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A new eigenvalue �-linear problem arisen in the theory of metamaterials and neutral

inclusions is reduced to integral equations. The problem is constructively investigated for

circular non-overlapping inclusions. An asymptotic formula for eigenvalues is deduced when

the radii of inclusions tend to zero. The nodal domains conjecture related to univalent

eigenfunctions is posed. Demonstration of the conjecture allows to justify that a set of

inclusions can be made neutral by surrounding it with an appropriate coating.
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1 Introduction

Local fields in fibrous composites are described by solutions of the Riemann–Hilbert and

the �-linear problems for multiply connected domains [16, 24, 25, 29–31]. The physical

properties of the components of traditional composites are expressed in terms of the

positive constants, c.f., conductivity, permeability, permittivity etc.

Recently, materials having negative physical constants were discovered. It concerns

dielectric-magnetic materials displaying a negative index of refraction [1, 4, 10, 26, 27].

Mathematical modelling of metamaterials and neutral (invisible) inclusions were discussed

in [2,3,13–15,17,20] and works cited therein. It was proved in [14,15] that inclusions can

be made neutral to all the directions of uniform fields if they are ellipses or ellipsoids.

The paper [13] contains a general observation that any shaped inclusion with a smooth

boundary can be made neutral to any fixed direction of the uniform field by surrounding it

with an appropriate coating. This result is based on the study of the eigenvalues of the �-

linear problem for a doubly connected domain D when the spectral parameter is assigned

only to one component of ∂D. Such a problem can be considered as a modification of

the result [22, 32] devoted to eigenvalues of the �-linear problem with the same spectral

parameter in each component of the boundary.

The discussed eigenvalue problem differs from the classic problem when the spectral

parameter λ enters into equation, for instance, Δu + λu = 0 [9]. Our eigenvalue problem

is similar to the Steklov problem [19] when Δu = 0 in D and u = λ ∂u
∂n

on the boundary.

Similar mixed boundary-spectral �-linear problems were studied in [6] by reduction to

integral equations and in [5] by variational methods.
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Figure 1. Multiply connected domain D with circular boundaries.

In the present paper, the general eigenvalue �-linear problem arisen in the theory of

metamaterials is reduced to integral equations. For circular non-overlapping inclusions,

the considered problem is reduced to functional equations. An asymptotic formula for

eigenvalues is deduced when the radii of inclusions tend to zero. The nodal domains

conjecture related to univalent eigenfunctions is posed.

2 Eigenvalues �-linear problem and integral equations

Let �̂ = � ∪ {∞} denote the extended complex plane. Consider n non-overlapping simply

connected domains Dk (k = 1, 2, . . . , n) lying in the unit disk U and the multiply connected

domain D = U\ ∪n
k=1 (Dk ∪ ∂Dk) (see Figure 1 with circular inclusions). Let D0 denote the

exterior of the closed unit disk to the extended complex plane. Let the boundary of each

Dk (k = 0, 1, . . . , n) be a counter clock-wise oriented smooth simple curve Γk including the

unit circle Γ0.

Given Hölder continuous functions ak(t), bk(t) on Γk satisfying the inequality |ak(t)| >
|bk(t)| (k = 0, 1, 2, . . . , n). It is assumed that the winding number (index) of each ak(t)

vanishes [12]. To find functions ϕk(z) analytic in Dk , respectively, continuous in the

closures of the considered domains and to find a complex constant λ� 0 such that the

following �-linear conditions are fulfilled

ϕ(t) = ak(t)ϕk(t) + bk(t)ϕk(t), t ∈ Γk, k = 1, 2, . . . , n, (2.1)

ϕ(t) = λ a0(t)ϕ0(t) + b0(t)ϕ0(t), |t| = 1. (2.2)

It is assumed that the unknown function ϕ0(z) is analytic in |z| > 1 continuous in |z| � 1

and vanishes at infinity:

ϕ0(∞) = 0. (2.3)

A non-zero function ϕ0(z) satisfying (2.1)–(2.3) is called the eigenfunction and the

corresponding constant λ the eigenvalue of the problem. The function ϕ0(z) is distin-

guished from others, since the function ω(z) = ϕ0

(
1
z

)
, |z| � 1, plays the key role in

applications.
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We consider the problem (2.1)–(2.3) with the constant coefficients ak(t) = 1, bk(t) = −ρk ,
where |ρk| < 1 (k = 1, 2, . . . , n) and a0(t) = 1, b0(t) = −1. Then, (2.1)–(2.3) become

ϕ(t) = ϕk(t) − ρkϕk(t), t ∈ Γk, k = 1, 2, . . . , n, (2.4)

ϕ(t) = λϕ0(t) − ϕ0(t), |t| = 1, (2.5)

ϕ0(∞) = 0. (2.6)

The problem (2.4)–(2.6) can be stated in terms of harmonic functions [23, 28]. The

condition (2.5) for real λ up to an additive constant can be written in the form

u = (λ− 1)u0,
∂u

∂n
= (λ+ 1)

∂u0

∂n
, |t| = 1, (2.7)

where ∂
∂n

denotes the outward normal derivative to the unit circle, u =Re ϕ and u0 =Re ϕ0.

Two real equations (2.7) are equivalent to the complex one (2.5) up to an additive arbitrary

constant [23]. The real part of (2.5) yields the first equation (2.7). The imaginary part of

(2.5) after the tangent differentiation and application of the Cauchy–Riemann equations

gives the second equation (2.7). Along similar lines the condition (2.4) for real ρk becomes

u = (1 − ρk)u0,
∂u

∂n
= (1 + ρk)

∂u0

∂n
, t ∈ Γk. (2.8)

The problem (2.7), (2.8), hence the problem (2.4)–(2.6), can be considered as the ideal con-

tact conductivity problem for the 2D composite shown in Figure 1 with the conductivities
1+ρk
1−ρk in Dk and λ+1

λ−1
in |z| > 1, respectively. External sources are not applied to medium. It

follows from Bojarski’s theorem [7,8] that the eigenvalues of the problem (2.4)–(2.6) satisfy

the inequality |λ| � 1. The case λ = 1 (λ = −1) corresponds to the perfect conductor

(isolator) in |z| > 1 and yields only constant potentials. The case −1 < λ < 1 corresponds

to a metamaterial in |z| > 1 when potentials can be non-constant.

From other side, the same �-linear problem (2.4)–(2.6) describes the flow around neutral

inclusions with the standard contrast parameters ρk (k = 1, 2, . . . , n) in the conformally

transformed plane. Here, the external parallel field is applied to medium. More precisely,

let the univalent function w = ω(z) = ϕ0

(
1
z

)
map the unit disk onto a domain G. This

conformal mapping determines the shapes of the inclusions ω(Γk) (k = 1, 2, . . . , n) and of

the corresponding neutral coating ω(Γ0). An eigenvalue λ determines the positive coating

conductivity depending on the direction of the external uniform field (for details see [13]).

Following [13] we reduce the �-linear problem (2.4)—(2.6) to integral equations. First,

introduce the Cauchy operator in the space of the Hölder continuous functions on the

boundary ∂D = ∪n
k=1(−Γk) ∪ Γ0 [12, 23]

(Sμ)(z) =
1

2πi

∫
∂D

μ(t) dt

t− z
, z ∈ ∪n

k=0Dk. (2.9)

It follows from the properties of the Cauchy-type integral [12] that (Sϕ)(z) = 0 since ϕ(z)

is analytic in D and z � D. Application of the operator S to the conditions (2.4), (2.5)

https://doi.org/10.1017/S0956792516000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000152


Composites with invisible inclusions 799

yields

1

2πi

∫
Γ0

[λϕ0(t) − ϕ0(t)]dt

t− z
=

n∑
k=1

1

2πi

∫
Γk

[ϕk(t) − ρkϕk(t)]dt

t− z
, z ∈ ∪n

k=0Dk. (2.10)

Using formulae [12]

1

2πi

∫
Γk

ϕk(t) dt

t− z
= ϕk(z), z ∈ Dk and

1

2πi

∫
Γk

ϕk(t) dt

t− z
= 0, z ∈ Dm (m� k) (2.11)

we arrive at the following system of integral equations with the spectral parameter λ

λϕ0(z) − 1

2πi

∫
Γ0

ϕ0(t)dt

t− z
+

n∑
k=1

ρk

2πi

∫
Γk

ϕk(t)dt

t− z
= 0, z ∈ D0, (2.12)

ϕm(z) −
n∑
k=1

ρk

2πi

∫
Γk

ϕk(t)dt

t− z
+

1

2πi

∫
Γ0

ϕ0(t)dt

t− z
= 0, z ∈ Dm (m = 1, 2, . . . , n).

The integral equations (2.12) can be written in the contour ∂D by pass to the limit

z → τ ∈ ∂D and application of the Sochocki (Sokhotskij–Plemelj) formulae [12]. The

obtained contour integral equations can be considered in the Banach spaces of the Hölder

continuous functions and in Lp where the singular integrals are bounded operators [12,23].

Equations (2.12) can be also considered in the space C1(∪n
m=1Dm) endowed with the norm

(3.4) and in H2(∪n
m=1Dm) with the norm (3.6) discussed in the next section. It is worth

noting that the integral equations (2.12) differ from the integral equations considered

in [3].

3 Functional equations

In the present and next sections, we consider the �-linear problem (2.4)–(2.6) when Γk
are circles |t−ak| = rk . Following [23,24] we reduce the problem to a system of functional

equations.

Let

z∗
(m) =

r2m
z − am

+ am,

denote the inversion with respect to the circle |z − ak| = rk . Introduce the function

Φ(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk(z) +
∑

m�k ρmϕm

(
z∗
(m)

)
+ ϕ0

(
1
z

)
,

|z − ak| � rk, k = 1, 2, . . . , n,

ϕ(z) +
∑n

m=1 ρmϕm

(
z∗
(m)

)
+ ϕ0

(
1
z

)
, z ∈ D,

λϕ0(z) +
∑n

m=1 ρmϕm

(
z∗
(m)

)
, |z| � 1.

analytic in Dk (k = 0, 1, . . . , n) and D. Calculate the jump of Φ(z) across the
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circle |t− ak| = rk

Δk := Φ+(t) − Φ−(t), |t− ak| = rk,

where Φ+ (t) := limz→t z∈D Φ (z) , Φ− (t) := limz→t z∈Dk Φ (z). Application of (2.4) gives

Δk = 0. Similar arguments for the jump Δ0 of Φ(z) across the unit circle yield Δ0 = 0. It

follows from the principle of analytic continuation that Φ(z) is analytic in the extended

complex plane. Then, Liouville’s theorem implies that Φ(z) is a constant. Calculation of

this constant as Φ(∞) and using of (2.6) yields

Φ(z) =

n∑
m=1

ρmϕm (am). (3.1)

The definition of Φ(z) in |z − ak| � rk and |z| � 1 leads to the following system of

functional equations

ϕk(z) = −
∑

m�k ρm

[
ϕm

(
z∗
(m)

)
− ϕm (am)

]
+ ρkϕk(ak) − ϕ0

(
1
z

)
,

|z − ak| � rk, k = 1, 2, . . . , n,

λϕ0(z) = −
∑n

m=1 ρm

[
ϕm

(
z∗
(m)

)
− ϕm (am)

]
, |z| � 1.

(3.2)

Exclusion of ϕ0(z) from (3.2) yields the system

ϕk(z) = −
∑

m�k ρm

[
ϕm

(
z∗
(m)

)
− ϕm (am)

]
+ ρkϕk(ak)

+1
λ

∑n
m=1 ρm

[
ϕm

(
am + r2mz

1−amz

)
− ϕm (am)

]
,

|z − ak| � rk, k = 1, 2, . . . , n.

(3.3)

We will assume that ϕk(z) are analytic in |z − ak| < rk and continuously differentiable

in |z − ak| � rk due to the physical treatment of ϕk(z) as complex potentials. Introduce

the space of functions C1(∪n
m=1Dm) analytic in the non-connected domain ∪n

m=1Dm and

continuously differentiable in its closure with the norm

‖φ‖C1 = max
m=1,2,...,n

max
|z−am|=rm

|ϕm(z)| + max
m=1,2,...,n

max
|z−am|=rm

|ϕ′
m(z)|, (3.4)

where φ(z) = ϕm(z) in |z − am| � rm. One can write the system (3.3) as an equation in the

Banach space C1(∪n
m=1Dm)

φ = Aφ+
1

λ
Bφ, (3.5)

where the operators A and B are introduced in accordance with (3.3) for shortness.

Equation (3.5) can be considered in the Hilbert space H2(∪n
m=1Dm) of functions φ(z) =

ϕk(z) which belong to the Hardy space in the disks |z − ak| < rk with the norm [11]

‖φ‖H2 =

(
n∑

m=1

sup
R<rm

1

2π

∫ 2π

0

|ϕm(am + Reiθ)|2dθ
) 1

2

. (3.6)
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It follows from [23] that the operators A and B are compact in the considered spaces

and the operator I −A is invertible where I denotes the identity operator. Then, equation

(3.5) is equivalent to the eigenvalue problem

λφ = (I − A)−1Bφ, (3.7)

where the operator (I − A)−1B is compact in the space H2(∪n
m=1Dm). Therefore, the

eigenvalue problem (3.3) can be written in the form of the eigenvalue problem (3.7) for a

compact operator in the Hilbert space. Let φ ∈ H2(∪n
m=1Dm) be its eigenfunction. Then,

Pumping principle [23] implies that φ actually belongs to C1(∪n
m=1Dm) (even to C∞). It

is based on the following arguments. For a fixed k, every function ϕm

(
z∗
(m)

)
(m� k) is

analytic in |z − am| > rm and ϕ0

(
1
z

)
in |z| < 1. The union of these domains contains

the closed disk |z − ak| � rk . Hence, the right part of (3.3) is analytic in |z − ak| � rk .

Therefore, the left part containing the function ϕk(z), is also analytic in |z − ak| � rk .

Instead of the functional equations (3.3) we consider equations in the space C(∪n
m=1Dm)

associated with continuous functions obtained by differentiation of (3.3)

ψk(z) =
∑

m�k ρm
r2m

(z−am)2
ψm

(
z∗
(m)

)
+1
λ

∑n
m=1 ρm

r2m
(1−amz)2 ψm

(
am + r2mz

1−amz

)
,

|z − ak| � rk, k = 1, 2, . . . , n,

(3.8)

where ψk(z) = ϕ′
k(z). One can see from the second equation (3.2) that ϕ0(z) does not

depend on ϕm(am). Therefore, one can first solve the system (3.8) and determine

ϕ′
0(z) =

1

λ

n∑
m=1

ρmr
2
m

(z − am)2
ψm

(
z∗
(m)

)
, |z| � 1. (3.9)

The function ϕ0(z) is uniquely found from (3.9) by integration

ϕ0(z) = −
∫ ∞

z

ϕ′
0(ζ)dζ, |z| � 1. (3.10)

Remark 1 The eigenvalues of the Laplace operator form an increasing sequence [9]. In our

case, the eigenvalue problem (3.7) or (3.8) is addressed to a compact operator. Therefore,

the absolute values of eigenvalues decrease to zero [18].

4 Asymptotic solution of functional equations

In the present section, we find asymptotic solutions of the systems (3.2) and (3.3) when

r = maxk=1,2,...,n rk tends to zero. The parameters νk =
r2k
r2

are considered as values for

which 0 < νk � 1 including the limit case, as r → 0.
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Lemma 1 The eigenvalues λ = λ(r) satisfy the asymptotic relation

λ(r) = r2λ0(r), as r → 0, (4.1)

where the function λ0(r) is bounded as r tends to zero.

Proof The functions ψk(z) analytic in |z − ak| < rk are represented by their Taylor series

ψk(z) =

∞∑
l=0

α
(k)
l

(z − ak

r

)l
, |z − ak| < rk, k = 1, 2, . . . , n. (4.2)

Here, the coefficients α(k)
l are normalized in such a way that they are bounded as r → 0.

For definiteness, the eigenfunctions are supposed to be normalized as

‖φ‖2
H2 =

n∑
m=1

∞∑
l=0

νl |α(m)
l |2 = 1, (4.3)

where φ(z) = ψm(z) in |z − am| � rm.

Using (4.2) we write equation (3.8) up to O
(

r4

λ(r)

)
considering λ(r) in general form since

its asymptotic behavior has been not known yet

ψk(z) = r2
∑

m�k
ρmνm

(z−am)2

[
α

(m)
0 + r

νmα
(m)
1

z−am

]

+ r2

λ(r)

∑n
m=1

ρmνm
(1−amz)2

[
α

(m)
0 + r

νmα
(m)
1 z

1−amz

]
+ O

(
r4

λ(r)

)
,

|z − ak| � rk, k = 1, 2, . . . , n.

(4.4)

Substitute z = ak into (4.4) and reduce the order of approximation to O
(

r2

λ(r)

)
α

(k)
0 = r2

∑
m�k

ρmνm
(ak−am)2

α
(m)
0 + r2

λ(r)

∑n
m=1

ρmνm
(1−amak)2 α

(m)
0 + O

(
r3

λ(r)

)
,

k = 1, 2, . . . , n.
(4.5)

Differentiate equations (4.4) and substitute z = ak into the result multiplied by r

α
(k)
1 = −2r3

∑
m�k

ρmνm
(ak−am)3

α
(m)
0 + 2 r3

λ(r)

∑n
m=1

ρmνmam
(1−amak)3 α

(m)
0 + O

(
r4

λ(r)

)
,

k = 1, 2, . . . , n.
(4.6)

This procedure can be continued to get the next equations for α(k)
l (l = 3, 4, . . .).

We now prove that r2

λ(r)
cannot tend to zero as r → 0. If it is not so, then (4.5) implies

that α(k)
0 tends to zero as r → 0. Then, equation (4.6) implies that α(k)

1 tends to zero as

r → 0 and so forth α(k)
l → 0 for all l. This contradicts to the normalization (4.3).

The lemma is proved. �

It follows form Lemma 1 that the maximally possible absolute value of an eigenvalue

for sufficiently small r can be found in the form λ = r2μ + o(r2), where μ is a non-zero
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constant. Take the main terms of (4.5) and write equations up to O(r)

μα
(k,0)
0 =

n∑
m=1

ρmνm

(1 − amak)2
α

(m,0)
0 , k = 1, 2, . . . , n, (4.7)

where α(k,0)
0 = α

(k)
0 + O(r). Introduce the matrix F whose elements have the form

Fmk =
ρmνm

(1 − amak)2
. (4.8)

The eigenvalues μ of the linear algebraic system (4.7) are solution of the polynomial

equation

det(μI − F) = 0, (4.9)

where I stands for the identity matrix.

If ρm = ρ ∈ � for any m, the matrix (4.8) is self-adjoint. In this case, equation (4.9) has

exactly n real roots counted with multiplicity.

The eigenfunctions can be constructed up to O(r) by (4.4). Let μ be a simple eigenvalue

and v = (α(1,0)
0 , α

(2,0)
0 , . . . , α

(n,0)
0 ) be the corresponding eigenvector of the linear algebraic

system (4.7). Then, (3.9), (3.10) yield

ϕ0(z) = −r2
n∑

m=1

ρmνm

z − am
α

(m,0)
0 , |z| � 1. (4.10)

Example 1 ([21]) Let n = 1 and Γ1 = {t ∈ � : |t| = r} with 0 < r < 1 in the problem

(2.4)–(2.6). All solutions of this problem have the following form

ϕ
(p)
1 (z) = zp, ϕ

(p)
0 (z) = − 1

zp
, ϕ(p)(z) = zp − ρr2p

zp
, λp = ρr2p, p = 1, 2, . . . , ρ, (4.11)

where the normalization ‖ϕ(k)
1 ‖2

H2 = 1 is chosen in accordance with (4.3).

The case p = 1 in Example 1 corresponds to (4.10) with n = 1, a1 = 0 and α
(m,0)
0 = 1.

The function, important in applications to metamaterials, ω1(z) = ϕ
(1)
0

(
1
z

)
= z is univalent

in the unit disk and determines a circle neutral inclusion with an annulus coating with a

conductivity determined by λ1 = ρr2 [13].

Example 2 Let n = 2, a1 = a, a2 = −a where a be a positive number; Γ1 = {t ∈ � :

|t− a| = r} and Γ2 = {t ∈ � : |t+ a| = r} where a+ r < 1; ρ1 = ρ2 ≡ ρ. In this case, the

system (4.7) becomes

μα
(1,0)
0 = ρ

[
1

(1−a2)2
α

(1,0)
0 + 1

(1+a2)2
α

(2,0)
0

]
,

μα
(2,0)
0 = ρ

[
1

(1+a2)2
α

(1,0)
0 + 1

(1−a2)2
α

(2,0)
0

]
.

(4.12)
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The eigenvalues and eigenvectors of (4.12) have the form

μ1 = ρ
2(1 + a4)

(1 − a4)2
, v1 = (1, 1); μ2 = ρ

4a2

(1 − a4)2
, v2 = (−1, 1). (4.13)

The corresponding functions ωp(z) = ϕ
(p)
0

(
1
z

)
are given by the approximate analytical

formulae up to a multiplier

ω1(z) = −ρr2 2z

1 − a2z2
, ω2(z) = ρr2

2az2

1 − a2z2
.

One can see that the function ω1(z) is univalent in the unit disks. It corresponds to the

maximal |λ1| = r2|μ1|.

5 Discussion

The above study and examples enables us to make the following:

Conjecture Let ρk be given real numbers. Then, all eigenvalues of the problem (2.4)–(2.6)

are real. The set of eigenvalues is countable or finite. Let |λ1| � |λ2| � . . .. Then, the

corresponding eigenfunctions ωp(z) = ϕ
(p)
0

(
1
z

)
(p = 1, 2, . . .) satisfy inequality

wind|z|=1ωp(z) � p, (5.1)

where the winding number (or index [12]) is defined as

wind|z|=1f(z) =
1

2πi

∫
|z|=1

f′(z)

f(z)
dz.

One can see in Example 1 that

wind|z|=1ωp(z) = wind|z|=1ϕ
(p)
0 (z) = p.

Moreover, maxk |λk| = |λ1| and only the corresponding eigenfunction ϕ(1)
0 (z) is conformal

in |z| > 1.

Demonstration of Conjecture for p = 1 allows to justify that any shaped inclusion

with a smooth boundary can be made neutral by surrounding it with an appropriate

coating [13].

Conjecture recalls Courant’s theorem [9] outlined below. Consider for definiteness the

Dirichlet problem u = 0 on ∂Ω for equation Δu = −λu valid in a domain Ω. The set of

eigenvalues consists of a sequence 0 � λ1 � λ2 � . . . (see Remark on page 801) and the

corresponding eigenfunctions u1, u2, . . . constitute a complete orthonormal basis of L2(Ω).

The nodal set of a fixed up is defined as the set {z ∈ Ω : up(z) = 0}. According to

Courant’s theorem [9] the number of nodal domains of up is less than or equal to p, for

every p = 1, 2, . . ..
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Conjecture can be stated in terms of nodal domains of the eigenfunctions Re ϕ(p)
0 (z) in

|z| > 1 of the problem (2.4)–(2.6). Instead of (5.1) one can demand that the number of

nodal domains of Re ϕ(p)
0 (z) is less than or equal to 2p, for every p = 1, 2, . . . .

Let θ ∈ [0, 2π) denote the argument of the complex number z. It is easily seen that the

nodal domains of the eigenfunctions Re z−p = |z|−p cos pθ from Example 1 are 2p sectors

separated by the rays arg z = πm
p

where m = 0, 1, . . . , 2p− 1.

The general problem (2.1)–(2.3) and its partial case (2.4)–(2.6) for general curves Γk
have been not studied yet. Even in the case of n sufficiently small circular inclusions

Conjecture has been not proven. It is reduced to the following seemingly simple question.

Let points ak (k = 1, 2, . . . , n) lie in the open unit disk and v = (α(1,0)
0 , α

(2,0)
0 , . . . , α

(n,0)
0 ) be

eigenvectors of the eigenvalue problem (4.7). For which v is the function

ϕ0(z) =

n∑
m=1

ρmr
2
m

z − am
α

(m,0)
0 , (5.2)

univalent in |z| > 1 or ω(z) = ϕ0

(
1
z

)
in |z| < 1? Does this v correspond to the maximal

|λ|? This answer is interesting even for equal ρm and rm when the number of eigenvectors

holds n. It solves the problem of clouds of neutral inclusions.
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