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Modelling nonlinear thermoacoustic instability
in an electrically heated Rijke tube
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An analysis of thermoacoustic instability is performed for a horizontal Rijke tube with
an electrical resistance heater as the heat source. The governing equations for this fluid
flow become stiff and are difficult to solve by the computational fluid dynamics (CFD)
technique, as the Mach number of the steady flow and the thickness of the heat source
(compared to the acoustic wavelength) are small. Therefore, an asymptotic analysis is
performed in the limit of small Mach number and compact heat source to eliminate
the above stiffness problem. The unknown variables are expanded in powers of Mach
number. Two systems of governing equations are obtained: one for the acoustic field
and the other for the unsteady flow field in the hydrodynamic zone around the heater.
In this analysis, the coupling between the acoustic field and the unsteady heat release
rate from the heater appears from the asymptotic analysis. Furthermore, a non-trivial
additional term, referred to as the global-acceleration term, appears in the momentum
equation of the hydrodynamic zone, which has serious consequences for the stability
of the system. This term can be interpreted as a pressure gradient applied from the
acoustic onto the hydrodynamic zone. The asymptotic stability of the system with the
variation of system parameters is presented using the bifurcation diagram. Numerical
simulations are performed using the Galerkin technique for the acoustic zone and
CFD techniques for the hydrodynamic zone. The results confirm the importance
of the global-acceleration term. Bifurcation diagrams obtained from the simulations
with and without the above term are different. Acoustic streaming is shown to occur
during the limit cycle and its effect on the unsteady heat release rate is discussed.

Key words: aeroacoustics

1. Introduction
Thermoacoustic instability is a challenging problem in solid and liquid rockets,

ramjets, aircraft and industrial gas turbines etc. (McManus, Poinsot & Candel 1993).
During instability, acoustic oscillations are sustained by the unsteady heat release rate
from the heat source (flame) in the combustion chamber, which can cause excessive
turbine blade vibration in gas turbines and damage them eventually. Thermoacoustic
instability occurs when the acoustic pressure oscillations in the combustion chamber
are amplified by the positive feedback of the unsteady heat release rate. A fundamental
understanding of the thermoacoustic interaction can be obtained by analysing the
thermoacoustic instability in a model problem in a Rijke tube. A Rijke tube is a
simple thermoacoustic device, but has much of the essential physics of thermoacoustic

† Email address for correspondence: sathesh.ae@gmail.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.176


512 S. Mariappan and R. I. Sujith

Acoustic zone

ρ~u
0    u

~u
0

T~u
0    p

–

ρ~d
0    u

~d
0

T~d
0    p

–

x~f

Acoustic zone

Hydrodynamic zone

Electrical
heater

la

lw

lc

View A

View A

Figure 1. Configuration of the Rijke tube showing the acoustic and hydrodynamic zones.

interaction. A Rijke tube is an acoustic resonator tube, with a heat source (in the
present case, an electrical heater). The heat source is positioned at some axial location
as shown by the configuration of a horizontal Rijke tube in figure 1.

Thermoacoustic instability of Rijke tubes has been studied for a long time. Rijke
tube oscillations were first observed by Rijke (1859). He used a vertical tube with
a coiled electrical heating filament as the heat source. Self-sustained thermoacoustic
oscillations were observed when the heater was positioned at some axial location of
the tube and beyond some threshold power level. Rijke gave an explanation based on
the pressure pulse generated due to volumetric expansion of the fluid near the heater
zone. However, this argument did not explain the fact that instabilities were observed
only for some selected range of heater locations. Carvalho et al. (1989) employed a
linear model for the unsteady heat release rate to calculate the stability of the modes.
They applied Rayleigh criteria (Rayleigh 1878) and predicted the axial locations of
the heater for which the thermoacoustic oscillations are unstable. However, the above
model (Carvalho et al. 1989) for the heat source is valid only for small acoustic
velocity fluctuations. The stability thus predicted is the linear stability of the system.

For a linearly unstable system, the oscillations grow exponentially, as predicted by
the linear stability theory for small amplitudes of oscillations, and eventually reach
a limit cycle due to nonlinearities in the heat release rate response of the heater.
Nonlinearities in the acoustic field do not contribute to the dynamical evolution of
the system as the Mach number (M ∼ 10−3) of the steady-state flow is very low (Culick
2006). Linear stability theory was further applied to analyse thermoacoustic instability
in configurations with multiple heat sources and complex geometries (Bittanti et al.
2002). Recently, Heckl & Howe (2007) used Green’s function technique to determine
the occurrence of thermoacoustic oscillations in a ducted premixed flame.

Estimation of the amplitude of acoustic oscillations during limit cycle is important
from the design point of view for gas turbines (Zinn & Lieuwen 2006). In order to
achieve this, the nonlinearity in the heat release rate response of the heater has to be
accounted for in the model. The nonlinear response of the heater can be determined
by solving the governing equations for the fluid flow over the electrical heater, using
the computational fluid dynamics (CFD) technique. On the other hand, for low-
dimensional modelling, the nonlinear response of the heat source can be obtained
from a correlation of the heat transfer between the heater and the local flow velocity
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(Heckl 1990). The response of the heat source thus obtained can be considered as
a source of acoustic energy, thus coupling the chamber acoustic field with the heat
source (Poinsot & Veynante 2005).

A CFD-based analysis was also used to study Rijke tube oscillations. The earliest
one was performed by Kwon & Lee (1985). They determined the stability curve
for various mean flow rates. Hantschk & Vortmeyer (1999) numerically investigated
thermoacoustic oscillations by considering the heat source to be a heated flat plate.
They obtained the amplitude and frequency of the thermoacoustic oscillations during
the limit cycle. Kopitz & Polifke (2008) used the Nyquist criterion along with CFD
to determine the stability of the system. The Nyquist criterion has the advantage
of being applicable to complex geometries and non-compact heat sources. Recently,
Moeck et al. (2009) have numerically investigated thermoacoustic instabilities with
the heating source being a flat flame and compared the numerical results with those
of experiments.

This extensive analytical and numerical analysis for thermoacoustic instability of a
Rijke tube are supplemented by experiments. Matveev & Culick (2003b) and Song
et al. (2006) performed experiments in a horizontal Rijke tube with a mesh-type
electrical heating element. The acoustic pressure oscillations were monitored and
limit-cycle amplitudes were obtained. For low values of the heater power, the system
was stable. As the heater power was increased, the system became linearly unstable
and eventually reached a limit cycle.

All the investigations in the analysis of thermoacoustic instability in a Rijke tube
described above, except Moeck et al. (2009), have used either a response function or
solved the Navier–Stokes and energy equations for fluid flow by CFD to obtain the
dynamics of the heat source. They assumed a compact heat source (the size of the heat
source along the length of the tube is small compared to the acoustic wavelength)
and coupled the unsteady heat release rate to the acoustic energy equation as a
source. In the above method, the coupling between the chamber acoustic field and the
unsteady heat release rate was not obtained with mathematical rigour. Furthermore,
there were two systems of equations involved in the problem; one for the acoustic
length scale and the other for the length scale of the heat source. They were written
and used without mathematical justification. In a rigorous analysis, the above two
systems of equations have to be derived from the conservation equations of fluid flow
by performing the asymptotic analysis.

Wu et al. (2003) have pioneered the application of asymptotic expansions to
analyse combustion instabilities. They analysed the amplification of sound waves,
when a flame propagates in a gravity field. Separate systems of equations for acoustic
field and flame zones were derived, by performing the asymptotic analysis on the
conservation equations. They have performed linear-stability analysis for the acoustic–
flame coupling, followed by a weakly nonlinear theory for the Darrieus–Landau
mode of instability of the flame and the acoustic field. The paper explained the
experimental observation of the transition from curved to flat flame during instability.
Moeck et al. (2007) have also performed the asymptotic analysis to investigate
thermoacoustic instability in a Rijke tube with flame as the heat source. They
obtained with mathematical rigour the correct systems of equations and the coupling
between the acoustic field and the heat source. The presence of an additional global-
acceleration term in the momentum equation of the hydrodynamic zone was also
observed. Furthermore, they concluded that since one-dimensional (1-D) equations
are used in the hydrodynamic zone for their analysis, the above term vanishes, leaving
the conventional momentum equation intact in the hydrodynamic zone. The unsteady
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heat release rate from the flame may be due to the equivalence ratio fluctuations at
the inlet of the hydrodynamic zone, which in turn may be caused by the acoustic
velocity at the location of the flame (Moeck et al. 2007). Recently, Wu & Moin (2010)
investigated the generation of acoustic waves from premixed flame due to free-stream
enthalpy fluctuations, using asymptotic analysis. A vigorous subharmonic parametric
instability was observed at moderate levels of enthalpy fluctuations.

In the present paper, an investigation of the thermoacoustic instability in an
electrically heated Rijke tube is performed starting from the governing equations of
fluid flow. An asymptotic analysis (Zeytounian 2002; Ting, Klein & Knio 2007) is then
performed in the limit of a compact heat source and zero Mach number of the steady
flow to obtain two systems of equations: one governing the acoustic field and the other
governing the unsteady flow and heat transfer near the heat source. The separation of
equations for the acoustic field and heater (hydrodynamic zone, see figure 1) occurs.
The coupling between the above two systems of equations is obtained. Also, the
additional global-acceleration term, as obtained by Moeck et al. (2007, 2009), appears
in the momentum equation for the hydrodynamic zone. It is also found in the present
investigation that the presence of global-acceleration term has serious consequences
for the bifurcation diagram. The nonlinear evolution equations obtained from the
asymptotic analysis in both acoustic and hydrodynamic zones are solved simultan-
eously. The limit-cycle amplitudes are obtained, which are required to estimate the
tolerance limit of the realistic combustors (Zinn & Lieuwen 2006) during instability.

2. Governing equations
The Rijke tube configuration considered here has a length la with the heater

positioned at an axial location x̃f (figure 1). A mean flow is maintained in the tube
at a desired flow rate using a blower. The electrical resistance heater, which acts as a
heat source, is made up of a thin wire of radius lc strung around the heater frame.
The effective length of the wire filament, which participates in the heat transfer to the
fluid flow, is lw . The typical length of the duct (la) is around 1 m and the dimension
of the heater along the axial direction of the tube (thickness, lc) is around 1 mm.
The thickness of the heater is very small compared to the length scale of the acoustic
field. Hence, the heater can be assumed to be compact compared to the acoustic field
in the tube. The zone around the heat source is termed as the hydrodynamic zone.
Acoustic and hydrodynamic zones are schematically shown in figure 1.

The length of the hydrodynamic zone in the axial direction is of the order of the
thickness of the heater. Hence the hydrodynamic zone can also be assumed to be
compact compared to the acoustic field. The heater heats the flow and creates a
temperature rise across the heater. Since the heater is compact, piecewise constant
steady flow properties can be assumed on either side of the heater (Kaufmann,
Nicoud & Poinsot 2002). The Mach number of the flow is O(10−3), which leads to a
negligible steady-state pressure loss. Hence the steady-state pressure is assumed to be
constant along the duct. All upstream steady-state variables are known and specifying
any one downstream steady-state variable, such as density (obtained by solving the
steady-state version of the equations governing the hydrodynamic zone, which are
described in § 4.2), is enough to compute the other steady-state variables from the
following ideal gas and steady-state continuity equations:

ρ̃d
0 =

ρ̃u
0 T̃ u

0

T̃ d
0

, ũd
0 =

ρ̃u
0 ũu

0

ρ̃d
0

, (2.1)
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where superscripts u and d represent upstream and downstream variables, subscript 0
represents steady-state variables and ∼ indicates dimensional variables. The governing
equations are

∂ρ̃

∂t̃
+ ∇̃ · (ρ̃ũ) = 0, (2.2a)

ρ̃

(
∂

∂t̃
+ ũ · ∇̃

)
ũ + ∇p̃ = µ

(
∇̃2 +

1

3
∇̃(∇̃ ·)

)
ũ, (2.2b)

1

γ

(
∂

∂t̃
+ ũ · ∇̃

)
p̃ + p̃∇ · ũ =

(γ − 1)

γ
k∇̃2

T̃ . (2.2c)

Non-dimensionalising the above equations using the following scales ρ = ρ̃/ρ̄,

p = p̃/p̄, u = ũ/̄u, T = T̃ /T̄ , x = x̃/la, ta = t̃/(la/c0), where p̄ = p̃u
0 = p̃d

0 , ρ̄ = ρ̃u
0 , T̄ = p̄/

(�ρ̄), ū = ũu
0, c0 =

√
γ �T̄ , � is the specific gas constant and c0 is the local speed of

sound, which leads to

∂ρ

∂ta
+ M∇a · (ρu) = 0, (2.3a)

ρ

(
∂

∂ta
+ Mu · ∇a

)
u +

1

γM
∇ap =

M

Rea

(
∇2

a +
1

3
∇a (∇a ·)

)
u, (2.3b)

1

γ

(
∂

∂ta
+ Mu · ∇a

)
p + Mp∇a · u =

M

Pea

∇2
aT , (2.3c)

where Rea = ρ̄ūla/µ, P ea = ρ̄ūlaCp/k, M = ū/c0, and subscript a indicates that non-
dimensionalisation is performed with the acoustic length scale la .

An analysis of thermoacoustic instability in a Rijke tube involves the study of a
coupled system which consists of the acoustic field in the tube and the unsteady heat
transfer from the heat source (hydrodynamic zone). Therefore, it is important to track
variations on the length scale of the tube (acoustic scale, la ∼ 1 m) and the length
scale of the radius of the heater wire filament (lc ∼ 1 mm) in the hydrodynamic zone.
Furthermore, the acoustic time scale tac = la/c0 and the wire heat transfer time scale
tcc = lc/̄u are of the same order for typical values mentioned above. This leads to an
effective coupling of the dynamics of the acoustic field and the unsteady heat release
rate.

The length and time scale ratios are defined as δ = lc/la, ε = tac/tcc =M/δ ∼ 1. The
system has two length scales separated by a large factor (1/δ → ∞) and a single time
scale. Since the flow is at very low Mach number (M → 0), the system of equations
(2.3) becomes ill-conditioned (Anderson 2001). Moreover, a smaller grid size near the
heater will restrict the maximum time-step that can be allowed for the numerical
scheme. All these make (2.3) stiff. As a consequence, solving the problem using the
CFD technique is a difficult task. An alternative technique available to solve such
a two length-scale problem is the asymptotic analysis (Zeytounian 2002; Ting et al.
2007), which is used in the present paper and is discussed in the next section.

3. Asymptotic analysis
In the present investigation, asymptotic analysis is performed in the limit

M → 0, ε ∼ 1, δ → 0. The flow variables are expanded in powers of Mach number
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(M). The following ansatz for the flow variables is used:

ρ = ρs + ρc + Mρa, u = us + ua + uc,

p = 1 + Mpa + M2pc, T = Ts + Tc + MTa,

}
(3.1)

where subscript s stands for steady-state variables, a for fluctuations due to the
acoustic field, and c for fluctuations in the hydrodynamic zone. Here, the acoustic
fluctuations exist all along the tube, while the fluctuations due to the heater are
confined to a zone around the heater (hydrodynamic zone), which is small compared
to the acoustic length scale. Hence the variables with subscript a exist over the length
of the tube (acoustic zone, see figure 1), while the variables with subscript c exist only
in the region around the heater (hydrodynamic zone, see figure 1) and vanish as one
moves away from it. Note that the form of the power series used in ansatz (3.1) is
different for various flow variables and the reason is as follows.

The acoustic fluctuations in u are zeroth order in M , whereas the fluctuations
in ρ, p, T are first order in M (Rienstra & Hirschberg 2004). On the other hand,
temperature fluctuations near the heater (hydrodynamic zone) are comparable to the
steady-state temperature Ts and hence Tc appears as a zeroth-order fluctuation (Fu &
Tong 2002). The mode of heat transfer from the heater to the gas is by convection.
Hence, the zeroth-order fluctuation Tc in temperature (T ) is caused by a zeroth-order
fluctuation uc in velocity (u). Because of zeroth-order temperature fluctuations (Tc)
and a constant leading-order pressure (3.1), a zeroth-order fluctuation of density (ρc)
in the hydrodynamic zone is present. (The authors are grateful to an anonymous
reviewer for pointing out the errors of the constant density assumption adopted in an
earlier version of the paper. The asymptotic analysis is reformulated with the variable
density formulation as per the suggestions of the reviewer.) Furthermore, the fluid
properties are assumed to be independent of temperature. Now, the ansatz (3.1) is
substituted in (2.3) to get the following:

∂

∂ta
(ρs + ρc + Mρa) + M∇a · ((ρs + ρc + Mρa) (us + ua + uc)) = 0, (3.2a)

(ρs + ρc + Mρa)

(
∂

∂ta
+ M (us + ua + uc) · ∇a

)
(us + ua + uc)

+
1

γM
∇a(1 + Mpa + M2pc) =

M

Rea

(
∇2

a +
1

3
∇a (∇a · )

)
(us + ua + uc), (3.2b)

1

γ

(
∂

∂ta
+ M (us + ua + uc) · ∇a

)
(1 + Mpa + M2pc)

+ M(1 + Mpa + M2pc)∇a · (us + ua + uc) =
M

Pea

∇2
a(Ts + Tc + MTa). (3.2c)

Initially, equations which are of zeroth order in M are obtained. Then, first-order
equations in M are obtained using the solutions from the zeroth-order equations. This
process is repeated until governing equations for all the variables in the ansatz (3.1)
are obtained. Furthermore, the system of equations for various orders of M is written
both for the acoustic and hydrodynamic zones. In the following analysis, equations
governing the acoustic zone are first derived and the same exercise is repeated for the
hydrodynamic zone.

3.1. Continuity equation: acoustic zone O(M)

The zeroth-order continuity equation in M reduces to the steady-state equation,
which is already used in the analysis (2.1). Collecting terms of first order in M , (3.3) is
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obtained. Since the non-dimensionalisation is performed with respect to the acoustic
length scale for (2.2), (3.3) represents continuity equation in the acoustic zone:

∂ρa

∂ta
+ ∇a · ((ρs + ρc) (us + ua + uc)) = 0. (3.3)

Furthermore, using the continuity equation for steady state in the acoustic zone,
∇a · (ρsus) = 0, ρc = 0 and uc = 0 as described in the ansatz (3.1), (3.3) becomes

∂ρa

∂ta
+ ∇a · (ρsua) = 0. (3.4)

3.2. Momentum equation: acoustic zone O(M)

In (3.2b), as M is in the denominator of the pressure term, the entire equation is
multiplied by M to obtain

(M(ρs + ρc) + M2ρa)

(
∂

∂ta
+ M (us + ua + uc) · ∇a

)
(us + ua + uc)

+
1

γ
∇a(1 + Mpa + M2pc) =

M2

Rea

(
∇2

a +
1

3
∇a (∇a · )

)
(us + ua + uc). (3.5)

The zeroth-order equation in M gives a zero spatial gradient for the steady-state
pressure in the system, i.e. ∇a(1) = 0, where 1 appears due to non-dimensionalisation
of p̃ with p̄. The condition for constant p̄ along the duct is already included in the
analysis (2.1). Gathering O(M) terms from (3.5) in the limit Rea → ∞, leads to the
momentum equation in the acoustic zone:

ρs

∂ua

∂ta
+

1

γ
∇apa = 0. (3.6)

3.3. Energy equation: acoustic zone O(M)

The zeroth-order terms from (3.2c) represent the steady-state energy equation. Since
the upstream (T̃ u

0 ) steady-state temperature is known, steady-state equations governing
the heat transfer from the heater are used to obtain the corresponding downstream
value (T̃ d

0 ), thus making the collection of O(1) terms from (3.2c) redundant. Now the
O(M) terms are gathered to obtain the acoustic energy equation:

1

γ

∂pa

∂ta
+ ∇a · ua =

1

Pecδ
∇2

cTc, (3.7)

where Pec = ρ̄ūlcCp/k. The unsteady heat release rate from the heater is delivered
into the acoustic zone by local thermal conduction. Hence, the last term in (3.7)
represents the coupling term from the hydrodynamic to the acoustic zone. Assuming
a one-dimensional acoustic field in the axial direction xa , (3.7) is integrated over the
cross-sectional area (Sc) of the tube. In order to convert from 3-D to 1-D space, the
terms with gradients (∇a) in the acoustic length scale are replaced by ∂/∂xa in (3.7).
The acoustic energy equation takes the following form:

Sc

(
1

γ

∂pa

∂ta
+

∂ua

∂xa

)
=

1

Pecδ

⎛
⎝∫∫∫⊙

Vc

∇2
cTc dṼc

⎞
⎠ �

δ(x̃ − x̃f ), (3.8)

where Vc is the volume of the hydrodynamic zone and
�

δ(x) is the Dirac delta
function, which is used to indicate the compactness of the hydrodynamic zone in
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the equations. The volume integral is converted into a surface integral using Gauss’s
divergence theorem. In order to apply the above theorem, the last term in (3.8) is
dimensionalised, followed by the application of the Gauss divergence theorem and
again non-dimensionalised back to get the following acoustic energy equation:

1

γ

∂pa

∂ta
+

∂ua

∂xa

=
lwlc

P ecSc

(∫ 2π

0

(−∇cTc)êr
dθ

)
�

δ(x − xf ), (3.9)

where lw is the length of the wire which contributes to the heat transferred to the
fluid, êr is the unit vector along the radial direction from the cylinder surface, (∇cTc)êr

represents the component of gradient of Tc along êr . The term on the right-hand side
of (3.9) is identified as the coupling term from hydrodynamic zone to the acoustic zone,
which drives the acoustic oscillations in a Rijke tube. The unsteady heat release rate

from the hydrodynamic zone is given by q =(lwlc/P ecSc)(
∫ 2π

0
(−∇cTc)êr

dθ) with the
integral evaluated over surface of the cylinder. The equations governing the acoustic
zone are thus obtained and the coupling of the acoustic field with the unsteady heat
release rate of the heater appears from the asymptotic analysis. The equations for the
hydrodynamic zone are derived in the following subsections.

3.4. Continuity equation: hydrodynamic zone O(1)

In order to obtain the equations with respect to the hydrodynamic zone, the spatial
derivatives in the acoustic length scale (la) have to be converted to the length scale
(lc) of the heater, only for variables with subscript c. The transformation ∇a = ∇c/δ

is applied to (3.2). The subscript c in ∇ operator represents the derivatives that are
non-dimensionalised with lc. During the scale change from la to lc, terms which are
second order in M , for e.g. M2∇a , become first order in M , Mε∇c. The inclusion of
such terms leads to the continuity equation in the hydrodynamic zone as follows:

∂

∂tc
(ρs + ρc) + ∇c · ((ρs + ρc)(us + uc + ua|xf

)) = 0, (3.10)

where ua|xf
represents ua at the non-dimensionalised heater location xf (xf = x̃f /la)

and ∂/∂tc = (1/ε)∂/∂ta . In (3.10), ρs + ρc and us + uc + ua|xf
appear effectively as one

variable. Hence, the following change of variables ρp = ρs +ρc and up = us +uc +ua|xf

is applied in (3.10) to obtain

∂ρp

∂tc
+ ∇c · (ρpup) = 0, (3.11)

which is the conventional continuity equation for flows of variable density fluid.

3.5. Momentum equation: hydrodynamic zone O(1)

The zeroth-order momentum equation in the hydrodynamic zone is as follows:

(ρs + ρc)

(
∂

∂tc
+ (ua|xf

+ us + uc) · ∇c

)
(ua|xf

+ us + uc)

+
1

γ
∇cpc =

1

Rec

(
∇2

c +
1

3
∇c(∇c · )

)
(ua|xf

+ us + uc) − 1

ε
∇a

(
pa

γ

)∣∣∣∣
xf

,

Boundary condition (BC): uc → 0, as xc → ∞, (3.12)

where Rec = ρ̄ūlc/µ and ∇a(pa/γ )|xf
represents ∇a(pa/γ ) evaluated at xf . The

equations are then written in terms of ρp and up and the acoustic momentum
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equation (3.6) is used to replace the last term in (3.12), to obtain

ρp

(
∂

∂tc
+ up · ∇c

)
up +

1

γ
∇cpc =

1

Rec

(
∇2

c +
1

3
∇c(∇c · )

)
up + ρs

∂ua

∂tc

∣∣∣∣
xf

,

BC: up → us + ua|xf
, as xc → ∞, (3.13)

where ∂ua/∂tc|xf
represents ∂ua/∂tc evaluated at the non-dimensional heater location

xf . Note that (3.13) is the momentum equation for unsteady variable density flow over
the heater, with an additional term ∂ua/∂tc|xf

. The above additional term is referred
to as the global-acceleration term (Moeck et al. 2009), which can be identified as
a coupling term for the momentum equation in the hydrodynamic zone from the
acoustic zone, apart from that due to the boundary condition associated with (3.13).

The global-acceleration term occurs in two length-scale problems (Klein 1995;
Klein et al. 2001). This term would not have been identified had the asymptotic
analysis not been performed. In most thermoacoustic systems, there are at least
two length scales: the length scale of the acoustic field and the length scale of the
heat source. Therefore, the above term is expected to be present in the analysis of
thermoacoustic systems. The same term can be interpreted as the pressure gradient
imposed by the acoustic field on the hydrodynamic zone (Ting et al. 2007). Note that
if one performs response function calculations numerically (for example Preetham,
Santosh & Liewen 2008) for the unsteady heat release rate from the heater, where no
acoustic field is imposed, then ∂ua/∂tc|xf

will not be anticipated and hence will not
be included. This leads to solving an incorrect system of equations and prediction
of the dynamics of thermoacoustic interaction in a Rijke tube system. Numerical
simulations are performed with and without the global-acceleration term in the
present paper. It is observed that the error due to neglecting the above term is large
and predictions of the dynamical evolution of the system are modified to a large
extent. This observation has been emphasised in § 5.2.

3.6. Energy equation: hydrodynamic zone O(1)

Since the temperature fluctuations due to the heater are zeroth order in M as explained
in the ansatz (3.1), O(1) terms are gathered from (3.2c) to obtain

∇c · (us + ua|xf
+ uc) =

1

Pec

∇2
c(Ts + Tc). (3.14)

A change of variable Tp = Ts + Tc is performed in (3.14) leading to

∇c · up =
1

Pec

∇2
cTp,

BC: ∇cTp → 0, as xc → ∞, and Tp = T̃w/T̄ , xc = cylinder surface, (3.15)

where T̃w represents the surface temperature of the heater wire. The energy equation
(2.3c) simplifies to an algebraic constraint (3.15) on the velocity field up . The amount
of local dilatation of the fluid is governed by (3.15). Integration of the same equation
over the hydrodynamic zone gives the net dilatation in the volume of the fluid as
it passes through the hydrodynamic zone. The presence of the heat source which
leads to the dilatation in the volume of the fluid manifests as the acoustic velocity
jump (ua|xf

) across the heat source. This in turn drives the acoustic field in the tube.
The above argument is consistent with the derivation of the acoustic energy equation
described in § 3.3, where the Dirac delta function in (3.9) causes the acoustic velocity
jump across xf . Thus, the acoustic velocity jump is used as the matching condition
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across the hydrodynamic zone. The above conclusion is independent of the type of
the heat source and the interpretation is valid as long as the heat source can be
considered as compact with respect to the acoustic field.

In multiple-scale asymptotics, averaging the flow variables over the small-scale
hydrodynamic zone is performed to obtain the flow variables in the large-scale
acoustic zone (Klein et al. 2001). Accordingly, the term ∂ua/∂tc|xf

in (3.13) is evaluated
as the average of the values at the upstream and downstream locations of the heat
source, due to acoustic velocity jump. Averaging the momentum equation of the
hydrodynamic zone (3.13) leads to acoustic momentum equation (3.6) defined at the
heat source, with the acoustic velocity obtained as the average of ua upstream and
downstream of the heat source. The same averaging procedure is performed for the
global acceleration term as well, which is used in (3.13). The system of equations for
the hydrodynamic zone (3.11), (3.13) and (3.15) is not closed. The ideal gas equation
is used to obtain the relation between ρp and Tp in the hydrodynamic zone as follows:

(1 + Mpa + M2pc) = (ρs + ρc + Mρa)(Ts + Tc + MTa). (3.16)

Equating the zeroth-order terms gives the following:

ρp =
1

Tp

. (3.17)

Solving (3.15) simultaneously with (3.11), (3.13) and (3.17) gives the temperature field

Tp . The unsteady heat release rate q = (lwlc/P ecSc)[(
∫ 2π

0
−∇c(Tp − Ts)êr

dθ )] is then
obtained from Tp . This q serves as the source term for (3.9).

4. Solution technique
The governing equations in the acoustic and hydrodynamic zones are solved using

different solution techniques. First, the solution technique used in the acoustic zone
is discussed.

4.1. Equations governing the acoustic zone: one-dimensional form

The acoustic continuity (3.4) and momentum (3.6) equations are converted from 3-D
to 1-D space as described in § 3.3. The governing equations thus obtained for the
acoustic zone are as follows:

ρs

∂ua

∂ta
+

1

γ

∂pa

∂xa

= 0, (4.1a)

1

γ

∂pa

∂ta
+

∂ua

∂xa

= q
�

δ(x − xf ). (4.1b)

The above partial differential equations (4.1a, b) are converted to ordinary differential
equations (ODEs) by the Galerkin technique (Zinn & Lores 1971; Padmanabhan
1975). In the Galerkin technique, the unknown variables are expanded using basis
functions, which satisfy the boundary conditions. In the present paper, the Rijke tube
considered is open at both ends. The basis functions are chosen accordingly to satisfy
the acoustic boundary conditions. The acoustic variables ua and pa are expanded in
terms of the basis function as follows:

pa = γ

N∑
m=1

Pm sin(ωmx), ua =

N∑
m=1

Um cos(ωmx), (4.2)

where ωm =mπ, N is the number of modes chosen in the Galerkin expansion. The
dynamical evolution equation for Pm and Um is obtained by projecting (4.1) on
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to the Galerkin basis, after substituting the expansion for pa and ua from (4.2).
The application of the Galerkin technique to the present problem is similar to that
performed by Balasubramanian & Sujith (2008). The final ODEs are of the following
form:

N∑
m=1

(
ρu

s I u
m,n − ρd

s I d
m,n

)
U̇m + Pnωn = 0, (4.3a)

Ṗn − ωnUn + ζnωnPn = 2q sin (ωnxf ), (4.3b)

where

I u
m,n = ρu

s

⎧⎪⎪⎨
⎪⎪⎩

sin ((ωm + ωn)xf )

ωm + ωn

+
sin ((ωm − ωn)xf )

ωm − ωn

, ωm �= ωn,

sin (2ωnxf )

2ωn

+ xf , ωm = ωn,

(4.4)

I d
m,n = ρd

s

⎧⎪⎪⎨
⎪⎪⎩

sin ((ωm + ωn)(1 − xf ))

ωm + ωn

+
sin ((ωm − ωn)(1 − xf ))

ωm − ωn

, ωm �= ωn,

1 − sin (2ωnxf )

2ωn

− xf , ωm = ωn,

(4.5)

where ζn =(C1(ωn/ω1) + C2

√
ω1/ωn)/(2π), ωn = nπ, and ζn represents damping in the

acoustic zone due to viscosity and end losses. Here, C1, C2 are the coefficients that
determine the amount of damping and whose numerical value is given by Matveev &
Culick (2003a). The system of equations (4.3) is solved using the fourth-order Runge–
Kutta (RK4) method (Riley et al. 2006). The value of the unsteady heat release rate
q is obtained at each substep of RK4 by solving the equations corresponding to the
hydrodynamic zone (4.6), which is discussed in the following section.

4.2. Equations governing the hydrodynamic zone

The governing equations for the hydrodynamic zone are summarised below:

∂ρp

∂tc
+ ∇c · (ρpup) = 0, (4.6a)

ρp

(
∂

∂tc
+ up · ∇c

)
up +

1

γ
∇cpc =

1

Rec

(
∇2

c +
1

3
∇c(∇c · )

)
up + ρs

∂ua

∂tc

∣∣∣∣
xf

, (4.6b)

∇c · up =
1

Pec

∇2
cTp, (4.6c)

ρp =
1

Tp

. (4.6d )

As described in § 2, the heater in its primitive form is a thin wire filament. To simulate
the dynamics of the heater, Selimefendigil, Föller & Polifke (2008) have analysed
the unsteady convective heat transfer from a heated circular cylinder. Following this
approach, the above system of equations (4.6) is solved for the unsteady convective
heat transfer over the circular cylindrical heated wire filament. The flow field over
the heater wire filament is assumed to be two-dimensional. The governing equations
are solved by CFD. The details of the geometry of the heat source and the boundary
conditions imposed on the hydrodynamic zone are discussed in the Appendix. The
unsteady heat release rate q is obtained from the temperature field Tp . The obtained
q is then used as the source term for (4.3b) at each substep of RK4, as described
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Acoustic zone Hydrodynamic zone CFD simulations

la = 1 m, Sc = 0.01 m2 Red = 20 Number of grids (r, θ ) = 100 × 120
P̄ = 1 bar lc = 2.6 mm Residue for continuity = 10−6

ρ̃u
0 = 1.18 kg m−3 lw = 10 m Residue for momentum = 10−6

T̃ u
0 = 295 K T̃w = 700 K Residue for energy = 10−6

ρ̃d
0 = 0.84 kg m−3 M = 5 × 10−4 
ta = 5 × 10−4

Table 1. Physical parameters in acoustic zone, hydrodynamic zone and numerical parameters
used for CFD simulations.

in § 4.1. Thus, the system of equations in the acoustic (4.3) and hydrodynamic zones
(4.6) is solved simultaneously.

5. Results and discussions
Numerical simulations are performed with the parameters shown in table 1. In the

following simulations, the number of the Galerkin modes is chosen as N = 100 (to
capture the acoustic velocity jump across the heat source), such that a further increase
in N leads to less than 5 % variation in the results. Unless otherwise specified, the
parameter values in table 1 are used for the simulations. The numerical values of the
damping coefficients used for the present simulations are C1 = 0.27 and C2 = 0.03
(Matveev & Culick 2003a). In the acoustic zone upstream and downstream of
the heater, one-dimensional governing equations are used. The hydrodynamic zone
equations in the present case are solved in a two-dimensional domain (see the
Appendix). Hence, the density (ρ̃0

d ) in the hot side of the acoustic zone is obtained by
averaging the steady-state density ρs at the far downstream end of the hydrodynamic
zone. The value of ρ̃0

d thus obtained is listed in table 1.

5.1. Stability regimes

The experimental results of Matveev & Culick (2003b) indicate that the system
becomes linearly unstable beyond some critical value of the heater power. As the
heater power is increased, the present numerical simulations show two stability
regimes: a linearly stable regime and a linearly unstable regime. The non-dimensional
heater power (K) is defined as K =(lwlc)/(PecSc) (see § 3.6 for the expression of q).
The average of the acoustic velocity upstream and downstream of the heat source
is taken as the acoustic velocity (uf ) at the heat source. In the subsequent sections,
the variables uf and q are considered as the representative variables to illustrate
the dynamical behaviour of the system in the acoustic and hydrodynamic zones,
respectively. The subsequent sections discuss the results of the numerical simulation.

5.1.1. Linearly stable regime

For low values of the heater power K , the system is stable to small-amplitude initial
perturbations. In figure 2(a), the initial perturbation in acoustic velocity (uf = ua|xf

)
at the heater location is around 5 % of the mean flow velocity. The perturbation
decays to zero in the asymptotic time limit. The phase plot between uf and the
non-dimensional fluctuating heat release rate (q) shows the evolution of the system in
figure 2(b) towards a stable focus. The arrows indicate the direction of the evolution
of the system in the phase plane.
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0.04
(a) (b)

0.02
0

(×10–3)

–5

–10

uf

uf

q

ta

0

0 –0.04 –0.02 0 0.02

Fixed point

0.045 10 15 20 25 30

–0.02

–0.04

Figure 2. The linearly stable system: (a) evolution of the acoustic velocity (uf ) at the
heater location (xf ); (b) phase portrait between uf and unsteady heat release rate q ,
xf = 0.25, K = 0.10, U1(t = 0) = 0.05, Um �=1(t = 0) = 0 and Pm(t = 0) = 0.

4 2.0

1.5

Limit cycle

1.0

0.5
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ta
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0.20 0.60.4 1.00.8

xa
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(a)

uf

4

2

0 a

b
b

c

a

d

c

d

–2

–4

(c)

uf

5

0

–5

(d)

ua

uf

(b)

q

Figure 3. The linearly unstable system: (a) evolution of the acoustic velocity (uf ) at the
heater location (xf ); (b) phase portrait between uf and unsteady heat release rate q (only
limit cycle is shown, transients are not shown for clarity); (c) evolution of uf during a period
of the limit cycle; (d ) distribution of the acoustic velocity ua in the Rijke tube during a period
of the limit cycle. xf = 0.25,K = 0.1785, U1(t = 0) = 0.5, Um �=1(t = 0) = 0 and Pm(t = 0) = 0.

5.1.2. Linearly unstable regime

In the second stability regime, the system is unstable for small-amplitude
perturbation, uf (t = 0) = 0.4, which is 10 % of the limit-cycle amplitude (see figure 3a).
The figure shows that uf grows exponentially, eventually reaching a limit cycle. The
limit cycle is a closed curve in the phase portrait as shown in figure 3(b). The acoustic
velocity (ua) distribution along the duct at various instances over a period, as marked
in figure 3(c), is shown in figure 3(d ). It is observed that the acoustic velocity jump
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8

6
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2

0

0.06 0.08

R1 R2

0.10 0.12

BA

C

Hopf bifurcation

K

u f
| p

–p

0.14 0.16

Figure 4. Bifurcation diagram with the non-dimensional heater power K as the control
parameter. The other parameters are xf = 0.25. The two regimes are R1, linearly stable regime,
and R2, linearly unstable regime.

is captured by the Galerkin technique. The stability regimes of a system with the
variation of a parameter can be represented using a bifurcation diagram.

5.1.3. Bifurcation diagram

Simulations are performed with the heater power as the control parameter and the
peak-to-peak value of acoustic velocity (uf |p−p) at the heater location (xf ) in the
asymptotic time limit is chosen as the representative variable. The resolution in
the control parameter K for figure 4 is 2 × 10−3, which is 1.8 % of the value of
K =0.11 at the Hopf point (B). In the bifurcation diagram shown in figure 4, solid
lines indicate stable solutions, while the dashed line indicates unstable solutions. For
low values of K (say, K = 0.06), the asymptotic state (uf = 0) is the stable fixed point.
This corresponds to the first stability regime (§5.1.1), where the system is linearly
stable. As the heater power is increased, beyond point ‘B’ (K = 0.11), the system
becomes linearly unstable and reaches a limit cycle. The above transition happens via
Hopf bifurcation. Also, the amplitude of the limit cycle increases as the heater power
is increased further. This corresponds to the second stability regime.

5.2. Effect of global acceleration on the stability of the system

An asymptotic analysis is performed to obtain separate systems of equations governing
the dynamics in the acoustic and hydrodynamic zones. The critical outcome of
the above analysis is the presence of the additional term ∂ua/∂tc|xf

in (3.13). The
importance of the global-acceleration term is shown in figure 5. In figure 5(a),
evolution of uf is shown with and without this term for identical system parameters
and initial conditions. The system parameters are chosen such that the simulation
performed is in the linearly unstable regime (K = 0.1785, see figure 4). With the initial
perturbation U1(t = 0) = 0.5, the simulation with the ∂ua/∂tc|xf

term indicates that the
system reaches a limit cycle eventually. The evolution of the system to a limit cycle is
shown in the inner figure 5(b). However, for the same system parameters and initial
conditions, if the above term is dropped from (3.13), the simulation indicates that the
system reaches a stable focus in the asymptotic time limit.

To analyse the behaviour of the system in the absence of the global-acceleration
term, the bifurcation diagram is computed without the term ∂ua/∂tc|xf

in (3.13),
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With global acceleration

Without global acceleration

2.5

(a)

(b)
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0
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–1.5

–2.0
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Figure 5. (a) Comparison of the evolution of acoustic velocity (uf ) at the heater location
(xf ) with and without the global-acceleration term in (3.12). (b) Evolution of uf for
a longer period of time with the global-acceleration term, ‘zoomed out’ view of (a).
xf = 0.25, K = 0.1785, U1(t = 0) = 0.5, Um �=1(t = 0) = 0 and Pm(t = 0) = 0.

2.5

2.0

1.5

1.0

0.5
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u f
| p

–p
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R1 R2

BA Hopf bifurcation

C

Figure 6. Bifurcation diagram with non-dimensional heater power K as the control parameter
without the global-acceleration term in (3.12). The parameters chosen are the same as for the
simulation shown in figure 4.

as shown in figure 6. A significant difference between the bifurcation diagram
with and without the inclusion of the global-acceleration term is that the system
becomes linearly unstable at K = 0.11 (see figure 4) for the simulation performed
with the global-acceleration term, whereas the same behaviour happens at K = 2.89
(see figure 6) for the simulation performed without the same term. The numerical
simulation without the global-acceleration term predicts linear instability at a value
of K which is one order of magnitude higher than that obtained from the numerical
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simulation with the inclusion of the same term. The term ∂ua/∂tc|xf
acts as a forcing

term for (3.13) from the acoustic zone. Hence, dropping the above term breaks
the feedback from the acoustic to the hydrodynamic zone apart from the feedback
from the free-stream boundary condition for (3.13). The strength of the feedback
loop between the acoustic and hydrodynamic zones is thus weakened. Therefore,
it is important to perform the asymptotic analysis to obtain the correct system of
equations for the two zones in solving the two length-scale problems.

An analysis of thermoacoustic instability using the response function (to capture
the dynamics of the heat source) is termed as a two-part approach (Candel 2002). In
this approach, the response function of the heat source to velocity fluctuations is first
obtained. The response function thus obtained is used in the acoustic energy equation.
The acoustic equations are then solved with the appropriate boundary conditions and
the stability of the system is determined. When the response function is obtained
numerically (see for example Preetham et al. (2008)), the global-acceleration term is
not taken into account in the governing equations for the dynamics of the heat source.
If the prediction of thermoacoustic instability is performed based on the response
function of the heat source, the effect of the above term is absent. As a consequence,
the coupling between the acoustic and hydrodynamic zones is weakened, which leads
to overprediction of the stability of the thermoacoustic system.

Furthermore, it is important to analyse the dynamics of the system in the asymptotic
time limit. As fluid convection is the source of energy transfer from the heated wires to
the flow, the flow field during a limit cycle will reveal important insights about them.

5.3. Unsteady flow field in the hydrodynamic zone

The flow field in the hydrodynamic zone during a limit cycle is investigated in this
section. Figure 7 shows the streamlines of the velocity field up for the flow over the
heater wire at various instants of a limit cycle. Only one half of the flow field is shown
in the figure due to the symmetry condition (see the Appendix). The acoustic velocity
ua|xf

at the heater location ranges from −4 to +4 during one period of the limit
cycle (figure 7f ). Hence, during the first half of the limit cycle, the flow is from left to
right, and during the next half it is from right to left. A complete flow reversal in the
free stream happens, as shown in figure 7(a–e). Labels (a–e) illustrated in figure 7(f )
indicate the flow field at various instants of the acoustic velocity (ua|xf

) shown in
figure 7(a–e).

When ua|xf
= 0 (figure 7a), the flow field resembles the steady flow over the cylinder.

As ua|xf
increases and reaches a maximum, the recirculation zone is pushed further

downstream (figure 7b) and during subsequent time, ua|xf
decreases, followed by flow

reversal in the free-stream direction (figure 7e). Thus, the fluctuations in the velocity
field (up) during the limit cycle are comparable to the steady base flow (us). Hence,
nonlinear effects such as steady streaming (Telionis 1981) will be predominant.

In the present case, since the acoustic velocity (ua) is responsible for flow oscillation
in the hydrodynamic zone, the steady streaming thus obtained is termed as acoustic
streaming (Andres & Ingard 1953).

Figure 8(a–c) shows the effects of acoustic streaming during the limit cycle.
Figure 8(a) shows the averaged streamlines of up during one period of the limit
cycle (figure 7f). The streamlines of the steady-state flow us are shown in figure 8(b).
There are visible differences between figures 8(a) and 8(b), and hence, apart from
the steady base flow, a non-zero mean flow arises during the limit cycle due to the
nonlinearity. The streamlines obtained from the difference of the above two flow fields
(figure 8(a, b) are shown in figure 8(c). The streamlines are slightly tilted towards the
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Figure 7. Streamlines (a–e) in the hydrodynamic zone (corresponding to up) at various
instants during one period of the limit cycle; (f ) evolution of ua at xf during a limit cycle;
K = 0.1785, xf = 0.25 and lw = 10 m.
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Figure 8. Flow streaming in the hydrodynamic zone: (a) streamlines averaged over one
period of the limit cycle; (b) streamlines of the steady base flow; (c) streamlines of the velocity
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right due to the steady base flow from left to right. Also, note that in figure 8(c) the
streaming velocity is towards the cylinder along the direction of the propagation of
the sound waves (X direction). In the present case, the Strouhal number (St) and the
streaming Reynolds number (Res) are calculated as

St = f lc/ū = δ/2M = 1/2ε =1,

Res = (ua|xf
)max2lc/ν ∼ 80,

}
(5.1)

where f = c0/2la is the fundamental frequency of the natural duct mode. The
experiments performed in the St and Res regimes (Andres & Ingard 1953) indicate
that the steady streaming velocity is directed towards the cylinder in the direction of
oscillation of the free-stream flow field. The same is observed in the present simulation,
as shown in figure 8(c). Streaming velocity field obtained from the present simulation
cannot be compared with the experiments with externally excited acoustic field, due
to the presence of the global-acceleration term. The same term does not vanish
even during limit cycles and therefore only qualitative behaviour of the streamlines
corresponding to the streaming velocity field can be compared with the experiments
in acoustic streaming (Andres & Ingard 1953).

A non-zero averaged mean flow, which appears above the steady base flow due
to acoustic streaming, results in non-zero averaged unsteady heat transfer from the
heater. Figure 8(d ) shows the evolution of the unsteady, non-dimensional heat transfer
rate (q , see § 3.6) from the heater. The unsteady heat transfer rate q eventually reaches
a limit cycle for linearly unstable systems (§ 5.1.2) where the oscillations during the
limit cycle are about a non-zero mean. Acoustic streaming leads to a shift in the mean
value of q .

6. Summary and conclusions
An analysis of thermoacoustic instability in an electrically heated horizontal Rijke

tube is performed. The analysis started with an examination of the conservation
equations for fluid flow. In the limit of zero Mach number of the steady flow and
compact size of the heat source compared to the acoustic length scale, the equations
become stiff. Therefore, solving the governing system of equations by the CFD
technique is a difficult task. Hence, an asymptotic analysis is performed, which gave
further physical insight into the problem. The flow variables are expanded in powers
of Mach number. The equations thus obtained are identified as governing equations
for the acoustic and hydrodynamic zones. An additional non-trivial term that has
serious consequences for the stability of the system appeared in the momentum
equation for the hydrodynamic zone, which cannot be obtained without performing
the asymptotic analysis. The additional term is the global-acceleration term, which
acts as a pressure gradient applied from the acoustic zone onto the hydrodynamic
zone.

Numerical results show two stability regimes. In the first regime, the system
is linearly stable. In the second regime, the system is linearly unstable and the
perturbations eventually reach a limit cycle. A bifurcation diagram is then obtained
with the heater power as the control parameter. The effect of the global-acceleration
term is investigated using bifurcation diagrams. The term acts as one of the
coupling terms (the other one is from the boundary condition for the momentum
equation in the hydrodynamic zone) from the acoustic to the hydrodynamic zone.
Therefore, the absence of the same term weakens the coupling between the acoustic
and hydrodynamic zones. Without the global-acceleration term, the transition from
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linearly stable to unstable behaviour occurs for a value of the non-dimensional heater
power, which is one order of magnitude higher than the value of the heater power
corresponding to the simulation with the above term. Thus, the linear stability of the
system is predicted incorrectly in the absence of the term. The same term appears
due to the two length-scale nature of the Rijke tube system, which is generic in
thermoacoustic systems. The numerical computation of response functions in the past
did not take into account the global-acceleration term. Hence, the evaluation of the
stability of thermoacoustic system using the response function has to be performed
carefully in the future.

Finally, the flow field during limit cycle oscillation is analysed. The limit-cycle
amplitude is observed to be comparable to the steady base flow. Flow reversal occurs
in the hydrodynamic zone during part of the limit-cycle oscillation. This nonlinear
behaviour of the unsteady flow is observed as acoustic streaming during the limit
cycle. A mean shift in the unsteady heat release rate from the heater is observed due
to acoustic streaming.

In brief, asymptotic analysis gives the correct system of equations for the dynamics
of the acoustic field and the heater. Also, using any response functions for the
dynamics of the heater without rigorous mathematical arguments can lead to incorrect
governing equations, which will lead to erroneous results.

The present variable density formulation was presented after an anonymous
reviewer pointed out the errors in the constant density assumption adopted in
an earlier version of the paper. The authors are grateful to the reviewer for the
same. The authors thank C. Balaji, Professor S. R. Chakravarthy (Indian Institute of
Technology Madras) and Professor W. Polifke (Technische Universität München) for
their suggestions and interesting discussions during the study. This work was funded
by the Department of Science and Technology (DST), India. The authors also thank
Indian Institute of Technology Madras for providing access to the High Performance
Computing Environment (HPCE).

Appendix. Governing equations and boundary conditions
in the hydrodynamic zone

An unsteady heat transfer problem is solved with the system of equations (4.6). The
heater, in its primitive form, is a thin wire filament wound around the heater frame.
The heater wire filament is arranged in the form of a rack (a schematic diagram of
the same is shown in figure 9a). The typical spacing between the racks of the wire
filament is 50 times larger than the wire radius (∼mm). Hence, a two-dimensional
flow over a single cylinder is considered, as shown in figure 9(b). The heat transfer
from the single cylinder is multiplied by the effective length of the wire filament lw to
obtain the total heat transfer from the hydrodynamic zone.

A typical Reynolds number Red ( = 2Rec) of the base flow, based on the diameter
of the wire filament, is around 20. Also, it is observed from figure 3(a) that the
maximum non-dimensional acoustic velocity at the heater location uf is approximately
four. The fluctuating flow over the heater wire experiences a free-stream flow with
a maximum flow velocity of five times the base flow during one cycle. Hence,
the maximum Reynolds number (Rem) to be obtained is 100 during one cycle.
Sarpkaya (1986) experimentally obtained the condition for the above oscillatory
flow to become unstable and shed vortices based on the non-dimensional number;
Keulegan–Carpenter number Kc (Kc =UmT/D) for a given viscous scale parameter
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No slip

~ 50lc
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pc = 0

=
∂Tp

∂r

Figure 9. Schematic representation of the heat source: (a) rack of the heater wire filament;
(b) boundary conditions for the two-dimensional flow over a heated circular cylinder.

β (β = Rem/Kc), where Um is the maximum velocity of the free stream encountered
during a cycle and T is the time period of oscillation. For the present problem
(parameter values from table 1), the values of the above non-dimensional numbers are
Kc =1.25 and β = 80. For β = 80, the critical value of Kc, above which the oscillatory
flow over the cylinder becomes unstable to shed vortices, is 2.11 (Sarpkaya 1986),
which is larger than that investigated in the present case. Hence, vortex shedding
does not occur. Owing to this, only one half of the flow domain is considered for the
present simulation and the symmetry boundary condition is enforced.

A plane polar coordinate system is used to implement the no-slip boundary
condition on the surface of the wire filament (circular cylinder). Moreover, fluid
viscosity and thermal conductivity are assumed to be independent of temperature. The
flow domain and the boundary conditions are shown in figure 9(b). The switch from
Dirichlet to Neumann boundary condition at θ = π/2 (from upstream to downstream
in figure 9b) for up, Tp is to have the numerical solvability of the hydrodynamic
equations. The above switch is performed in Abu-Hijleh (2003) for a similar problem.
The Dirichlet boundary condition (specified by the upstream acoustic zone) is applied
in the far-field upstream boundary and the Newmann boundary condition is applied
in the far-field downstream boundary for ρp, up and Tp . The average of the above
flow variables in the downstream boundary of the hydrodynamic zone is used in the
one-dimensional acoustic zone downstream of the heat source.

Near the cylinder surface, the gradient is large and it is important to cluster more
grids near the cylinder surface. Therefore, grid clustering is incorporated by the
transformation r =ekξ , where k is the grid clustering parameter, which determines the
rate at which the grid grows as one moves away from the cylinder surface.

A uniform grid in the ξ, θ plane (computational plane) will give a stretched grid in
the r, θ plane (physical plane). Figure 10(a) shows the generated grid for the present
problem, where the grid size near the cylinder surface is very small compared to the
far field and the grid size increases exponentially as r increases. The corresponding
grid in the computational domain is uniform and is shown in figure 10(b). The system
of equations (4.6) with the above transformation is solved by using semi-implicit
method for pressure linked equation (SIMPLE) algorithm (Patankar 1980) with a
fast Poisson solver (Press et al. 2007) for solving the pressure correction equation in
the SIMPLE algorithm.
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Property Red = 20 Red = 30

Recirculation zone length (in terms of 2lc) 1.24 (1.15) 1.54 (1.54)
Separation angle from trailing edge (in radians) 0.79 (0.78) 0.87 (0.87)

Nusselt number

(
Nud =

2T̃ u
0

2π(T̃w − T̃ u
0 )

[(∫ 2π

0

(
− ∂Tp

∂r

)
r =1

dθ

)])
2.50 (2.40) 2.98 (2.83)

Table 2. Comparison of the steady-state flow properties between the present simulation and
experiments. Numerical values in parentheses indicate values obtained from experiments.
Experimental results for the recirculation zone length and the separation angle are obtained
from Coutanceau & Bouard (1977), while the Nusselt number is obtained from Collis &
Williams (1959).
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Figure 10. Grid generated (121×101) for flow in the hydrodynamic zone. (a) Physical domain
with grid clustering near the cylinder surface with k = π. The flow domain is shown only up
to r = 25 so that the presence of the cylinder can easily be visible in the figure. Numerical
simulations are performed for the domain size r = 50. Convergence tests are performed and
it is found that there is less than 5 % change in the results with the domain size for r = 50.
(b) Computation domain with uniform grids.
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Figure 11. Response of the unsteady heat transfer from the heated cylinder for the forcing
of the free-stream velocity, up(r → ∞, π/2 < θ � π) = 1 + 0.1 sin(ta/2.43). The parameters are

Red = 10, T̃u = 295 K and T̃w = 700 K.
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The results in the present numerical simulation (without the global-acceleration
term) of the hydrodynamic zone are compared with the existing results for validation.
The steady-state properties are compared in table 2 with experimental results from
Coutanceau & Bouard (1977) and Collis & Williams (1959). Good agreement (with
less than a 10 % difference) is observed for the steady-state properties. The response of
the unsteady heat transfer from the heated cylinder to sinusoidal forcing is compared
with the numerical simulation performed by Apelt & Ledwich (1979) and is shown
in figure 11. Reasonable agreement in the response of the system is observed. The
constant density formulation used by Apelt & Ledwich (1979) might be the reason
for the difference in the above two responses of the unsteady heat release rate.
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