very similar to figure 16 with the
tendency of the lowest branch of the neutral curve terminating on the kX axis to follow
the high wavenumber prediction of the curve continuing. In addition, the tendency of the
two upper branches to close up also continues at higher initial values of ΓX .

Another observation in figures 14–16 is that when ΓX → 0, the boundary between
instability and stability occurs when kX is in the range (0.45, 0.48). Interestingly this is
close to the wavenumber found by Luchini (2000) to optimize the growth of a class of
disturbances imposed near the leading edge and allowed to evolve until X = 1. Luchini
optimized the growth of disturbances chosen to represent perturbations impinging on the
leading edge, an asymptotic description of such disturbances was given by Leib, Wundrow
& Goldstein (1999). Luchini found that the form of the initial perturbation had little
effect on the growth of the disturbance up to X = 1. If the optimum wavenumber found
by Luchini is expressed in terms of local flow quantities, we find that it corresponds to
kX = 0.45 and that corresponds almost exactly to the value shown in figure 16. Presumably
the fact that Luchini found that the growth depends only weakly on the precise form of the
initial disturbance is because close to the leading edge any disturbance with a non-zero
roll velocity rapidly evolves into the algebraically growing eigensolution. Therefore,
initial disturbances with V /= 0 have almost identical growth rates downstream. That is
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Figure 15. The neutral curve (upper and lower branches) for roughness-induced instability in Blasius flow with
ΓX = 60 at the initial location X = X̄. The neutral curve is in solid black, the dashed red curve corresponds to
the high wavenumber approximation.

entirely consistent with several computations we carried out varying the form of the initial
disturbance.

We conclude from figures 14–16 that the size of the initial local wavenumber kX
determines whether a given initial disturbance ultimately enters the rapidly growing
regime associated with wall roughness or becomes stable as its initial algebraic growth
is negated by finite wavenumber effects.

5.2. Results for stagnation point flow
For stagnation point flow, we integrated the disturbance equations forward in X from
X̄ = 0.1 with Γ = 60 with different values of the wavenumber k. Once again the neutral
configuration was determined to be the position where the local spatial growth rate
vanishes. If k is taken to be sufficiently small then, since Luchin’s algebraically growing
solution is stable for stagnation point flow, the disturbance develops into an algebraically
decaying disturbance independent of X̄ and Γ . Further downstream roughness comes into
play and instability eventually occurs. The neutral curve in the kX–ΓX plane is only very
weakly dependent on X̄, Γ so long as X̄ is sufficiently small. Thus, there is a reasonably
well-defined neutral curve for stagnation point flow.

In figure 17 we show the latter curve for stagnation point flow along with the small and
large wavenumbers asymptotic approximations to the curve. We see that the curve is very
similar to that for asymptotic suction flow and that instability occurs when the roughness
parameter is greater than approximately 6. The asymptotic predictions are consistent with
the numerical results but the approach to the right-hand branch structure is slower than
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Figure 16. The neutral curves (upper and lower branches) for roughness-induced instability in Blasius flow
with ΓX = 90 at the initial location X = X̄. The neutral curve is in solid black, the dashed red curve corresponds
to the high wavenumber approximation.

indicated in figure 7 for asymptotic suction flow or in figures 14–16 for Blasius flow.
Computations for other values of n where there is no algebraically growing solution at
small wavenumbers give results similar to figure 17 with the left-hand branch asymptotic
prediction giving only a qualitatively similar result to the numerical calculations. In fact,
the agreement improves at much smaller wavenumbers but the values of ΓX are then
probably out of the range of physical interest. We believe the slow approach to the
asymptotic limit is probably because the growth rates in the small wavenumber regime
are small and so viscous effects initially stabilise the exponential growth predicted by the
long-wave asymptotics.

5.3. Results for a 60◦ wedge

Here the Falkner–Skan constant n = 1
5 so that a disturbance moving downstream has

fixed local roughness parameter ΓX so that in the kX–ΓX plane the disturbance paths
are straight lines parallel to the kX axis. The initial disturbance was imposed sufficiently
close to the leading edge that it quickly evolved into the algebraically growing solution
appropriate to n = 1

5 . The neutral curve for this case is shown in figure 18. Since the flow
supports long wavelength algebraically growing disturbances in the absence of roughness,
a well-defined left-hand branch is absent for this flow. Once again we see that, for large
kX, ΓX the curve approaches the large kX asymptotic result. In fact, the n = 0 results show
the best agreement with the large wavenumber solution, the results for n = 1

5 , 1 approach
the asymptotic predictions more slowly. The results for the 60◦ wedge also show the neutral
curve again has two branches with the flow stable apart from inside the smaller branch and
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Figure 17. The neutral curve for stagnation point flow. Note that moving downstream corresponds to moving
along a line parallel to the ΓX axis. The dashed red and blue curves correspond to the high and low wavenumber
limits.

to the left of the larger branch. Figure 18 indicates that at a fixed value of ΓX less than
about 10 a disturbance initially grows algebraically then begins to decay after crossing the
larger branch of the neutral curve in figure 18. However, instability returns in the region
inside the smaller branch of the neutral curve.

6. Universal instability criteria for short- or long-scale roughness

The discussion in the previous sections has concerned roughness-induced instability for
the case of roughness with streamwise length scale comparable with the boundary layer
depth. We have seen that the instability mechanism acts in a similar way for different
boundary layers but the neutral locations, growth rates etc. do depend on the particular
flow under consideration. Now let us examine the limits α → ∞, α → 0. These limits
respectively correspond to the wall wavelength being small or large compared with the
boundary layer thickness.

6.1. Short-scale roughness
From the discussion in § 3 we know that, when the roughness parameter and wavenumber
are large, the neutral configuration and the fastest growing mode have Γ ∼ k2/3. Moreover,
the disturbance localizes near the wall and its only dependence on the mean flow is through
the wall shear of the streamwise mean flow velocity. In that case we might anticipate that
the parameterization of the instability might be more informatively expressed in terms of
basic flow properties near the wall rather than global ones. With that in mind, we define
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Figure 18. The neutral curve for a 60◦ wedge. The red curve corresponds to the right-hand branch asymptotic
prediction of the neutral curve. Note that, for a 60◦ wedge, the path taken by a disturbance is a line parallel to
the kX axis.

the friction velocity U∗ by

uτ =
√
τ ∗

ρ
, (6.1)

where ρ is the fluid density and τ ∗ is the unscaled wall shear stress. For the basic flow
(2.4), we have

uτ =
√
μU0Reλ

ρL
= Re3/2 ν

L
λ1/2. (6.2)

Suppose that the dimensional wall undulation wavelength and amplitude are b and h,
respectively. It follows that

k = 2πL
bmRe

, 2ε = hRe

L
, (6.3a,b)

where m = α/k. We define the friction Reynolds number Rf = uτb/ν based on the friction
velocity and the roughness wavelength so that

Re =
[

LRf

b

]2/3

λ−(1/3). (6.4)

From our discussion about the Γ ∼ k2/3 wavenumber regime, we know that if the
roughness wavelength is small compared with the boundary layer thickness then the flow
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is unstable if Γ satisfies
Γ > 4λ−(4/3)k2/3. (6.5)

We recall that Γ is defined in terms of Re by (2.39), (2.45) so, defining c = c(m) =
27/4π1/4(1 + m2)

3/8
/55/8m3/4|Ai′(0)|3/8, the above condition for instability can be

written as

Rf > c(m)

[
b
h

]3/4

[
log

b
h

]3/8 , (6.6)

and the lowest value of c over m occurs for m → ∞. Therefore, (6.6) with c = c(∞) �
24.45 gives a simple universal instability criterion for two-dimensional boundary layers
in terms of the friction Reynolds number and the amplitude to wavelength ratio of the
undulations. The universality of (6.6) is possible because at high wavenumbers the vortex
concentrates near the wall and, therefore, depends only on the wall shear rather than the
shape of the mean flow throughout the boundary layer. The dependence on the wall shear is
then built into the condition (6.6) through the friction Reynolds number. As an alternative
to the friction Reynolds number, the roughness Reynolds number Rr is sometimes used,
this is defined to be the Reynolds number based on the flow speed of the unperturbed
streamwise velocity at a distance h from the wall and h as the length scale. Thus,

Rr = R2
f

h2

b2 , (6.7)

and instability occurs when

Rr > c2

[
h
b

]1/2

[
log

b
h

]3/4 . (6.8)

6.2. Long-scale roughness
Suppose now that the wavelength of the roughness is large compared with the boundary
layer thickness.This corresponds to k � 1, Γ � 1 and the crucial scaling here is Γ ∼
k−(4/3). In this case we saw that, for Falkner–Skan flows, there can be algebraic growth or
decay depending on the Falkner–Skan index n, but that always there will be a transition
to exponential growth. The position where the transition from algebraic variation to
exponential variation occurs is not well defined but we know that it occurs in this parameter
regime. Thus, we know that exponential growth presumably leading to transition to
turbulence will occur for

ε2R4/3
e log Re ∼ k−(4/3), (6.9)

and rewriting this in terms of b we obtain

h
L

∼

[
b
L

]2/3

Re
√

log Re
. (6.10)

An experimental investigation related to the above result was given by Fage (1943)
who looked at the effect of a bulge on transition on an aerofoil. Further discussion of
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Fage’s results and comparable flight test results can be found in Carmichael, Whites &
Pfenninger (1957) and Carmichael (1959). A direct comparison between the theory and
Fage’s experiment is not possible because the experiment had only a finite length of
corrugation and the experiments also depended on ΔL the distance from the leading edge
where the corrugation occurred. However, from experimental observations over a range of
ΔL Fage deduced that instability occurs when

h
L

∼
[

b
L

]1/2

, (6.11)

whereas (6.10) has

h
L

∼
[

b
L

]2/3

. (6.12)

The result (6.11) was confirmed by Carmichael et al. (1957) based on Lockheed F94A
Starfire flight tests. It was suggested by the experimentalists that the above criterion
was associated with the onset of flow separation induced by wall waviness since such a
separation would render the boundary layer unstable to rapidly growing inviscid waves.
By way of contrast, the criterion (6.12), which is slightly weaker than (6.11) since b/L is
small, corresponds to the onset of exponential growth of streamwise vortex instabilities.
But we know from Hall & Horseman (1991) and subsequent authors that streamwise
vortices are also highly unstable to inviscid waves and so the outcome would be similar
to that associated with separation. There is in fact evidence from pipe flow that it is
the roughness instability described here rather than separation-induced instability that
occurs first. Thus, Loh & Blackburn (2011) and Hall & Ozcakir (2021) show that at small
amplitudes instability occurs before the onset of flow separation. Thus, though the results
(6.11), (6.12) differ by a relatively small factor of [b/L]1/6, it may well be that (6.12) is
relevant to the experiments.

We close this section with some comments on how the model for wall roughness used
here can be made more realistic; a more complete discussion in the context of pipe flows
is given in Hall & Ozcakir (2021). Suppose then that the wall is given by

y = 2εF(X) = 2ε
n=∞∑
n=1

an cos nαX + bn sin nαX. (6.13)

The key point is that each term in the above Fourier series only contributes to the roughness
condition (2.42) by a self-interaction. Thus, in the analysis leading to (2.42) we simply
generalize each expansion to have a Fourier series in X rather than a single term. We find
that the condition linking Uy,Vy at the wall in (2.42) is then modified to give

∂

∂y

[
10κα4/3λ1/3k2μAi′2(0)

α2 + k2 JU + V
]

= 0, y = 0. (6.14)

Here J is defined by

J =
n=∞∑
n=1

n4/3(1 + m2)(a2
n + b2

n)

1 + m2n2 , (6.15)

where m = α/k. We deduce from the above roughness condition that a disturbance
evolving over a pure sine wave wall with a1 = 1, b1 = 0 at say κ = κs has exactly the same
behaviour as a disturbance evolving over the more general undulation (6.14) if κ = κs/J.
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Thus, the size of J determines how unstable a given wall is compared with the pure sine
wave wall. An estimate of how the particular shape of the wall modifies the stability
problem for pipe flow by considering sawtooth, step function, rectified sine wave and
triangular shape roughnesses was given by Hall & Ozcakir (2021). It was found that the
step function wall was the most unstable but in fact J was found to vary between roughly
0.5 and 2 so the particular shape of the roughness is not crucial for pipe flows. The same
result also follows for boundary layer flows.

7. Discussion

We have analysed the spatial development of instabilities caused by roughness in
developing boundary layers. The instability is closely related to Görtler vortices but with
centrifugal effects replaced by a novel kind of VWI taking place in a viscous layer adjacent
to the wavy wall. As a model of roughness, we imposed a fixed small amplitude wave on
the boundary but more general roughness shapes can be considered by expressing the
roughness as a Fourier series.

The control parameter Γ governing the instability has no obvious physical interpretation
and depends on the square of the wave amplitude and the Reynolds number based on
the boundary layer thickness to the −4/3 power. The instability is associated with the
Reynolds stresses in a viscous wall layer next to the wavy boundary, so rather than being
a centrifugal instability it is more appropriately described as a steady-streaming induced
instability.

Roughness is more usually investigated as part of the receptivity process which
establishes a disturbance supported by a shear flow in the absence of roughness. For
Görtler or crossflow vortices, the roughness alone is capable of triggering the naturally
occurring disturbances; see, for example, DHS. If the instability of the underlying shear
flow is propagating then some source for the time dependence is required. Thus, for
Tollmien–Schlichting waves, some flow unsteadiness is required to generate the growing
disturbance; see, for example, Ruban (1984) and Goldstein (1985). Therefore, in a flow
where Tollmien–Schlichting waves, Görtler or crossflow vortices are unstable the question
arises as to whether the instability we have described here is more or less relevant. That
question is not addressed in detail here but we make some observations. In the absence of
other instabilities in a shear flow, for example, in Couette flow, the roughness instability
provides the most likely source of instability. It should also be noted that even in flows
where Tollmien–Schlichting waves are possible the absence of flow unsteadiness to trigger
the waves could also lead to the roughness instability playing a crucial role.

The issue of whether crossflow or the roughness mechanism will dominate in
three-dimensional boundary layers is less clear and requires further investigation. In
swept-wing boundary layers there has been much interest in recent years in the use of
discrete roughness elements, DREs for short, to delay transition due to crossflow vortices;
see Saric, Carrillo & Reibert (1998). The mechanism for delay is that the elements provoke
the growth of a crossflow vortex which is not the fastest growing one available and it
persists further downstream without suffering secondary instabilities leading to transition.
An alternative to DREs might be roughness in the form of surface undulations, the
roughness being designed so as to generate the appropriate vortex where needed.

Perhaps one of the most surprising results of our investigation is that the roughness
instability occurs at small wave amplitudes long before the motion induced by the wall is
governed by interactive boundary layer theory. Previous investigations in channels, Floryan
(2015) and Cotrell et al. (2008), had suggested that flow reversal near the wall was needed
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for instability of flows over wavy walls, but that would need the viscous wall layer to be
of the same depth as the undulation amplitude. But our analysis shows that roughness
instabilities occur before the wall layer becomes interactive. In boundary layers perhaps
the most significant interactive boundary layer structure is that associated with triple-deck
theory; see Stewartson & Williams (1969), Neiland (1969) and Smith (1982). We now
make some comments on the possible relevance of the present work to triple-deck flows.

The classical triple-deck theory for incompressible flows describes the interaction of a
laminar boundary layer with a bump on the wall. If R = R2

e is the Reynolds number based
on a typical streamwise length L, and we define ε = R−(1/8), then the incoming boundary
layer if of depth ε4 and the bump is of length ε3. The incoming boundary layer then splits
into three layers of thickness ε5, ε4, ε3; see Smith (1982). The lower layer is viscous, the
middle deck is just the incoming boundary layer depth and the outer deck scales on the
streamwise length of the bump. The nature of the interaction depends crucially on the size
of the bump. If it is of depth small compared with the lower deck thickness, the equations
can be linearized, whilst if it increases to O(ε5), the lower deck becomes fully nonlinear
and subject to a pressure-displacement law arising from the motion in the two upper layers.

Though our formulation has been for a wavy wall more general shapes can be treated
by Fourier analysis, but here let us confine our attention to the triple-deck situation for a
wavy wall. If the dimensional height of the wave is h then, ignoring the logarithmic term,
written in terms of R (2.39) says that the roughness instability will be operational when[

h
L

]2

R5/3 ∼ Γ. (7.1)

Thus, if the wavelength scales on the boundary layer thickness then instability of the type
discussed in this paper occurs when

h
L

= O(R−(5/6)), (7.2)

so we have instability at wall heights which are small compared with R−(5/8), the
bump height at which the triple-deck problem becomes nonlinear. Now suppose the wall
wavelength increases to be comparable with the triple-deck streamwise length scale. This
occurs when α ∼ k ∼ ε. The first regime where instability can occur for wavelengths
longer than the boundary layer thickness was shown in § 4 to be the left-hand branch
regime where Γ ∼ k−(4/3). Thus replacing Γ in (7.1) by k−(4/3) and noting that k ∼ ε, we
find that the left-hand branch for wavelengths on the triple-deck scale corresponds to

h
L

= O(R−(3/4)), (7.3)

which once again is small compared with the bump height R−(5/8) for a nonlinear
triple-deck flow. Therefore, for undulations of wavelength comparable with the triple-deck
streamwise length scale, the roughness instability again occurs before the basic state
satisfies the nonlinear triple-deck problem.

We saw in § 4 and Appendix A that, for large Γ , the roughness instability itself satisfies
an interactive three-layer problem when Γ ∼ O(k−(10/3)). Hence, we now determine the
undulation amplitude where this takes place, noting that the wavelength is still scaled on
the triple-deck scale so k ∼ ε̄. Since the interactive regime for the instability occurs when
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Γ ∼ O(k−(10/3)), (7.1) is now satisfied if

h
L

= O(R−(5/8)). (7.4)

This is of course the wall height at which the triple-deck flow becomes nonlinear. Thus,
the bump height at which the instability becomes interactive is the same as that at which
the base state becomes interactive. Indeed the three layers for the roughness interactive
problem coincide with those for the triple-deck problem. We do not pursue the roughness
instability for waves on the triple-deck length scale further here but note the possible
importance of (7.3) which implies that, as the undulation amplitude is increased, the flow
becomes unstable before the basic state becomes interactive. This implies that triple-deck
flows over wavy walls might not be physically realizeable in the laboratory.

In our investigation we concentrated on the response of the flow to initial perturbations
introduced close to the leading edge. If they are introduced sufficiently close to the edge,
then the initial development of any perturbation having a non-zero velocity component in
the spanwise direction deforms the perturbation into an algebraically growing or decaying
eigenfunction of the type discussed for Blasius flow by Luchini (1996). If the roughness
parameter Γ is sufficiently large, the disturbance then develops in the left-hand branch
regime into an exponentially growing solution. For Falkner–Skan flows, we found that the
subsequent development of the disturbance was crucially dependent on the track in the
local wavenumber-local roughness parameter plane.

For Blasius flow, the path takes the disturbance into positions where it is less unstable
locally and all disturbances eventually become stable. For some disturbances with a very
small initial wavenumber at a given large initial value of the local roughness parameter ΓX ,
the disturbance never enters the left-hand branch regime and after a period of algebraic
growth becomes stable. Figures 14–16 show how, as the local value of ΓX is increased, the
small stable region between the two left-hand branches of the neutral curve closes up to
leave a vanishingly small region of instability, that region aligns with the disturbance path
moving downstream. The vanishingly small region is of course associated with the switch
from algebraic growth to exponential growth.

Figure 16 shows an interesting relationship with Luchini (2000) who investigated the
optimal disturbance imposed at the leading edge and allowed to evolve up to X = 1. The
class of disturbance used was a model of disturbances impinging on the leading edge of
the plate. A detailed analysis of the interaction of incoming disturbances with the leading
edge was given by Leib et al. (1999). Luchini observed that the growth of a disturbance
depended only very weakly on the form of the disturbance. The reason for this is clear
from our simulations, for disturbances initiated at sufficiently small X where roughness
is negligible, we found that they quickly deformed into the growing algebraic solution of
Luchini (1996). Thus, in figure 16 we see that, for ΓX � 1, disturbances at kX � 0.45
switch from algebraic growth to decay. That wavenumber is close to the optimum
wavenumber identified by Luchini (2000), the reason being that when results are expressed
in terms of local wavenumbers it does matter over what interval in X disturbance growth
is maximised. Therefore, in our simulations, beginning at say ΓX = 120, a calculation
with the initial kX sufficiently small never gets into the left-hand branch regime and so its
growth or decay is independent of roughness. Thus, such disturbances quickly deform into
the growing algebraic solution and then stabilise at the local kX corresponding to Luchini’s
optimum.

On the other hand, for stagnation point flow, the path downstream has the local
wavenumber fixed and the local roughness parameter proportional to X2. For that flow, we
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inserted the initial disturbance at a small value of X at varying values of the wavenumber.
For small X, roughness is negligible so the disturbance evolves into a decaying algebraic
solution independent of the initial form of the disturbance. When X becomes sufficiently
large, the disturbance begins to grow and a neutral curve can be defined. Moreover, the
neutral curve only has a very weak dependence on the form of the initial disturbance so
long as it contains an initial roll velocity field.

Our results show that there is a clear distinction between Falkner–Skan flows which do
or do not support long-wave growing algebraic eigensolutions in the absence of roughness.
Firstly, we note that the right-hand branch of the neutral curve is well defined for all n
where the Falkner–Skan flow exists. The flow is unstable above the right-hand branch and
stable below. But whether a disturbance switches from being stable to unstable or vice
versa depends on the value of n. For Falkner–Skan flows with n > 0.39, a well-defined
left-hand branch curve can be identified where local exponential growth of a disturbance
begins. When n < 0.39, the algebraic and exponential growth regions merge and the
left-hand branch can disappear; compare, for example, figures 17 and 18.

We found for the roughness instability that the case of flow past a 90◦ wedge was of
particular interest because for that flow a disturbance moving downstream moves along a
curve ΓX ∼ k2/3

X = constant and so stays in the regime maximising its spatial growth.
For the Görtler problem, we know from DHS that the fastest growing mode and the
right-hand branch of the neutral do not have the same scalings for large Görtler numbers
G. In fact, the neutral curve has G ∼ k4 whilst the fastest growing mode has G ∼ k5. For
a Falkner–Skan flow, the local Görtler number ∼X(3+N)/2 whereas the local wavenumber
varies like X(1−N)/2; therefore, the local Görtler number varies like the fifth power of
the local wavenumber if k = 1

3 . Thus, we see that once again N = 1
3 , which corresponds

to a right-angled wedge, has the unique property amongst Falkner–Skan flows of allowing
Görtler vortices to move downstream following paths which maximise disturbance growth.
Why a right-angled wedge should play this special role is not clear.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Philip Hall https://orcid.org/0000-0001-5175-3115.

Appendix A. The interactive small wavenumber regime

We shall now give the basic details of the interactive layer in which the short-wave limit of
the left-hand branch regime develops a viscous sublayer. The interactive layer is likewise
the long-wave limit of the structure in the intermediate layer. The key property of the
layer, as indicated by its name, is that the viscous sublayer where the instability is driven
by the roughness condition can no longer be solved independently of the main part of the
boundary layer and the outer layer of depth O(k−1). The nature of the interaction is very
similar to that given by CHS for Görtler vortices. A related structure had been previously
discussed by Rozhko & Ruban (1987). The scaling can be inferred from the limiting form
of the intermediate solution (4.7)–(4.10) in the limit of k → 0. The normal velocity in
(4.8) tends to a constant at the edge of the viscous sublayer and, therefore, drives a normal
velocity component of the same magnitude in the main part of the boundary layer. When
k is small, the main part of the boundary layer splits into an outer layer of depth k−1 and
the main boundary layer. Within the outer layer the dominant flow is an inviscid roll flow
in the y–z plane driven by a pressure field. As k decreases, that pressure increases until it
is comparable with that in the viscous sublayer and the three layers are coupled. At that
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stage the wavenumber k ∼ Γ −(3/10) and the sublayer is of depth Γ −(3/10) and the outer
inviscid layer is of depth Γ 3/10. We now write

k = Γ −(3/10). (A1)

Note that we need not introduce a constant of proportionality here because that can be
alternatively accounted for by varying X. We seek a solution in the wall layer of the form

U = exp
(
Γ 9/10

∫ X
β(X) dX

)
[U0(X, ȳ)+ · · · ], (A2)

where we have defined the wall layer variable ȳ = Γ 3/10(λβ)1/3y.
Similar expansions are written down for V,W,P with leading-order terms of size

Γ 3/5, Γ 6/5, Γ 21/10, respectively.
Substituting the expansions into the disturbance equations leads to a wall layer problem

similar to those discussed earlier, the required solution is

V0 = A
∫ ȳ

0
dφ
∫ φ

∞
Ai(θ) dθ + Bȳ, (A3)

W0 = − P0

λ2/3β
2/3
0

L − B
λ1/3β

1/3
0

Ai(0)
Ai(ȳ), (A4)

P0 = λβ0AAi′(0), (A5)

where A,B are constants and L is the Scorer function. If the roughness condition
is imposed on the above solution, we obtain a linear equation involving A,B. In the
main part of the boundary there is a simple displacement solution with V ∼ ū and
then an upper inviscid layer. Solution of the equations in these two layers yields the
pressure-displacement law

P0 = λ−(2/3)β4/3
0

(
A
3

+ B
)
. (A6)

We can then substitute for P0 from (A5) into the above equation to obtain a second equation
involving A,B. The consistency of the equations produces the eigenrelationship[

β0

λ

]
− 3λ4/3Ai′(0)

[
β0

λ

]2/3

+ (3Ai(0)+ 2
Ai′(0)
Ai(0)

)

[
β0

λ

]1/3

− 3
[Ai′(0)]2λ4/3

Ai(0)
= 0,

(A7)

which determines β0/λ as a function of λ. Substitution of λ in terms of X for the boundary
layer in question then gives β0 in terms of X. Numerical calculations show that (A7) always
has one positive real unstable solution together with a pair of stable real or complex roots.
In fact, β0/λ increases monotonically with λ from its limiting value 0.25 when λ→ 0
before asymptoting to its large λ value of about 0.6 as λ→ ∞.
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