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Quantitative results for the linear stability of planar Stokes layers subject to small,
high-frequency perturbations are obtained for both a narrow channel and a flow
approximating the classical semi-infinite Stokes layer. Previous theoretical and
experimental predictions of the critical Reynolds number for the classical flat Stokes
layer have differed widely with the former exceeding the latter by a factor of two
or three. Here it is demonstrated that only a 1% perturbation, at an appropriate
frequency, to the nominal sinusoidal wall motion is enough to result in a reduction of
the theoretical critical Reynolds number of as much as 60 %, bringing the theoretical
conditions much more in line with the experimentally reported values. Furthermore,
within the various experimental observations there is a wide variation in reported
critical conditions and the results presented here may provide a new explanation for
this behaviour.
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1. Introduction

One of the relatively few exact solutions of the incompressible Navier—Stokes
equations is that corresponding to the fluid motion induced in a semi-infinite layer
of fluid that lies above a flat plate oscillating in its own plane. For this reason the
determination of the stability characteristics of this Stokes layer has attracted much
interest as it is regarded as a paradigm for a whole family of oscillatory flows. Over
the years the linear stability properties of the Stokes layer have been increasingly
well understood although there still remains some unresolved discrepancies between
theoretical and experimental findings. The primary purpose of this paper is to
contribute further to an examination of this issue. Our major result provides reasons
why good agreement between theory and practice might prove to be an ultimately
unachievable goal.
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We begin by tracing some of the major developments to date in the analysis of the
stability of the Stokes layer. In the interests of brevity our account is not intended
to be comprehensive and readers interested in further details are directed to the cited
articles for amplification as required. The first completely rational examination of the
stability of the semi-infinite Stokes layer was provided by Hall (1978), who used
Floquet theory to reduce the linear disturbance equations to an infinite system of
coupled ordinary differential equations in space. The structure of this system enabled
Hall to formulate a semi-analytical solution which could be obtained once the zeros
of a (formally infinite) determinant were located numerically. Of course in practice
the determinant has to be truncated and it is not surprising that as the Reynolds
number R increases so the number of terms retained has to increase in order to be
assured of a sufficiently well-converged solution. The parameter R will be defined
formally in (2.7) below, but for the moment it is sufficient to note that computational
limitations restricted (Hall 1978) to a range R < 160 and for these values no evidence
of instability could be detected.

It is well known that experimental work with oscillatory layers is far from
straightforward, not least of the difficulties being associated with the generation
of an accurate base flow in the first place. Of course, in practice it is impossible
to generate a semi-infinite flat layer of oscillating fluid in a laboratory so that
experiments are either conducted within a wide channel or, more often, in a tube of
large radius in an attempt to minimise any influence of curvature. Moreover, there
have been a number of strategies adopted in order to generate an oscillatory fluid
layer; the two most common methods are to either vibrate the boundary and so
induce oscillation in the fluid (Clamen & Minton 1977) or to drive the motion by
some kind of piston arrangement (Merkli & Thomann 1975; Hino, Sawamoto &
Takasu 1976; Eckmann & Grotberg 1991). Without undue distraction by these details,
what is important for present purposes is to note that the combined results of a large
number of experiments is somewhat inconclusive. In particular, reports of the critical
value of R at which instability sets in range from about 140 to nearly 300. It might
have been hoped that the suite of experiments would predict transition values of R in
somewhat better agreement. In particular, it is remarked that some of these practical
realisations of the Stokes layer observed instability at values of R for which Hall
(1978) predicted stability.

The theoretical strategy adopted by Hall was re-visited by Blennerhassett & Bassom
(2002) (hereafter referred to as BB02). The advances in computer technology since
Hall’s (1978) original calculation enabled BB02 to examine values of R far in
excess of those accessible earlier. In particular, BB0O2 identified part of the neutral
stability curve with a critical R for instability in the region of 708. This was the
first theoretical determination of the transition value of R but it is still very different
from the values observed in reality. In subsequent work Blennerhassett & Bassom
(2006) (subsequently abbreviated as BB06) endeavoured to explain this rather large
discrepancy by extending the study of BBO2 to finite-width channels or circular pipes
in order to replicate experimental conditions more faithfully. We remark that the
incorporation of these effects did reduce the critical R somewhat, to approximately
540 with the optimal arrangement, but there remained a rather large and unsatisfactory
difference between the theoretical predictions and practical observations.

There have been several propositions as to the underlying mechanism that explains
why the idealised analytical flow appears to have quite different stability properties to
that seen in practice. While one might expect that perfect agreement between the two
approaches is unduly optimistic, the size of the discrepancy is still rather unsettling.
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One popular explanation relies on the role that might be played by nonlinear effects.
In BB02 it was shown that on the neutral stability curve the corresponding disturbance
eigenfunction, although experiencing zero net growth over the course of a period of
the oscillation, does nevertheless undergo intervals of quite dramatic growth during
the cycle with the upshot that the maximum disturbance amplitude over a period is
roughly a hundred times that of the minimum. The implication is that in practice it
would be difficult to stimulate disturbances to a Stokes layer which are so small that
at some stage nonlinear effects are not important. Other workers have suggested that
as the walls of a channel or pipe are not perfectly smooth some small roughness may
be sufficient to prematurely trip disturbance modes at values of R far below the values
suggested by the calculations. Blondeaux & Vittori (1994), Verzicco & Vittori (1996)
and Vittori & Verzicco (1998) have shown that roughness on the walls of experimental
apparatus can expediate the development of turbulence in this unsteady flow.

In this paper an alternative approach is pursued. It is well known that even the
most careful of experiments must contain an element of noise that is impossible to
eliminate completely. As an example, the results presented by Akhavan, Kamm &
Shapiro (1991) indicate that their simulations of Stokes layer flow may contain as
much as 1% noise. Further, Eckmann & Grotberg (1991) explicitly report a noise
level of approximately 4 % of the root-mean-square (r.m.s.) velocity in their basic flow.
While neither of these studies provide numerical data on the structure of this noise,
from the graphs of the basic flow velocity traces at low Reynolds numbers it can be
seen that there are high frequencies in the extraneous components of the flow.

With this in mind the linear stability calculations of BB02 and BB06 were repeated
but, rather than supposing the wall vibrates with a purely sinusoidal velocity, a small
component of a higher-frequency oscillation was included in an effort to model noise
within an experiment. The main result of these calculations was that for a range of
frequencies, the critical Reynolds number was substantially reduced by the inclusion
of a little as 1% of noise (as seen by Akhavan et al. 1991). In fact, at the 1 % noise
level, the critical Reynolds number was less than half its value in the idealised noise-
free flow. Such a moderation brings the theoretical work much more in line with the
practical determinations of the critical R.

An alternative, more mathematical interpretation of the approach outlined above
is provided by perturbed operator theory. The small amplitude high-frequency
components added to the basic velocity field result in small changes to the coefficients
in the governing linear stability equations, so that the attempt to model noise results
in a problem slightly perturbed from a noise-free situation. This latter formalism
brings into play the results and techniques associated with pseudo-spectra of the
Orr—Sommerfeld operator (Trefethen et al. 1993; Trefethen 1997) and the related
effects connected with non-normal operators (Chomaz 2005; Schmid 2007). From
this point of view the large decrease in critical Reynolds number that we have
found via purely linear theory could be explained as a natural consequence of the
underlying non-normal Orr—Sommerfeld operator. Further, these ideas lead to the
possibility of a ‘bypass’ mechanism (Butler & Farrell 1992) explaining the difference
between the experimental transition conditions and the theoretical predictions of BB02
and BB06. The experimental noise levels that are modelled here are comparable in
size to the free-stream turbulence levels seen in bypass experiments on turbulent
spot generation in flat plate boundary layers (Brandt, Schlatter & Henningson 2004).
While a large amount of computational investigation needs to be conducted, at this
stage, the calculations of Thomas et al. (2014) on the fully nonlinear propagation of
two-dimensional wavepackets in a Stokes layer have not shown any tendency towards
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such a bypass scenario. However, there will need to be more analysis of the nonlinear
stability properties of Stokes layers before a full understanding is reached, but having
a linear mechanism bring theoretical predictions closer to experiment is an important
result.

The remainder of the paper is structured as follows. First, the linear stability
problem examined is formulated in §2 and then the numerical methods used in
its solution are presented in §§2.1 and 2.2. The effect of adding an infinitesimal
higher-frequency component to a single frequency basic state is the first flow
considered in § 3. This calculation takes the results of BB0O6 as the first term in
a perturbation expansion, and via the determination of the needed adjoint function, a
set of eigenvalue sensitivity coefficients, one for each higher frequency, is determined.
This process identified those higher frequencies whose presence has the most effect
on the eigenvalues of the noise-free case and, hence, potentially on the location of the
associated linear neutral stability curve. These analytical results are presented in § 3.1,
and then extended in §4 where numerical solutions of the linear stability eigenvalue
problem for a wall velocity containing a small, but finite, higher-frequency component
is considered. It is the results for these flows that demonstrate the remarkably strong
dependence of the linear stability critical conditions on the frequency and amplitude
of the perturbation. These Floquet theory results are confirmed by a direct numerical
solution of the governing linear equations, using the direct numerical simulation
(DNS) approach developed by Davies & Carpenter (2001) and described in §2.2.

All of the analysis and calculations are executed in suitably non-dimensionalised
variables which are defined immediately below. The paper concludes with a discussion
of the results obtained and their implications for further theoretical and experimental
work aimed at the determination of the critical Reynolds number for oscillatory flows
akin to the Stokes layer.

2. Linear stability formulation and numerical methods

Consider two parallel infinite flat plates, a distance 2d apart, that oscillate within
their own planes, along the dimensional x*-direction with a velocity given by

U, = U, cos wt + U§(a, cos(pwt) + B, sin(pwt)) where ozpz + ,35 =1 2.1)

and where p is a positive integer. While there are no theoretical restrictions on the
value of §, in an attempt to model experimental noise, values in the range 0 <§ < 0.03
are considered in the remainder of the paper. Here U, is the velocity scale, being
the magnitude of the velocity of the fundamental oscillation and « is the angular
frequency of the oscillating plates. The constants «, and B, specify the magnitudes of
the sinusoidal perturbations and p denotes the frequency of these perturbations to the
assumed monotonic basic flow. Note that here the term ‘monotonic’ is used to denote
a base flow which contains only one frequency of oscillation. This terminology also
provides a simple descriptor for previous work (see Hall 1978, BB02 and BBO06, for
example).

The motion of the planar surfaces forces the adjacent incompressible, viscous fluid
to oscillate back and forth, generating a flow containing the frequencies w and pw.
We introduce the non-dimensional time T = wt and scale all velocity components on
U, with lengths non-dimensionalised by +/2v/w, where v is the kinematic viscosity
of the fluid. Using these scalings the basic velocity profile is given by

cosh((1 +1)y) ot 4 s cosh((1 +1)y./p)
cosh((1 +1)h) cosh((1 +1)h,/p)

u=Ug(y, 7; p) =Re { (a, —iB,)e"" } (2.2a)
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or, on introducing the functions u,(y), u,(y) and their complex conjugates i,(y) and

it (),

Up = [ui€" + e "] + 8[u, (e, — iB,)e"”™ + it,(at, +if,)e 771, (2.2b)
v=0. (2.2¢)

For later use it is also convenient to introduce a notation which gives simple symbols
for the frequency 1 and frequency p components of the basic flow, and so we define

Up(y, t; p) =Up1 + 68U, (2.2d)

where comparing with (2.2b) we get the obvious definitions for Ug, and U,.

Here h =d./w/2v is the non-dimensional half width of the channel and y is the
non-dimensional coordinate normal to the bounding planes. We note that when 7% is
greater than roughly 14 the basic flow adjacent to each channel wall is an excellent
approximation to the classical Stokes layer in a semi-infinite fluid. Indeed, calculations
described in BBOG6 illustrate that the stability properties of the channel flow with
h > 14 are virtually indistinguishable from those of the semi-infinite layer.

The linear stability of the flow (2.2) is found by imposing a disturbance of the form

ov oy
), (2.3)

(u’ U) (UB’ 0) +¢ ( 8y ’ 9x
where ¢ < 1 and ¥ denotes the stream function of a two-dimensional disturbance.
Here x is the non-dimensional coordinate in the streamwise direction. Since Squire’s
theorem has been extended to unsteady flows (Conrad & Criminale 1965; von Kerczek
& Davis 1974), the disturbance form in (2.3) is sufficient for locating the critical
conditions for the linear stability of the basic flow (2.2a). The disturbance stream
function ¥ may be written as

¥ =exp{ut +iax}y (y, T) + complex conjugate 2.4)

where a € R is the wavenumber and 1 (y, t) is a 2m-periodic function of time with
any exponential growth or decay of ¥ incorporated in the Floquet exponent u € C.
Here u;, the imaginary part of u, can only be determined modulo 1 in general.

By linearising in & the governing equation for the stream function ¥ reduces to

ad 1
T
subject to the boundary conditions
Yy =y'=0 ony=x+h, (2.5b)
where a prime denotes differentiation with respect to y and
82
Y=——d. (2.6)
9y?
Furthermore, the Reynolds number R in (2.5a) is defined as
Us
R=— 2.7)

W v

For later use it is convenient to rewrite (2.5a) and the associated boundary conditions
(2.5b) in the operator form

H(Ug, ) =0, ¥ =vy' =0 ony==h. (2.8a,b)
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2.1. Linear stability via Floquet theory

Using Floquet theory to determine the linear stability of the family of flows (2.1) leads
to the problem (2.5) and, as ¥ (y, t) is 2m-periodic in 7, a solution for ¥ (y, t) is
sought in the form

YO, T =Y ¥ () exp(int). (2.9)

n=—00

The techniques used here are an extension of the methods first used by BB06 and
then developed for different geometries and flows in a series of papers (Blennerhassett
& Bassom 2007; Thomas et al. 2011; Thomas, Bassom & Blennerhassett 2012). The
description of the methods adopted here will be very brief and further details can be
found in the previously mentioned work.

The substitution of (2.9) into (2.5) and the collection of coefficients of exp(int)
yields an infinite system of ordinary differential equations

(& —d® =2 =2 LY, = iaR Y (e = iB)ue(L Vi — 2k
ke{l.p}

+ (o + 1B (L Yk + 2k 1) (2.10)

where the u; and u, are as defined in (2.2b). (We point out that implicit in (2.2a) are
the definitions oy =1 and g; =0.)

The system of equations (2.10) was solved numerically using the pseudo-spectral
techniques described by Fornberg (1996) and Trefethen (2000). Differential operators
in (2.10) were replaced by their pseudo-spectral matrix approximations and each ¥, (y)
was represented as a vector ¥, of its function values on a Chebyshev mesh over the
interval —h <y < h. The introduction of matrix operators

94 92

L 1L, — 22— +d*) /2>, (2.11a)
oyt 0y?

M, =L (o — iBux(L — 2ikl) for k=1, p, (2.11b)

allows the governing equation (2.10) to be rearranged as

—iaR ) M+ L7V —inhg, —iaR ) M= 1, (2.12)

ke{l,p} ke{l,p}

for I the identity matrix and M, the complex conjugate of M.

A finite system of equations was then obtained by truncating the Fourier series (2.9)
for ¢ and setting v, =0 for all n >N, >0 and all n <N, <0, where N, and N, were
chosen to ensure that

max { max[yy, )], max|y, )]}

<1071€, (2.13)
IQQXIwn(y)I

For flows where the eigenvalues u occurred in complex conjugate pairs it was possible
to use a symmetric truncation and set —N,, =N, =N and take N to be around 0.8aR.
The system of equation (2.12) was then written as the algebraic eigenvalue problem

Ap =1, (2.14)


https://doi.org/10.1017/jfm.2014.710

https://doi.org/10.1017/jfm.2014.710 Published online by Cambridge University Press

The linear stability of a perturbed Stokes layer 199

for a sparse matrix A and vector ¢ given as

¢ =Wy Vy Vo Yy (2.15)

Eigenvalues p and eigenvectors ¢ were carefully calculated using the eigensolver
routine eigs in MATLAB, where it was deemed necessary to use upwards of 60
points across the half-channel in the y-direction to ensure that neutral conditions were
accurately determined.

Here we point out that setting a, = 8, =0 gives the method originally used in BB06.
When needed, a rescaling of the ¥, as described in BB06 equation (2.11), was carried
out to enable the calculation of eigenfunction components as small as O(107%°). This
transformation was only needed when dealing with essentially monotonic basic flows;
once high-frequency noise components were large enough the decay of the Fourier
coefficients 1, was slower and numerical noise was not present in the results from
the MATLAB routines. We also mention here that the code developed was checked by
verifying that the eigenvalues obtained when the wall velocity was given by cos(kt)
or sin(kt) satisfied

e =i /k  for Ry =708k and a=0.375vk (2.16)

in the cases of k=1,2 and 3. The channel half width, 4, was decreased by a factor
of vk and the number of harmonics retained in the solution was increased linearly
with k, while @, denotes the eigenvalue obtained with wall velocity of cos T at the
indicated Reynolds and wave number. In all cases, the eigenvalue for the Stokes mode
and the most unstable centre mode agreed to at least nine significant figures. The
k-dependence of the above transformations follow directly from a rescaling of
the basic flow when the wall frequency is changed from w to kw.

2.2. Linear stability via DNS

Two-dimensional DNS was employed to verify the results of the Floquet analysis in
the case where the channel half width was & =16. Here the velocity profile appropriate
to a semi-infinite fluid bounded by an oscillating plane was used and so the velocity
profile (2.2a) is replaced by

u=Up(y, T; p) =Refe™ """ +8(a, —if,)e”1TVPeT), (2.17a)
v=0, (2.17b)

for 0 <y < oo. The velocity—vorticity formulation described by Davies & Carpenter
(2001) was employed where the velocity and vorticity fields are given as

(u, v) = (Ug, 0) + ([ue™ +c.c.], [u,e™ +ccl), 2=U,+[ce“ +ccl, (2.18a,b)

where Uy is the base flow (2.17), u,, u, the y-structure of the streamwise and wall-
normal velocity perturbations, ¢{ the y-structure of the associated vorticity perturbation
and c.c. denotes complex conjugate. The governing equations are represented by the
vorticity transport and Poisson equations

¢ . 1 1
EE + laUBC + UBuy = ﬁgg’ (21961)
Lu, = —iat, (2.19b)
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while the streamwise velocity perturbation is calculated using the expression

U, = —/ (¢ +iauy)dy. (2.20)
y
Here the vorticity is defined by
0 d
=2 (2.21)
ay  ox
whilst the operator £ is as originally defined in (2.6).
No-slip conditions are given as
u, = —Ux(0, v)n, (2.22a)
ad
=2 (2.22b)
0t
for
n(t) = (1 —exp{—o1?}) exp{—0oT?}. (2.23)

Here n(r) is a non-dimensional impulse used to initiate a disturbance in the basic
state (2.17). The parameter o fixes the duration of the impulse, so that initially
many modes of disturbance are excited. Eventually 7 — 0 and only the least-damped
perturbation modes are left to evolve unhindered. The substitution of (2.22a) into the
definition (2.20) gives an integral constraint for the vorticity perturbation of the form

/ ¢dy = Ug(0, r)n—/ iau,dy, (2.24)
0 0

which replaces the usual no-slip condition (2.22a). Equation (2.22b) acts as a second
constraint on the perturbation variables, whilst suitable conditions far from the plate
were imposed by ensuring perturbations tended towards zero as y — oo.

Chebyshev spectral methods were employed to discretise the perturbation variables
in the wall-normal direction, where a mapping was used to pass values from the semi-
infinite physical domain onto a finite computational interval. The velocity—vorticity
equations (2.19) were then integrated twice with respect to the mapped computational
variable and a semi-implicit scheme was used for the time-marching procedure. The
methods adopted for discretisation of the governing equations are discussed in greater
detail in Davies & Carpenter (2001), while a more recent review is presented by
Thomas et al. (2010).

3. Infinitesimal modulation of the basic Stokes layer flow

The computations presented here concern the family of basic flows of the form
(2.2d), namely Up = Up; +38U,, in the limit § — 0T. In other words the classic basic
Stokes layer flow is supplemented by the inclusion of a single higher harmonic which
for the moment is supposed to be of an infinitesimal amplitude. This O(8) change
to the basic flow suggests that the eigenfunction ¥ and Floquet exponent p undergo
comparable changes from their classical forms. Therefore, ¥ and p are expanded in
powers of § according to

l/f(y’ T) — 1)//.(0) + 5-(#(147) 4+ .. (31(1)
w=pu@ +su” 4. .. (3.1b)
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The eigenfunction ¥ in (3.1a) and the Floquet exponent «© in (3.1b) corresponding
to the basic monotonic flow Up; have been previously determined by BBO6.

The quantities w!"” appearing in the expansion (3.15) will be referred to as
the eigenvalue ‘sensitivity coefficients’ as they represent the extent to which the
primary eigenvalue u© is altered by the presence of the O(8) change away from a
single-frequency basic flow. Subsequently these u'” can be further partitioned into
coefficients derived from either cos(pt) or sin(pt) perturbations to the monotonic
flow.

The substitution of expansions (3.1) into the linear stability problem (2.8a,b) results
in the system

H (Up1, W!)y® =0, (3.2a)
H (Upy, )Y = —{(u"" +1aRU,}L Y +iaRU ', (3.2b)

subject to the boundary conditions
‘(//(0) = w;o) = 0 on y= :l:h (33(1)

and
Y = w)gl,p) =0 on y=h. (3.3b)

The problem defined by (3.2a) and boundary conditions (3.3a) is precisely the
eigenvalue problem solved in BB06. The fact that this homogeneous system has a
non-trivial solution means that the non-homogeneous problem comprising equation
(3.2b) and boundary conditions (3.3b) can only have a solution provided the forcing
terms in (3.2b) are orthogonal to the null space of the problem adjoint to (3.2a)
with (3.3a).

If the operator adjoint to J# (Up, 1'©) is denoted by # " (Up, ) and f and g
are 2m-periodic functions of T with g satisfying boundary conditions (3.3a), then the
adjoint boundary conditions and adjoint operator are defined by imposing the condition

27 h 27 h
/ / fH (Usy, 1) gdyde 2/ / 8 (Up,y, n©)fdydr. (3.4)
0 —h 0 —h

The consequent eigenproblem defines the function v which is the adjoint to ¥© and
is given by the solution of

; ; 0 ; 1 ; ;
H N Up, WO === Ly = {Zg — iaRUB,l} LY" 4 2iaRU, ! =0
T B
(3.5a)
with boundary conditions
Yy'=y =0 ony=x=h (3.5b)

With these definitions, equation (3.2b) subject to the boundary conditions (3.3b) has
a solution if and only if u? is given by

27 h
|| v - 20000
uP =jgRL =" . (3.6)

21 h
/ / v Ly Odydr
0 —h
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By explicitly writing U, in terms of «, and B, the expressions for the sensitivity of
w® to either cos(pwt) or sin( pwt) changes to the basic wall velocity can be obtained,
leading to the further decomposition

I = o1 4 g, (3.7

The precise expressions for u'” and w{'? are rather cumbersome and are thus
omitted, but we shall have need to refer to these coefficients later.

The value of u"? clearly requires the determination of the eigenfunction ¥ and
the adjoint function ' as well as the evaluation of the double integrals in (3.6).
The eigenfunction 1@ and its adjoint ¥7 were found by expanding these 2m-periodic
functions as Fourier series

v, r)=§j () exp(int) and ¥ (y, f)=i¢,j(y)exp(im), (3.8a.b)

and then applying the algorithm specified by (2.11)=(2.15). To obtain ¥ the ¥, in
(2.11)—(2.15) were replaced by the Fourier coefficients y(”. Similarly, with the Fourier
coefficients zﬂ; of the adjoint function V', replacing ¥, in the algorithm (2.11)—(2.15)
and with the matrix M, in (2.11b) replaced by

M, =L " (o) — i) (L + 2u, D), (3.9)

a solution for ¥’ was obtained. In (3.9), D denotes the pseudo-spectral matrix
representing the operator 9/dy.

The time integrals in (3.6) could be performed exactly by exploiting the fact that a
Fourier series in time was available for each term appearing in the definition of "),
All that was needed was the time integration of the constant terms resulting from the
product of two or three Fourier series. For a few cases these time integrations were
checked by using a fast Fourier transform to explicitly determine the numerator and
denominator evaluated on a uniform grid in time and then using the trapezoidal rule to
perform the integrations. Very good agreement between the two methods was obtained
in all cases.

The spatial integrations needed in (3.6) were also tackled by two different
techniques. A Clenshaw—Curtis method (http://people.maths.ox.ac.uk/trefethen/clencurt.m)
was used in all of the results presented. As a check, the output of this integration
routine was monitored by comparing with results produced by a trapezoidal rule
applied after the Chebyshev spatial grid was converted into a uniformly spaced mesh.
The agreement between the two approaches was consistent in all cases. Further
independent checks on selected values of ' are mentioned in §4 below.

3.1. Results of the sensitivity calculations

Theoretical results for the linear stability of the classical Stokes layer and for Stokes
layers in channels have been described by BB02 and BBO06. For the semi-infinite
Stokes layer a critical Reynolds number of approximately 700 was found while,
for the channel, the critical Reynolds number can be reduced to approximately 650
on taking A = 5. Various experimental results suggest a critical Reynolds number
of around 275 for the Reynolds number definition used here (Jensen, Sumer &
Fredsge 1989; Akhavan et al. 1991; Eckmann & Grotberg 1991; Grotberg 1994;
Lodahl, Sumer & Fredsge 1998). With this data as a guide some of the sensitivity
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FIGURE 1. (Colour online) Structure of the disturbance eigenfunctions for a wide channel
h=16 with R=300 and @ =0.38. Shown are the maximum values of |¢?(y)| and the
corresponding adjoint |/ (y)| as functions of n via the line types: , Stokes mode
eigenfunction; - - - -, centre mode eigenfunction; — - —, Stokes mode adjoint function; and
-- -- --, centre mode adjoint function. Here the Stokes mode has u® = —1.7930+ 0.3997i;
for the centre mode p® = —0.0885. The two lines plotted only for p >0 denote the cosine
sensitivity coefficients pu{'” for the Stokes mode (upper — — — line) and the centre mode
(lower ...... )

coefficients calculated near these salient conditions were computed together with
information on the Fourier structure of ¥ and its adjoint 7.

Two sets of results are described here: the Reynolds number is fixed at R = 300
but we examine results for both a relatively narrow channel with 7 =35 and for a
much wider configuration with 4 =16. In the first case the wavenumber was taken to
be a =0.41 whilst in the latter @ = 0.38. These choices were motivated by the fact
that the selected values are very close to the critical wave numbers for the respective
channel widths.

Before describing our solutions it should be emphasised that the calculations
summarised in BB0O6 identified essentially two types of disturbance mode within the
oscillatory flow in a channel. One, which we shall loosely refer to as a Stokes mode,
is concentrated in the oscillatory layers located on the walls. By way of contrast there
is also the possibility of disturbances that appear largest in the middle of the channel:
these are the centre modes. Of course centre modes cannot exist in a semi-infinite
Stokes layer and their absence leads to the Reynolds number dependence of the
Floquet exponents first found by Hall (1978) and confirmed in BB02. The findings
of BB06 suggest that centre modes are always stable whatever the value of R and
become progressively more so as R grows. On the other hand, at comparatively small
R the Stokes mode is much more strongly damped but is the structure that eventually
becomes unstable when R is sufficiently large.

Figures 1 and 2 illustrate the behaviours of maxyII/flﬁo) (»)| and maxylzﬂ,f(y)l for
the calculations with & = 16 and h = 5, respectively. In both cases the forms of
maxy|1/f,§°) (y)| take on a fairly characteristic ‘A’ shaped curve supported on the
frequency range —100 < n < 100; these shapes were first described in BB02. It
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FIGURE 2. (Colour online) Structure of the disturbance eigenfunctions for a narrow
channel &7 =35 with R =300 and a = 0.41. For this case the Stokes mode has u©® =
—1.5770 + 0.4260i and the centre mode u® = —2.8423. Line types as in figure 1 but
here the sensitivity coefficients for the two modes are fairly similar and therefore almost
indistinguishable.

should be noted that whenever the Floquet exponent is purely real, then the above
Fourier representation of the eigenfunction is symmetric about the zero frequency axis.
We remark also that in figure 1 it is the centre mode that is the more weakly damped
whilst the opposite is the case for the narrower channel in figure 2. More details on
the spatial structure of the largest Fourier components for both the Stokes and centre
modes in a wide channel are given in BB06, while the spatiotemporal evolution of
neutrally stable disturbances in the semi-infinite Stokes layer are presented in BBO02.
The Fourier structure of the adjoint functions ¥ is strikingly different to that of
the eigenmodes, taking on an approximate ‘M’ shape. We note that a wider frequency
range is needed to capture the adjoint function accurately but, more importantly, the
adjoint function has its largest Fourier coefficients around the frequency where the
eigenfunction coefficients begin their rapid exponential decay. The combination of
these structures via the integrals defining the sensitivity coefficients in (3.6) leads to
the frequency dependence of |w{""”’| as a function of p shown in these two figures.
The main feature of the sensitivity coefficients seen in these graphs is that they
have a marked peak value close to the frequency of the maximum-amplitude harmonic
in the Fourier series for the adjoint function. We also note that when the Stokes mode
is more stable than the centre mode, the sensitivity coefficients for the Stokes mode
are two to three orders of magnitude greater than those of the centre mode. Although
not shown, the size of the sine sensitivity coefficients, |u!"”’|, follow a similar pattern
to those shown and would be essentially indistinguishable from the cosine sensitivity
coefficients |[u{"”| in these figures. It should be noted that all of the sensitivity
coefficients are complex in general, with a seemingly random sign pattern. However,
what is of most significance is the large magnitude of these coefficients and the
frequency where the maximums occur. We also mention in passing that the maximum
magnitude of the u"” increases with Reynolds number, with |u(""’| ~ O(10%) when
R ~ 700, again with the largest sensitivity coefficients around the maximum Fourier
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coefficients in the adjoint function. Subsequently we demonstrate that finite, but small,
perturbations with frequencies close to these maximums have a dramatic effect on
the stability of the monotonic flow driven by cos wt.

It is well known that the Orr—Sommerfeld operator for steady flows is non-normal
(Trefethen et al. 1993), so it is natural to assume that the time-dependent Orr—
Sommerfeld operator K(Ug;, u”) studied here would also be non-normal. Indeed,
the review by Schmid (2007) presents an analysis of the behaviour of ultimately
decaying transients in oscillatory channel flow exploiting ideas from the theory of
non-normal operators (Trefethen 1997). Thus, it would be tempting to rationalise
the large eigenvalue sensitivity coefficients seen in figures 1 and 2 in terms of
the non-normality of K(Ug,;, u®). A standard explanation for a large change in
the eigenvalue of a perturbed operator is provided in terms of a small value for
the projection of the unperturbed eigenfunction onto its adjoint, as described by
equation (6) in the review by Chomaz (2005). For the problem considered here this
general principle translates to the statement that the denominator in the expression
for £ in (3.6) is small in some sense. However, as the denominator in (3.6) is
independent of the perturbation frequency p it cannot explain the large range of
values exhibited by u"?’ as p varies. Rather, the features displayed by u? must
be due to the structure of the adjoint function v and the interactions occurring in
the numerator of (3.6). Of course, it is the non-normality of K(Ug;, u®) which
allows the properties of the adjoint to be very different from the form of the physical
eigenfunction, as demonstrated in figures 1 and 2, and discussed below.

The larger range of significant energy frequencies in the adjoint function, compared
with the physical eigenfunction, causes the adjoint to be much more localised in time
than the eigenfunction. For the cases examined here, the adjoint was essentially zero
outside of time intervals of width approximately m/2, close to either Tt =0 or t = m.
For values of u; close to zero or very close to 0.5, the adjoint was significantly
different from zero on both of these time intervals, but for other w;, only one of these
time intervals contained large values of the adjoint function. Further, as well as being
localised in time, the adjoint function was highly localised in the direction normal
to the wall, taking significant non-zero values strictly within the Stokes layer on the
wall, say the region —h <y < —h+ 2 near the lower boundary, with a corresponding
region near the upper plate. As shown by figures 1 and 2, the adjoint function is also
highly oscillatory. These three features are all in contrast to the eigenfunction where
significant non-zero values of the streamfunction extended over almost all one period
of the basic oscillation, and over a wall normal extent of four units or more, centred
around the free stream edge of the Stokes layer, as shown in BB02. Again, figures 1
and 2 show that the eigenfunction is not highly oscillatory. The combination of these
features indicates that the integrand of the numerator in (3.6) can differ significantly
from zero in at most two small regions close to the oscillating walls, as demonstrated
in figure 3 for an infinitesimal cosine perturbation with frequency p = 62. Note that
as well as the decay of the adjoint function away from the walls, the perturbation
velocity field U, (y, T) also tends to zero outside the basic flow Stokes layer, and does
so extremely rapidly for the values of p around the maximum in |[u{"”|. The highly
oscillatory nature of the integrand is only hinted at in this figure and attempts to show
the (more than 120) zero contour lines obliterate the size information present in the
plots.

Investigations into the size distribution of the integrand in the numerator of (3.6)
were carried out for all perturbation frequencies used in figures 1 and 2 and over
a range of wavenumbers around those used in these two figures, with the Reynolds
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FIGURE 3. (Colour online) Pseudo-colour plots of the size of the integrand of the
numerator in (3.6) in the t—y plane for a cosine perturbation of frequency p = 62. In
(a) we give the real part of the numerator while in (b) we show the imaginary part. The
flow parameters are R =300, a =0.38 and 2 =16, as used in figure 1. The chosen value
of the frequency p generates the u!” with maximum real part.

number fixed at R = 300. Both the wide (& = 16) and narrow (h = 5) channel
geometries were considered as well as both sine and cosine perturbations. The
numerical values of the integrand in the numerator of (3.6) shown in figure 3
are typical of all of the results obtained. The regions where the integrand differs
substantially from zero were determined by the structure of the adjoint function,
as discussed above. With the narrow channel the range of values of the real
and imaginary parts of the integrand was [—250, 250] for all frequencies p; the
range [—400, 400] also encompassed all frequencies for the wide channel. This
last observation seems to contradict the very wide range of sensitivity coefficients
calculated from this data. However, what could be observed as the perturbation
frequency varied was a change in the orientation of the zero contour lines. Away
from the values of p around the maximum values of |u"”| the zero contour lines in
figure 3 were almost normal to the wall leading to much cancellation in the prescribed
time integrations. For those p generating the maximum values of |u""|, the zero
contour lines became almost parallel to the wall, thereby creating a stationary phase
effect in the time integrations; this effect was more marked in the two time intervals
containing the essentially non-zero values of the integrand. These mathematical
observations still leave open the question of a physical mechanism for the calculated
large sensitivity coefficients.

The examination of the interaction of a global eigenfunction and its adjoint in
the context of the structural sensitivity to base-flow modifications appears to have
developed from a series of studies of flow past circular cylinders (Giannetti &
Luchini 2007; Luchini, Giannetti & Pralits 2008; Pralits, Brandt & Giannetti 2010).
By analysing the spatial structure of the interaction of the linear stability eigenfunction
and its adjoint for steady flow past a cylinder and interpreting the results with the
guidance of the WKB theory of Huerre & Monkewitz (1990) a so-called ‘wavemaker’
region in the steady flow could be identified (Giannetti & Luchini 2007). For
the unsteady flow considered here the analogous problem is the determination of
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any spatial region and time interval that could be similarly interpreted as being a
‘wavemaker’ for instabilities in the underlying Stokes layer flow. The spatiotemporal
regions identified as contributing most to the sensitivity coefficients ©”) in figure 3
above would be the natural candidates for these ‘wavemaker’ regions, however here
there is no firm WKB, or quasi-steady, theory to rely upon. As an initial experiment,
only the time intervals 0 <7 < m/2 and ©m <7 <37w/2 were included when evaluating
the numerator in (3.6). These time intervals correspond to the speed of the wall
decreasing, the time intervals which the folklore of unsteady stability deems the
source of the global instability. When these truncated integrals were calculated over
the range of perturbation frequencies of figures 1 and 2 the sensitivity coefficients
obtained differed from the correct u'” by at best 20 % and more generally by more
than 30 %. This might seem like reasonable agreement given that half the period
of the oscillation has been completely ignored. However, shifting the time intervals
to —n/4 <t < 7w/4 and 31/4 < v < 5Sw/4 and repeating the integrals produced
values for the sensitivity coefficients that were within 0.5% of the true value for
the p generating the larger |u"”|, with the approximation having a better than 5%
accuracy for 60 < p < 80. These results suggest that the basic Stokes layer flow is
highly susceptible to disturbances localised in time around the instants of maximum
speed, confined to a spatial region very close to the oscillating walls and having a
frequency 60 to 80 times the fundamental frequency.

Finally two small checks on the sensitivity coefficients are briefly mentioned.
First, the sensitivity coefficient for sin T perturbations must be zero, as to leading
order in § the only effect of the extra § sin 7 term is to produce a wall velocity of
cos(t — 8). This change in the origin of time can have no effect on the value of
u® (see BB02, BB06) leading to a zero sensitivity coefficient in this case. In all
our numerical calculations of " via (3.6) the value of (""" was always less than
107°. Given that the integrands for " contain O(1) terms this result was taken
to be sufficiently close to zero. Further evidence of the internal consistency of the
results of this section is obtained by exploiting the fact that u{'"" can be estimated
by independent calculations. The effect of a § cos t change in the basic wall velocity
can be re-interpreted as a change in the Reynolds number in the eigenvalue problem
(3.2a) and (3.3a) and thus we have the result that RIu®/0R = p{'V. By solving
(3.2a) and (3.3a) at nearby values of R and using a finite difference to approximate
the partial derivative of ©® we were able to get very good agreement with the cosine
sensitivity coefficient evaluated via (3.6) and (3.7).

4. Finite-sized modulations of the basic Stokes layer flow

Attention is now focused on the linear stability of the family of basic flows
given by (2.2a) where § is allowed to take finite values generally up to 0.01 and
occasionally as large as 0.03. (This latter value is obtained by converting the 4.2 %
noise level based on the r.m.s. fluid velocity, reported in Eckmann & Grotberg (1991),
to a perturbation amplitude scaled on the maximum amplitude of the fundamental
frequency.) The linear stability problem to be solved is (2.5) where the basic flow
contains just two frequencies. The velocity profile (2.2a) and the value of § were
selected as a simple model of experimentally reported basic flows in studies on the
stability of Stokes layers or of oscillatory flow in pipes. The reports of Akhavan et al.
(1991) and Eckmann & Grotberg (1991) show velocity traces when the basic flow is
laminar and apparently stable and they comment on the agreement of the experimental
results with the theoretical, single-frequency velocity profile. The presence of some


https://doi.org/10.1017/jfm.2014.710

https://doi.org/10.1017/jfm.2014.710 Published online by Cambridge University Press

208 C. Thomas, P. J. Blennerhassett, A. P. Bassom and C. Davies

noise in their data is also acknowledged and it is this noise that the additional
frequency in the basic flow (2.2a) attempts to mimic.

The combined Fourier series and pseudo-spectral methods outlined in §2.1 were
used, but before presenting the main results from the solution of (2.5) with (2.2a) as
the basic flow, we describe some internal consistency checks that were carried out. At
a selection of values of R, a, & and p the problem (2.5) was solved with § set to zero,
and then resolved with § ~ O0(107°) to O(10™*), as needed, and (e,, B,) = (1, 0) or
(0, 1). The resulting change in u divided by the value of § provides a finite difference
approximation to the cosine and sine sensitivity coefficients p!'"” and pu"” of the
previous section. In all test cases, provided 6 was sufficiently small, better than three
significant figure agreement between the previously calculated w'” and these new
approximations was obtained. This consistency check provided a level of confidence
in the solution algorithm developed to determine the stability of this more complicated
basic flow.

Owing to the large parameter space available in this problem we can only display
a relatively small set of results that together convey the main features discovered.
Thus, most of our initial results will be for a Reynolds number R =300 and a ‘noise
level” of 1% of the amplitude of the fundamental frequency, i.e. § = 0.01, both
choices being motivated by the aforementioned experimental considerations. (Note
that this Reynolds number is less than half the previously predicted critical Reynolds
number for linear instability and is within the range of experimentally reported
transition Reynolds numbers.) Again only two values for the channel half width will
be considered: & = 16 will be used as a model of the classical Stokes layer in a
semi-infinite fluid while #=135 is chosen as it provides the minimum critical Reynolds
number for all oscillatory channel flows. One further restriction is that mostly even
disturbance modes are considered, as these constitute the more unstable of the two
possible disturbances in a channel. Most of the wave numbers used will be near
the relevant critical wave number for the associated monotonic basic flow and the
majority of the results presented below will be for a cosine form of the ‘noise’;
where the results for the sine form are available they will be mentioned and effects
of the phase of the perturbation on the eigenvalues will only be briefly considered.
And lastly, where neutral stability curves for the noisy basic flow are given, attention
will be focused on a small set of results that indicate the effect of the perturbation
frequency on the value of the critical Reynolds number.

Figure 4 shows the effect of increasing the size of § on the value of w, for both
Stokes and centre modes in channels of width 5 and 16 at R =300; wave numbers and
noise frequency are given in the caption. In the narrower channel the Stokes mode is
always more unstable than the centre mode and it is seen that with a noise level of
just 1% the previously stable flow is now unstable. This at a Reynolds number less
than half the theoretical critical for the monotonic basic flow. We also see that a 1%
noise level has not been sufficient to drive the wide channel flow to instability, but
nevertheless the decay rate of the Stokes mode has more than halved, while the centre
mode decay rate has barely changed. This last result is consistent with the previous
calculations which predicted that in this case the Stokes mode is two to three orders
of magnitude more sensitive to noise than the centre mode.

The change in structure of the Fourier series representing the eigenfunction ¥ (y, 7)
as the noise level increases is shown in figure 5, where max,|y,(y)| is given as a
function of the harmonic n. The overall structure is typical of all results obtained and
it is noted that the lower three curves, as judged by the left or right extremes of each
curve, are slightly asymmetrical about n =0, as for these noise levels @ is complex.
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FIGURE 4. (Colour online) Real part of the Floquet exponent p for Stokes mode and
centre mode at R=300 as functions of increasing noise level §. The solid and dashed lines,
marked with @ and O, show the results for the Stokes mode and centre mode respectively
for the narrow channel 2=15 with wave number a =0.41 and noise frequency p=75. The
short dashed and chain lines, marked with B and O, are the wide channel counterparts for
h=16 with a=0.38 and p =65.
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FIGURE 5. (Colour online) Maximum amplitudes of the Fourier components ,(y) (see
(2.9)) of the Stokes mode as functions of the harmonic number at varying noise levels
for the narrow channel 4 =5, wave number a = 0.41, R = 300 and a noise frequency
p ="7T5. The curves correspond to different levels of superimposed noise § indicated via
markers on each curve: 0, > 86=0: 0, >8=10"" @, ->8=10; A, >86=10"% Vv,
—-8=10"3 and @, - § =102
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FIGURE 6. (Colour online) Real part of u for the three most unstable modes as function
of noise frequency p for h=16, a=0.41, § =0.01 and R=300. The dotted and dashed
lines correspond to the first two centre mode disturbances while the solid lines indicate the
growth rate of the Stokes mode. Results for both cosine and sine noise forms are shown,
with differences only discernible for 65 < p < 70 in the Stokes mode results. The solid
line marked with @ symbols denotes a cosine perturbation while the solid line marked
with x indicates a sine perturbation.

Conversely the upper three curves correspond to purely real values of © and hence are
symmetrical about n=0. It is slightly surprising that a value of § as small as 1070 is
enough to induce a change in the decay rate of the harmonics seen at n~ £100. This
modification then propagates upwards with increasing § until it reaches the ‘knee’,
whose position is a function of aR in the noise-free case. From there, increasing 38
further introduces larger-amplitude variations in the size of the ,, around the imposed
noise frequency (here at p =75) while simultaneously slowing the overall decay of the
Fourier coefficients. Despite this decreased rate of decay of the Fourier coefficients
when § =0.01, we can be confident of the overall convergence of the Fourier series.
Our calculations have been repeated with up to as many as £500 harmonics in the
Fourier series and the inclusion of many more harmonics has a negligible effect on
the predicted value of p. The decay of the harmonics ,(y) at § = 0.01 shown in
figure 5 is continued in all calculations where the truncation of the Fourier series (2.9)
contained more terms.

At a fixed level of § = 0.01, the effect of the frequency p of the noise on the
real part of u for the three most unstable modes at R =300, /=16 and a =0.41 is
shown in figure 6. For frequencies below 50 and above 85 the eigenvalues obtained
are essentially those that would be found in the noise free, purely oscillatory flow,
with the Stokes mode not visible within the range of w, shown in the figure. Once
p is above approximately 60 the Stokes mode begins to be substantially affected
by the noise in the basic flow and u, starts to increase. In so doing, the Stokes
mode becomes more unstable than both centre modes for 71 < p <76, while as seen
previously, the centre mode eigenvalues remain almost completely unaltered. Again,
the Stokes mode does not quite reach the right-hand half of the complex plane.
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FIGURE 7. (Colour online) Neutral curves for a wide channel 4= 16 and noise frequencies
of p=169 ( ) and p =76 (— - —) with § = 0.01. The points marked with a +
indicate critical conditions when the perturbation has frequency p as given on the graph.
The dotted line connects critical conditions, again marked by a + sign, for frequencies
p==61,63,67,79, 85,91, 95, 105 when reading from left to right. The perturbation was
0.01cos(pt) and only results for even modes are plotted explicitly. As the channel is wide,
even and odd mode results are graphically indistinguishable.

The results in this figure are consistent with those of figure 1 where the sensitivity
coefficients for the centre modes were all much less than one while the Stokes mode
sensitivity coefficients were O(10*) in a narrow band. Thus, we see in figure 6 that
the centre mode growth rates are almost completely independent of the frequency of
the perturbation while the Stokes mode growth rates vary significantly with the value
of p. (The frequency for the maximum responses do not quite align as the wave
numbers differ between the two graphs.) Further, figure 6 contains the behaviour of
the growth rates for both a sine and cosine perturbation: for the least-damped centre
mode there is no difference visible on the graph with only small differences seen in
the second centre mode. For the Stokes mode the effect of a phase shift of 7/2 in the
perturbation is clearly seen when the mode is quite stable, but around the maximum
growth rate, the phase of the perturbation (with respect to the cos T component of the
basic flow) is essentially immaterial.

A more global view of the effect of noise on the stability of the underlying
oscillatory flow is provided by examining suitable neutral stability curves in the
(a, R) plane. Four examples of neutral stability curves for the noisy flow are shown
in figures 7 and 8. Three curves are for the most unstable even mode disturbances
and, for completeness, one neutral curve for an odd mode disturbance is explicitly
given in figure 8. As usual, the region of the (a, R) plane below the neutral curve
is the parameter domain in which the flow is stable. Despite the slightly unusual
shape of these neutral curves, the remarkable feature common to all of them is the
surprisingly small value of the critical Reynolds number, denoted by R., required for
instability. For the wide channel 4 = 16, the model of the semi-infinite Stokes layer,
we see a critical Reynolds number of approximately 305 for noise frequencies of
both 69 and 76. This is a reduction of critical Reynolds number of approximately
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FIGURE 8. (Colour online) Neutral curves for 7 =5, a noise frequency p = 75 with
8 = 0.01 for the even disturbance mode ( ) and odd disturbance mode (----). The
noise-free neutral curve for even disturbance modes is denoted by (— - —). The + signs
denote critical conditions for the even disturbance mode when the noise is § cos(75t) with
the values of § given on the graph.

s 0.0001 0.001 0.002 0.005 0.01 0.03
a, 0.38 039 028 033 038 042
R. 705 527 475 345 304 270

TABLE 1. Critical conditions (a., R.) as a function of § at fixed frequency p =69 for a
wide channel i = 16.

400 when compared with the theoretical value of R. for the single-frequency flow
(BB02, BB06). Further, we point out that while the neutral curves drawn in figure 7
are explicitly for even mode disturbances, the neutral curves for the odd modes are
graphically the same as those shown. As was demonstrated in BB06, when & > 14
neutral curves for the even and odd disturbance modes both tend to the neutral curve
for the classical Stokes layer in a semi-infinite domain. That result must clearly
continue to hold for the perturbed classical Stokes layer, as the concept of even and
odd disturbance modes is not available.

Also shown in figure 7 are the critical conditions (marked by + signs) obtained for
a range of other frequencies at a fixed noise level of 1%. At this noise level, with
p < 35 the value of R, remained at its noise-free value of approximately 708, while
for 67 L p <91 the value of R, remains fairly constant at approximately 305. It is also
seen that there is a large jump in the critical wavenumber between the frequencies 59
and 61. A similar jump in the value of the critical wavenumber is seen between the
values § =0.001 and § =0.002 in table 1 where the effect of the noise level at a fixed
frequency of 69 is shown. However, the main feature of the results in this table is the
continuous decrease of the critical Reynolds number with increasing amplitude of the
noise level. The value of § =0.03 corresponds to the noise level reported in Eckmann
& Grotberg (1991). At this noise level the effect of varying the frequency follows the
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pattern seen previously: with p =49 we find critical conditions (0.42, 370) while with
p="T75 we get (0.46, 275).

A similar dramatic reduction in the value of R, is obtained for the stability of the
narrow channel oscillatory flow, as seen in figure 8. For the even disturbance mode
there is a decrease of approximately 375 in the critical Reynolds number. For the
odd disturbance mode the minimum Reynolds numbers for the noisy and noise-free
cases are approximately 486 and 1186, respectively, so again perturbing the basic
Stokes layer flow has a large effect on the properties of these odd disturbance modes.
However, in all of the cases examined here it was always the even disturbance mode
that determined the critical conditions for stability of the perturbed flow. Note that the
two branches of the odd mode neutral curve marked with a @ were still distinct at
R =1600.

Also shown in figure 8 is the variation of critical conditions with increasing
amplitude of a perturbation with p = 75. The progress from the noise-free neutral
curve to the noise level of 0.01 neutral curve is indicated by the + signs, with
increasing values of § leading to lower critical Reynolds numbers. Again, a jump in
the critical wavenumber is seen, here between 6§ =0.0017 and § =0.0018. The jumps
in the value of a. seen here and for & = 16 are explained in terms of the structure
of u.(a, R). At fixed R, there is no a priori reason for there to be only one local
maximum in 4, as a function of a. Indeed, for the odd mode at R =600 in figure 8
there are at least three local maxima in w, as a function of a. The origin of the
jumps in the value of a. as various parameters are changed is then the swapping of
critical conditions from a local maximum in u, at a larger a to a local maximum in
W, at smaller a, as seen in both figures 7 and 8.

The neutral curves shown in figures 7 and 8 have several interesting features.
Similar shaped neutral curves have previously been reported by Blennerhassett &
Bassom (2007) in the context of centripetal instabilities in Stokes layers. While these
structures may appear interesting, from a practical point of view it is just the critical
conditions that have any importance. A further reason for focusing less on the precise
nature of the neutral curves is provided by examining the effect of the phase of the
perturbation on the eigenvalues of the problem. Clearly the wall velocity (2.1) could
be rewritten as U, = U,(cos wt + § cos(pwt + x,)) where tan x, = f,/a, and x, is
the phase of the perturbation with respect to the fundamental frequency. For the
case of a channel with 2 = 16 and for a range of wavenumbers close to critical
conditions for p =69 it was found that the value of w, oscillated with amplitude at
most 0.008 as x, varied over [0, 2r]. Along this part of the neutral curve du,/dR
was always larger than 0.004, indicating that the neutral curve determined with just
a 4§ cos(697) noise component is at most two above the neutral curve that would be
obtained if minimisation of R with respect to phase x, were also undertaken at each
wavenumber. Similar effects of the phase x, were seen around critical conditions for
the other neutral curves presented in figures 7 and 8, so the simplest approach is to
associate an error bar of —2 to each of the neutral curves shown for the perturbed
flows. This small effect of the phase of the perturbation is consistent with the results
shown in figure 6, where results for only one phase were shown.

Further results for the narrow channel, complementing those shown in figure 8, are
given in table 2. Here the dependence of the critical conditions on the frequency of
the noise component is seen to follow the same pattern displayed graphically in the
case of a wide channel. For lower-frequency perturbations there is little effect on the
critical Reynolds number, but as the frequency increases the value of R. decreases to
a minimum at p around 75. Further increases in frequency lead to a slowly increasing
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p 35 45 55 65 75 85 95 105
a. 041 041 045 035 045 049 052 0.54
R. 645 493 390 330 274 285 301 317

TABLE 2. Critical conditions (a., R.) as a function of frequency p at fixed noise level
8 =0.01 for a narrow channel h=35.

value for R.. Again, there is a distinct jump in the value of a. as a different part of
the (a, R) provides the critical instability as the frequency varies between p =155 and
p = 65.

Finally, we claim that the results presented here are robust in the sense that with
changes in the structure of the noise, the prediction of a significant decrease in the
critical Reynolds number remains intact. An illustration in support of this claim is
described below. The numerical algorithm developed to investigate the stability of a
perturbed Stokes layer flow was capable of handling a wall motion given by

2
U, =U, (cos wt+6 Z oy cos((p-i—k)a)t)) . 4.1)

k=-2

For simplicity, calculations were carried with o > 0 so the noise amplitude could be
easily set at 0.01, as previously, by taking Zi}z o, = 0.01. When performing these
checks the summation terms in (2.12) were obviously taken over the set k € {p — 2,
p—1,p,p+1,p+2}) With o_; =a; =0.002, oy = 0.006 and all other ¢ set to
zero a value of w, = 0.086 was found with p =75, h=35, a=0.41 and R = 300.
For o, = oy = 0.002, oy = 0.006 and all other o set to zero, the same parameter
values lead to u, =0.303. When there is only one frequency of p =75 in the noise
we have p, =0.330, again at the same parameter values and all calculations being for
the even disturbance mode. Similar results were found in the small number of other
cases examined.

The dramatic decrease in critical Reynolds number achieved with just a 1%
noise level, presented above, was also found in our calculations for the classical
semi-infinite Stokes layer, when using our DNS methods described in §2.2. Figure 9
shows the time evolution of the magnitude of the wall vorticity, [£(0, t)|, for an
impulsively generated disturbance at R = 310 and wave number a = 0.4 with noise
frequency p = 76. (These conditions have been selected to be in a region where
results of the Floquet calculations suggest that the perturbed Stokes layer is unstable
while the unperturbed flow is stable.) The noise amplitude was set with § = 0.01,
as in the results shown previously, for the solid line curve whilst the dashed line
denotes the decaying disturbance in the noise-free case. For the noisy base flow a
Floquet exponent p ~0.07813 — 0.4997i was obtained via Fourier series methods for
a channel flow with 2 = 16. A direct comparison of the results from the different
solution techniques is provided by the straight line with slope 0.0782 in figure 9.
Clearly the growth rate predicted via the Floquet solution matches the exponential
growth of the perturbation seen the in DNS for the noisy Stokes layer. Further,
although this figure shows only the first three cycles of the basic flow, our results
extend over at least 12 cycles with the same excellent agreement between the two
solution methods.

A side effect of the above agreement is the further confirmation that sufficient
harmonics were retained in the Floquet technique. The time step used in the DNS
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FIGURE 9. (Colour online) Time histories of the magnitude of the wall vorticity, |¢ (0, T)|,
for the flat plate base flow (2.17) at R =310 and with a =0.4. The solid line ( ) is
the evolution for the noisy Stokes layer with ;6 =0 and o7, =1. The dashed line (- — —)
denotes the evolution for the noise-free basic flow with o, and B, set to zero. The chain
line (— - —) corresponds to the growth rate predicted via Floquet theory for a channel
with h=16.

results was At ~ 3.2 x 10™* so that frequencies up to approximately 9000 were
detectable in the simulation. Given the close agreement of this DNS result and
the Floquet result, based on frequencies up to 240, it is clear that any solution
components at frequencies higher than 240 have essentially no effect on the growth
of the disturbance.

We have described the changes in the critical Reynolds numbers found here as
‘dramatic’. It may be argued that as the underlying linear operator is non-normal
that such magnitude changes are to be expected. However, only rather small changes
in the eigenspectrum were observed when the linear stability operator K(Ug, u@)
studied here has been perturbed by three-dimensional effects (Thomas ef al. 2012) or
by a mean flow (Thomas et al. 2011). Note that this latter result is now consistent
with the findings here that perturbation frequencies below a certain threshold have
essentially no effect on the stability properties of the basic monotonic flow. The results
of the sensitivity calculations, § 3.1, suggest a partial explanation for the frequency
dependence seen in the results of §4, where finite-amplitude noise was allowed. A
mechanism similar to the pseudo-resonance described in Alizard, Cherubini & Robinet
(2009) could also be invoked. The process of frequency selection described by Alizard
et al. (2009) appears to rely on the availability of a large number of weakly damped
eigenmodes and a rather badly behaved pseudo-spectrum for the underlying stability
problem. Neither of these two ingredients is present in the matrix A approximating
the operator K(Ug,, ©@) controlling the flow stability in the present work. Defining
the pseudo-spectrum in the standard manner as A, = {0 € C: ||[(cl — A)7!|| > &'} it
was found via EigTool, (Wright 2002) that the imaginary axis of the complex o
plane corresponds to the pseudo-spectral contour ¢ =~ 0.0025 for the parameters used
in figure 2 and to the contour € ~0.007 for the parameters used in figure 1. This is in
sharp contrast to the values of & ~ O(107%) seen in Alizard et al. (2009) that would
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allow perturbations to the operator to move eigenvalues into the unstable region of
the complex plane. Rather the pseudo-spectrum associated with the monotonic Stokes
layer at the low Reynolds numbers used in this study is consistent with the DNS
results shown in figure 9. Here non-normality of K(Up,;, u®) allows a transient
growth of an initial disturbance, but without the presence of the perturbation to the
monotonic Stokes layer, the induced disturbance eventually decays.

While only a limited set of neutral curves has been shown here, the general
principle is now clear: noise of a suitable frequency and amplitude can have a
dramatic effect on the linear stability of supposedly single-frequency oscillatory flows.
We can report that increasing the noise amplitude, say up to 6 %, continues to reduce
the critical Reynolds number. Further, within the range we have considered, increasing
the noise level tends to widen the range of frequencies that strongly affect the Stokes
mode instability. Combining all of these theoretical results suggests that different
experimental apparatus, with various noise level properties, will produce a spectrum
of values for experimentally determined transition Reynolds numbers.

5. Closing remarks

Here we have made a study of the stability properties of a family of oscillatory
planar flows using both Floquet-theory-based methods and DNS. Our results predict
a dramatic reduction in the critical conditions for linear instability for the case of an
essentially monotonic oscillatory flow subject to a small amount of high-frequency
‘noise’. This brings theoretical predictions of the Reynolds number for transition
to turbulent flow much more in line with the range observed in various physical
experiments. Further, the dependence of our predicted critical conditions on the
properties of the noise component suggest a pathway for explaining the wide
variation in transition Reynolds numbers seen in the experimental literature. It
should be remarked that our results here are not just random observations, but
rather have a firm theoretical basis in the detailed underlying structure of the adjoint
and eigenfunctions of the Floquet disturbances in the noise-free case. Nevertheless
while this structure can be used to explain mathematically the importance of a small
element of high-frequency noise we can offer no obvious physical reasoning as to
how this could have been anticipated.

Various attempts have been made to rationalise the wide discrepancy between the
theoretical and experimentally determined values of the transition Reynolds number
either by appealing to nonlinearity or a premature tripping of the flow by wall
roughness. Scenarios similar to the bypass mechanism seen in steady boundary
layer flow transition have also been suggested. Without wishing to downplay those
possibilities, what is added here is convincing proof that even a small element of
noise is more than enough to markedly alter the transition characteristics of the flow.
Indeed, our results show that it might only be when the noise is reduced to O(0.01 %)
that its effect can be ignored, at least for the Stokes layer. Even the most carefully
conducted experiments claim that the inherent noise component can only be reduced
to a value more than an order of magnitude greater.

Of course the study here is restricted to the rather idealised flat Stokes layer but
it is highly likely that similar results would transfer across to other time-periodic
boundary layer flows. If this is indeed the case, the implication is that practical studies
of the stability properties of such flows would be extremely difficult to model in the
laboratory.
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