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Interaction between body motion and fluid motion is considered inside a nonlinear viscous
wall layer, with this unsteady two-way coupling leading to impact of the body on the wall.
The present paper involves a reduced system analysis which is shown to be consistent
with computational solutions from direct numerical simulations for a basic flat-plate shape
presented in an allied paper (Palmer & Smith, J. Fluid Mech., 2020). The occurrence of
impact depends mainly on fluid parameters and initial conditions. The body considered
is translating upstream or downstream relative to the wall. Subsequent analysis focusses
on the unusual nature of the impact at the leading edge. The impacting flow structure
is found to have two nonlinear viscous–inviscid regions lying on either side of a small
viscous region. The flow properties in the regions dictate the lift and torque which drive
the body towards the wall. Pronounced flow separations are common as the impact then
cuts off the mass flux in the gap between the body and the wall; here, a nonlinear similarity
solution sheds extra light on the separations. Comparisons are made between results from
direct simulations and asymptotics at increased flow rate.

Key words: particle/fluid flow

1. Introduction

Impact of a body onto a solid wall, following the travel of the body through a near-wall
shear layer, is studied in the present work. The motion of the body and that of the
surrounding fluid flow influence each other comparably and substantially. The motivations
for the work concern aircraft safety, especially when subjected to substantial disturbances
due to ice crystals, ice lumps or other bodies in a boundary layer of air flow on a wing
(Gent, Dart & Cansdale 2000; Schmidt & Young 2009; Purvis & Smith 2016); such
disturbances take many shapes and sizes but the case of a thin crystal is a fundamental
one. There is also relevance to the transport of debris and dust in wider applications, to
the movement of drugs or thrombi in blood vessel networks or lung airways, for example,
and to atmospheric configurations.

Fluid dynamical issues of relevance centre on experimental and computational work
on boundary layers, channel flows and related motions, instabilities, the attraction or
repulsion between a body and a nearby wall, flow separations and previous work
on solid–solid impacts, see Hall (1964), Einav & Lee (1973), Petrie et al. (1993),
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Portela, Cota & Oliemans (2002), Poesio et al. (2006), Wang & Levy (2006), Yu,
Phan-Thien & Tanner (2007), Loth & Dorgan (2009), Schmidt & Young (2009), Kishore
& Gu (2010), Smith & Ellis (2010), Loisel et al. (2013), Dehghan & Basirat Tabrizi (2014),
Smith & Johnson (2016) and Palmer & Smith (2019, 2020). The computational results in
this last paper (Palmer & Smith 2020) also highlight wake and upstream influence effects
and the importance of scales as the local Reynolds number increases.

Concerning impacts and fluid–body interactions our aim is to understand more about
the parametric effects and scales that govern the interactive behaviour. The recent findings
of Smith & Johnson (2016) and Smith (2017) suggest certain features in the linear regime.
These focus on the effects from different lengths and locations of a body, thickness ratios
and time scales. In general the effects act to destabilise the surrounding fluid motion,
although several stabilising features are found, most notably from sufficient flexibility of
the wall or the body or from slight streamwise movements of the body. The key parameters
highlighted in these two papers include the density ratio between the body and the fluid,
the characteristic Reynolds number, the fluctuation amplitude and the relative dimensions
of the body compared with the typical flow thickness of the boundary layer or channel.
The body shapes and initial conditions play a further significant role. Moreover, the above
raises interest in the nonlinear effects of a body moving upstream or downstream relative
to a nearby fixed wall. The body of concern in the present work is a thin body, subjected to
both viscous influences and nonlinear inertial influences from the surrounding fluid flow,
and the work is intended to be complementary to direct simulations.

The paper deals with fluid–body coupling in a boundary layer or channel flow in
particular for a relatively short body moving freely inside a viscous wall layer such that,
in the normal direction, the thicknesses of the body and the wall layer are comparable cf.
Smith & Palmer (2019). The effective Stokes number of the current interactions is assumed
to be of order unity: in general the body disturbs the flow significantly, it does not follow
the fluid particle paths closely as for a perfect tracer and it does not continue along its
initial trajectory with ballistic behaviour. The typical Reynolds number is large, however,
and so the near-wall behaviour is very sensitive within the viscous wall layer that arises.
The representative Froude number is large and hence gravity is nominally negligible. In
the context of an ice crystal within a boundary layer, the range of sizes of particles is of
the order 10−3 to 10−5 m. So the representative particle Reynolds number is 102 to 103 and
the global Reynolds number may be 104 to 106, while the Froude number is of the order
106. Further details on icing conditions and the range of physical parameters are described
in Norde (2017) and Palmer & Smith (2019).

The interplay between body movement and fluid dynamics here thus has significant
inertial and viscous components present along with fully nonlinear effects, which are able
to provoke flow separations. The unsteadiness is another substantial component in the
sense of the combined evolution of the fluid flow and the body position with time starting
from an initial-value state. The major spatial scales involved are those of the viscous
wall layer, but supplemented by those of a smaller adjustment zone which surrounds the
leading edge of the thin body and adjusts the behaviour there in response to conditions
downstream, while the major temporal scale is that of the body movement. The present
interactions are considered for two spatial dimensions.

Here a fundamental problem is tackled concerning fluid–body interaction in the
presence of an incident uniform shear flow close to a fixed wall. Section 2 describes
the coupling that is induced for the laminar two-dimensional flow involving unsteady
interactions with the body movement. So-called condensed flows, where interaction with
the flow outside the viscous wall layer is negligible, are induced which are governed by
the nonlinear boundary-layer equations. To be specific, the main interactions are derived
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for the boundary layer on an airfoil, focussing on a relatively close-up view. Notably,
however, the same problem holds for channel flow and for atmospheric boundary layers
for example. The set-up here is for a general shape of body but then the emphasis is put on
the fundamental case of the flat-plate body. Section 3 addresses the numerical solution of
the central problem. Then §§ 4 and 5 consider the resulting onsets of impact and related
phenomena using analysis to complement numerical work and comparisons with the work
of Palmer & Smith (2020). These onsets produce quite complex flow structure. Attention
is given to the effects of a small velocity uc of the body being positive, zero or negative
relative to the wall, and the unknown scaled wall pressure and scaled wall shear stress, or
WSS, are of interest throughout. Section 6 presents further discussion and conclusions.

2. The fluid–body coupling

In the boundary-layer scenario, fluid is flowing along an effectively flat surface, or wall,
and far from the wall the free stream is moving with a given constant velocity parallel to
that wall. This is locally on an airfoil surface, for example, or on a more general surface.
The working below for the flow around a comparatively thin short body moving freely near
the wall is expressed in terms of non-dimensional flow velocities (u, v), corresponding
Cartesian coordinates (x, y), time t and pressure p, such that the dimensional versions are
Ũ(u, v), L̃(x, y), L̃t/Ũ and (to within an additive constant) ρ̃Ũ2p respectively. Here Ũ is
the representative fluid velocity, taken to be the free-stream value, while L̃ is the airfoil
chord, ρ̃ is the uniform density of the incompressible fluid and the temporal factor L̃/Ũ
taken is the typical transport time. The velocity vector (u, v), pressure p and coordinates
x, y are generally of order unity except near the wall which locally is positioned along the
axis y = 0. In particular (u, v) is given by (1, 0) in the far field and the leading edge of
the airfoil is taken as the origin. The Reynolds number is given by Re = ŨL̃/ν̃ where ν̃
is the uniform kinematic viscosity of the fluid. The representative length of the body is �
which is �̃/L̃ and the primary concern is with the properties induced for a short body for
which � is small, when the Reynolds number is comparatively large. The body is generally
translating upstream or downstream but only at a slow rate and so over the time scales of
current interest the body is present at an effectively constant order-unity distance x0 say
downstream from the airfoil leading edge.

For large values of the Reynolds number Re, the thin boundary layer set up along the
undisturbed surface ahead of the near-wall body and also downstream of it is a classical
one having x scale of order unity. The y scale is of order Re−1/2, with u, p variations of
O(1) and v being of O(Re−1/2). The time scale there is of order unity. This boundary layer
and its local free stream form the oncoming and surrounding flow field for the body/fluid
interactive motion as in figure 1. The main range of interest is for scaled lengths such that

Re−3/4 � � � Re−3/8. (2.1)

The range of validity in (2.1) (Smith 1976; Smith & Daniels 1981) is actually quite a
large one in terms of the scales covered. Notably, the lower limit in (2.1) leads to a local
problem governed by the full Navier–Stokes equations with very small x − x0 and y values
of order Re−3/4 corresponding to a tiny particle. At the other extreme triple-deck theory
applies. In between the two extremes, orders of magnitude show that a thin wall sublayer
of thickness O(l1/3Re−1/2) is present (see figures 1a and 1b) with typical pressure variation
being of order l2/3: the displacement of the flow just outside the boundary layer due to the
dominant O(l2/3) pressure variation inside the boundary layer is then of order l5/3 and this
is small compared with the sublayer thickness which is O(l1/3Re−1/2) provided l � Re−3/8
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FIGURE 1. (a,b) Sketch of the freely moving body within a viscous–inviscid wall layer and the
resulting flow structure. The height W is the scaled normal distance from the straight wall to the
leading edge of the body.

as in (2.1). The flow structure for the range (2.1) is thus concentrated primarily in the
thin sublayer surrounding the moving body as in figures 1(a) and 1(b). In the sublayer at
leading order

(u, v, p) = (
�1/3U, �−1/3Re−1/2V, �2/3P

)
,

with x − x0 = �X, y = �1/3Re−1/2Y, t = α�2/3T,

}
(2.2)

where the large constant α is to be determined and the capital-lettered quantities are of
order unity. The body at an unknown position near the wall occupies the interval 0 < X <
1 in a frame translating slowly streamwise with the body, with the body thickness being
comparable with the sublayer height.

The Navier–Stokes equations then reduce to the quasi-steady condensed-flow
interaction (Smith 1976; Smith & Daniels 1981) in which

U = ΨY, V = −ΨX, (2.3a)

UUX + VUY = −PX(X,T)+ UYY, (2.3b)

within the gap I underneath the body and within the layer II above the body. Here Ψ is the
streamfunction. The unknown scaled pressure P(X,T) is independent of Y because of the
normal-momentum equation in each layer, such that

P = P+(X,T), P = P−(X,T) above and below the body respectively. (2.3c)
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The relevant boundary conditions are

U = Uw, V = 0 at Y = 0, (2.4a)

U = V = 0 at Y = F−(X,T), (2.4b)

(U,P) =
(
λY + Uw + a,

U2
w

2
− (Uw + a)2

2

)
at X = 0+, (2.4c)

in the gap I. Herein the superscripts +/− refer to the properties on top of and underneath
the body in turn. The requirements (2.4a,b) stem from the no-slip conditions at the wall
and on the moving under-surface F− of the body. The effective streamwise velocity Uw of
the wall is associated with the translation velocity uc of the body relative to the wall: clearly
if the body is translating upstream relative to the wall then Uw is positive. The conditions
in (2.4c) are due to an unknown pressure jump arising across an Euler region (Smith
et al. 2003) which surrounds the leading edge X = 0, with a corresponding jump a = a(T)
being induced in the streamwise velocity U to satisfy the quasi-steady Bernoulli balance.
We should emphasise that the jump a(T) is to be determined as part of the solution. The
positive O(1) factor λ in (2.4c) is the given scaled incident WSS, namely Re−1/2(∂u/∂y) at
y = 0, in the surrounding boundary layer locally, as in figures 1(a) and 1(b) but allowing
here for the moving frame. The Euler region is similar to that in Smith et al. (2003) and
Jones & Smith (2003), its streamwise extent being of order �1/3Re−1/2. In summary, the
physical need for the unknown pressure jump in (2.4c) at the leading edge stems from the
upstream influence due to conditions at the trailing edge and mass conservation beneath
the body. In the flow II on top of the body, by contrast, we have

U = V = 0 at Y = F+(X,T), (2.5a)

U ∼ λY + Uw as Y → ∞, (2.5b)

(U,P) = (λY + Uw, λaW) at X = 0+. (2.5c)

The condition (2.5a) is for no slip on the top moving surface of the body. The function F+

denotes the unknown scaled position of the body’s top surface which is addressed further
just below. The requirement (2.5b) of effectively zero displacement in Y corresponds to the
feedback effect from the flow outside the sublayer being relatively small and is in keeping
with the range specified in (2.1). Condition (2.5c) again comes from the Euler jump in
pressure and in velocity, subject to mass conservation at the body surface and to the zero
displacement associated with (2.5b); conservation of vorticity is assured because of the
local λY variation throughout. The term W is the scaled width of the gap at, or the height
of, the leading edge of the body and is in general an unknown function W = W(T) of the
scaled time.

We should comment additionally on certain features. The body, to repeat, is translating
with a small constant velocity uc which is assumed to be comparable with the fluid flow
velocity in (2.2) and thus gives rise to the scaled wall velocity Uw in the moving frame,
where uc = −�1/3Uw. Hence Uw can be positive or negative. The incident flow at X = 0−

is one of constant shear with a velocity profile U = λY + Uw for all Y ≥ 0 and is at zero
pressure. The different pressures P+ and P− induced above and below the body act to move
the body as described below. The moving surface shapes F+ and F− are given specifically
by

F±(X,T) = g±(X)+ h(T)+ (X − 1
2)θ(T). (2.6a)

Here g±(X) are the prescribed solid body shapes, atop and underneath, independent of
T , whereas h(T), θ(T) account for the evolving normal height and azimuthal rotation of
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the midpoint of the body. We deal with non-blunt bodies in the sense that g± are equal at
X = 0, and can be set to zero there without loss of generality; hence F± are equal there,
leading to the relation

W(T) = h(T)− 1
2θ(T), (2.6b)

between W, h and θ . Along with this the values g± are taken to be equal at the trailing
edge X = 1. Further, given that Ψ is zero at the wall, we note also the value

Ψ = λW
2

2
+ (Uw + a)W (2.6c)

holds for all 0 < X < 1 at the under and top surfaces of the body from integration of
(2.4c) across the gap. This value can also be used with (2.4c), (2.5c) to set the value of the
streamfunction for all Y values at X = 0+. Finally the condition

P+ = P− at X = 1 (2.6d)

applies, since there can be no pressure difference across the wake behind the body and a
Kutta condition of smooth departure of the flow from the trailing edge is imposed.

The body moves as it responds to the surrounding fluid flow via the differential pressure
forcing at the top and under surfaces of the body. The body motion is controlled by

MhTT =
∫ 1

0

(
P−(X,T)− P+(X,T)

)
dX(= CL), (2.7a)

JθTT =
∫ 1

0
(X − 1

2)
(
P−(X,T)− P+(X,T)

)
dX(= CM), (2.7b)

owing to the rates of change in the normal and angular momenta of the body. The
mass M̃ of the body is equal to α2ρ̃L̃2�8/3Re1/2M with M being of order unity, and
likewise the scaled moment of inertia J is O(1). The centre of mass is taken as fixed
at X = 1/2, which is a main case associated with a body of uniform density and any
shape length-wise symmetrical about the midpoint for example. The overall time scale is
based on the body motion. As an estimate M̃ is approximately ρ̃BṼ in two dimensions
where ρ̃B is the density of the body and the effective cross-sectional area Ṽ is the
product of the x and y scales in (2.2) multiplied by L̃2 through non-dimensionalisation.
Hence α2 is comparable with Re−1�−4/3ρ̃B/ρ̃. This means that the flow behaviour remains
quasi-steady provided the density ratio ρ̃B/ρ̃ � Re�4/3. Since the length � is O(Re−m)
where 3/8 < m < 3/4 from (2.1), the density ratio must exceed Ren where 0 < n < 1/2
(here n is 1 − 4m/3) and so the theory is valid over a wide range of density ratios.
Further in (2.7a,b) the P+ and P− responses are those produced by the fluid flow as
described in (2.3a)–(2.6d), thus provoking fluid–body interaction. In the streamwise
direction the body momentum and the relatively small fluid-flow forces are consistent with
the body velocity uc and hence the relative wall velocity Uw being constant as assumed
earlier.

The central problem of the current fluid–body interaction is to solve (2.3a)–(2.7b).
This is a nonlinear near-wall coupling which involves effects from viscous and inviscid
dynamics. Our concern is with W being of order unity as opposed to the range of large
W values considered by Palmer & Smith (2019). The argument has been presented for
a boundary-layer setting. A similar setting holds for channel flow and yields the same
problem, with scale ranges being different from (2.1) and showing that to leading order
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there is no influence from the opposite wall of the channel. The interaction can also be
expressed more broadly in terms of the local incident shear value alone. The present
paper addresses numerical and analytical properties for a flat-plate body in the next two
sections.

3. Numerical method and solutions

The numerical work used finite differencing based on a semi-implicit scheme for
the two boundary-layer calculations required at each time step. At each X station the
scheme iterates for the P± values in order to satisfy all the boundary conditions in the
normal direction. A two-stepping procedure as in Smith & Timoshin (1996) is adopted
to achieve second-order accuracy. In the normal direction we transformed η = Y/F− in
the fluid-filled gap region I and Ȳ = Y − F+ in the region II on top of the body. In each
region analysis for small positive X indicates that Blasius-like sublayers arise on each
solid surface, thus occurring at the wall and at the underbody and overbody surfaces.
The scheme coped satisfactorily with these irregularities by means of a transformation
X → X1/2 to render all the sublayer normal coordinates linear in the transformed X
coordinate and a sufficiently fine normal discrete step δη or δȲ to capture the Blasius-like
local forms. Concerning streamwise marching the scheme in essence guessed the value of
the slip jump a, marched forward successively in X and iterated on the a value in order
to meet the Kutta requirement. The scheme sets the small spatial steps δX, δη or δȲ and
temporal step δT such that typically 401 points were used in the streamwise direction,
401 normally and the time step was 0.001 or of that order. The uppermost boundary
condition was placed at a Ȳ value of 10 typically, while the marching in X extended
from zero to unity: the latter is discussed further below. Finite grid effects were tested by
varying these steps and placements and examining the changes to the solutions obtained,
indicating that the results shown here are accurate to within a 1 % error in pressure
typically. The time marching of the body-movement equations was discretised as an Euler
procedure.

The work focusses on the flat plate as a central case, for which g±(X) are zero. Solutions
are presented in figure 2(a–g). The initial conditions have (h, dh/dT, θ, dθ/dT) equal to
(2.5,−2, 1, 0), so the leading gap width W = 2 initially, while the moving wall velocity
Uw = 2 and (M, J) = (2, 0.3). Here, by definition J cannot exceed M/4 but otherwise
M, J have arbitrary positive values and we chose to use representative order-unity values
as mentioned. In figure 2(a) the movement of the flat-plate body is shown for successive
scaled times T from 0.1 to 0.7. The body’s inclination increases slightly as the body moves
towards the wall and the leading edge impacts upon the wall (or rather is on the verge
of impact) at a termination time of approximately 0.72. The corresponding development
of W, a, θ with time is displayed in figure 2(b) which confirms the gap closure as W
tends to zero at termination. The slip value a is initially positive, then decreases to
a small negative minimum and approaches a value close to zero at termination. The
angle θ increases throughout, finishing with a value of approximately 1.25 at termination.
Figure 2(c) presents the evolution of the scaled WSS (τg = ∂U/∂Y at Y = 0) at the wall;
eventually this becomes negative especially near the termination time at smaller X values
but owing to the moving wall there is no flow reversal near the wall. Instead flow reversal
takes place at the underbody prior to impact as indicated by the WSS (τb = −∂U/∂Y
at Y = F−(X,T)) there which is plotted in figure 2(d) at successive times. The implied
separation here is relatively benign at first (it was treated by a Flare approach; Anderson,
Tannehill & Pletcher (2016), see also figure 2e, f ), it first occurs at the trailing edge just
before a time T of 0.6 and it then spreads forward along the underbody, reaching an X
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FIGURE 2. Results for flat-plate (straight) body. (a) Moving body configuration at scaled
times T between 0.1 and 0.7. (b) Evolution of scaled height W(T), orientation angle θ(T) and
streamwise velocity jump a(T). (c) Scaled wall shear stress (WSS) τg vs X at increasing T . (d) As
(c) but for τb, the underbody surface shear stress. (e) Velocity profiles F−U at X values of 0.06
(α) and 0.24 (β) as T varies between 0.1 and 0.7. ( f ) Close-up of (e). (g) Gap pressure P = P−
vs X as T varies.
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station of approximately 0.15 at time 0.7. The corresponding pressure gradient produced
is initially favourable over the entire underbody chord as inferred from the plots of the
pressure P = P− in figure 2(g). The growth of the Blasius-like layers near the leading edge
tends to constrict the incoming flow and hence provoke a favourable pressure gradient
anyway at small X, for all times. At later times, however, the gradient becomes adverse
along much of the gap region as the separation region grows. The region of favourable
gradient is pushed much closer to the leading edge. Overall, the pressure P− at the opening
position X = 0+ remains negative but increasing for most of the evolution, in agreement
with (2.4c), as a(T) reduces, whereas eventually when a(T) becomes negative P− becomes
positive. At the onset of impact when a(T) tends to zero from below and W(T) from above,
P− at the opening tends to zero from above, while a spatially rapid decrease in pressure
also enters play near the opening then because of the approaching separation, generating
a considerable favourable pressure gradient nearby followed by milder adverse pressure
gradient. The velocity profiles at two streamwise stations X = 0.06, 0.24 are sampled at
successive times in figure 2(e, f ) and they support the appearance of flow reversal near
the underbody at later times prior to impact. The separation is relatively mild initially but
then grows. The results also highlight the undeveloped nature of the flow at the smaller X
values for earlier times compared with the well-developed forms at subsequent stations.

The flat-plate configuration studied here leads apparently to impact on the wall taking
place at the leading edge of the body, at some finite termination time T = T−

0 . The
computations become more difficult near termination because of small length scales
appearing as well as increased separation, an aspect which points to the use of analysis near
the termination time. The analytical investigation immediately below is into leading-edge
impact (although we remark that for the present flat-plate body the impact might readily
occur instead at the trailing edge).

4. Leading-edge impact

Guided by the above numerical solutions which indicate the onset of impact at the
leading edge, we address analytically the behaviour when the width W of the gap I at
the leading edge becomes small, as time T → T−

0 . Due to the nature of the interaction,
the treatment of steady flow is considered first and the relation to unsteady effects is then
covered in full towards the end of the section. Moreover, to leading order the flow solution
in layer II on top of the body remains finite.

4.1. Impacting flow structure for upstream-moving bodies
Assuming that Uw is O(1) and positive, we note that on the body surface Ψ = Ψ0 =
(a + Uw)W + λW2/2, while the initial velocity profile in the gap is U(X = 0+,Y) =
U0 = a + Uw + λY and the initial pressure P = P− there is P(X = 0+) = P0 = U2

w/2 −
(a + Uw)

2/2. To deal with more general shapes (this is readily done analytically here) we
can take the terminal (impacting) underbody shape F−(X,T0) as any function F(X) that
is reasonably smooth with F(0) = W non-zero, F(X) positive (and of order W at least)
for all X between 0 and 1 and F(X) increasing to O(1) for X of O(1). A specific shape
here is given by F(X) = W + γXn , with the power n > 1/2; the flat plate has n equal to
unity. A solution is sought for the onset-of-impact situation where the initial gap height
W becomes small. For W � 1 we may expect the unknown velocity jump a to be of
order unity in general. It is found that three zones (i)–(iii) come in to operation within the
gap, as sketched in figure 3. Zone (i) occurs due to the X1/2 growth in thickness of the
Blasius-like layers near the leading edge becoming comparable with the O(W) gap width,
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(i) (ii)

Body motion

(iii)

W

Wall

Body

O(1)

FIGURE 3. Sketch of the impact zones (i)–(iii) induced during leading-edge impact of a flat
plate. Here W � 1. The streamwise lengths of (i)–(iii) are of orders W2,W, 1 respectively.

which indicates a short streamwise length scale of order W2. Zone (ii) emerges where the
Xn growth in gap width becomes of the same order as the small original gap width W and
this points to a W1/n streamwise scaling. Zone (iii) has streamwise length of order unity
and so covers the remainder of the gap, connecting with the trailing-edge condition.

Zone (i) is the most upstream zone. Here the flow properties are nonlinear of
viscous–inviscid form as the orders of magnitude involved lead to the expansion, for
X = W2x∗,Y = W y∗,

U = u∗(x∗, y∗)+ o(1), P = p∗(x∗)+ o(1), Ψ = Wψ∗(x∗, y∗)+ o(W). (4.1a–c)

This leads from (2.3a,b) to the boundary-layer equations holding in full within the present
small zone,

u∗ = ψ∗
y∗, v∗ = −ψ∗

x∗, u∗u∗
x∗ + v∗u∗

y∗ = −p∗′
(x∗)+ u∗

y∗ y∗, (4.2a)

subject to the boundary conditions

u∗ = (a + Uw) at x∗ = 0+, (4.2b)

u∗ = Uw, v∗ = 0 at y∗ = 0, (4.2c)

u∗ = v∗ = 0 (ψ∗ = a + Uw) at y∗ = 1. (4.2d)

The underbody shape acts here as a horizontal flat plate because the streamwise length
scale is quite small. Similarly the influence of the incident shear λ is negligible at leading
order because the normal length scale is small, such that the dominant flow is affected
only by the initial velocity profile (a + Uw) corresponding to uniform incident flow. The
latter confirms the presence of Blasius-like behaviour at small x∗ on both of the effective
walls y∗ = 0, 1. We show in figure 4(a–f ) numerical solutions of the nonlinear system
(4.2a–d) based on our previous scheme. In these solutions Uw is set to unity without loss
of generality and the value of the jump term a (or more generally a/Uw) is varied. When
a = 1 the scaled wall shear stresses WSS, i.e. τ ∗

g , τ
∗
b , remain positive throughout and the

pressure gradient is favourable as indicated in figure 4(a). The constriction effect and
accompanying favourable pressure gradient close to the leading edge are again observed,
while downstream the stresses and pressure gradient become almost constant. The velocity
profiles in figure 4(b) highlight the change from undeveloped to developed flow as fluid
passes downstream, indicating a comparatively rapid approach to an asymptotic form as
x∗ increases (velocity profiles are shown at x∗ values of 0.015, 0.061, 0.139, 0.248, with
the last two here being virtually indistinguishable). The results for the stresses, pressure
gradients and profiles in figure 4(c,d) for a = 0 and 4(e, f ) for a = −0.7 show that the
trends continue but with a small portion of reversed flow appearing at the underbody as
the stress there changes sign and the pressure gradient becomes slightly adverse. It is
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FIGURE 4. Solution of the zone (i) problem in leading-edge impact. (a,b) WSS, pressure
development and velocity profiles when a = 1. (c,d) as (a,b) but a = 0. (e, f ) as (a,b) but
a = −0.7. Here, Uw = 1 throughout. The velocity profiles are presented at four stations x∗ =
0.015, 0.061, 0.139, 0.248; we remark that some of the profiles at the larger x∗ values here are
almost identical. Here the power n in the under-shape is arbitrary.
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notable that the solution is non-trivial even for zero a because of the underbody condition
on the total mass flux.

Downstream at large x∗ we anticipate from the equations and from the numerical
solutions that the following response applies,

u∗ → O(1), u∗
y∗ y∗ → O(1), pressure gradient p∗′

(x∗) → O(1), as x∗ → ∞, (4.3a)

with inertial forces becoming comparatively small and the flow thus tending towards a
lubrication dominance. This last leads to a combination of Poiseuille and Couette flow.
In detail, and supposing a to be O(1) but probably not equal to −Uw/2, let us guess
that p∗′(x∗) tends to a non-zero constant q∗ say: in many cases we might expect q∗ to
be negative, giving a favourable pressure gradient. Solving (4.2a,c,d) without the inertial
terms gives

u∗ → 1
2 q∗(y∗2 − y∗)+ Uw(1 − y∗) as x∗ → ∞. (4.3b)

Then mass conservation from (4.2d) relates the jump term a and the pressure gradient q∗

in the form

a = −Uw

2
− q∗

12
. (4.3c)

This downstream flow is attached if q∗ < 2Uw, with the wall shear at the top wall then
being positive, but it is reversed if the induced pressure gradient is so adverse that q∗ >
2Uw. The pressure p∗ tends linearly to ±∞ like q∗x∗. The analytical predictions here agree
with the trends in the numerical solutions of figure 4(a–f ) as a/Uw is varied.

Zone (ii) comes next downstream. Here X = W1/nx∗∗,P = W1/n−2p∗∗,Ψ = Wψ∗∗, U =
u∗∗ and lubrication effects are paramount, yielding the reduced form

u∗∗ = ψ∗∗
y∗ , v∗∗ = −ψ∗∗

x∗∗, 0 = −p∗∗′
(x∗∗)+ u∗∗

y∗ y∗, (4.4a)

after substitution into (2.3a,b). The shape or gap width is WF∗∗ where F∗∗ = 1 + γ x∗∗n .
We find the solution

dp∗∗

dx∗∗ = 12( 1
2 UwF∗∗ − (a + Uw))

F∗∗3 . (4.4b)

As a check on the matching, as x∗∗ tends to 0+ we obtain dp∗∗/dx∗∗ → q∗ as required,
given that the scaled shape F∗∗ tends to 1 then. Further, integrating (4.4b) gives

p∗∗(x∗∗) = p∗∗(0)+ 12
∫ x∗∗

0

1
2 UwF∗∗ − (a + Uw)

F∗∗3 dx∗∗, (4.4c)

where matching with (4.3a–c) yields p∗∗(0) = 0. Further downstream, we expect in
anticipation of the Kutta condition (which is relatively far away) and matching that the
condition

p∗∗(∞) = 0, (4.4d)

is required. This leads to the balance

1
2

Uw

∫ ∞

0

1
F∗∗2 dx∗∗ = (a + Uw)

∫ ∞

0

1
F∗∗3 dx∗∗. (4.4e)
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FIGURE 5. Pressure solution and scaled WSS (τb) at underbody in zone (ii) of a leading-edge
impact. Here, power n is unity.

This serves to determine a in terms of Uw and hence we can deduce q∗ from (4.3c),
contributing the simple forms

a = −(n − 1)Uw

2n − 1
, q∗ = −6Uw

2n − 1
. (4.4f )

We note that n > 1/2, implying that the effective pressure gradient q∗ is always favourable
when Uw is positive. Then the pressure solution p∗∗ follows from (4.4c): see figure 5 which
shows p∗∗ and the scaled WSS at the underbody surface, τ ∗∗

b . That wall shear is found to
reverse at the position where F∗∗ = 3n/(2n − 1). This is a passive reversal since the flow
here is a lubrication flow. We notice in addition that the constant term a is zero for the
prime case n = 1 of the flat plate.

Comparisons can be made with the computational study in Jones & Smith (2003) of a
ground-effects model for automobile undercarriages. Concerning comparison with their
case where n = 1 and γ = 1, h = W = 1/4, the result of interest is in their figure 2(b)’s
bottom left-hand corner. They find separation at an x∗∗ value very close to 1/2, from their
τb plot. Our analysis for small W, with n set to unity, predicts separation at x∗∗ = x∗∗

sep such
that

x∗∗
sep =

(
W
γ

)1/2

, (4.5)

which gives 1/2 exactly in that case. In addition the trends in the present solutions for the
scaled quantities p∗∗, τ ∗∗

ub in figure 5 agree well with those in figures 2(a) and 2(b) of Jones
& Smith (2003), where (γ,W) are (16, 1) and (1, 0.25) respectively.
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904 A32-14 R. A. Palmer and F. T. Smith

The pressure asymptote in zone (ii) as x∗∗ → ∞ needs stating here. It is

p∗∗ = 6γ −2Uw

1 − 2n
x∗∗1−2n + · · · , (4.6)

from (4.4c) combined with the requirement (4.4e).
Zone (iii) is the final zone and covers the majority of the gap. Here, X,Y and the

velocities and pressure are all of O(1), owing to the behaviour in (4.6), and so the solution
expands in the form

(U,V, Ψ,P) = (û, v̂, ψ̂, p̂)+ · · · . (4.7)

Hence from (2.3a,b) we again have the full nonlinear equations holding,

û = ψ̂Y, v̂ = −ψ̂X, ûûX + v̂ûY = −p̂′(X)+ ûYY, (4.8a)

but subject to the constraints

û = Uw, v̂ = 0 (ψ̂ = 0) at Y = 0, (4.8b)

û = v̂ = 0 (ψ̂ = 0) at Y = F(X). (4.8c)

The total mass flux in zone (iii) is zero, which is due physically to the near closure of
the gap in zone (ii) and means that reversed flow must persist in zone (iii) throughout the
interval of interest here, namely 0 < X < 1. The near closure at the upstream end of the
current zone is also reflected in the fact that in this zone the representative shape has

F(X) = γXn for 0 < X < 1, (4.8d)

thus tending to zero (closure) at the origin. Matching requires that the pressure response
is singular in the form

p̂ ∼ 6γ −2Uw

1 − 2n
X1−2n + · · · as X → 0+, (4.8e)

in view of (4.6), the velocity and mass-flux properties associated locally with (4.8e) being
those of plane Poiseuille flow and Couette flow near the origin, from substitution of
(4.8d,e) into (4.8a–c). At the other end, joining to the upper flow via the Kutta condition
needs careful argument as per the Jones & Smith (2003) description, although we can set
p̂ to zero at the trailing edge without loss of generality by subtracting a constant from the
pressure at all X values. We note further that the upstream influence from reversed flow is
often focussed over a relatively short distance (Smith (1984) and see appendix B) because
of the large eigenvalues involved and the simulations with separated flow given in Palmer
& Smith (2020) also support the same trend.

The nonlinear problem (4.8a–e) is a numerical one in general. The special case where
n → 1/2+ does admit an interesting nonlinear similarity solution (see appendix A) where
upstream influence from the Kutta condition acts only over a comparatively short length
scale as described above. Moreover the case of small γ , which is in effect one of low
amplitudes, allows a lubrication solution to hold throughout zone (iii) subject to the
proviso in the last sentence: this is related to the mild separations encountered in the
full time-marching computations of figure 2. Otherwise computations are necessary.
We proceeded with an iterative method which is described in appendix B. Results
are presented in figure 6(a,b) showing respectively the streamwise velocity profiles
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FIGURE 6. Solution for zone (iii) in leading-edge impact. (a) Velocity profiles. (b) Scaled
pressure. Here, power n is unity.
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FIGURE 7. (a,b) As in figure 6 but with the body translating downstream relative to the wall.
Here, power n is unity.

at successive stations, with flow reversal present at all stations in keeping with the
requirement of zero total flux, and the pressure response which gives an adverse pressure
gradient throughout. The profiles in this case appear nearly, but are not quite, similar: see
also the description provided in the next subsection for the flow solutions in figure 7(a,b).
The results confirm that separated flow occurs throughout this viscous–inviscid area
downstream of the contact area.

Relating the above findings to the original unsteady problem follows from the positive
or negative pressure contributions in zones (i)–(iii) to the scaled lift CL and moment CM
in (2.7a,b). The CL contribution from (i) is O(W2) and hence negligible since W is small,
while the contribution from zone (ii) is O(W2/n−2) and that from (iii) is O(1); the same
scales apply to the moment contributions. The contributions in (ii) are thus negligible
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904 A32-16 R. A. Palmer and F. T. Smith

when the power factor n < 1 but of order unity for the flat-plate case n = 1; also they
are of relatively little interest here when n > 1 since then the body shape, being concave
upwards, is in a marginal state with both the leading-edge position and the slope of the
curved body at the leading edge being zero then, which is a special case. In consequence
the main normal force and moment on the body are of order unity and are, for this flat-plate
case, produced by the lubrication-like zone (ii) and the inertial zone (iii) equally in terms
of orders of magnitude. Further, the body-motion balances (2.7a,b) then imply that the
effective accelerations d2h/dT2, d2θ/dT2, whether positive or negative, are of O(1) and
hence the body velocities must be finite on approach to impact. The inferred form

W(T) ∝ (T0 − T) (4.9)

therefore describes the behaviour of the leading-edge gap width at the onset of impact.

4.2. Downstream-moving bodies
All cases so far have been for an upstream-moving body. For generality we consider now
the downstream-moving scenario which is associated of course with the wall moving
upstream relative to the body in the current coordinate system. Certain aspects for a
downstream-moving body are addressed in the similarity solution of appendix A.

A computation of the flow in the long zone (iii) for the flat-plate shape with a
downstream body translation is shown in figure 7(a,b), when impact occurs at the leading
edge. Figure 7(a,b) presents in turn the velocity profiles at various stations and the
pressure-gradient response which is here favourable throughout. Flow reversal is present at
all stations in this viscous–inviscid area downstream of the effective contact at the leading
edge. Although the velocity profiles in much of the flow field ahead of the trailing edge are
broadly similar to each other, they change appreciably near the trailing edge of the domain,
an aspect which occurs likewise in the findings of figure 6(a) as well as in the separated
wake profiles described in Palmer & Smith (2020). Moreover, the solution presented in
figure 7(a,b) is nearly the same as that in a trailing-edge impact for an upstream-moving
body (mentioned at the end of § 3).

5. Comparisons with direct numerical simulations of the Navier–Stokes equations

Comparisons may now be considered between the present asymptotic predictions of
flow properties and the direct numerical simulation results for steady flow in Palmer &
Smith (2020) over a range of finite Reynolds numbers.

As remarked at the end of § 2 the present interaction can be expressed broadly in
terms of the local incident shear value as in Palmer & Smith (2020) as well as in the
current specific context of a surrounding boundary-layer motion. The relation between the
Reynolds numbers involved in the two contexts is

R = O
(
�2Re3/2) , (5.1)

where Re is the globally based Reynolds number of the present work and R is a local
shear-based Reynolds number as in Palmer & Smith (2020). Thus the lower restriction on
the body length � in (2.1) corresponds to the value of R being large. It can be shown that
the formulation for large R in Palmer & Smith (2020) tends consistently to the present
condensed-flow formulation of (2.3a)–(2.5c) as R increases. This trend also includes the
Euler formulation having zero displacement as in the flow solutions of Smith & Servini
(2019).
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The simulation work in Palmer & Smith (2020) shows that the flow past a thin flat-plate
body can readily separate when the body is sufficiently close to the wall, whether inclined
or not, and that a substantial wake then exists. Also, the upstream influence is observed
to decrease in terms of its length scale as the Reynolds number is increased for cases of
non-negative wall velocity, i.e. for a body which is either stationary or translating upstream
relative to the wall. The findings of the present analytical work agree on those three aspects
concerning separation, wake effect and upstream influence. The enhanced wake effect is
mainly a consequence of the enhanced distortion of the velocity profiles at the trailing
edge according to the solutions in §§ 3, 4 and appendix A, whereas the decreased extent of
upstream influence is due to the flow response being focussed in the comparatively small
Euler region around the leading edge of the body.

The results in Palmer & Smith (2020) also indicate the presence of zones of rapid spatial
variation in the streamwise pressure gradient beneath the body as the Reynolds number
increases and/or the gap width is reduced. The velocity profiles likewise display sensitive
behaviour as the gap width decreases, giving jet-like forms at some finite gap widths but
ultimately flow reversal at the smallest widths for the cases of non-negative wall velocity
whereas interesting opposing-flow characteristics are present when the wall velocity is
negative: see also the present appendix A. These and other comparisons show there is
significant qualitative agreement between the two works. In addition there is quantitative
agreement since the scales in the present paper are consistent with the computational
trends of Palmer & Smith (2020), for example on the pressure variation. When R increases
the central case addressed in Palmer & Smith (2020) has the gap-width scale being of order
R−1/3 with the streamwise velocity component and the pressure scaling as −1/3 and −2/3
powers respectively, in keeping with the scalings in (2.2). The simulation study finds the
scaled pressure then tends (see table 1 in Palmer & Smith 2020) quite convincingly to
a constant as the Reynolds number is increased. This is in agreement with the present
asymptotic theory.

6. Further discussion

A major thrust of the study has been on understanding the influences of physical
scales, nonlinear effects, initial conditions and parametric effects on impact of a thin
body onto a solid wall and the accompanying flow separations. Our interest has been
in substantial two-way coupling between the body motion and the fluid flow around
it within a wall layer. This involves in particular inertial effects, significant regions of
flow reversals and the nonlinear dynamics of viscous–inviscid fluid motions as well as
unusual flow structures during impacts upon the wall. The occurrence of three spatial
zones, a nonlinear viscous–inviscid one followed by a viscous one and then another
viscous–inviscid one, is most notable. Lubrication effects are important very close to the
impact station, for sure, although the nonlinear–linear–nonlinear balance always applies
by virtue of the three zones above. The ensuing lift and moment on the body which
help control the body movement near impact are due, at leading order, to contributions
from two of the three zones in the present case of a flat-plate body. All of these impacts
take place within a finite scaled time and produce flow reversals inside the thin gap
between the body and the wall owing to the shrinkage of the mass flux to zero in
the gap.

The comparisons between the predictions of the asymptotic analysis given in the
present paper and the steady-flow results of direct numerical simulations in Palmer
& Smith (2020) tend to be affirmative in respect to agreement on the trends as
Reynolds numbers increase; see § 5. Quantitative agreement to within 20 per cent in
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the gap pressure is typically found for local Reynolds numbers above approximately
100. This corresponds to a rather wide range of global Reynolds numbers and body
lengths. The comparisons also support the considerable role of the Euler region near
the leading edge. Comparisons for other body shapes and orientations could well be of
interest.

There is likely to be significant dependence on body shape as well as on the
initial conditions of the body position and velocity. These affect whether leading-edge,
trailing-edge or mid-chord impact arises or indeed whether the body can move in the
normal direction away from the wall instead. There is also dependence on the streamwise
translation of the body. We have addressed upstream translation mostly but the impact
analysis and allied computations suggest that essentially the same characteristics apply for
a downstream translation of the body, while the non-translating case is felt likely to bring
the incident shear flow back into influence near the onset point of impact. See also the
simulations for translating or stationary bodies in Palmer & Smith (2020). It is interesting
that in the scenario of downstream translation the role of the leading and trailing edges can
interchange particularly at impact; flow separation can similarly cause a leading edge to
act as a trailing edge and vice versa in effect. Further influence rests with other parametric
effects some of which remain to be studied. The influence of large body mass and moment
of inertia is to make the normal velocity and rotation of the body nominally uniform which,
according to the impact analysis, is consistent with the finite-time termination described
here. The flow length, time, pressure and velocity scales as well as the length, mass and
moment of inertia scales of the body are also of interest both at the initiation stage and at
the termination due to impact.

Issues for future study are many. A wider range of body shapes needs investigating
for example. On a broader scope, three-dimensional bodies, more unsteady flows and
multi-body interactions are of concern, depending on the application in mind. More
narrowly and immediately perhaps, it would be interesting to take the current study further
on in time into shorter time scales during impact and then beyond those. The present work
has far from answered all prospective questions in the area. The body could fly out of
the wall layer away from the wall by the interactions present and indeed some numerical
cases (not shown here) are able to fly away from the wall in that manner. Since shapes are
very varied in reality more details of trailing-edge and mid-chord impacts may be called
for eventually, in particular concerning trailing-edge separations and upstream influence
(Smith 1984; Jones & Smith 2003). Flexible bodies are of relevance in several application
areas, an aspect which would be interesting to connect with the current scaled nonlinear
interaction. Longer bodies tend to lead to simplifications in the flow response on top of
the body in the boundary-layer setting, for example as in the Smith & Palmer (2019)
inviscid account for body velocities of the order of the free-stream speed, and hence
alterations to the present fluid–body interaction. The relation between these cases and
the termination behaviour found here remains unknown. Finally here, the zero net flux
seen at impact is potentially relevant to certain near-wall devices such as hinged mounted
flaps.
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Appendix A. Nonlinear similarity solutions

Similarity properties arise for the underbody shapes F(X) = γXn , where 0 < X < 1, in
zone (iii) of § 4 for a body translating upstream relative to the lower wall in the limit as n
tends to 1/2 and likewise when the body is translating downstream. (Zones (i), (ii) merge
when n tends to 1/2 into a single zone in which X,Y have orders W2, W in turn and the
boundary-layer equations hold in full.) The properties here also have connections with the
study in Palmer & Smith (2020). The formal expression involved has

[û, ψ̂, p̂] = [g′(η),X1/2g(η), ln(X)P1], y = X1/2η, (A 1a,b)

where the prime notation denotes differentiation with respect to η and the similarity
function g(η) and pressure coefficient P1 are to be found. The nonlinear governing
equation from (4.8a) is

g′′′ + 1
2 gg′′ = P1 (A 2)

and the boundary conditions require

g(0) = 0, g′(0) = Uw, g(γ ) = g′(γ ) = 0. (A 3a–c)

Computed solutions are presented in figure 8(a,b) with, respectively, Uw being ±1 without
loss of generality: upstream and downstream movement of the body corresponds to Uw
equal to ±1 respectively.

The plots in figure 8(a,b) show the scaled velocity profiles g′(η) as the value of γ
is varied. The corresponding results for the pressure term P1 versus γ are given in
figure 9(a,b). Virtually all the solutions indicate that P1 is positive for positive Uw and
negative for negative Uw. In the case of an upstream-moving body when γ is small the
nonlinear terms in (A 2) are negligible, as in a lubrication effect, and analytical expressions
are available which are seen to agree well with the numerical solutions. When γ becomes
large the bulk of the gap flow becomes quasi-inviscid with O(γ ) thickness and the flow
solution g becomes almost linear there whereas the viscous–inviscid wall layer adjoining
η = 0 is only of O(1) thickness and yields a wall-jet effect. Similar behaviour occurs for
the case of the downstream-moving body apart from the viscous–inviscid wall layer being
forced to the underbody surface η = 1 when γ is large.

Appendix B. Treatment of long zones

This concerns the nonlinear long zone (iii) in the scenario of leading-edge impact
addressed in § 4. We concentrate on the flat-plate shape n = 1 because of the focus on
that case in the time-marching computations. At the trailing-edge station the streamwise
velocity profile is expected to give incoming flow (u negative) in the upper part of the
profile and outgoing flow (u positive) below that, as confirmed in Palmer & Smith (2020),
since the lower wall is moving downstream and yet zero mass flux is required across
the gap. Strictly the incoming flow dictates over the outgoing flow as the governing
equations are parabolic in the flow direction but this is affected also by the lateral boundary
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FIGURE 8. Nonlinear similarity solutions in appendix A. Scaled velocity profiles dg/dη for
(a) Uw = 1, (b) Uw = −1.

conditions on the gap walls. Given the singular behaviour (4.8e) we set

[û, ψ̂, p̂] = [ū,Xψ̄,X−1p̄], Y = X ȳ, (B 1a,b)

in order to work with O(1) variables. Hence the governing equations and boundary
conditions become

ū = ψ̄ȳ, X2(ūūX − ψ̄Xūȳ)− Xψ̄ ūȳ = p̄ − Xp̄X + ūȳ ȳ, (B 2a,b)

subject to

ū = Uw, v̄ = 0 (ψ̄ = 0) at ȳ = 0; ū = v̄ = 0 (ψ̄ = 0) at ȳ = γ, (B 3)

ū → O(1), ψ̄ → O(1), p̄ → −6γ −2uw + · · · as X → 0+, (B 4)

with (B 4) indicating that the end constraints on ū, ψ̄, p̄ are specific and finite. Here v̄ =
−Xψ̄X − ψ̄ + ȳū. In fact

ū(0+, ȳ) = Uw(3γ −2 ȳ − 1)(γ −2 ȳ − 1). (B 5)
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FIGURE 9. The pressure coefficient P1 vs γ (from appendix A) when (a) Uw = 1,
(b) Uw = −1. The dashed curves show asymptotes for small γ for comparison.

The other end condition is effectively the Kutta one on pressure but supplemented by the
reversed flow part ūTE(ȳ) of the flow-velocity profile at the trailing edge,

p̄ = 0, ū = ūTE(ȳ) ( y1 < ȳ < γ ) at X = 1−. (B 6)

Here y1 is the ȳ location of the dividing streamline at the trailing-edge station.
We treated the system (B 2)–(B 6) by iterating from the low amplitude solution, i.e. by

means of iterations of the form

[
ūȳ ȳ + p̄ − Xp̄X

](m) = [
X2(ūūX − ψ̄Xūȳ)− Xψ̄ ūȳ

](m−1)
. (B 7)

Here (m) denotes the iteration number, m = 1, 2, . . ., and the zeroth solution is taken
to be the lubrication one where the right-hand side in (B 7) is negligible. This approach
was taken in order to treat the whole flow problem in a more elliptic manner in view
of the reversed flow expected at every streamwise station. Each iteration involves triple
integration in ȳ to determine updated ū, ψ̄ fields, integration in X to find new p̄ values,
followed by differentiation in X to update the right-hand sides. The discretised version
of this differentiation makes use of windward differencing and thus incorporates effects
from the reversed flow profile in (B 6). The approach here is consistent with that of
Jones & Smith (2003) who also computed the wake solution. The iterations are continued
until successive iterates in p̄ differ by less than a small tolerance, typically 10−6, at each
X station. As a check on accuracy our results were found to be in close agreement with
those obtained from the different numerical approach by Jones & Smith (2003) in their
figure 2 for a particular wedge-like shape with small mass flux and separated flow present.
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