
Proceedings of the Royal Society of Edinburgh, 149, 1577–1594, 2019

DOI:10.1017/prm.2018.82

Optimal growth of harmonic functions frequently
hypercyclic for the partial differentiation operator

Clifford Gilmore, Eero Saksman and Hans-Olav Tylli
Department of Mathematics and Statistics,
P.O. Box 68, FI-00014 University of Helsinki, Finland
(clifford.gilmore@helsinki.fi; eero.saksman@helsinki.fi;
hans-olav.tylli@helsinki.fi)

(MS received 24 August 2017; accepted 27 October 2017)

We solve a problem posed by Blasco, Bonilla and Grosse-Erdmann in 2010 by
constructing a harmonic function on R

N , that is frequently hypercyclic with respect
to the partial differentiation operator ∂/∂xk and which has a minimal growth rate in
terms of the average L2-norm on spheres of radius r > 0 as r → ∞.

Keywords: Frequent hypercyclicity; partial differentiation operator; harmonic
functions; growth rate

2010 Mathematics subject classification: Primary 47A16; Secondary 31B05

1. Introduction

For a separable Fréchet space X, the continuous linear operator T : X → X is
hypercyclic if there exists x ∈ X (called a hypercyclic vector) such that its orbit
under T is dense in X, that is,

{Tnx : n � 0} = X.

A stronger property was introduced by Bayart and Grivaux in [6], where they
defined T : X → X to be frequently hypercyclic if there exists x ∈ X such that for
any nonempty open set U ⊂ X one has

lim inf
m→∞

#{n : Tnx ∈ U, 0 � n � m}
m+ 1

> 0.

Here # denotes the cardinality of the set. The definition states that the set of
iterations, for which the orbit of x visits any given neighbourhood of X, has positive
lower density and such an x ∈ X is called a frequently hypercyclic vector for T .
Comprehensive introductions to the area of linear dynamics can be found in [7,12].

It was shown in [6, example 2.4] that the differentiation operator f �→ f ′ is
frequently hypercyclic on the space of entire holomorphic functions on C and esti-
mates for the growth of its frequently hypercyclic vectors, in terms of average
Lp-norms on spheres of radius r > 0 as r → ∞, were found by Blasco, Bonilla and
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Grosse-Erdmann [8, theorems 2.3, 2.4] and Bonet and Bonilla [9, corollary 2.4]. The
minimal growth rates were subsequently established by Drasin and Saksman [11].

Aldred and Armitage [2] previously identified sharp growth rates, in terms of the
average L2-norm on spheres of radius r > 0 as r → ∞, of hypercyclic vectors for
the partial differentiation operators on the space H(RN ) of harmonic functions on
R

N , which we denote by

∂

∂xk
: H(RN ) → H(RN )

for N � 2 and 1 � k � N .
Subsequently, Blasco et al. [8, theorem 4.2] computed growth rates, again in

terms of the L2-norm on spheres of radius r > 0, in the frequently hypercyclic case
and they asked about the minimal growth rates of frequently hypercyclic vectors for
∂/∂xk on H(RN ). In this paper, we answer their question by explicitly constructing
a frequently hypercyclic harmonic function with the prescribed growth rate.

2. Frequent hypercyclicity of the partial differentiation operator

In this section, we recall the exact question posed by Blasco et al. [8] and we state
our main result. We first introduce the notions and background required to discuss
the problem in precise terms.

Denote by S(r) the sphere of radius r in the euclidean metric | · | centred at the
origin of R

N and let σr be the normalized (N − 1)-dimensional measure on S(r) so
that σr(S(r)) = 1. For h ∈ H(RN ) and r > 0, we let

M2(h, r) =

(∫
S(r)

|h|2 dσr

)1/2

(2.1)

denote the 2-integral mean of h on S(r) and for g, h ∈ H(RN ) the corresponding
inner product is written as

〈g, h〉r =
∫

S(r)

ghdσr.

The space H(RN ) of harmonic functions is a Fréchet space when equipped with the
complete metric

d(g, h) =
∞∑

n=1

2−n |g − h|S(n)

1 + |g − h|S(n)

for g, h ∈ H(RN ) and it corresponds to the topology of local uniform convergence.
Above we set |f |S(n) = sup|x|=n |f(x)| for f ∈ H(RN ).

Aldred and Armitage [2, theorem 1] proved that given any function ϕ : R+ → R+

with ϕ(r) → ∞ as r → ∞, there exists a harmonic function h ∈ H(RN ) which is a
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∂/∂xk-hypercyclic vector, for 1 � k � N , such that

M2(h, r) � ϕ(r)
er

r(N−1)/2

for r > 0 sufficiently large. Furthermore, they showed there does not exist a ∂/∂xk-
hypercyclic vector h ∈ H(RN ) that satisfies

M2(h, r) � C
er

r(N−1)/2
(2.2)

for r > 0 and any constant C > 0. Strictly speaking, the results in [2] are stated for
the more general concept of universality of the family {Dα : α ∈ N

N} of all partial
derivatives and the preceding hypercyclicity growth results for ∂/∂xk are implicit
in the proofs.

Subsequently, Blasco et al. [8, § 4] considered the frequently hypercyclic case,
where they obtained the following L2-growth rates for 1 � k � N .

1. Let ϕ : R+ → R+ be any function with ϕ(r) → ∞ as r → ∞. Then there exists
a ∂/∂xk-frequently hypercyclic function h ∈ H(RN ) with

M2(h, r) � ϕ(r)
er

rN/2−3/4

for r > 0 sufficiently large.

2. Let ψ : R+ → R+ be any function with ψ(r) → 0 as r → ∞. Then there is no
∂/∂xk-frequently hypercyclic vector h ∈ H(RN ) with

M2(h, r) � ψ(r)
er

rN/2−3/4

for r > 0 sufficiently large.

Moreover, they asked [8, § 6] whether there exists a ∂/∂xk-frequently hypercyclic
vector h ∈ H(RN ) such that the above function ϕ can be replaced with a constant
in the growth rate.

We answer this question in the positive in the following theorem, using a mod-
ification of the approach of Drasin and Saksman [11] in the case of the entire
functions.

Theorem 2.1. Let N � 2 and 1 � k � N . Then for any constant C > 0 there exists
a ∂/∂xk-frequently hypercyclic harmonic function h ∈ H(RN ) such that

M2(h, r) � C
er

rN/2−3/4
(2.3)

for all r > 0.

Similar to [11], the argument involves the explicit construction of a function in
H(RN ) that is a frequently hypercyclic vector for ∂/∂xk. By contrast, [8] applies
a generalization of the Frequent Hypercyclicity Criterion in an associated separa-
ble weighted Banach space of harmonic functions which is densely embedded in
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(H(RN ), d), but this general technique does not appear to be available in the case
of the minimal growth rate (2.3). It is also worthwhile to note the qualitative differ-
ence between (2.3) and the corresponding behaviour (2.2) of the ∂/∂xk-hypercyclic
harmonic functions from [2].

Furthermore, forN = 2 the claim can be deduced from the entire function case, as
given in [11], by considering the real part of a corresponding frequently hypercyclic
entire function possessing minimal L2-growth (cf. the comments which appear at
the beginning of the proof of proposition 5.2). Thus we are essentially concerned
with the case N � 3, which turns out to involve different tools compared to the
case N = 2. The required harmonic function is constructed in § 4 and we prove
it is frequently hypercyclic for ∂/∂xk in § 5. The argument is completed in § 6 by
showing it has the desired minimal growth rate (2.3).

3. Harmonic polynomials

We recall in this section the crucial background and auxiliary results from [2,8,13]
regarding harmonic polynomials on R

N needed to prove theorem 2.1. The space of
homogeneous harmonic polynomials on R

N of homogeneity degree m � 0 is denoted
by Hm(RN ). The harmonic analogue of the standard power series representation
of holomorphic functions states that any h ∈ H(RN ) has a unique expansion of the
form

h =
∞∑

m=0

Hm (3.1)

where Hm ∈ Hm(RN ) for each m � 0 and the expansion converges in the metric
d, see [5, corollary 5.34]. Moreover, 〈Hj , Hk〉r = 0 when j 	= k, so by orthogonality
one has for any r > 0 that

M2
2 (h, r) =

∞∑
m=0

M2
2 (Hm, r).

The references [4,5] contain further useful background information on harmonic
functions and the spaces Hm(RN ) are discussed in detail in [5, chapter 5] and
[4, chapter 2].

It will be enough to prove theorem 2.1 in the case of ∂/∂x1 and this will be our
standing assumption in the sequel. The cases ∂/∂xk for k = 2, . . . , N can be dealt
with analogously.

For any x = (x1, . . . , xN ) ∈ R
N , we recall a function f : R

N → R is said to be x1-
axial if f(x) depends only on x1 and (x2

2 + · · · + x2
N )1/2. This means f is invariant

under rotation around the x1-axis, that is

f(x1, x2, . . . , xN ) = f(y1, y2, . . . , yN )

whenever x1 = y1 and x2
2 + · · · + x2

N = y2
2 + · · · + y2

N .
Kuran [13] used x1-axial polynomials to construct a specific orthogonal represen-

tation of Hm(RN ), see (3.2) below, which will be crucial for our construction. The
starting point is the following fact due to Brelot and Choquet [10, proposition 4]
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(see also [4, 2.3.8]), where dm,N denotes the dimension of Hm(RN ): there exists an
x1-axial polynomial Im,N in Hm(RN ) satisfying Im,N (1, 0, . . . , 0) = 1, for which
every x1-axial element of Hm(RN ) is proportional to Im,N and

M2(Im,N , r) = rm (dm,N )−1/2

for r > 0. It can be shown [5, proposition 5.8] that d0,2 = 1 and

dm,N =
N + 2m− 2
N +m− 2

(
N +m− 2

m

)
for N +m � 3.

Kuran [13] defined homogeneous (but not necessarily harmonic) polynomials of
degree m > 0 on R

N by

I∗m,N+2p(x1, . . . , xN ) = Im,N+2p(x1, . . . , xN ,

2p︷ ︸︸ ︷
0, . . . , 0)

for p ∈ N. We denote by H0
m(RN ) the subspace

H0
m(RN ) =

{
H ∈ Hm(RN ) : ∂H/∂x1 ≡ 0

}
.

We will need the following reformulation of [13, theorems 2,3] which is recalled
from [2, lemma 3].

Proposition 3.1. Let m ∈ N.

1. For p ∈ N, if u ∈ H0
p(R

N ) then uI∗m,N+2p ∈ Hm+p(RN ) and

dm,N+2pM
2
2 (uI∗m,N+2p, 1) = M2

2 (u, 1).

2. If H ∈ Hm(RN ) then H has a unique representation

H =
m∑

p=0

upI
∗
m−p,N+2p (3.2)

where up ∈ H0
p(R

N ) for p = 0, . . . , m and the terms in (3.2) are mutually
orthogonal with respect to 〈 ·, · 〉r.

The preceding result allowed Aldred and Armitage [2] to define linear maps
Pk : Hm(RN ) → Hm+k(RN ), for k � 0, by

Pk(H) =
m∑

p=0

(m− p)!
(m− p+ k)!

upI
∗
m−p+k,N+2p (3.3)

where H ∈ Hm(RN ) has the representation (3.2). In view of the following funda-
mental lemma, taken from [2, lemma 4], we will refer to Pk(H) as the kth primitive
of H.
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Lemma 3.2. Let m, k � 0 and N � 2. If H ∈ Hm(RN ) then Pk(H) ∈ Hm+k(RN ),

∂k

∂xk
1

Pk(H) = H

and

M2
2 (Pk(H), 1) � ck,m,NM

2
2 (H, 1) (3.4)

where

ck,m,N =
(N + 2m− 2)!

k!(N + 2m+ k − 3)!(N + 2m+ 2k − 2)
.

For fixed m, we will use the simpler estimate

ck,m,N � cm
(k +m)!2(k +m+ 1)N−2

(3.5)

for k ∈ N, (cf. line (4.2) in [8, p. 52]). Here

cm = c(m,N) (3.6)

and the exact bound in (3.6) is not important for our purposes, but we may assume
that m �→ cm is increasing.

Finally, the following compatibility property of the different maps Pk defined by
(3.3) will be technically convenient.

Lemma 3.3. Let H ∈ Hm(RN ) and k, � � 0. Then

Pk+�(H) = Pk (P�(H)) .

Proof. P�(H) ∈ Hm+�(RN ) and hence

Pk (P�(H)) = Pk

(
m∑

p=0

(m− p)!
(m− p+ �)!

upI
∗
m−p+�,N+2p

)

=
m∑

p=0

(m− p)!
(m− p+ k + �)!

upI
∗
m−p+k+�,N+2p = Pk+�(H).

�

4. Construction of the harmonic function h

LetN � 2 be fixed. The set of harmonic polynomials on R
N is dense in the separable

Fréchet space (H(RN ), d), so we can fix a d-dense sequence of harmonic polynomials
(Fk) ⊂ H(RN ). For technical simplicity, we will also assume that each polynomial
is repeated infinitely often in the sequence. For each k � 0, we let mk be the degree
of Fk and by (3.1) there is a unique representation

Fk =
mk∑
j=0

Hk,j (4.1)
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Figure 1. Scope of the degrees of the polynomials contained in Qn.

where Hk,j ∈ Hj(RN ) for j = 0, . . . , mk. We associate with each Fk an odd integer
�k ∈ N, so that the sequence (�k) is strictly increasing and

�k � 2mk + cmk
2k
(
M2

2 (Fk, 1) + 1
)

(4.2)

where cmk
is as defined in (3.6). The final choice for (�k) will be made later in (6.8),

depending on a given constant C > 0.
We can unambiguously define the nth primitive of Fk for all n ∈ N as

Pn(Fk) =
mk∑
j=0

Pn(Hk,j)

where each Pn(Hk,j) ∈ Hn+j(RN ) is as defined in (3.3). It follows from lemma 3.2
that

∂n

∂xn
1

Pn(Fk) = Fk.

We next introduce the sets

Ak =
{
(2m− 1)�k2k : m � 1

}
(4.3)

for each k � 1. Since each integer �k is odd, we note that the Ak are pairwise disjoint
infinite arithmetic sequences, so that

⋃
k�1 Ak is a partition of some subset of the

even natural numbers.
To construct the required harmonic function, we define for each n ∈ Ak a har-

monic polynomial Qn which is a finite sum of suitable primitives of the harmonic
polynomial Fk.

We first let Qn = 0 whenever n /∈ ⋃k�1 Ak (this includes all odd integers n) or
n = 0. Suppose next that the even integer n ∈ Ak, for a fixed unique k. If n < 10�k,
we set Qn = 0 and for n = (2m− 1)�k2k � 10�k, we define

Qn =
(2m−1)2k∑

j=1

Pn2+j�k
(Fk).

We note that the degrees of the primitives of the associated harmonic polynomial
Fk contained in Qn are supported on the interval (n2, n2 + n+mk], as illustrated
in figure 1.
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Figure 2. Scope of the degrees of the polynomials Qn.

Finally, we define

h =
∞∑

n=1

Qn =
∞∑

k=1

∑
n∈Ak

Qn (4.4)

and we proceed to show in §§ 5 and 6 that h satisfies the claims of theorem 2.1.
Note we must also verify that h is defined on the whole of R

N and that h ∈ H(RN ).
Since the details are closely related to the estimates in § 5 we defer this discussion
until remark 5.3.

The estimates in §§ 5 and 6 will frequently use the fact that the respective sets
of homogeneity degrees of the harmonic polynomials appearing in Qn and Qn′ are
disjoint whenever n 	= n′. That is 〈Qn, Qn′ 〉r = 0 for any r > 0, so that Qn and
Qn′ are orthogonal for M2( · , r). In fact, if Fk =

∑mk

q=0Hk,q and n = (2m− 1)

�k2k ∈ Ak, then the homogeneity degrees related to Qn =
∑(2m−1)2k

j=1 Pn2+j�k
(Fk)

are contained in the interval (n2, n2 + n+mk]. These intervals are pairwise disjoint
for different n, as illustrated in figure 2, since in view of (4.2)

n2 + n+mk < (n+ 1)2.

5. Frequent hypercyclicity of h

The aim of this section is to prove in proposition 5.2 that the function h defined
in (4.4) is a frequently hypercyclic vector in H(RN ) for the partial differentiation
operator ∂/∂x1. Towards this end, we first point out that convergence in the average
L2-norm on the sphere S(2r) of radius 2r gives convergence in the sup-norm on S(r)
for any r > 0. This depends on basic facts about the Poisson kernel, which we first
recall (the details can be found in [5, chapter 1] or [4, § 1.3]).

We denote the open ball of radius r > 0 centred at the origin of R
N by B(r) and

put B = B(1). Moreover, let B(r) be the closed ball and S = S(1) the unit sphere.
The Poisson kernel of B is the function P : B × S → R defined as

P (x, y) =
1 − |x|2
|x− y|N

for x ∈ B and y ∈ S. It is well known for any harmonic function h ∈ H(B) that we
have

h(x) =
∫

S

P (x, y)h(y) dσ(y) (5.1)
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for all x ∈ B and where σ = σ1 is the normalized (N − 1)-dimensional measure on
S, as introduced in § 2.

Lemma 5.1. Let h be a harmonic function on B(2r) ⊂ R
N , for r > 0 and N � 2.

Then

sup
|x|=r

|h(x)| � cNM2(h, 2r)

where cN is a constant depending only on N .

Proof. For any x ∈ B with |x| � 1/2, it follows from (5.1) and the Cauchy-Schwarz
inequality that

|h(x)| �
∫

S

P (x, y)|h(y)|dσ(y)

�
(∫

S

(P (x, y))2 dσ(y)
)1/2

M2(h, 1) = cNM2(h, 1) (5.2)

where cN depends only on N .
Since dilations preserve harmonicity, we can extend (5.2) to any ball of radius

2r > 0. To see this let h2r(x) = h(2rx) and notice for any x ∈ B with |x| � r that
according to the appropriate normalizations

sup
|x|�1/2

|h2r(x)| � cNM2(h2r, 1)

= cN

(∫
S

|h(2ry)|2 dσ(y)
)1/2

= cN

(∫
S(2r)

|h(y)|2 dσ2r(y)

)1/2

= cNM2(h, 2r).

This yields the claim. �

Proposition 5.2. Let h ∈ H(RN ) be as defined in (4.4). Then h is a frequently
hypercyclic vector in H(RN ) for the partial differentiation operator ∂/∂x1 for any
strictly increasing sequence (�k) satisfying (4.2).

Proof. We first note that for N = 2 the complete result in theorem 2.1 can be
deduced from the corresponding case for the entire functions in [11]. In fact, let f0 =
u0 + iv0 be a frequently hypercyclic entire function for the differentiation operator
g �→ g′ having minimal L2-growth on S(r). Then u0 = Re(f0) is a harmonic function
on C = R

2 and M2(u0, r) � M2(f0, r) for all r > 0. It is not difficult to check that
u0 is a frequently hypercyclic vector for ∂/∂x1 in H(R2). Consequently, we may
(and will) assume for the rest of the argument that N � 3.

To begin the actual argument, for any k � 1 and n = (2m− 1)�k2k ∈ Ak with
n � 10�k let

Bn,k =
{
n2 + j�k : 1 � j � (2m− 1)2k

}
.
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We claim that the union

Bk =
⋃

n∈Ak

Bn,k

has positive lower density for any k � 1. In fact, suppose n = (2m− 1)�k2k ∈ Ak

for some m � 1 and consider a given integer t ∈ [n2, n2 + 2n]. By inspection Bk

contains (2u− 1)2k integers from the interval[
(2u− 1)2�2k22k, (2u+ 1)2�2k22k

)
for each u = 1, . . . , m− 1, so that

# (Bk ∩ {s ∈ N : 0 � s � t})
t

�
2k
(∑m−1

u=1 (2u− 1)
)

(2m+ 1)2 �2k 22k
=

(m− 1)2

(2m+ 1)2 �2k 2k

which tends to 1/(4�2k, 2
k) as m→ ∞. Clearly this estimate yields that Bk has

positive lower density.
Fix r > 0 and let F̃ ∈ (Fu)u�1 as well as ε > 0 be given. By construction, we can

find an Fk from our dense sequence (Fk) such that F̃ = Fk and the corresponding
integer �k � (er)2. We claim for k large enough it holds that

M2

(
F̃ − ∂s

∂xs
1

h, r

)
� ε (5.3)

for all s ∈ Bn,k, where n = (2m− 1)�k2k ∈ Ak and n � 10�k.
Suppose s = n2 + t�k ∈ Bn,k for some integer 1 � t � (2m− 1)2k. To compute

(∂s/∂xs
1)h note first that (∂s/∂xs

1)Q{n′} = 0 for n′ < n. Moreover, by construction
and lemma 3.3, we get after relabelling that

∂s

∂xs
1

Qn =
(2m−1)2k∑

j=1

∂s

∂xs
1

Pn2+j�k
(Fk) = Fk +

(2m−1)2k∑
j=t+1

∂s

∂xs
1

Pn2+j�k
(Fk)

= Fk +
(2m−1)2k−t∑

j=1

Pj�k
(Fk).

Here we used that (∂s/∂xs
1)P{n2+j�{k}}(Fk) = 0 for j < t, since n2 + j�k +mk < s.

The next term in h is Qn+1 ≡ 0, since n+ 1 is odd and hence

∂s

∂xs
1

h− Fk =
(2m−1)2k−t∑

j=1

Pj�k
(Fk) +

∞∑
j=n+2

∂s

∂xs
1

Qj =: F +G. (5.4)

Before we proceed to estimate M2
2 ((∂s/∂xs

1)h− Fk, r), it is convenient to calcu-
late first an upper bound that will be needed later in this proof. For any n, k ∈ N
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we consider the primitive Pn(Fk), where Fk is a harmonic polynomial from our
dense sequence (Fk). By orthogonality and (4.1), we have for any r > 0 that

M2
2 (Pn(Fk), r) �

mk∑
i=0

M2
2 (Pn(Hk,i), r)

and furthermore, by (3.4), (3.5) and homogeneity it follows for each i = 0, . . . , mk

that

M2
2 (Pn(Hk,i), r) � cir

2(n+i)M2
2 (Hk,i, 1)

(n+ i)!2(n+ i+ 1)N−2
.

Applying Stirling’s formula and the fact that ci � cmk
for i = 0, . . . , mk, it follows

that

cir
2(n+i)

(n+ i)!2(n+ i+ 1)N−2
� cmk

(er)2(n+i)

2π(n+ i)2(n+i)(n+ i)N−1
.

Combining the above and using orthogonality, we get that

M2
2 (Pn(Fk), r) � cmk

2πnN−1

mk∑
i=0

(er)2(n+i)M2
2 (Hk,i, 1)

(n+ i)2(n+i)
. (5.5)

Following these preparations we next estimate M2
2 (F, r), where F is as defined

on the right-hand side of (5.4). For each harmonic polynomial Pj�k
(Fk) we get from

(5.5) that

M2
2 (Pj�k

(Fk) , r) � cmk

2π�N−1
k

mk∑
i=0

(er)2(j�k+i)M2
2 (Hk,i, 1)

(j�k + i)2(j�k+i)
.

By the fact that �k � (er)2 it follows that

(er)2(j�k+i)

(j�k + i)(j�k+i)
� 1

and hence by orthogonality

M2
2 (Pj�k

(Fk) , r) � cmk

2π�N−1
k �jk

M2
2 (Fk, 1).

By summing up, we have that

(2m−1)2k−t∑
j=1

M2
2 (Pj�k

(Fk) , r) � cmk

2π�N−1
k

M2
2 (Fk, 1)

∞∑
j=1

1
�jk

� 1
2π�N−1

k

· cmk
M2

2 (Fk, 1)
�k

(
1

1 − (1/�k)

)
� 1

2�N−1
k
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where we applied (4.2) and a geometric series estimate. We conclude that

M2
2 (F, r) � 1

2�N−1
k

. (5.6)

Next, we estimate M2
2 (G, r), where G is defined on the right-hand side of

(5.4). Suppose j � n+ 2 with j = (2m′ − 1)�k′2k′ ∈ Ak′ for some k′, m′ � 1. By
orthogonality, we have

M2
2

(
∂s

∂xs
1

Qj , r

)
=

(2m′−1)2k′∑
q=1

M2
2

(
Pj2−s+q�k′ (Fk′), r

)
and by (5.5) it follows for each harmonic polynomial Pj2−s+q�k′ (Fk′) that

M2
2

(
Pj2−s+q�k′ (Fk′), r

)
� cmk′

2π(j2 − s+ q�k′)N−1

mk′∑
i=0

(er)2(j
2−s+q�k′+i)M2

2 (Hk′,i, 1)
(j2 − s+ q�k′ + i)2(j2−s+q�k′+i)

.

Recall next that 1 � t � (2m− 1)2k and n � t�k so that

j2 − s � (n+ 2)2 − n2 − t�k > 2n. (5.7)

Applying the fact that n � 10�k � (er)2 one also has

(er)2(j
2−s+q�k′+i)

(2n+ q�k′)j2−s+q�k′+i
� 1

for i = 0, . . . , mk′ . By adding these estimates, applying (5.7) and using the fact
that n � 10�k, we get again by orthogonality that

M2
2

(
Pj2−s+q�k′ (Fk′), r

)
� cmk′M

2
2 (Fk′ , 1)

2π�N−1
k (2n+ q�k′)j2−s+q�k′

.

From this estimate, we get that

M2
2

(
∂s

∂xs
1

Qj , r

)
=

(2m′−1)2k′∑
q=1

M2
2

(
Pj2−s+q�k′ (Fk′), r

)
�

∞∑
q=1

cmk′M
2
2 (Fk′ , 1)

2π�N−1
k (2n+ q�k′)j2−s+q�k′

� cmk′M
2
2 (Fk′ , 1)

2π�N−1
k (2n)j2−s

∞∑
q=1

1
�qk′

� 1
2π�N−1

k (2n)j2−s
· cmk′M

2
2 (Fk′ , 1)
�k′

(
1

1 − (1/�k′)

)
� 1

2�N−1
k (2n)j2−s

where we again applied (4.2) and a crude geometric series estimation.
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By summing over j � n+ 2, we arrive at

∞∑
j=n+2

M2
2

(
∂s

∂xs
1

Qj , r

)
� 1

2�N−1
k

∞∑
j=n+2

1
(2n)j2−s

� 1
2�N−1

k

(5.8)

where we again used a geometric series estimation and that n � 10�k.
By combining (5.6) and (5.8), and taking into account orthogonality and the fact

that N � 3, we finally get that

M2
2

(
F̃ − ∂s

∂xs
1

h, r

)
� 1
�2k
.

Since F̃ = Fk for infinitely many k and the sequence (�k) is strictly increasing, we
can certainly find k such that �−2

k < ε.
In conclusion, we have shown that we can estimate F̃ up to any given ε > 0 by

partial derivatives of h associated with Ak in the L2-norm on the sphere S(r) for
any fixed r > 0. By applying lemma 5.1 we obtain a similar estimate in the sup-
norm on the closed ball B(r/2). This completes the proof of proposition 5.2, since
for each k the set Bk corresponding to Ak has positive lower density. �

This is a suitable point to verify that h defined in (4.4) does indeed define a
harmonic function on R

N .

Remark 5.3. We claim that h ∈ H(RN ). Let r > 0 be fixed. Observe that if n ∈ Ak

and we take s = 0 in the upper bound in (5.8) for the remainder G0 =
∑∞

j=n+2Qj

defined in (5.4), then by following the argument from proposition 5.2 we obtain
that

M2
2

⎛⎝ ∞∑
j=n+2

Qj , r

⎞⎠ � 1
�2k

for all large enough k (depending on r). This implies by lemma 5.1 that the remain-
der term of the series defining h in (4.4) converges uniformly to 0 on the closed ball
B(r/2) for any fixed r > 0. By completeness, the partial sums of h then converge
to a harmonic function defined on the whole of R

N .

6. Growth rate of h

In this section, we complete the proof of theorem 2.1 by showing that the frequently
hypercyclic harmonic function h from (4.4) has the desired minimal L2-growth rate
as soon as the sequence (�k) from (4.2) grows fast enough. For this purpose, we
need the following useful lemma which is a variant of [8, lemma 2.2].

Lemma 6.1. Let N � 2 be given. Then there exists a constant C > 0 such that for
all given integers � � 1, u ∈ {0, . . . , �− 1} and radii r > 0 it holds that

∞∑
k=�

r2(�k+u)

(�k + u)!2(�k + u+ 1)N−2
� C

�
· e2r

rN−3/2
.
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For the proof of the lemma we record the following useful observation.

Lemma 6.2. Let (an)n�0 be a summable sequence of non-negative real numbers, for
which there exists n0 � 2 such that the elements n �→ an are increasing for n � n0

and decreasing for n � n0. Then for any � � 2 and any u ∈ {0, . . . , �− 1} we have

∞∑
k=1

ak�+u � �−1

( ∞∑
n=0

an

)
+ 2 sup

n�0
an.

In the case when the sequence (an)n�0 is decreasing we have the stronger estimate

∞∑
k=1

ak�+u � �−1

( ∞∑
n=0

an

)
.

Proof. Let k � 0 be given. If k�+ u � n0 − �+ 1 we obtain that

ak�+u � �−1(ak�+u + ak�+u+1 + · · · + ak�+u+�−1)

since the sequence (an) is increasing for these indices. Correspondingly, if k�+ u �
n0 + � we get that

ak�+u � �−1(ak�+u−�+1 + ak�+u−�+2 + · · · + ak�+u)

since (an) is decreasing here. We obtain the claim by summing these estimates over
all possible values of k and noting that all indices k such that k�+ u 	∈ [n0 − �+
1, n0 + �] are covered, apart from at most two. �

Proof of lemma 6.1. We may assume without loss of generality that r � 2. We start
by recalling the following estimate, which can be found in [8, lemma 2.2]

∞∑
k=0

r2n

n!2
� e2r

r1/2
, for r > 0. (6.1)

Here (and below) � denotes an inequality up to a numerical constant. By noting
that

r2(n+1)/(n+ 1)!2

r2n/n!2
=
(

r

n+ 1

)2

(6.2)

and using Stirling’s formula to estimate both the �rth and the (�r + 1)th terms,
we easily verify that the maximal term of the above series satisfies the estimate

r2n

n!2
� e2r

r
. (6.3)

From (6.1), we deduce immediately that∑
n��r/2�

r2n

n!2(n+ 1)N−2
� e2r

rN−3/2
, for r > 0. (6.4)
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On the other hand, by the monotonicity of the terms and Stirling’s formula, we
have the crude bound

∑
n<�r/2�

r2n

n!2(n+ 1)N−2
�

∑
n<�r/2�

r2n

n!2
� �r/2

(�r/2�r/2�

�r/2!
)2

� r

(
er/2

r1/2

)2

= er � e2rr3/2−N . (6.5)

In combination with (6.4) this yields that

∞∑
n=0

r2n

n!2(n+ 1)N−2
� e2r

rN−3/2
, for r > 0. (6.6)

We next observe that (6.5) implies that the maximal term among the first �r/2
terms of the series

∞∑
n=0

r2n

n!2(n+ 1)N−2

is dominated by er. On the other hand, in view of (6.3) the remaining terms of this
series have the upper bound � e2rr1−N . A fortiori, the latter bound is an upper
bound for all the terms of the sum (6.6).

Next observe that for each r > 0 the function

n �→ log
(

r2n

n!2(n+ 1)N−2

)
is concave for n � n0(N), where the bound only depends on N . Assuming this for
a moment, we complete the proof of lemma 6.1 as follows. The concavity allows us
to invoke lemma 6.2 for large enough � � �0(N) and we deduce that

∞∑
k=2�

r2(�k+u)

(�k + u)!2(�k + u+ 1)N−2
� C

�
· e2r

rN−3/2
+ e2rr1−N .

For r � �2 this inequality immediately yields the desired estimate. On the other
hand, if r < �2 one notes that the left-hand series is decreasing starting from
the index k = �, whence the claim follows directly from the second statement in
lemma 6.2.

To verify the claim about concavity we consider the related function

ψ(x) := 2x log r − (log (Γ(x+ 1)) + (N − 2) log(x+ 1)) .

It follows from (31) of [1, p. 200] that the second derivative of the logarithmic
gamma function is

ψ′′(x) = −
∞∑

n=0

1
(x+ n+ 1)2

+
N − 2

(x+ 1)2
.
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This implies that ψ′′(x) < 0 for all x > xN , since

�x�∑
n=0

1
(x+ 1 + n)2

� x

(2x+ 1)2
.

�

The proof of theorem 2.1 is completed by the following proposition.

Proposition 6.3. Let h ∈ H(RN ) be as defined in (4.4). Then for any given con-
stant C > 0 there exists a choice of (�k) so that the ∂/∂x1-frequently hypercyclic
harmonic function h ∈ H(RN ) satisfies

M2(h, r) � C
er

rN/2−3/4

for all r > 0.

Proof. Recall that h has the representation h =
∑∞

k=1

∑
n∈Ak

Qn whence

M2
2 (h, r) =

∞∑
k=1

∑
n∈Ak

M2
2 (Qn, r)

by orthogonality for any r > 0. Moreover, for any fixed k and any n = (2m− 1)
�k2k ∈ Ak we further obtain, by orthogonality, (4.1), (3.4), (3.5), as well as changing
the order of summation, that

M2
2 (Qn, r) =

(2m−1)2k∑
j=1

M2
2

(
Pn2+j�k

(Fk), r
)

=
(2m−1)2k∑

j=1

mk∑
q=0

M2
2

(
Pn2+j�k

(Hk,q) , r
)

� cmk

mk∑
q=0

M2
2 (Hk,q, 1)

(2m−1)2k∑
j=1

r2(n
2+j�k+q)

(n2 + j�k + q)!2(n2 + j�k + q + 1)N−2
.

We also used above that cq � cmk
for 0 � q � mk.

Recall next that the sets
{
n2 + j�k : 1 � j � (2m− 1)2k

}
are pairwise disjoint as

the n = (2m− 1)�k2k ∈ Ak vary. Hence we may add the above estimates over the
disjoint blocks of indices corresponding to n ∈ Ak. Using the facts that n � 10�k,
�k divides n, by orthogonality and applying lemma 6.1, we obtain that∑

n∈Ak

M2
2 (Qn, r) � cmk

mk∑
q=0

M2
2 (Hk,q, 1)

∞∑
j=2�k

r2(j�k+q)

(j�k + q)!2(j�k + q + 1)N−2

� cmk

mk∑
q=0

C ′M2
2 (Hk,q, 1)
�k

· e2r

rN−3/2

= C ′ cmk
M2

2 (Fk, 1)
�k

· e2r

rN−3/2
(6.7)
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where the numerical constant C ′ > 0 from lemma 6.1 is independent of �k and
q = 0, . . . , mk.

As the final step, we successively choose the integers of the increasing sequence
(�k) large enough so that (4.2) is satisfied and in addition,

C ′
∞∑

k=1

cmk
M2

2 (Fk, 1)
�k

� C2 (6.8)

where C > 0 is the given constant in the proposition. By summing (6.7) over k and
taking (6.8) into account, we arrive at the desired growth estimate

M2
2 (h, r) =

∞∑
k=1

∑
n∈Ak

M2
2 (Qn, r) � C2 e2r

rN−3/2
.

�

Combining propositions 5.2 and 6.3, we have established theorem 2.1.

7. Concluding remarks

A natural further question is, what are the precise growth rates of the Lp-norm on
S(r) for ∂/∂xk-frequently hypercyclic harmonic functions h ∈ H(RN ) for p 	= 2? A
comparison with the entire functions case [11] indicates that additional tools will
be required. Note that [3] and [8] also contain results related to general partial
differentiation operators Dα on H(RN ) for α = (α1, . . . , αN ).

Acknowledgements
C. Gilmore and E. Saksman have been supported by the Academy of Finland via
the Centre of Excellence in Analysis and Dynamics Research (project no. 271983).
C. Gilmore has also been supported by the Doctoral Programme in Mathematics
and Statistics of the University of Helsinki. This paper forms part of the PhD thesis
of C. Gilmore under the advice of H.-O. Tylli.

References

1 L. V. Ahlfors. Complex analysis, 3rd edn (New York: McGraw-Hill Book Co., 1978).

2 M. P. Aldred and D. H. Armitage. Harmonic analogues of G. R. MacLane’s universal
functions. J. London Math. Soc. (2) 57 (1998), 148–156.

3 M. P. Aldred and D. H. Armitage. Harmonic analogues of G. R. Mac Lane’s universal
functions. II. J. Math. Anal. Appl. 220 (1998), 382–395.

4 D. H. Armitage and S. J. Gardiner. Classical potential theory. Springer Monographs in
Mathematics (London: Springer-Verlag, 2001).

5 S. Axler, P. Bourdon and W. Ramey. Harmonic function theory, 2nd edn volume 137 of
Graduate Texts in Mathematics (New York: Springer-Verlag, 2001).

6 F. Bayart and S. Grivaux. Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358
(2006), 5083–5117.
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