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Abstract
Currently, the body balance control algorithm of a quadruped robot executing trot gait motion is more complex and
computationally intensive, which is not conducive to improving the real-time control performance of the robot. This
paper proposes a six-dimensional spatial mechanics decoupling algorithm to enhance the balance control accuracy
during trot gait while optimizing the computational effort. A 6 × 6 matrix is established to describe the relationship
between six ground reaction forces of the diagonal supporting leg and six spatial forces and torques controlling
robot degrees of freedom, which is optimized to reach the full rank. Decoupling calculation is adopted to obtain
required ground reaction forces by matrix inverse operation, and forces are converted to joint motor torques utilizing
the Jacobian matrix. The trajectory of the swing leg foot is generated based on cubic interpolation, and the robot
motion speed is adjusted by selecting the landing point. This paper also proposes a region intervention control
method based on center of mass projection to regulate the moving speed while ensuring the balance of the robot.
Finally, the algorithm is verified by simulation using open source software Webots. The results show that when the
robot moves at an average speed of 0.5 m/s, the lateral displacement change of the robot is less than 0.009 m, the
height change is less than 0.003 m, and the rotating angles around the x, y, and z axes are less than 0.0036 rad,
0.0013 rad, and 0.001 rad, respectively.

1. Introduction
Balance control of quadruped robots has a significant impact on stable and fast locomotion [1]. Balance
control algorithms have been studied for several decades, which were verified with quadruped robots
under different gaits [2]. Mainstream algorithms include Model Predictive Control (MPC), Whole Body
Control (WBC), Central Pattern Generator (CPG), Virtual Model Control (VMC), and Zero Moment
Point (ZMP), which achieve balance control for quadruped robots successfully. However, the algorithms
mentioned have their limitations. MPC, WBC, and CPG all involve complex mathematical calculations
and parameter adjustments. Pure VMC limits the most accurate balance control to some extent. ZMP is
not conducive to balance control for dynamics.

MPC is a method to calculate forces of supporting foot in each controlling cycle by model prediction
and convex optimization [3]. The MPC process includes the establishment of state-space expressions,
predictions of several future states based on current states, creation of Quadratic Programming (QP)
expression combining prediction states and planned trajectory, weights distribution about states and
input parameters, and solution of the cost function [4, 5]. The forces calculated can be converted to joint
torques by the Jacobian matrix. MPC achieves body balance control during high-speed locomotion,
which simultaneously considers the whole states of the robot, adjusting weights to control some critical
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states [6–8]. However, the solving process of the cost function is complex due to enormous prediction
states and iterations, resulting in a long calculating period. What is more difficult is that modulation of
any weight will influence other states, which demands the high accuracy of robotic physical parameters.

WBC is a method considering the control of all body states [9]. WBC divides control tasks and assigns
different priorities to realize the overall control due to the strong coupling system [10, 11]. Pseudo-
inverse operation is carried out on Jacobian matrix based on null space method, and tasks with lower
priority are filtered by multiplying pseudo-inverse matrix and original matrix, ensuring the execution
of tasks with higher priority [12]. WBC based on quadratic programming (QP) considers all dynamic
states by assigning the same priorities to each task [13]. However, only WBC will lose accurate control
on the states with lower priority while controlling the states with higher priority.

CPG is a distributed neural network control method based on animal movement rhythm [14, 15].
Neural vibrators are designed on each joint according to the distribution principle, the neural vibra-
tors are associated with each other according to the overall robot structure, and feedback signals from
external sensors are imported simultaneously. Each neural oscillator outputs specific waveforms related
to joint angle, joint velocity, and joint torque to control joint motions based on upper motion planning,
feedback information, and other neural oscillator status signals. CPG connects each joint of the robot and
introduces feedback mechanisms, which improve the terrain adaptability and dynamic balancing abil-
ity of the robot. The distributed neural oscillator network realizes the motion control of the quadruped
robot under different gaits [16, 17] and adjusts the corresponding model parameters during the motion
to finish the smooth transition of different gaits while flexibly performing the all-around motion such as
side shift and turn [18–20]. However, upper control tasks are converted into joint instructions through
multiple links, which occupies a large number of computing resources of the computer, resulting in a
long control cycle and low task execution efficiency.

VMC provides virtual forces and torques by exerting fictitious spring or damping on the center of
mass (CoM) [21–23]. The forces and torques can be adjusted by changing the stiffness coefficient and
damping coefficient. Horizontal virtual forces control forward and lateral movement, vertical virtual
force controls the altitude of the body, and virtual torques control the attitude of the body [24, 25].
All virtual forces and torques are converted into joint torques. Many mainstream gaits, including trot,
bounce, gallop, are successfully studied based on VMC criterion [26–28]. VMC is a direct method based
on intuitive control, which responds fast without complex calculations. However, pure VMC is not able
to guarantee accurate control.

ZMP was first used in static balance control [29]. For biped robots, static and quasi-static posture
balance can be achieved because the sole has a supporting area [30]. For quadruped robots, at least three
legs are required to maintain static balance due to the point contact [31]. However, the kinematic moving
speed is limited. Along with the deeper study of ZMP, compensating swing trajectory is introduced to
develop dynamic ZMP, keeping the CoM on the diagonal line of supporting foot by deliberately swinging
the body from side to side [32–34]. Dynamic ZMP achieves balance control during slow dynamic motion
by establishing ZMP region and torque compensation [35, 36]. Nevertheless, it is difficult to accurately
control the ZMP projection on the diagonal line due to the inertial force in the fast movement, causing
the robot to fall down.

The balance control of trot gait enhances the practical applicability of quadruped robot, which
involves many meaningful tasks such as global mapping and valuables handling. When the quadruped
robot is equipped with radar or laser for mapping, the stable balanced attitude can suppress the vibration,
reduce the dependence on filtering, and improve the mapping efficiency and accuracy [37]. Although
the current algorithms achieve stability control, there is space for optimization to improve practicability.

Therefore, this paper proposes a six-dimensional spatial mechanics decoupling algorithm. The algo-
rithm describes and solves the mathematic relationship between six ground reaction forces of the
diagonal supporting leg and six spatial forces and torques controlling robot degrees of freedom (DoF),
achieving body balance control during trot gait. VMC with impedance control is applied to CoM to ana-
lyze the virtual forces and torques. A matrix ∈R

6×6 is established to describe the relationship between
ground reaction forces and virtual forces and torques. The ground reaction forces are then calculated
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by matrix inversion, and forces are converted to joint torques through the Jacobian matrix. However,
the initial matrix fails to reach full rank due to the physical structure of the quadruped robot itself. The
maximum rank of the matrix is five, so some physical parameters in the matrix should be amended by
temporarily sacrificing the accurate control of one of the six DoFs. VMC with impedance control is
also applied to the swinging foot, and the foot trajectory is generated through cubic interpolation. In
addition, if accurate control of locomotive speed is sacrificed, the selection of landing point of swing
leg should be considered for adjusting the velocity effectively. Moreover, an intervention control method
based on center of mass (CoM) projection is introduced to regulate locomotive speed. Advantages of
the theoretical algorithm proposed in this paper include the following:

1. small amount calculation without iteration calculations,
2. high accuracy of balance control, and
3. newly available adjusting method of locomotive velocity.

This paper is organized into the following section to address. In Section 2, the six-dimensional spatial
mechanics matrix and solution are described in detail. In Section 3, locomotive velocity adjustment
based on selection of landing point and region intervention control (RIC) are described in detail. In
Section 4, simulations are launched to verify the feasibility of the proposed algorithm with and without
intervention control in Webots software. In Section 5, relative conclusions are drawn to summarize the
effectiveness of the algorithm. In Section 6, further outlooks about balance control are discussed.

2. Six-Dimensional Spatial Mechanics Matrix and Solution
2.1. Convention
Matrix ∈R

n×m is represented with uppercase, upright, and bold letter(A). Matrix ∈R
n×1/R1×n is repre-

sented with uppercase, italicized, and bold letter(A). Scalar is represented with uppercase or lowercase
and upright letter(A, a). This paper includes four different coordinates, as shown in Fig. 1, and symbols
in different coordinates will attach an identifier on them. As an example, all quantities in the body coor-
dinate system have a left subscript B(BA). Coordinate is represented with an uppercase, upright, and
bold letter within brace({A}).

2.2. Model of quadruped robot and analysis of six-dimensional spatial mechanics
As shown in Fig. 1, the research in this paper is conducted based on a quadruped robot with twelve DoFs,
including four legs. Leg 1, leg 2, leg 3, and leg 4 correspond to left front leg, right front leg, right hind
leg, and left hind leg, respectively. Every leg has three DoFs, including hip roll DoF, hip pitch DoF, and
knee pitch DoF. The robot itself has six DoFs, including three translational DoFs and three rotational
DoFS [38]. Four coordinates are used for describing various physical quantities and state quantities.
The main task of the paper is to maintain body balanced during trot gait, so the orientation of the four
coordinates is identical. The unique posture shown in Fig. 1 indicates that CoM projected on the ground
(CMPG) overlaps the middle point (MP) in the line connecting foot 1 and foot 3 or the line connecting
foot 2 and foot 4. The posture is considered as the most balanced state, and the positions of feet in {B}
are recorded.

BPfooti = [BOfxi
BOfyi

BOfzi]
T (1)

where i stands for leg i. BOf*iare positions of foot coordinate origin in x, y, and z directions in body
coordinate.

As shown in Fig. 2, the ground reaction forces are distributed in each foot. According to VMC cri-
terion, the robot is considered as a rigid body with the mass of four legs much less than the total mass,
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Figure 1. Coordinates systems. {W} is world coordinate, which works as a reference coordinate. {B}
is a body coordinate, which is established in CoM. {CG} is a coordinate established in the point where
CoM is projected on the ground. {Ofooti} is a coordinate established in the foot of each leg. L0 is the
length from hip roll joint axis to hip pitch joint axis. L1 is the length of upper leg. L2 is the length of
lower leg.

Figure 2. Ground reaction forces and virtual forces and torques.

so the ground reaction forces can be equivalent to acting on the CoM [3]. Therefore, the virtual forces
and torques are generated from ground reaction forces.

BFCoM = [BFCoMx
BFCoMy

BFCoMz
BTCoMx

BTCoMy
BTCoMz

]T (2)
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Figure 3. Diagonal legs support the robot.

where BFCoM and BTCoM are virtual forces and torques in body coordinate, respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BFCoMx = WFCoMx = Kpx
(

WPXCoM_d − WPXCoM
) + Bpx(WVXCoM_d − WVXCoM)

BFCoMy = WFCoMy = Kpy
(

WPYCoM_d − WPYCoM
) + Bpy(WVYCoM_d − WVYCoM)

BFCoMz = WFCoMz = Kpz
(

WPZCoM_d − WPZCoM
) + Bpz(WVZCoM_d − WVZCoM) − mg

BTCoMx = WTCoMx = Kθx
(

WθXCoM_d − WθXCoM
) + Bθx(WωXCoM_d − WωXCoM)

BTCoMy = WTCoMy = Kθy
(

WθYCoM_d − WθYCoM
) + Bθy(WωYCoM_d − WωYCoM)

BTCoMz = WTCoMz = Kθz
(

WθZCoM_d − WθZCoM
) + Bθz(WωZCoM_d − WωZCoM)

(3)

where WFCoM and WTCoM are virtual forces and torques in world coordinate, respectively. K**and B**

are stiffness coefficient and damping coefficient, respectively.WP*CoM, WV*CoM, Wθ*CoM, and Wω*CoM are
position, velocity, angle, and angular velocity of robot, respectively.WP*CoM_d, WV*CoM_d, Wθ*CoM_d, and
Wω*CoM_d are desired position, velocity, angle, and angular velocity of robot, respectively. m is the mass
of the robot, and if it carries load, m is amended to compensate the z virtual force. g is the gravitational
acceleration, 9.81 m/s2.

The ground reaction forces are represented as
WFf ooti =

[WFfx_i
WFfy_i

WFfz_i
]T (4)

where WFf*_i is ground reaction forces from x, y, and z directions of leg i.
This paper focuses on balance control when only diagonal legs support the robot during trot gait. As

shown in Fig. 3, the control of six virtual forces and torques is achieved by six ground reaction forces.
Furthermore, virtual forces in x, y, and z axes are controlled by ground reaction forces of supporting
feet in x, y, and z directions, respectively. Virtual torques around x, y, and z axes are controlled by the
combined torque consisting of ground reaction forces in the other two axes. For instance, virtual torque
around x axis is controlled by the combined torque consisting of ground reaction forces in y and z axes.

The total ground reaction forces are represented as

WFf oot =
[

WFfooti
T WFfooti+2

T
]T = [WFfx_i

WFfy_i
WFfz_i

WFfx_i+2
WFfy_i+2

WFfz_i+2

]T (5)
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The relationship between ground reaction forces and virtual forces and torques is established as
BFCoM = M1

WFfoot (6)

where M1 is matrix∈R
6×6,

M1 =
[

Ii Ii+2

BDi
BDi+2

]

Ii =
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ BDi =

⎡
⎢⎣

0 −Bdzi
Bdyi

Bdzi 0 −Bdxi

−Bdyi
Bdxi 0

⎤
⎥⎦

where Ii is diagonal matrix ∈R
3×3. BDi is the matrix ∈R

3×3 containing the distances from each foot to
CoM. Bd*i are positions of each foot in body coordinate.

Denavit–Hartenberg parameters are used for establishing coordinate transformation matrix.

j−1Tj_i =
[

j−1Rj_i
j−1Pj_i

0 0 0 1

]
(7)

where j−1Tj_i ∈R
4×4 is the coordinate transformation matrix. j−1Rj_iand j−1Pj_i ∈R

3×3 are rotational and
translational transformation matrixes, respectively.

The parameters of distance matrix BDi are obtained as follows:⎡
⎢⎢⎢⎢⎣

Bdxi

Bdyi

Bdxi

0

⎤
⎥⎥⎥⎥⎦ = 0T1_i·1T2_i·2T3_i·3T4_i·

⎡
⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎦ = W(θ0, θ1, θ2) (8)

where W(θ0, θ1, θ2) is the function describing the transformation matrix between foot and origin in body
coordinate. θ0, θ1, θ2 are angles of hip roll joint, hip pitch joint, and knee pitch joint, respectively.

2.3. Decoupling solution of ground reaction forces
However, if the matrix inverse operation in Eq. (6) is executed directly, incorrect ground reaction forces
will be obtained. As analyzed before, the maximum rank of M1 is five, so one of the virtual forces or
torques should be set as a passive control state, and the corresponding DoF is controlled indirectly. But
not all virtual forces or torques can be set as passive control states. Two directional ground reaction
forces influence each virtual torque on CoM, e.g., virtual torque on the z-axis is the superposition based
on ground reaction forces in the x and y directions. The control of virtual force in the z-axis is important
due to gravity. Therefore, only virtual forces in the x or y direction can be set as passive control state,
which indicates the locomotion in x or y is controlled indirectly. All DoFs can be accurately controlled
except indirectly controlled DoF.

When the quadruped robot moves along the x direction, the indispensable balance control of the body
includes zero translational motion in the y and z directions and zero rotation around the x, y, and z axes.
Ground reaction forces are obtained by matrix inverse operation:

WFfoot = M1
−1 · BFCoM (9)

Where some quantities in the matrixes of the equations are amended to set virtual force in x as passive
control state:

BFCoM = [
0 BFCoMy

BFCoMz
BTCoMx

BTCoMy
BTCoMz

]T (10)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ii =
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Ii+2 =
⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦

(11)

In above Eqs. (10) and (11), BFCoMx is set to zero, to make WFfx_i=WFfx_i+2. M1 reaches full rank after
the adjustment.

Joint torques are obtained:

τ i = −BJT
i · WFfooti (12)

where τ i ∈R
3×1 is the matrix containing three joint torques of leg i. BJT

i is R3×3 is the Jacobian matrix.
Six ground reaction forces accurately control five DoFs and inaccurately control x virtual force.

Further analysis about x virtual force will be developed.

3. Locomotive Velocity Adjustment
3.1. Analysis of passive control state
In Section 2, x virtual force is set as the passive control state to ensure the balance control of the rest
of the five DoFs, and x position and x velocity of CoM are controlled by inaccurate x virtual force,
which is

BFCoMx
′ = WFfx_i+WFfx_i+2 �=B FCoMx (13)

where BFCoMx
′ is the passive control force which is not equal to the required BFCoMx, and robot will move

in the x direction at an uncertain velocity.
The ground reaction force in the x axis is obtained by further calculation:

WFfx_i = WFfx_i+2

= (BTCoMx·Bdxi − BTCoMx·Bdxi+2 + BTCoMy·Bdyi − BTCoMy·Bdyi+2

+ BTCoMz·Bdzi − BTCoMz·Bdzi+2 + BFCoMy·Bdxi·Bdzi+2 − BFCoMy·Bdxi+2

·Bdzi − BFCoMz·Bdxi·Bdyi+2 + BFCoMz·Bdxi+2·Bdyi)/ (2( Bdyi·Bdzi+2

− Bdyi+2·Bdzi )) (14)

When CMPG overlaps MP, the robot is kept in balance. The required y virtual force is approximately
equal to zero, the required z virtual force is roughly equal to gravity, and the required virtual torques
around three axes are approximately equal to zero.[BFCoMy

BFCoMz
BTCoMx

BTCoMy
BTCoMz

] = [
0 Mg 0 0 0

]
(15)

The relationship between foot positions in body coordinate is⎧⎪⎨
⎪⎩

Bdxi = −Bdxi+2

Bdyi = −Bdyi+2

Bdzi = Bdzi+2

(16)

Eq. (9) is applied to calculate the ground reaction forces, and x ground reaction forces are obtained:
WFfx_i = WFfx_i+2 = 0 (17)

The result shows that x virtual force will generate zero velocity, which maintains the robot in the most
balanced state.
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Figure 4. CMPG is in front of MP.

Since the expected displacement of the robot in the y direction is zero, and the virtual force in the
y direction is precisely controlled, the displacement of the CoM in the y axis is almost zero. Therefore,
when CMPG is before or behind MP in the X direction, two more situations are analyzed. One of
the situations is shown in Fig. 4. When CMPG is in front of MP on the x axis, the gravity of CoM
will cause the robot to topple around the line connecting diagonal supporting feet, i.e., the robot will
rotate clockwise around the x and y axes. Therefore, virtual torques BTCoMx and BTCoMy should be
counterclockwise. So[BFCoMy

BFCoMz
BTCoMx

BTCoMy
BTCoMz

] = [0 Mg < 0 < 0 0] (18)

The relationship between foot positions in body coordinate is⎧⎪⎨
⎪⎩

Bdxi < −Bdxi+2

Bdyi = −Bdyi+2

Bdzi = Bdzi+2

(19)

Eq. (9) is applied to calculate the ground reaction forces, and x ground reaction forces are obtained:{
WFfx_i = WFfx_i+2 > 0
BFCoMx = WFfx_i + WFfx_i+2 > 0

(20)

The result shows that the robot will generate positive locomotion on the x axis with a balanced body.
Furthermore, the far CMPG is from MP, the fast the robot moves along the x positive axis.

Another situation is shown in Fig. 5. When MP is in front of CMPG on the x axis, the gravity of CoM
will cause the robot to topple around the line connecting diagonal supporting feet, i.e., the robot will
rotate counterclockwise around the x and y axes. Therefore, virtual torques BTCoMx and BTCoMy should
be clockwise. So [BFCoMy

BFCoMz
BTCoMx

BTCoMy
BTCoMz

] = [
0 Mg > 0 > 0 0

]
(21)
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Figure 5. MP is in front of CMPG.

The relationship between foot positions in body coordinate is⎧⎪⎨
⎪⎩

Bdxi > −Bdxi+2

Bdyi = −Bdyi+2

Bdzi = Bdzi+2

(22)

Eq. (9) is applied to calculate the ground reaction forces, and x ground reaction force is obtained:{
WFfx_i = WFfx_i+2 < 0

BFCoMx = WFfx_i + WFfx_i+2 < 0
(23)

The result shows that the robot will generate negative locomotion on the x axis with a balanced body.
Furthermore, the far MP is from CMPG, the fast the robot moves along the x negative axis.

Although x virtual force can be changed by adjusting the position of CMPG with respect to MP, there
is still a difference between passive x virtual force and required x virtual force. Fortunately, based on
the changing trend of passive x virtual force, rough x velocity control can be achieved.

3.2. Selection of foot landing point
The relative position between CMPG and MP can change the passive x virtual force. The position adjust-
ment can be executed before starting, getting an initial passive x virtual force. The velocity during
locomotion can be adjusted by selecting the landing point of the swinging leg. As the theory pro-
posed by Raibert, selections of the landing point of the swinging leg will change the forward velocity of
the robot [21]. The theory is implemented in this paper after reasonable modifications. A new form is
proposed:

BXfootT_i = S(BVXCoM·Tstance/2) (24)

where S is the distance regulating factor, Tstanceis the stance period, and BXfootT_i is the position of the
landing point relative to BOfxi in Eq. (1).

Assume that the robot moves along x axis with positive velocity. The analysis is carried out as shown
in Fig. 6. If S equals 0 as shown in Fig. 6(a), the moment when legs status switch, i.e., stance leg becomes
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Figure 6. A diagram about influence of S factor, where CMPG overlaps CoM.

swing leg while swing leg becomes stance leg, CMPG overlaps MP, which indicates that the robot will
move at the same speed until the next moment. Once CMPG surpasses MP, the robot will accelerate due
to x positive virtual force. If S is within 0∼1 shown as Fig. 6(b), the moment when legs status switch,
CMPG is behind MP, which indicates that the robot will slow down due to the x negative virtual force
with decreasing x negative virtual force. After a while, CMPG will reach MP and become a situation
as shown in Fig. 6(a). Furthermore, the robot is bound to move forward until the next switch of the legs
before velocity reduces to zero. If S is greater than 1 as shown in Fig. 6(c), the moment when legs status
switch, CMPG is far behind MP, so the robot will decelerate with a large x negative acceleration due
to large x negative virtual force. However, CMPG will never reach MP to become a situation as shown
in Fig. 6(a). The robot will fail to move forward to reach the next switch of the legs before velocity
reduces to zero, and the locomotion of the robot will be converted into x negative direction. Therefore,
the selection of landing point for the swing leg can adjust an average velocity of the robot.

3.3. Trajectory of foot of swing leg
This paper focuses on locomotion on flat ground without considering obstacles and irregular terrains.
Therefore, the trajectories of the foot of the swinging leg in the x and z direction are generated by cubic
interpolation, and the trajectory of the foot in the y direction is kept zero due to zero lateral displacement.

Trajectory of foot in x direction is as follows:

BXfoot_i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4WVCoMx0

Tfly
t2 + WVCoMx0t 0 ≤ t <

Tfly

4
−4Tfly

WVCoMx0 − 16BXfootT_i

T3
fly

t3 + 7Tfly
WVCoMx0 − 24BXfootT_i

T2
fly

t2+
−15Tfly

WVCoMx0 − 36BXfootT_i

4Tfly
t + 9Tfly

WVCoMx0 + 16BXfootT_i

16

Tfly

4
≤ t <

3Tfly

4

BXfootT_i t ≥ 3Tfly

4

(25)

where Tfly is the swing period. WVCoMx0is the velocity of CoM when foot status switches.
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Figure 7. VMC for foot of swing leg.

The position of the landing point in body coordinate is
BXfoot_i

(
Tfly

) = BXfootT_i + BOfxi (26)

Trajectory of foot in z direction is as follows:

Zfoot_i (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

16BZfoot0_i − 16BZfooTt_i

T3
fly

t2 + 12BZfooTt_i − 12BZfoot0_i

T2
fly

+ BZfoot0_i 0 ≤ t <
Tfly

2

4BZfoot0_i − 4BZfooTt_i

T2
fly

t2 + 4BZfooTt_i − 4BZfoot0_i

Tfly
+ BZfoot0_i

Tfly

2
≤ t < QTfly

BZfoot0_i t ≥ QTfly

(27)

where BZfoot0_i equalsBOfzi. BZfoot0_i is the z position of foot when foot status switches. BZfooTt_iis the height
which the swinging leg lifts. Q is time adjusting factor with range from 0.9∼1. The larger the Q is, the
slower the landing time of the foot is, which brings less impulsive force to the foot.

VMC is also implemented in foot shown as Fig. 7.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

BFfvmcx_i = Kpfx
(

BXfoot_i(t) − BXfoot_i
) + Bpfx

(
dBXfoot_i (t)

dt
− dBXfoot_i

dt

)

BFfvmcy_i = Kpfy
(

BYfoot_i(t) − BYfoot_i
) + Bpfy

(
dBYfoot_i (t)

dt
− dBYfoot_i

dt

)

BFfvmcz_i = Kpfz
(

BZfoot_i(t) − BZfoot_i
) + Bpfz

(
dBZfoot_i (t)

dt
− dBZfoot_i

dt

)
(28)

where BFfvmcx_i, BFfvmcy_i, and BFfvmcz_i are virtual forces of foot of leg i. K*** and B*** are stiffness coeffi-
cient and damping coefficient, respectively. BXfoot_i(t) and BZfoot_i(t) are position changes over time, and
BYfoot_i(t) is set as zero. BXfoot_i, BYfoot_i, and BZfoot_i are initial positions of foot when foot status switch.

Joint torques of swing legs can be calculated as

τ i = BJT
i

BFfvmci (29)

where BFfvmc_i =
[

BFfvmcx_i
BFfvmcy_i

BFfvmcz_i
]T.
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Figure 8. Tiny area for RIC.

3.4. Active intervention of passive control state
In order to compensate for the rough control of velocity mentioned above, the RIC is proposed in this
paper. It is known that the robot keeps balanced when CMPG overlaps MP, i.e., lateral displacement
will be zero even if y virtual force is set as passive control state. Based on the analysis, a tiny area
around PM is planned for RIC. If CMPG is within the tiny area, y virtual force is set as passive con-
trol state, and x virtual force is accurately controlled to adjust x velocity, which only generates slight
lateral displacement. The tiny area N is planned as Fig. 8, e.g., the N area here is associated with leg 1
and leg 3.

N1 area is a parallelogram consisting of Line 1, Line 2, and �y. Line 1 and Line 2 are
represented as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Byl1 =

Bdy3 − Bdy1
′

Bdx3 − Bdx1
′

(
Bxl1 − Bdx1

′
) + Bdy1

′

Byl2 =
Bdy3

′ − Bdy1

Bdx3
′ − Bdx1

(
Bxl2 − Bdx1

) + Bdy1

(30)

where Bdy3 + �y = Bdy3
′ , Bdy1

′ + �y = Bdy1 .
N2 area is a rectangle that can be defined as {Bdx1 < x < Bdx3 ∩ −�y′ < y < �y′}.
N area is the intersection of N1 and N2. If CMPG is contained inside N area, x virtual force is

contained in the control list and y virtual force is set as passive control state. Virtual forces and torques
are

BFCoM = [ BFCoMx 0 BFCoMz
B TCoMx

B TCoMy
B TCoMz

]T (31)

Eq. (19) and Eq. (22) are amended for the analysis of passive y virtual force:⎧⎪⎨
⎪⎩

Bdxi = −Bdxi+2

Bdyi ( > or < ) − Bdyi+2

Bdzi = Bdzi+2

(32)
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Figure 9. Top view of the robot about the relationship between CMPG and N area, where CMPG
overlaps CoM. (a) CMPG is outside and before N area. (b) CMPG is inside N area. (c) CMPG is
outside and behind N area.

Figure 10. Spotmini model in Webots.

The size of the N area determines the degree of control of x virtual force. The larger the N area is,
the stronger the intervention is, causing more accurate x velocity but larger lateral displacement. The
attitude of the robot keeps balanced under the different sizes of the N area.

Fig. 9 is a detailed diagram showing the working theory of the N area intervention. In Fig. 9(a), x
virtual force is passive control, which causes the robot to accelerate forward. In Fig. 9(b), x virtual force
is actively controlled to adjust velocity, and y virtual force is set as passive control, bringing tiny lateral
displacement. In Fig. 9(c), passive control of x virtual force results in acceleration at the x negative axis.

4. Verification Simulation
4.1. Parameter setting
Simulation is conducted based on open source software Webots, with the free model Spotmini provided
by Webots shown in Fig. 10. Some parameters are changed, including model size, mass, maximum
motor torque, maximum motor speed, and position of CoM.

Table I demonstrates that the total mass of legs accounts for only eight percent of the robot mass,
which accords with the requirements of the method proposed in this paper. CoM is located at the center
of four hip joints. Table II shows all the stiffness coefficients and damping coefficients of the controller.
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Table I. Parameters of the robot.

Parameter Value
Mass of robot 45 kg
Mass of hip 0.5 kg
Mass of upper leg 0.3 kg
Mass of lower leg 0.137 kg
L0 0.1172 m
L1 0.3681 m
L2 0.3525 m
Radius of foot 0.0351 m
Initial height of CoM 0.5990 m
Distance from hip to CoM (0.3359, 0.0528, 0.0085) m
Maximum motor torque 230 Nm
Maximum motor rotating speed 21 rad/s

Table II. Parameters of K and D.

Parameter Value
Kpx 0 N/m
Kpy 100 N/m
Kpz 550 N/m
Kθx 500 Nm/rad
Kθy 300 Nm/rad
Kθz 300 Nm/rad
Bpx 500 Ns/m
Bpy 50 Ns/m
Bpz 450 Ns/m
Bθx 100 Nm·s/rad
Bθy 50 Nm·s/rad
Bθz 80 Nm·s/rad
Kpfx 550 N/m
Kpfy 100 N/m
Kpfz 900 N/m
Bpfx 18 Ns/m
Bpfy 100 Ns/m
Bpfz 16 Ns/m

S in Table III is used for adjusting the landing point, and the value decreases along with the decreasing
speed. �y and �y’ are related to the N area.

As mentioned before, this research focuses on the balance control when the robot moves in the x axis
in trot gait, so x virtual force is set as a passive control state in most of the period except for RIC, ensuring
body balanced. The average locomotive speed is set to 0.5 m/s since the quadruped robot moves at a low
speed to keep highly balanced for some critical tasks including transporting precious goods, mapping
with radars or cameras, and so on. In order to quickly start the robot, CMPG is 0.03 m ahead of MP
initially. The operating period of the legs is 1 s.

4.2. Motion simulation of the robot with intervention
Figure 11 shows that twice interventions are applied within a period except for the first period. Because
of the relative position between CMPG and MP at the beginning, intervention in the first half period
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Figure 11. Adjusting intervention of x virtual force. 0 and 1 are without and with intervention,
respectively.

Figure 12. Variation of displacements and velocities of CoM along with time with intervention.
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Table III. Parameters of adjusting factors.

Parameter Value
S 0.85, 0.75, 0.55
Q 0.94
�y 0.02 m
�y’ 0.05 m
Control period 1 ms

Figure 13. Variation of angles and angular speed of the robot along with time with intervention.

fails to activate. When the robot enters the stable condition, intervention happens when CMPG is within
the N area.

Figures 12 and 13 demonstrate the variation of 12 states of the robot with the intervention. All status
of the robot fluctuate significantly at the beginning due to intrinsic inertial force, but only the steady
condition is studied. Figure 12 shows that an average speed in the x axis is 0.5 m/s, with a fluctuating
range within 0.19 m/s. The lateral displacement is from −0.004 m to 0.005 m for the reason that y vir-
tual force is set as passive control during the intervention. The displacement fluctuation in the z axis
is less than 0.003 m, with the velocity fluctuating range less than 0.05 m/s. Meanwhile, as shown in
Fig. 13, the fluctuating range of angles around the x, y, and z axes are less than 0.0036 rad, 0.0013 rad,
and 0.001 rad, respectively. The fluctuating ranges of angular velocities are less than 0.035 rad/s,
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Figure 14. Variation of visual forces and torques along with time with intervention.

0.045 rad/s, and 0.047 rad/s, respectively. The change rules of virtual forces and torques completely
match the 12 states. As shown in Fig. 14, the fluctuating range of x and y virtual forces are less than
200 N and 80 N, respectively, with the fluctuating range of z virtual force within 30 N.

Therefore, the intervention that occurs twice a period effectively adjusts x velocity by allowing a tiny
lateral displacement. Furthermore, the operation that sets x virtual force as passive control state ensures
considerably balanced control of the rest DoFs of the robot.

4.3. Motion simulation of the robot without intervention
Figures 15 and 16 demonstrate the variation of twelve states of the robot without intervention. Figure 15
shows that an average speed in the x axis is 0.43 m/s, with the fluctuating range within 0.2 m/s. The fluc-
tuating range of lateral displacement is within 0.0012 m without intervention. The displacement in the
z axis is less than 0.003 m, with velocity fluctuating range less than 0.05 m/s. Meanwhile, as shown in
Fig. 16, the fluctuating ranges of angles around the x, y, and z axes are less than 0.002 rad, 0.0013 rad, and
0.0009 rad, respectively. The fluctuating ranges of angular velocities are less than 0.03 rad/s, 0.043 rad/s,
and 0.045 rad/s, respectively. As shown in Fig. 17, the change rules of virtual forces and torques com-
pletely match the twelve states. The fluctuating range of x and y virtual forces is less than 200 N and
0.6 N, respectively, with fluctuating range of z virtual force within 30 N.

Therefore, the balance control without intervention can guarantee that the robot is under the most
balanced status. However, the difference between actual x velocity and desired x velocity is distinct.

https://doi.org/10.1017/S0263574721001995 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001995


2872 Bende Luo

Figure 15. Variation of displacements and velocities of CoM along with time without intervention.

4.4. Precision evaluation
According to the data in Figs. 12–17, the six-dimensional mechanical decoupling algorithm proposed
in this paper achieves the excellent balance control of quadruped robots during trot. Without RIC, the
attitude changes are extremely small, and the changes of height and lateral displacement are millimeter
level. The average locomotive velocity approaches the expected value but fails to reach it. After RIC
is implemented, the variations of attitude and height are still tiny. The maximum lateral displacement
increases from 0.0012 m to 0.005 m, and the average locomotive velocity achieves the expected veloc-
ity of 0.5 m/s. The result indicates that the tiny sacrifice of accurate control of lateral displacement
effectively enhances the accurate control of the average locomotive velocity. Moreover, the evaluation
of control accuracy of the whole quadruped robot is required to carry out.

Since the rotations around three axes and height are precisely controlled, the variations of the aver-
age locomotive velocity and the maximum lateral displacement with and without RIC are the critical
evaluating parameters. The evaluation function is utilized:

E = 1 −
√(

WVXCoM_ave − WVXCoM_exp
)2 + (

WPYCoM_max − WPYCoM_exp
)2

√∣∣WVXCoM_exp
∣∣ + ∣∣WPYCoM_exp

∣∣ (33)
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Figure 16. Variation of angles and angular speed of the robot along with time without intervention.

where E is the evaluating index between 0 and 1, the larger the E is, the higher the accuracy is.
WVXCoM_ave and WVXCoM_exp are the practical average and expected average locomotive velocity, respec-
tively. WPYCoM_max and WPYCoM_exp are the maximum and expected lateral displacement, respectively.
|∗| is the absolute value.

As mentioned above, WVXCoM_exp and WPYCoM_exp are 0.5 m/s and 0, respectively. WVXCoM_ave are 0.5 m/s
and 0.43 m/s with and without RIC. WPYCoM_max are 0.005 m and 0.0012 m with and without RIC. After
calculation, E are 0.9929 and 0.9010 with and without RIC. The result shows that the whole accuracy
is increased distinctly with RIC.

4.5. Snapshots at critical moments
Snapshots of quadruped robot at every 0.25 s in steady moving status are demonstrated in Figs. 18 and 19.
The robot body is maintained in super balance based on the method proposed in the paper. Moreover, no
distinct fluctuations can be observed in the pictures, which further verifies that the method is available.
In addition, at moments of 0.25 s and 0.75 s, CMPG is within the N area shown as the green area in
Fig. 18, which means that the intervention is activated to adjust x velocity.
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Figure 17. Variation of visual forces and torques along with time without intervention.

Figure 18. Snapshots of quadruped robot while moving in X axis with intervention. (a) Side view: the
blue dash line is the reference line of the body height established based on the body height at 0 moment.
The white points are CoMs. (b) Front view: the green line is a reference line extending from the Y-axis
origin at 0 moment along the X-axis on the ground. The white points are CMPGs.
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Figure 19. Snapshots of quadruped robot while moving in x axis without intervention. (a) Side view: the
blue dash line is the reference line of the body height established based on the body height at 0 moment.
The white points are CoMs. (b) Front view: the green line is a reference line extending from the Y-axis
origin at 0 moment along the X-axis on the ground. The white points are CMPGs.

5. Conclusion
This paper proposes six-dimensional spatial mechanics decoupling algorithm to address balance control
when the quadruped robot moves in trot gait. Compared to the current complex algorithm applied to
the quadruped robot, the method proposed simplifies the calculating process, which only contains a
6 × 6 matrix inverse, cubic product, and other simple mathematic operations without any iteration
calculations. By establishing of the matrix, which connects virtual forces and torques of CoM to ground
reaction forces of the supporting legs, body balance control during trot gait is achieved after setting a
passive control state. The trajectory of the foot of the swing leg is generated by cubic interpolation, and
the landing point of the foot is selected to adjust the moving speed. Moreover, the intervention area is
planned for compensating the adjustment of moving speed without influencing the balance of the body.
Simulation results show that the quadruped robot has achieved balance during trot gait. The average
speed of the robot is the same as desired speed when the intervention of x virtual force is implemented.

6. Discussion
This paper mainly focuses on the body balanced control while trotting by simplifying the calculation
process, neglecting the accurate real-time speed control. The method proposed provides a new available
strategy for the quadruped robot in balance control. What is more, the method proposed can be applied to
other gaits by modifying some parameters in the 6 × 6 matrix. Further work should be done to accurately
adjust moving speed without influencing balance.
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