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We describe a simple model for turbulence in a marginally unstable, forced, stratified
shear flow. The model illustrates the essential physics of marginally unstable
turbulence, in particular the tendency of the mean flow to fluctuate about the
marginally unstable state. Fluctuations are modelled as an oscillatory interaction
between the mean shear and the turbulence. The interaction is made quantitative
using empirically established properties of stratified turbulence. The model also
suggests a practical way to estimate both the mean kinetic energy of the turbulence
and its viscous dissipation rate. Solutions compare favourably with observations of
fluctuating ‘deep cycle’ turbulence in the equatorial oceans.
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1. Introduction

Stratified shear flows are common in all natural fluid systems. In the oceans and
atmosphere, such flows are invariably turbulent, and the prediction of that turbulence
is a problem of both theoretical and practical interest. Turbulent stratified shear flows
are often in a state of marginal instability (MI), in which turbulence grows and decays
repeatedly while the mean flow fluctuates about a stability boundary (Thorpe & Liu
2009; Smyth & Moum 2013; Smyth et al. 2013).

While the MI state is readily understood and observed, the nature of the turbulent
fluctuations and their interaction with the mean flow remains mysterious. Here, we
describe a simple model of fluctuating turbulence in a marginally unstable flow
inspired by oceanographic observations. This example serves both to illuminate some
fundamental aspects of the MI state and to make a potentially useful prediction of
turbulence intensity.

In the equatorial oceans, we often observe turbulence occurring in distinct pulses
separated by a period of several hours. In this study we construct a mathematical
model of the upper ocean at night and, applying empirically known characteristics of
stratified turbulence, derive a closed set of nonlinear, ordinary differential equations
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whose equilibrium solution is the MI state. Linearizing about this equilibrium, we find
an oscillatory solution and compare it with the observed pulses.

To begin, we review the observations and existing theoretical ideas that provide the
context for the paper (§ 2). In § 3, we describe the model and its solutions. The results
are compared with observations in § 5. In § 6 we summarize the results and discuss
both the potential value and the limitations of the model. Appendices describe our
observational methods and a generalized model.

2. Marginal instability and the deep cycle of equatorial turbulence

Upper ocean turbulence increases significantly within about a degree latitude of
the equator (Crawford 1982). This turbulence has important practical implications for
climate because the equator is the primary site for heat uptake by the oceans. Heat
may be transferred quickly to the atmosphere or retained in the ocean for many years,
depending on the turbulence. Our long-term objective is to understand the processes
that drive that turbulence.

In addition to their climatological significance, the upper equatorial oceans provide
a unique natural laboratory for the study of stratified, parallel shear flows. Because
the Coriolis acceleration vanishes at the equator, trade winds blow steadily to the
west, driving a westward surface current (the south equatorial current, hereafter SEC).
This sets up a return flow at depth, the equatorial undercurrent (EUC). The SEC
tends to spread away from the equator due to the meridional Coriolis gradient, while
the eastward EUC converges on the equator and is therefore much stronger. Solar
insolation warms the upper few metres while upwelling (due to the diverging surface
current and the converging undercurrent) brings cold water from below, setting up
a pycnocline. Turbulence acts as a partial brake on the system, preventing runaway
acceleration and leading instead to fluctuations about a forced-dissipative equilibrium
state.

The classical picture of upper ocean structure is the ‘slab’ model (e.g. Pollard &
Millard 1970). Driven by wind and surface cooling, turbulence is strong in a layer
that extends from the surface to a few tens of metres depth. Within that layer, mean
water properties (e.g. density, velocity) are uniform, hence the name surface mixed
layer (SML), in which density differs by less than 0.01 kg m−3 from its surface value.
Below the SML is the pycnocline, where turbulence is much weaker and mean water
properties vary with depth. While highly simplified, this picture is valid in much of
the world ocean, and idealized models based on it have yielded valuable insights into
the leading-order physical processes (e.g. Pollard, Rhines & Thompson 1972; Zervakis
& Levine 1995; Alford & Whitmont 2007). At the equator, however, upper ocean
structure is distinctly different.

Figure 1 represents one week of in situ measurements taken in the equatorial Pacific
(see appendix A for further details). Figure 1(a) shows the zonal velocity profile. The
EUC is clearly evident near 100 m depth, whereas the SEC was relatively weak. The
pycnocline was located near the core of the EUC (figure 1b).

Figure 1(c) shows the turbulent kinetic energy dissipation rate ε, defined in
appendix A. The SML (solid curve) deepened every night, typically to 20–30 m, as
turbulence was amplified by surface cooling. The first thing to notice is that turbulence
extends far below the base of the SML, in contrast to the slab model described above.
Second, note that this deep turbulence varies diurnally. This suggests that, despite
the insulating effect of density stratification, the deep turbulence is influenced by the
diurnally varying surface forcing. This turbulence regime is called the deep cycle,
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FIGURE 1. Example of deep cycle turbulence in the equatorial Pacific (0 ◦N, 140 ◦W) over
one week in autumn 2008 (Moum et al. 2009). (a) Zonal velocity u. (b) Squared buoyancy
frequency N2

= ∂b/∂z, where b is the buoyancy. (c) Turbulent kinetic energy dissipation
rate ε as a function of depth and time (UTC). The solid curve represents the base of
the surface mixed layer. (d) The gradient Richardson number. The dashed curve is the
critical value 1/4. In all profiles, the curve is the median and the shaded band represents
the quartile range. See Smyth et al. (2013) for further details.

and its mechanics have been under study since its discovery in the 1980s (Gregg
et al. 1985; Moum & Caldwell 1985).

The water below the SML exists in a state of MI, in which the interaction of
forcing and turbulent mixing causes the mean flow to fluctuate between stable and
unstable states (Thorpe & Liu 2009; Smyth & Moum 2013; Smyth et al. 2013).
These states can be quantified using the Richardson number Ri, the ratio of squared
buoyancy frequency (N2

= ∂b/∂z, where b is the mean buoyancy) to squared shear
(S2
= (∂u/∂z)2 + (∂v/∂z)2, where u and v are mean zonal and meridional velocity

components and z is the vertical coordinate). The flow is stable (unstable) if Ri is
greater than (less than) a critical value, typically 1/4. In the 2008 observations, Ri
fluctuated about 1/4 in a layer extending down to 80 m (figure 1d).

In our present understanding of the deep cycle, solar heating stabilizes the upper
∼10 m, allowing a surface current to build up throughout the day. At sunset, solar
stabilization is lost. The surface current then becomes unstable and mixes downwards.
Adding to the shear of the EUC, it tips the MI flow into the unstable state, thereby
initiating turbulence (Schudlich & Price 1992; Pham, Sarkar & Winters 2013; Smyth
et al. 2013).

While this scenario explains the diurnal character of the deep cycle, it is not the
whole story. On a given night, the deep cycle can involve one or more additional
pulses of turbulence. In the example shown in figure 1, these multiple pulses are easily
visible in the nights of 26, 27 and 28 October. In previous work, pulses have been
identified with internal wave interactions (Moum et al. 1992; Peters, Gregg & Sanford
1995) and with shear instability events (Sun, Smyth & Moum 1998). Here, we take
a different approach, examining the pulses in the context of the fluctuations expected
in marginally unstable turbulence.
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FIGURE 2. A case study of the deep cycle. Measurements are shown for a 26 h period
beginning at 10:00 local time, 26 October 2008 (vertical lines on figure 1c). Panels show
the surface buoyancy flux J (a), the turbulent kinetic energy dissipation rate ε (b), the
logarithmic time derivative of S2 (c) and 4Ri (d). The dashed curve near the top of (b)
shows the base of the SML. Black contours in (c) and (d) reproduce the dissipation field
from (b).

3. A simple model of turbulent pulses
3.1. A case study

We hypothesize that the pulses seen in deep cycle turbulence represent a quasi-periodic
interaction between turbulence and shear. Consider, for example, the 26 h interval
shown in figure 2. The interval begins at 10:00 local time, as solar heating approaches
its noon maximum (figure 2a). For the first 6 h, turbulence is weak (figure 2b), but
in late afternoon a turbulent layer appears near the surface and spreads downwards,
extending to ∼80 m depth by midnight. This turbulence reaches a maximum, then
decays for a few hours. But rather than decay completely, it builds to a second
maximum near sunrise (t∼ 16–22 h).

This cycle of growing and decaying turbulence is correlated with the growth and
decay of shear. The time derivative of squared shear (figure 2c) is dominated by
descending bands of alternating sign. The first (the yellow–red area at the upper
left) precedes the initial turbulence maximum. This corresponds to the augmentation
of local shear as the daytime surface current descends (Pham et al. 2013; Smyth
et al. 2013). Subsequently, the shear oscillates, with periods of decay corresponding
approximately to periods of strong turbulence.
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The cycle is also evident in Ri (figure 2c). During the day, Ri is generally >1/4
(yellow–red). Each of the two turbulent events (contours on figure 2c) is preceded by
a period in which Ri drops to subcritical values (<1/4, blue). In the course of each
event, Ri recovers to nearly neutral values (light blue–white–yellow). Depending on
how one defines it, the interval between pulses is 8–10 h.

3.2. Proposed mechanism
While the example chosen for figure 2 is an especially clear one, inspection of many
other cases suggests that the chain of events is common. On this basis, we propose
a highly simplified, hypothetical mechanism based on the interaction of shear and
turbulence in a stratified fluid forced from above.

Turbulence is forced by shear and dissipated by viscosity, while shear is forced
by momentum transport from the wind and is mixed by the downgradient turbulent
momentum flux. After sunset, the momentum flux from the descending daytime
surface current adds to the existing shear of the EUC, initiating the growth of
turbulence. Subsequently the turbulence mixes out the shear. As the turbulence
decays, though, the shear is replenished by the momentum flux from above, resulting
in another episode of enhanced turbulence.

Is the proposed mechanism consistent with our knowledge of stratified turbulence?
To answer this, we extend the classical slab model by adding a second layer below
the SML in which deep cycle turbulence exists. Within this layered flow geometry,
we use empirically known characteristics of sheared, stratified turbulence to form
a closed system of evolution equations. The equations have an oscillatory solution
whose characteristics can be compared with the observations.

3.3. The shear equation
Space is measured by Cartesian coordinates {x, y, z} and flow velocity by {u, v, w}.
The nocturnal SML is modelled as a slab having fixed thickness h, as shown in
figure 3. A steady surface stress with friction velocity u2

∗
drives a uniform mean

current u. If we take the x direction to be westward, the wind and the current
correspond to the trade winds and the SEC. Underlying the SML is a shear layer
of fixed thickness H containing the deep cycle, modelled as homogeneous (but
non-stationary) turbulence. Beneath this shear layer, the velocity is again uniform and
equal to the constant denoted by U.

Assuming that the dynamics is one-dimensional (i.e. no property varies in the
horizontal, hence the acceleration is determined solely by the vertical divergence of
the momentum flux), we model the acceleration in the SML as

du
dt
=

u2
∗
+ u′w′

h
, (3.1)

where u′w′ < 0 is the vertical flux of horizontal velocity at the base of the SML,
the overbar represents a horizontal average and primes denote departures from that
average. The shear in the deep cycle layer, S = (u − U)/H, is governed by the
acceleration of the SML:

dS
dt
=

1
H

du
dt
=

u2
∗
+ u′w′

Hh
. (3.2)
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FIGURE 3. Schematic of the upper equatorial ocean, with piecewise-linear profiles of
mean velocity (a) and buoyancy (b).

3.4. The turbulent kinetic energy equation

Within the shear layer, the turbulent kinetic energy per unit mass, k = (u′u′ + v′v′ +
w′w′)/2, is assumed to be spatially homogeneous, and therefore to obey the turbulent
kinetic energy equation in the form (e.g. Itsweire et al. 1993)

dk
dt
=−u′w′S+ b′w′ − ε. (3.3)

Terms on the right-hand side are the shear production, the buoyancy production (or
vertical buoyancy flux) and the viscous dissipation rate.

3.5. Closure assumptions

We now make four assumptions about the turbulence quantities ε, u′w′ and b′w′ that
render (3.2) and (3.3) a closed system.

(i) The ratio of buoyancy flux to dissipation rate, Γ = −b′w′/ε, is called the flux
ratio or the mixing efficiency (e.g. Osborn 1980; Moum 1996a). While the value
of Γ is controversial at present, most estimates agree that it is significantly
less than unity. In the ocean turbulence literature, Γ is most often assumed
to equal 0.2, while recent results suggest that it is actually smaller than this
when turbulence is strong (Ivey, Winters & Koseff 2008). For this reason, we
will begin by neglecting b′w′ in (3.3). Correspondingly, we will approximate
the buoyancy gradient N2 by a constant N2

0 . In appendix B, we relax these
assumptions and confirm that the effects of the buoyancy flux are secondary.

(ii) The dissipation rate is modelled as

ε =
1
τN

Nk, (3.4)

where τN = Nk/ε is the non-dimensional energy decay time scale. On the
basis of ocean microstructure measurements of several hundred turbulent events
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with ε spanning four decades, Moum (1996b) concluded that τN = 2.1 with a
95 % confidence limit of ±0.2. In a survey of laboratory and direct numerical
simulation (DNS) studies by Mater & Venayagamoorthy (2014), most estimates
lie within a factor 3 to either side of this. Here we choose τN = 2 and set N=N0:

ε = 1
2 N0k. (3.5)

(iii) The density-scaled Reynolds stress u′w′ is related to k by

u′w′ =−2αk. (3.6)

The coefficient α is commonly referred to as the Townsend parameter (e.g.
Saddoughi 1997). Our assumption here is that α is a known constant. Based
on a survey of laboratory experiments, Townsend (1976, p. 108) concluded
that, away from boundaries, α = 0.15± 0.03 (0.13 near boundaries). Subsequent
measurements in a wind tunnel (Saddoughi & Veeravalli 1994; Saddoughi 1997)
have confirmed this estimate, as have DNS (e.g. Jacobitz, Sarkar & Van Atta
1997) and in situ oceanic observations (Luznik et al. 2007).

(iv) With the foregoing three assumptions, equation (3.3) becomes

dk
dt
=

(
2αS−

1
2

N0

)
k. (3.7)

The turbulence is in equilibrium (dk/dt= 0) when

α =
1
4

N0

S
. (3.8)

Motivated by observations of marginally unstable turbulence (§ 2), we assume
that the equilibrium state is achieved when Ri0=N2

0/S
2
0= 1/4, and therefore that

α= 1/8. This value is consistent with Townsend (1976) and the other published
estimates discussed above.

3.6. The model equations
With the closure assumptions listed above, we have a closed pair of evolution
equations for the two unknowns S(t) and k(t):

dS
dt
=

1
Hh

(
u2
∗
−

1
4

k
)
, (3.9)

dk
dt
=

(
1
4

S−
1
2

N0

)
k. (3.10)

Note the following properties of (3.9) and (3.10).

(i) Because (3.10) is nonlinear, there is no closed-form solution.
(ii) The system preserves the positivity of the kinetic energy, i.e. if k> 0 initially, it

remains so for all time. To see this, examine (3.10) and note that, as k approaches
zero, so does dk/dt.
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(iii) The system has a single equilibrium state, defined by setting the time derivatives
to zero:

k0 = 4u2
∗
, S0 = 2N0. (3.11a,b)

The latter statement is equivalent to Ri = 1/4, i.e. the equilibrium state
corresponds to the state of marginal instability described in § 2. Also of interest
is the dissipation rate in the equilibrium state, obtained by using (3.11) in (3.5):

ε0 = 2N0u2
∗

or ε0 = u2
∗
S0. (3.12a,b)

(iv) The character of the solution is oscillatory for all parameter choices. To see this,
define S′ as the departure of S from its equilibrium value: S= S0+ S′, where S′ is
not necessarily small. Substituting this into (3.9) and (3.10) and combining gives

d2S′

dt2
=−

k
16Hh

S′. (3.13)

Provided only that k> 0 (see property (ii)), the local curvature of S′(t) has sign
opposite to S′, signalling an oscillatory solution.
Referring to (3.9) and (3.10), we can qualitatively describe the sequence of events
in figure 2 as follows. In early evening, turbulence is relatively weak, hence
k< 4u2

∗
. As a result, dS/dt is positive and shear increases. When shear exceeds

2N0 (or, equivalently, Ri< 1/4), dk/dt becomes positive and turbulence increases.
When k becomes greater than 4u2

∗
, shear decreases, and the cycle repeats.

(v) While (3.9) and (3.10) do not admit a closed-form solution, we can perturb about
(3.11) to obtain a quasi-equilibrium solution. In (3.13), we make the substitution
k= k0+ k′. We then assume that |S′|� S0 and |k′|� k0, and linearize accordingly:

d2S′

dt2
=−

u2
∗

4Hh
S′. (3.14)

The oscillation is now sinusoidal with constant radian frequency given by

ω0 =
u∗

2(Hh)1/2
. (3.15)

4. Sources of uncertainty
A layer model provides, at best, a crude approximation of the complex structure of

the upper ocean. For example, the observational example in figure 2 suggests that the
pulsating signal descends in time, a property that could affect the oscillation frequency.
To account for this possibility would require a fully depth-dependent model whose
complexity would defeat the purpose of the present study.

As in any layer model, there is considerable subjectivity in identifying layer
boundaries. We suggest that reasonable estimates of the length scale (Hh)1/2 could
vary by a few tens of per cent, as the reader may judge by inspection of figures 1
and 2.

Our one-dimensional (vertical) model omits potentially important processes that
involve horizontal gradients. These can be approximated by adding new constants
to the model. For example, if the wind-driven acceleration of the SML is opposed
by a constant horizontal pressure gradient, the result is equivalent to a reduction
in the value of u∗, and thus of the pulsation frequency as given in (3.15). If the
opposing pressure gradient force is half as strong as the wind stress, the frequency
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FIGURE 4. Comparison of model predictions with the observations shown in figure 1.
Blue curve: observed ε (figure 1c) averaged between 20 m and 70 m depth. Red curve:
predicted equilibrium value for ε, based on (3.12) with root-mean-square shear averaged
between 20 m and 70 m depth. Mean values given in the legend are averaged between
19:00 and 10:00 local time, the approximate interval of strong turbulence, also shown by
the solid red segments.

is multiplied by
√

1/2, a 30 % reduction. If the pressure gradient reinforces the wind
stress, the predicted frequency increases. (Note that the second pulse is expected to
happen only if the period is less than about 12 h. Slow variations in the horizontal
pressure gradient may therefore explain why the deep cycle exhibits pulses on some
nights but not on others.)

A third simplification is the assumption that N is fixed or, equivalently, Γ = 0.
Besides Γ , the turbulence closure involves assuming that three more parameters are
constant and have known values, those being α, τN and Ri0. Allowing these parameters
to vary dynamically would require a second-order closure model (e.g. Canuto et al.
2010), which is beyond our scope here. The assumed constant values, however, are
readily altered. In appendix B, we derive a generalized model with time-varying
N (i.e. non-zero Γ ) that also allows for adjustment of the closure constants. We
conclude that the constants are known precisely enough, and Γ is small enough, that
these parameters account for only about a 10 % uncertainty in the frequency. The
major sources of uncertainty are the layered structure of the model and the neglect
of horizontal processes as described above. Based on these uncertainties, we suggest
that the generalized model derived in appendix B, while interesting theoretically, is
not likely to make more realistic predictions than the simple model described in § 3.

5. Comparison with observations
During the observation period shown in figure 1, winds were steady with mean

friction velocity u∗ = 0.011 m s−1. The dissipation rate ε (averaged over 20–70 m;
blue curve in figure 4) showed large-amplitude oscillations about a central value near
2× 10−6 m2 s−3. Well-defined pulse pairs are visible on 27, 28 and 29 October.

Estimating typical thicknesses for the nocturnal SML and the deep cycle layer, we
choose h = 20 m and H = 50 m. (The former estimated from figure 1; the latter is
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based on a typical depth of the contour ε = 10−6 W kg−1 in figure 2.) With those
values, equation (3.15) predicts a period of 10 h. Given the highly simplified nature
of both the model and the perturbation solution, this is remarkably consistent with the
observations (on figure 4, compare the black bar with typical spacing between peaks).

It is also interesting to compare estimates of the turbulent kinetic energy dissipation
rate. The red curve on figure 4 shows this estimate as a function of time, with the
solid segments indicating night. (The value used for the shear is the root-mean-square
average over the depth range 20–70 m.) On four nights (26–29 October), the observed
range of ε included the predicted equilibrium value. The nocturnal mean value of ε,
defined as the average over the hours 19:00–10:00 (local time) when the deep cycle is
most active, is 2.1× 10−6 W kg−1. The predicted equilibrium value ε0= u2

∗
S, averaged

in the same way, is 1.8× 10−6 W kg−1, smaller by 14 %.
Based on these comparisons, we conclude that the oscillatory shear–turbulence

interaction proposed above is plausible as a first-order explanation for the pulsations
observed in deep cycle turbulence.

6. Summary and discussion
We have constructed a simple, self-consistent model that incorporates the essential

processes responsible for pulsations in marginally unstable stratified turbulence. The
model reproduces both the nocturnal mean turbulent dissipation rate and the oscillation
period seen in the equatorial deep cycle (e.g. figure 2) to within a few tens of per
cent. The model may also be adaptable for other forced, stratified shear flows such as
gravity currents and river outflows.

Deep cycle turbulence also exhibits fluctuations more rapid than those described
here. For example, close examination of figure 4 shows fluctuations with periods of
4 h or less (e.g. the night of 30 October; also see figure 1c), which the present model
does not account for. This suggests that the rapid fluctuations represent a separate
phenomenon whose nature remains to be identified.

We are now examining a decade-long record of equatorial turbulence observations
in order to more completely characterize pulsations occurring in the deep cycle and
compare them with the simplified model described here.
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Appendix A. Measurements and data analysis
The observational example shown in figures 1 and 2 is derived from one week

of in situ measurements taken in the equatorial Pacific at 0 ◦N, 140 ◦W. The mean
current velocity (u, v) was measured via a shipboard acoustic Doppler current profiler.
Measurements of temperature and conductivity (from which salinity and density
were calculated) were made using the free-falling microstructure profiler Chameleon
(Moum et al. 1995). Chameleon also measured microscale shear down to centimetre
scale, from which the turbulent kinetic energy dissipation rate was estimated using
the isotropic approximation

ε =
15
4
ν

[(
∂u′

∂z

)2

+

(
∂v′

∂z

)2
]
, (A 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

28
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.283


Pulsating turbulence in stratified shear flow 337

where the partial derivatives represent the vertical shear of two orthogonal horizontal
velocity components (e.g. Smyth & Moum 2000).

All data were averaged into bins spanning 1 h in time and 4 m in depth. From
these averages, we calculated the squared buoyancy frequency

N2
=−

g
ρ

∂ρ

∂z
, (A 2)

where g is the gravitational acceleration (9.81 m s−2) and ρ is the density, and the
squared shear

S2
=

(
∂u
∂z

)2

+

(
∂v

∂z

)2

, (A 3)

using second-order centred differences. The latter two quantities were combined to
form Ri = N2/S2. Profiles of u, N2 and Ri shown in figures 1(a), 1(b) and 1(d),
respectively, represent the median and the upper and lower quartiles over time in each
depth bin.

Wind speed and surface buoyancy flux were measured at a nearby mooring. Wind
speed was then converted into the friction velocity u∗ using a bulk parametrization
(McPhaden 1995).

Appendix B. Generalization of the model

We now generalize the model described in § 3 to allow for time-varying stratification
and for adjustments to the turbulence closure parameters. The velocity profile is
unchanged; the buoyancy is as shown in figure 3(b). The buoyancy of the mixed
layer is uniform and is governed by a fixed surface flux J (a good approximation
during the night (e.g. Smyth et al. 2013)) and a turbulent flux b′w′(t) at the mixed
layer base:

db
dt
=
−J + b′w′

h
. (B 1)

Note that, at night, both processes have the effect of cooling the SML, i.e. J> 0 and
b′w′ < 0.

At the base of the deep cycle, the buoyancy is B(t). Within the deep cycle layer,
the squared buoyancy frequency is N2

= (b−B)/H, and its time derivative is therefore

dN2

dt
=

1
H

(
db
dt
−

dB
dt

)
=

1
Hh
(−J + b′w′)−

1
H

dB
dt
. (B 2)

If N2 is in equilibrium, the lower buoyancy B must decrease (due to equatorial
upwelling, perhaps) at a rate equal to the nocturnal cooling of the SML:

dB
dt
=

1
h
(−J + b′w′0), (B 3)

where b′w′0 is the equilibrium turbulent buoyancy flux. In view of this, we rewrite
(B 2) as

dN2

dt
=

1
Hh
(b′w′ − b′w′0). (B 4)
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To the closure assumptions listed in § 3.5, we add the assumption that the buoyancy
flux and the dissipation rate are related by the fixed coefficient Γ = −b′w′/ε.
Combining this with (3.4) gives

b′w′ =−
Γ

τN
Nk, (B 5)

and therefore
dN2

dt
=

1
Hh

Γ

τN
(N0k0 −Nk). (B 6)

The turbulent kinetic energy equation now includes the buoyancy flux:

dk
dt
=−u′w′S+ b′w′ − ε. (B 7)

Substituting (3.4) and (B 5) gives

dk
dt
=

(
2αS−

1+ Γ
τN

N
)

k. (B 8)

The shear equation (3.2), incorporating (3.6), becomes

dS
dt
=

1
Hh
(u2
∗
− 2αk). (B 9)

We next write the three equations (B 9), (B 6) and (B 8) in dimensionless form using
the length scale

√
Hh and the velocity scale u∗:

dS̃
dt̃
= 1− 2αk̃, (B 10)

dÑ2

dt̃
=
Γ

τN
(Ñ0k̃0 − Ñk̃), (B 11)

dk̃
dt̃
=

(
2αS̃−

1+ Γ
τN

Ñ
)

k̃, (B 12)

where tildes indicate non-dimensional quantities. The equilibrium solution is

k̃0 =
1

2α
,

Ñ0

S̃0

= Ri1/2
0 =

2ατN

1+ Γ
. (B 13a,b)

We now make the change of variables

S̃= S̃0(1+ σ), Ñ = Ñ0(1+ η), k̃= k̃0(1+ κ), (B 14a−c)

resulting in

dσ
dt̃
=−C1κ, (B 15)

dη
dt̃
=−C2

η+ κ + ηκ

1+ η
, (B 16)
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dκ
dt̃
=C3(σ − η)(1+ κ), (B 17)

with coefficients C1, C2 and C3 given by

C1 =
ατN

Ñ0(1+ Γ )
, C2 =

Γ

2Ñ0ατN
, C3 =

Ñ0

τN
(1+ Γ ). (B 18a−c)

Linearizing about the equilibrium solution σ = η = κ = 0 and seeking solutions
proportional to exp(−iω̃t̃), we are left with a cubic equation for ω̃:

ω̃3
+ iC2ω̃

2
+ (C2 −C1)C3ω̃− iC1C2C3 = 0. (B 19)

To obtain a simple solution, we treat Γ as a small parameter. In the limiting case
Γ = 0, the non-trivial solution is

ω̃2
0 = 2α. (B 20)

If α= 1/8, this is equivalent to (3.15). For Γ non-zero but �1, we can perturb (B 19)
about ω̃= ω̃0 to obtain:

ω̃= ω̃0

(
1+

Γ

4

)
+O(Γ 2). (B 21)

In dimensional form, this is

ω= (2α)1/2
u∗

(Hh)1/2

(
1−

Γ

4

)
+O(Γ 2). (B 22)

Note that ω is real, i.e. the solution is oscillatory, at least to first order in Γ . With
α fixed, replacing Γ = 0 with Γ = 0.2 decreases the frequency by 5 %. Using
Townsend’s (1976) estimate 0.12 < α < 0.18, we find that the predicted frequency
is uncertain by about 5 %. The simplicity of the layer model and the absence of
horizontal effects (e.g. pressure gradient) are probably much greater sources of
uncertainty than these closure parameters.

The predicted equilibrium dissipation rate ε0 is independent of all closure
parameters except Γ :

ε0 =
u2
∗
S0

1+ Γ
, (B 23)

and therefore decreases by about 20 % if Γ is set to 0.2.
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