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SUMMARY
This paper presents a new approach to matching occupancy
grid maps by means of finding correspondences between a
set of sparse features detected in the maps. The problem
is stated here as a special instance of generic image
registration. To cope with the uncertainty and ambiguity
that arise from matching grid maps, we introduce a modified
RANSAC algorithm which searches for a dynamic number
of internally consistent subsets of feature pairings from
which to compute hypotheses about the translation and
rotation between the maps. By providing a (possibly
multi-modal) probability distribution of the relative pose
of the maps, our method can be seamlessly integrated
into large-scale mapping frameworks for mobile robots.
This paper provides a benchmarking of different detectors
and descriptors, along extensive experimental results that
illustrate the robustness of the algorithm with a 97% success
ratio in loop-closure detection for ∼ 1700 matchings
between local maps obtained from four publicly available
datasets.

KEYWORDS: Mobile robots; SLAM; Robot localization;
Pose estimation and registration; navigation.

1. Introduction
Occupancy grid maps, introduced into the mobile robotics
community almost three decades ago,11 are a very valuable
geometrical representation for map building of planar
environments.15, 16, 36 In this representation, the space is
arranged into a metric grid of cells, each one storing the
probability of being occupied by obstacles. These maps
can be employed in the context of large-scale, hybrid
metric-topological map models,5, 8, 12 where each node of a
topological graph represents a local metric map, e.g. a set of
visual landmarks or a grid map.

An important requirement of hierarchical mapping
approaches is to detect whether two local maps correspond
to the same physical place and, in that case, to compute
the relative transformation between those maps (namely,
detecting loop closures). Solving loop closure in a
hierarchical framework, the purpose of the method presented
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in this work, implies coping with a number of hurdles such
as noise in the robotic sensor, ambiguity (different parts
of the environment can be indistinguishable) and dynamic
scenarios (the map of an area may change over time).

Instead of using grid maps alone, we have adopted a dual
representation of local maps where both occupancy grids and
point maps are maintained. As described in ref. [29], this ap-
proach has a number of advantages since these maps comple-
ment each other and their maintenance only requires updating
both maps simultaneously with the same sensory data.

Corresponding to this dual representation, our approach for
aligning a pair of local maps consists of two differentiated
steps: (i) the grid maps are first matched without any a
priori information; then (ii) the point maps help to refine
the matching. Our discussion will preeminently focus on the
first step, the grid-to-grid matching, since the registration
of point maps is a well-understood topic with efficient
solutions such as Iterative closest point (ICP).2 Furthermore,
this second step only has to refine an estimation already
close to the real solution while the grid-to-grid matching has
no such advantage and thus poses a far more challenging
problem.

We propose to estimate the transformation between a pair
of grid maps by registering the corresponding map images,
the grayscale images resulting from interpreting grid cells
as pixels and occupancy probabilities as gray levels. Since
in robotic applications we can select the grid cell size, we
can focus on matching maps with identical cell sizes only.
Therefore, a pair of maps can be only related by a rigid
transformation, fully determined by a two-dimensional (2D)
translation plus a rotation, disregarding scale changes.

In general, image registration techniques can be classified
into those based on intensity and those based on the extraction
of interest points—refer to ref. [38] for an extensive review.
Although the former approach has already been applied
to grid map matching,16 there is no previous work based
on feature extraction, which is known to be more efficient
computationally and therefore more appropriate for being
integrated into real-time mapping frameworks. In spite
of the existence of previous works devoted to analyzing
the performance of different visual feature detectors14

and descriptors,27 in this work we present a benchmark
which specifically addresses their behavior for grid map
images.
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Our approach represents an important contribution due
to the reporting of a robust method for finding the
transformation between map images in the form of a sum
of Gaussians (SOG). This probabilistic representation allows
coping with multiple hypotheses and therefore to consistently
integrate the method into robotic mapping frameworks, most
of them based on probabilistic Bayesian inference.37 Our
probabilistic approach is therefore in contrast to previous
works on robust image registration based on vote counting
in the space of transformation parameters.33 Within mobile
robotics, Duckett and Nehmzow10 reported a method very
similar to ours, which also obtains an SOG for potential
matches between grid maps. However, their work assumes
an accurate knowledge of the absolute orientation of the
robot (i.e. it should be equipped with a compass); hence, our
proposal has a broader applicability to practical situations.

The present work is also related to research in multi-robot
mapping, since the map merge problem can be seen there as
a special instance of the detection of loop closures in single
robot mapping. In that field, a method with a similar purpose
to ours has been reported in ref. [3], but it does not consider
the possibility of multiple hypotheses in the map merge, and
a rough comparison of typical execution times has revealed
that our method is about 100 times faster.

The rest of the paper is organized as follows. In the
next section, we introduce an overview of our method. A
thorough discussion on different detectors and descriptors
is provided in Sections 3 and 4, respectively, which are
benchmarked in Section 5. The robust matching method,
discussed in Section 6, requires a Gaussian model for the
optimal rigid transformation for subsets of correspondences,
which is discussed in Section 7. Finally, experimental results
validate our approach with maps from four publicly available
datasets. We must remark that a C++ implementation of the
proposed algorithm has been released under the open source
GNU General Public License.1

2. Overview
Our overall method is summarized in Fig. 1. First, map
images are preprocessed to soften out the irregularities
commonly found in grid maps, which can be seen as high-
frequency noise. Interest points (features) are then detected in
these filtered images and descriptors computed to model their
surroundings. Obviously, the choice of a particular interest
point detector and descriptor will determine the performance
of our whole method. After comprehensive experiments
(refer to discussion in Section 5) we have determined that
either the Harris17 or the Kanade–Lucas–Tomasi (KLT)24, 34

detectors, in combination with a descriptor consisting of
a circular patch centered at the feature, provide the best
performance in terms of both maximizing the distinctiveness
and reducing the computational cost.

Once features have been extracted from map images, a
set of all the candidate correspondences C between features
in both images is determined by means of a measure
of similarity between their descriptors (as explained in
Section 4.2). Due to ambiguity in maps, it is common for

1 See http://www.mrpt.org/Application:grid-matching
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Fig. 1. An overview of the proposed method for map matching,
which aligns a pair of maps each comprising a grid map and a point
map. It first registers the grid maps to obtain a set of potential
transformations q, which are then refined employing the point
maps and ICP-based alignment. The result is a probability density
distribution for the actual q in the form of a mixture of Gaussians.

a given feature to have several candidate correspondences.
From all those candidates, a modified RANSAC algorithm
obtains subsets of internally consistent hypotheses Ci ⊂ C
by imposing uniqueness (each feature must correspond up
to just one in the other map) and the rigid transformation
constraint (the relative position of features must be the
same in both maps). The uncertainty of all the variables
is accounted for during the whole process; thus, all the
decisions are taken upon stochastic tests. Unlike the standard
RANSAC algorithm,13 we propose to keep not only the
solution with the largest number of supporting inliers but a
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dynamic number of them. Each of these detected hypotheses
leads to a particular rigid transformation, which is modeled
as a Gaussian distribution over the space of translations and
rotations.

The general form for the probability distribution of the
rigid transformation q between two maps, as an SOG, can be
written as

p(q) =
∑

i

N (q; q�
i , Qi)ωi, (1)

where each ωi weights a Gaussian kernel centered at q�
i

with covariance matrix Qi and such that
∑

i ωi = 1. The
distribution p(q) can also be expanded using the law of total
probability over all the potential sets of correspondences Ci

as follows:

p(q) =
∑
∀Ci

p(q|Ci)P (Ci). (2)

Comparing Eq. (1) with Eq. (2) it is clear that we can
choose P (Ci) as the SOG weights ωi and model the density
of q (given a set of correspondences Ci) as a Gaussian
distribution, that is,

p(q|Ci) = N (q; q�
i , Qi). (3)

The parameters of this distribution (its mean and
covariance) will be derived in Section 7.

Finally, we should remark our proposal to simplify the SOG
distribution generated by the RANSAC stage. This means
that, whenever possible, two or more Gaussians are replaced
by just one with the appropriate mean and covariance such
that it closely covers the same volume than the original pair.
We will follow here the method proposed by Runnalls:30 only
those simplifications whose Kullback–Leibler divergence
(KLD) between the original and tentative simplified densities
is below a threshold will be admitted. One of the reasons to
simplify the SOG is reducing as much as possible the cost of
the following refinement step, in which ICP2 is applied to the
point maps in order to improve the estimate of the mean map
transformation q�. The resulting SOG is then tested again for
further potential simplifications, obtaining the final, possibly
multi-modal, density distribution for the map transformation.

3. Extraction of Features
In this section, we review some well-known image feature
detectors and motivate the need for pre-processing the map
images in order to improve the detection process.

3.1. Interest-point detectors
In a typical indoor occupancy grid map, we can easily identify
natural features produced by scene elements, like corners,
columns or, in general, any sharp edge. They also appear in
some outdoor maps originated by vertical poles, building
corners, vehicle edges, etc. These natural landmarks are
suitable for matching maps of the same areas since they
naturally occur in the environment and they are typically
static.

All those interest points can be detected by interpreting the
grid map as a grayscale image, the map image, and applying
existing key-point detectors. The most desirable property of
any detector is its repeatability, that is, its ability to detect a
given feature when it appears in different images.

We are interested in the performance of the following four
methods:
� The Harris detector,17 which searches for points where the

structure tensor has two large eigenvalues, revealing the
existence of corners.

� The KLT method24, 34 also relies on the structure tensor. It
detects salient points where one of the eigenvalues exceeds
a given threshold.

� The detection phase of the SIFT algorithm,23 which
identifies scale-space extrema in pyramids of difference
of Gaussians. This method aims at detecting blobs instead
of corners.26

� The detector of SURF, based on an approximation to the
Hessian matrix.1

There exists an issue in map images which affects
the process of feature detection and needs to be handled
appropriately. Grid mapping from laser range scans typically
generates some artifacts in the maps which can be interpreted
as high-frequency noise in the image (e.g. those arising from
a single ray of the scans). To prevent the detection of spurious
interest points in the middle of free space, we propose to pre-
process the images by applying first a Gaussian filter and
then a median filter to attenuate most of the irregularities.
Next, we explain how we have tuned each filter for optimal
detection performance.

3.2. Characterization
The set of maps employed in this characterization (available
online2) consists of 10 pairs of grid maps from real robot
data. We must remark that the maps represent real loop-
closure situations with partial overlap and small differences
in the grids caused by noise and different viewpoints of the
robot. Since hundreds of key points are detected in each of
these grids, our overall characterization can be considered
significant from a statistical point of view.

In order to evaluate the repeatability of each interest
point detector, we have applied it to both maps in each
pair and then counted the number of common detected
features, i.e. the same feature must be detected in both
grid maps. The correct pairings were obtained then from
ground truth transformations between the pairs of maps,
computed manually. To avoid a bias in our results due to
the number of detected points, we have limited the number
of interest points to a fixed value proportional to the extension
of each grid map (a typical value of 0.015 features per
square meter is appropriate for all the maps employed in
our comparison).

The results are summarized in Fig. 2 for each detector and
for different values of Wg and Wm, the sizes of the Gaussian
and the median filter, respectively. The values Wg = 0 and
Wm = 1 correspond to a null filter in each case; thus, the

2 Refer to the Web site http://www.mrpt.org/Paper:Occupancy
Grid Matching.

https://doi.org/10.1017/S0263574712000732 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000732


690 A robust approach to matching occupancy grid maps

W
g

SIFT

3 7 11

1

5

9

13
40

50

60

70

80

SURF

60

80

100

120

140

160

Harris

50

100

150

200

KLT

50

100

150

200

0

3

7

11

1 5 9 13

Wm

W
g

3 7 11

1

5

9

13

0

3

7

11

1 5 9 13
Wm

3 7 11

1

5

9

13

0

3

7

11

1 5 9 13

3 7 11

1

5

9

13

0

3

7

11

1 5 9 13

N
um

ber of m
atching feature pairs

N
um

ber of m
atching feature pairs

Fig. 2. A measure of the repeatability for each detector and for different sizes of the Gaussian (Wg) and median (Wm) filters used to smooth
the map images. Brighter colors indicate a higher number of common features detected in both maps.

cases of applying just one of the filters (or none of them)
have also been accounted for.

Observe how blob detectors (SIFT and SURF) perform
well for large filter sizes (that lead to more “softened”
images), whereas corner detectors (Harris and KLT) have
good repeatability for slightly filtered images or even for
maps not filtered at all (refer to KLT results in Fig. 2).
Figure 3 shows an example of the different filters required
by each detector to perform optimally. The best filter
configuration for each detector has been employed in the
benchmark presented in Section 5.1, and the corresponding
overall number of matches can be seen in Fig. 6(f).

4. Descriptors

4.1. Review
Once the key points are detected they are assigned distinctive
descriptors in order to establish correspondences. We
have studied the performance of the following five image
descriptors:3

3 OpenCV implementations have been used for all the feature
detectors and descriptors mentioned in this paper, except for (i)
the SIFT method for which we rely on Hess’ implementation19

and (ii) the lin-polar descriptor, coded by the authors and released
within OpenCV 2.0.

� SIFT: This method is based on histograms of image
gradients,23 obtaining a 128-length descriptor vector.

� SURF: Based on the responses of Haar wavelets as
described in ref. [1].

� Intensity-domain spin images (Spin): A 2D histogram
of intensities and distances,22 with the maximum radius
from the interest point determined by the parameter Rmax.
The usage of distances (disregarding angles) makes this
descriptor rotation invariant.

� Linear or logarithmic circular patches: These two
descriptors have many similarities; hence, we discuss
them here together. Both map a circular region of radius
Rmax centered at the interest point into a 2D matrix (the
descriptor) of polar coordinates. Let this matrix be denoted
by f(u, v), where the indices u and v denote different values
of the distance and the angle from the feature, respectively.
The idea is to extract a circular patch of the neighborhood
of the feature in a representation which is not invariant to
rotations, but where these rotations become just shifts in
the angle dimension (v), as illustrated with the examples in
Figs. 4(b–c). The only difference between the linear polar
descriptor (lin-polar for short) and its logarithmic version
(log-polar) is the usage of a linear or logarithmic scale in
the distances.

Next, we address the problem of measuring the
similarity between descriptors, a requisite to evaluate their
distinctiveness.
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Fig. 3. (Colour online) One of the maps from the dataset, filtered
with a Gaussian and median filter of sizes Wg and Wm, respectively.
Detected interest points are marked with small squares for the Harris
and SIFT detectors. Notice how each method detects a different
kind of features (corners or blobs), hence the different filtering
requirements.

4.2. A similarity function between descriptors
Given a pair of descriptors fa

i and fb
j for two key points i

and j from maps a and b, respectively, we are interested
in measuring their similarity. For the SIFT, SURF and
Spin descriptors, the most natural measure is the Euclidean
distance between the descriptor vectors. However, the cases
of lin-polar and log-polar deserve more discussion since they
are not directly invariant to orientation.

As illustrated in Fig. 4, the descriptors of two matching
features only differ by a shift in the angular dimension.
Therefore, we propose to measure the distance between two
descriptors fi and fj by their Euclidean distance, given a
rotation �φ, that is,

d
(
fi , fj , �φ

) =
(∑

u

∑
v

∣∣fi(u, v) − fj (u, v + �φ)
∣∣2

) 1
2

,

(4)

where the angular polar coordinate v is taken modulo the
corresponding size of the matrix.

By computing the distance in Eq. (4) to a pair of
descriptors fa

i and fb
j , we obtain a distance vector for each

possible shift in orientation �φ. As shown in Fig. 4, these
distance vectors have pronounced minima for the true
orientation when two features do really match; thus, we
propose to measure the inter-feature distance in the cases of
lin-polar and log-polar as

d
(
fi , fj

) = min
�φ

d
(
fi , fj , �φ

)
. (5)

For all the descriptors in our comparison, we have
normalized distances to the range [0, 1] in order to keep
homogeneity in the results presented in the next section.

5. Evaluation of Detectors and Descriptors

5.1. Benchmark
After defining a similarity measure for pairs of descriptors in
Section 4.2, we are interested in obtaining a set of candidate
correspondences between the features of two maps a and
b, given their descriptors fa

i and fb
j . The goodness of all

the potential correspondences must be evaluated such as
only the most promising pairings (those passing a given
test) are considered as candidates. It is acceptable for each
feature to have multiple potential correspondences in the
other map, since a subsequent robust matching step (such as
RANSAC13) can easily manage that ambiguity.

The arguably simplest test for selecting matchings is
thresholding, which in our case means to accept a potential
match between fa

i and fb
j only if the distance dij between their

descriptors is below a fixed value Td . However, this simple
scheme has some drawbacks in the context of grid matching,
because distance values between actually corresponding
pairs may vary in a relatively large range. Thus, any
permissive threshold Td which covers most of the good cor-
respondences would suffer from a high rate of false positives.

Following an idea similar to Lowe’s proposal in ref. [23],
we introduce a second condition for establishing candidate
pairings: the associated distance dij must be not only below
the threshold Td but also sufficiently close to the best
matching of fa

i in map b, that is, the minimum of dij for all
values of j (see Fig. 5). This restriction is characterized by
a second threshold Tδ which states the maximum acceptable
distance δ between a potential pairing and the best one, that is,
δij = dij − minj dij . Note that for the extreme case Tδ = 0,

each feature will be associated with only one in the other
map: the one with the closest descriptor. Both measures dij

and δij are illustrated with an example in Fig. 5 for clarity.
A benchmark has been carried out to obtain the optimal

values for the thresholds Td and Tδ from a training set
of 10 pairs of submaps with known ground truth and
for several combinations of detectors and descriptors.
Optimal thresholds have been determined by minimizing the
probability Perr of misclassifying a correspondence as a valid
or an invalid candidate, given by

Perr(Td, Tδ) = P (w)Perr(Td, Tδ|w) + P (v)Perr(Td, Tδ|v)

= P (w)P (dij < Td, δij < Tδ|w)

+P (v)[1 − P (dij < Td, δij < Tδ|v)], (6)

https://doi.org/10.1017/S0263574712000732 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000732


692 A robust approach to matching occupancy grid maps

0 50 100 150 200 250 300 350
0

0.5

1

0 50 100 150 200 250 300 350
0

0.5

1

0 50 100 150 200 250 300 350
0

0.5

1

0 50 100 150 200 250 300 350
0

0.5

1

Map a

1
af

Map b
1
bf

2
bf

1
af

(b) Matching with 
the lin-polar descriptors

(a) The pair of maps (c) Matching with 
the log-polar descriptors

1
bf 2

bf

D
is

ta
nc

e

D
is

ta
nc

e

Angle Angle

( )1 1, ,a bd f f φΔ

 (deg)φΔ

( )1 2, ,a bd f f φΔ

D
is

ta
nc

e

1
af

D
is

ta
nc

e

Angle Angle

( )1 1, ,a bd f f φΔ ( )1 2, ,a bd f f φΔ

1
bf 2

bf

(deg)φΔ (deg)φΔ (deg)φΔ
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1 is highlighted in map a, and two

potential pairings f b
1 (the real correspondence) and f b

2 are marked in map b. (b–c) The similarity between the feature descriptors is
displayed as the distance function d(fi, fj ,�φ) for the cases of using the lin-polar and log-polar descriptors, respectively. Notice the
pronounced minimum of the distance for the case of the real correspondence f a

1 ↔ f b
1 close to the 180◦ relative rotation. We must remark

that hundreds of different discrete orientations have been evaluated in this figure with the purpose of generating a clear illustration, while
in practice as few as eight discrete orientations are enough for achieving excellent discrimination.

Fig. 5. A schematic illustration of the distance between descriptors
dij and the index δij , which measures those distances relative to the
closest one for each given feature i. Note that, by definition, the
best pairing is always assigned a value δij = 0. A pairing will be
accepted only if it is below both thresholds Td (absolute) and Tδ

(relative to the minimum distance).

which can be evaluated given knowledge of the joint densities
p(d, δ|v) and p(d, δ|w), where v and w denote valid and
wrong pairings, respectively. The expression above can easily
be derived by noticing that a misclassification will occur
when (i) a distance dij passes both thresholds and it was a
wrong association (first term in the sum), or (ii) a valid pairing
does not pass the thresholds (second term). For our analysis,
we assume no a priori information about the probability
of being in a valid or invalid pairing; thus, we have P (v) =
P (w) = 1/2. The joint conditional densities p(dij , δij |v) and
p(dij , δij |w) have been estimated from histograms generated
by evaluating all the potential pairings in the 10 pairs of

submaps, which amounts to 220 valid and 240,000 invalid
correspondences.

The results of the benchmark are summarized in Fig. 6(e),
which shows the minimum classification error Perr attainable
by each combination of feature detector and descriptor,
along the associated average computation time (for one
whole submap). These times include detection, descriptor
extraction and distance computations, but they do not include
the preprocessing filters discussed in Section 3.2. This
preprocessing would add an average of 10–200 ms, with
larger computational burdens associated with SIFT and
SURF since they require larger filter kernels than the Harris
or KLT methods.

Note that for those descriptors parameterized by a
maximum radius Rmax (see Section 4.1), we present the
results only for the value that minimizes the classification
error. However, this is a non-critical parameter since any
value in the range of 1–3 m gives very similar results.
The angular and radial resolutions of the lin-polar and log-
polar descriptors were set to eight and six bins, respectively.
Increasing these parameters would in theory make them
more distinctive but in practice the impact was little; thus,
we employed the minimum values that do not degrade
performance significantly.

5.2. Discussion
The first important conclusion we can extract from our
comparison is that no descriptor can tell valid pairings
from wrong ones with a classification error below ∼ 20%,
which is clearly a consequence of the ambiguity of features
in map images where many look quite similar locally.
Still, discarding ∼ 80% of the wrong pairings provides an
invaluable improvement to the subsequent robust matching
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Fig. 6. The benchmark of feature detectors for grid map matching. (a–d) Four examples of the expected Perr for different values of thresholds
Td and Tδ . The point with the minimum Perr is marked with a cross in each figure. We have also shown the marginal conditional distributions
for the distance d and the distance difference δ for valid (v) and wrong (w) associations are shown on the right hand of each subfigure. (e)
For each combination of detector and descriptor, the resulting overall probability of classification error Perr for its best thresholds, i.e. that
marked with a cross in (a–d), along with its average computation time for one map. (f) A measure of the repeatability for each detector.

algorithm (see Section 6), since it will have to deal with a
reduced fraction of outliers.

It is interesting to note that the SIFT and SURF descriptors
have a much poorer performance when computed for interest
points localized by the Harris or the KLT detectors (third
to sixth values in the bar graph) than when computed as
proposed in their original methods (the first two values in
the graph). As commented in Section 3.1 and illustrated in
Fig. 6(f), this has important consequences for the practical
applicability of those descriptors to grid matching, since the
original SIFT and SURF detectors have poorer repeatability
than the Harris and KLT methods. Subsequently, we discard
the usage of these two descriptors as the optimal solution
since they lead to quite similar error ratios (Perr) than the other
descriptors while severely reducing the number of matched
points and implying a higher computational burden, as can
be seen in Fig. 6(e).

In Figs. 6(a–d), it represents the computed Perr(Td, Tδ)
for some selected methods along the marginal distributions
obtained in our benchmark. Observe how the marginal
p(δij |v) presents a clear peak at the origin (δij = 0) for all
the methods, which indicates that the closest feature is often
the actual correspondence.4 However, this is not always the
case; hence, the optimal Tδ values are not exactly zero.

Note that the worst obtained value for Perr (0.5, shown in
white in the graphs) is obtained for a wide range of threshold
values, while more reduced error ratios only appear for a
certain band of the parameters (shown by darker areas). The
thickness of these bands is related to the distinctiveness of the
descriptors, as can be observed in the densities of descriptor
distances for valid and wrong pairings (the histograms at the

4 Recall that, by definition, δij = 0 means that feature fj has the
minimum distance to feature fi .
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Algorithm 1 robust transform (C, {pA
i }, {pB

j }) → SOG

1: SOG ⇐ ∅
2: iter ⇐ 1
3: repeat // RANSAC iterations
4: Ĉ ⇐ {ck1, ck2} ⊂ C|uniqueness(ck1, ck2 )
5: if D2

M (ck1, ck2 ) < χ2
c,1 then // Consistency test

6: if ∃k|Ĉ ⊂ SOGk.Ĉ then // Already in?
7: // Increment the weight
8: SOGk.ω ⇐ SOGk.ω + 1
9: else

10: // It is a new SOG mode
11: Ĉo ⇐ Ĉ // Save original minimal set
12: repeat // Incorporate inliers
13: Ĉt ⇐ Ĉo ∪ (i�, j �) // Tentative set of pairings
14: (q�

i , Q�
i ) ⇐ opt transf (Ĉt ) // See

Eqs.(10),(15)
15: (i�, j �) ⇐ arg max(i,j )

∫
pi(ξ )p̃j (ξ )dξ

16: if D2
M (i�, j �) < χ2

c,2 then
17: Ĉ ⇐ Ĉ ∪ (i�, j �) // Accept pairing
18: end if
19: until D2

M (i�, j �) ≥ χ2
c,2

20: if |Ĉ| ≥ M then // Minimum inlier support
21: // New Gaussian mode with ω = 1
22: (q�

i , Q�
i ) ⇐ opt transf (Ĉ) // Use Eqs.(10),

(15) with final set
23: SOG ⇐ SOG ∪ (Ĉ, 1, (q�

i , Qi))
24: end if
25: end if
26: end if
27: iter ⇐ iter + 1
28: until iter > maxI ters // With maxI ters computed as

in ref. [18]

right hand of each Perr graph). For instance, compare the
histograms p(d|v) and p(d|w) for the SURF and the Spin
descriptors in Figs. 6(a–c), where it is clear that in SURF the
histograms concentrate in relatively different areas (easing
the decision of where to place the threshold) whereas this is
definitively not the case for the Spin descriptor.

As a final conclusion from our benchmark, the lin-
polar and log-polar descriptors, both with virtually identical
performance, emerge as the best choices for grid matching in
combination with either Harris or KLT detector, due to their
reduced misclassification probability and faster computation
time.

6. Construction of the SOG: The Modified RANSAC
Algorithm

Subsets of self-consistent correspondences Ci ∈ C can
be extracted with RANSAC, a consensus-based method to
distinguish inliers from outliers.13 However, in our problem,
it is not enough to keep the hypothesis with most supporting
inliers since ambiguity in grid matching can lead to multiple
mutually incompatible but internally consistent subsets Ci .
We propose instead to maintain each of those hypotheses as
a Gaussian mode in the SOG (refer to Eq. (2)); hence, the

need to modify the RANSAC algorithm to allow the existence
of multiple hypotheses.

Next, we describe the complete process, which has
been also specified in Algorithm 1 for clarity. First,
two correspondences (the minimum number required to
unequivocally determine the distribution of the associated
map transformation p(q|Ci)) are randomly chosen from
C to initialize the subset Ci = {ck1, ck2} (line 4 of the
algorithm). The uniqueness constraint is tested first, that
is, in a valid pairing one given feature cannot appear in
both correspondences ck1 and ck2 simultaneously. Then,
the feasibility of this pair is tested by a χ2 test (line
5) which detects inconsistencies between the inter-feature
spatial distances da and db measured in the two maps a and b

(refer to the example in Fig. 7a). As shown in the Appendix,
if

(
d2

a − d2
b

)2

8σ 2
(
d2

a + d2
b

) < χ2
1,c (7)

holds, we can accept that the distances are consistent within
a confidence of c, where χ2

n,c stands for the inverse χ2

cumulative distribution with n degrees of freedom.
Next, it must be determined the number of inliers

supporting the hypothesis p(q|Ci) defined by each set
of initial pairings Ci . This is achieved by establishing
associations between all the features in map b and those
in a transformed by q. Note that this is a stochastic data-
association problem since all feature locations, and the
transformation itself, have associated uncertainties.

A robust method for stochastic data association is the
Joint Compatibility Branch and Bound (JCBB),28 but
unfortunately its exponential time complexity makes it
impractical for our problem, where each map will typically
contain about 100 features.

Our alternative, detailed in Algorithm 1, consists of
sequentially incorporating (lines 12–19) matches which
optimize the integral of the product of the two Gaussians,
which can be interpreted as the likelihood of the two points
sharing the same position in space—that is, it is the matching
likelihood7 of the pairing. The incorporation of inliers stops
when the next best pairing candidate (i, j ) has a squared
Mahalanobis distance D2

M (i, j ) above a given threshold χ2
c,2.

The above process is repeated a number of times and
updated dynamically as new inliers are found, as described in
ref. [18]. Regarding the weights of the SOG, each Gaussian
mode is initially assigned a unit weight, which is incremented
each time the same subset of correspondences is found in
subsequent iterations (lines 6–8). An optimization of this ap-
proach is to test whether the two first correspondences Ci are
already part of another Cj , and in that case, to increment the
weight ωj . This heuristic is justified by the observation that
the same set of self-consistent pairings will be obtained if the
two first ones were different but belonging to the final subset.

Note as well the existence of a minimum number of
required inliers M in order to accept a hypothesis (line 20 of
the algorithm). In our experiments, this threshold has been
heuristically set to a ∼ 15% of the average number of features
found in each map. This restriction prevents the detection of
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Fig. 7. (Colour online) Four sets of correspondences between two synthetic maps a and b for different spatial distributions and number
of detected features. Here, the position uncertainty for all the features has been set to σp = 0.10 and ellipses represent 95% confidence
intervals. The inter-feature distances measured in the different maps, da and db, as employed in Eq. (7), are shown in (a) as an example.

spurious hypotheses with very few supporting inliers caused
by pure chance when two maps do not really match.

7. Uncertainty of the Optimal Transformation
Given a set of point correspondences from a pair of maps, it
is well known that a closed-form solution exists for finding
the rigid transformation between them that is optimal in
the sense of least mean-square error (LMSE).2, 20, 25 We
contribute here with a derivation of the uncertainty associated
with this optimal solution with the purpose of making
our formulation usable within probabilistic localization and
mapping frameworks. Taking such uncertainty into account
is essential, since the position of any feature is always prone
to error, mainly because of the discrete nature of maps and
because of the limited precision of the interest point detectors
(in the order of one pixel, that is, the size of one grid cell—
typically in the range of 5–20 cm for mobile robot grid maps).

Additionally, the spatial distribution of features on the map
is crucial to the precision in the transformation, as discussed
at the end of this section.

Given a certain set of feature correspondences Ci , we
model the probability density of a rigid transformation
between maps q = [x y φ]� as a Gaussian distribution, that
is,

p(q|Ci) = N (q; q�
i , Qi), (8)

where q�
i and Qi represent the corresponding mean and

covariance matrix, respectively. In the following, we derive
expressions for the parameters of this distribution. The basic
idea is to take the optimal solution for the map transformation
as the mean of the Gaussian, while the covariance matrix
is approximated by uncertainty propagation through a first-
order Taylor series approximation of the resulting function,
as explained below.
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Let pa
k = [xa

k ya
k ]� and pb

k = [xb
k yb

k ]� be the position of
the kth feature in maps a and b, respectively. Then, given a
set Ci of correspondences, i.e. pairs of map feature indices
in each map (ia, ib), we can define the squared error of the
feature matching for any rigid transformation q as

ECi
(q) =

∑
∀(ia ,ib)∈Ci

∣∣pb
ib

− (q ⊕ pa
ia

)
∣∣2

, (9)

where ⊕ represents the pose composition operator.4 In the
2D case, the optimal transformation q�

i = [x�
i y�

i φ�
i ]� that

minimizes this error can be obtained by equaling to zero the
derivative of Eq. (9) with respect to the transformation q,
which leads to the closed-form solution:25

∂ECi
(q�

i )

∂q
= 0 →

q�
i =

⎡
⎢⎢⎢⎣

x̄a − x̄b �x√
�2

x+�2
y

+ ȳb �y√
�2

x+�2
y

ȳa − x̄b �y√
�2

x+�2
y

− ȳb �x√
�2

x+�2
y

tan−1
(

�y

�x

)

⎤
⎥⎥⎥⎦ , (10)

where x̄a , ȳa , x̄b and ȳb are the means (average values) of the
vectors xa , ya , xb and yb, respectively, which contain the 2D
coordinates of features within maps a and b. We have also
introduced the auxiliary scalar terms �x and �y , defined as

�x = N

(∑
k

xa
k xb

k +
∑

k

ya
k yb

k

)
− N2

(
x̄ax̄b + ȳaȳb

)
,

�y = N

(∑
k

ya
k xb

k −
∑

k

xa
k yb

k

)
+ N2

(
x̄aȳb − ȳax̄b

)
,

(11)

with N = |Ci | denoting the number of pairings in Ci .
The optimal transformation in Eq. (10) can then be seen

as a function q�
i = q(z) of six auxiliary variables, which

we can stack into the vector z = [
x̄a ȳa x̄b ȳb �x �y

]�
.

In order to estimate the covariance matrix Qi that models
the uncertainty of the optimal transformation, we use first-
order uncertainty propagation, for which it is first needed the
multivariate Gaussian distribution of the vector of auxiliary
variables z. This vector is a function of the 2D coordinates
of all the features xa , ya , xb and yb (which all are known
input data). Assuming that these coordinates are corrupted
with an additive, zero-mean Gaussian noise with known
covariance matrices Xa , Ya , Xb and Yb, we can approximate
the covariance of z by

�z = Jz

⎡
⎢⎣

Xa 0 0 0
0 Ya 0 0
0 0 Xb 0
0 0 0 Yb

⎤
⎥⎦ J�

z . (12)

Since z depends on the whole set of feature coordinates,
the Jacobian matrix Jz = ∂z

∂{xa,ya,xb,yb} has a dimensionality of

6 × 4N . In despite of the large size of the matrices involved
in Eq. (12), important simplifications are possible because of
the following properties of the feature covariances:
� Since in most feature detectors each point is detected

independently, Gaussian errors in the coordinates of
different features are uncorrelated.

� As a consequence of this independent detection, all features
may be assigned the same covariance.

� It is plausible for most interest point detectors to assume
an isotropic distribution for the localization errors.

These assumptions are widely accepted in the computer
vision literature.9, 31, 32, 35 To sum up, it seems plausible to
accept that Xa , Ya , Xb and Yb are diagonal matrices with the
same variance for all the coordinates, which we will name
σ 2

p . By replacing the covariance matrices by their values in
Eq. (12), we end up with the following diagonal matrix:

�z = σ 2
p

[
1
N

I4 04×2

02×4 βI2

]
, (13)

with β given by

β = N2(N − 1)
(
σ̂ 2

xa + σ̂ 2
ya + σ̂ 2

xb + σ̂ 2
yb

)
, (14)

where the constants σ̂ 2
xa , σ̂ 2

ya , σ̂ 2
xb and σ̂ 2

yb represent the
unbiased estimates of the variance for their corresponding
vectors.

At this point, we can proceed with the derivation of the
covariance of q�

i . By computing the Jacobian of Eq. (10)
with respect to z, Jq = q�

i /∂z, it follows that the covariance
Qi is proportional to the uncertainty of the individual features
σ 2

p , that is

Qi = Jq�zJ�
q = σ 2

p

⎛
⎝C11 C12 C13

C12 C22 C23

C13 C23 C33

⎞
⎠ , (15)

where the matrix terms are given by

C11 = 2

N
+ β

(
x̄b�y + ȳb�x

�2
x + �2

y

)2

,

C22 = 2

N
+ β

(
x̄b�x − ȳb�y

�2
x + �2

y

)2

,

C33 = β

�2
x + �2

y

,

C12 = β

(
x̄b�y + ȳb�x

) (
ȳb�y − x̄b�x

)
(
�2

x + �2
y

)2 , (16)

C13 = β
x̄b�y + ȳb�x(

�2
x + �2

y

) 3
2

,

C23 = β
ȳb�y − x̄b�x(

�2
x + �2

y

) 3
2

.
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Fig. 8. The Kullback–Leibler divergence (KLD) between our
theoretical model for the covariance Qi and its value from a Monte
Carlo simulation for an increasing number of trials. Confidence
intervals are shown for the KLD since the values at each point were
computed for 50 different maps generated by randomly positioned
features.

To illustrate some results for this covariance estimation,
the transformations computed from four sets of feature
correspondences are shown in Fig. 7, along with their 2D
uncertainty ellipses for [x�

i y�
i ]� and the densities of φ�

i .
These examples illustrate some interesting properties of the
resulting uncertainty. First, the uncertainty in the orientation
φ�

i strongly depends on the spatial distribution of the features,
since more precise estimations can be made from features
distributed over larger areas. This can be clearly observed by
comparing the two cases shown in Figs. 7(b–c). Second, the
uncertainty in the 2D coordinates of q�

i decreases with the
number of features N only for very low values of N . This
can be explained by the term 2/N becoming negligible in the
expressions for C11 and C22, where the second term does not
decrease for increasingly larger values of N .

In order to validate our model of the covariance Qi , we
have evaluated the Kullback–Leibler divergence between
our model and the covariance obtained from a Monte Carlo
simulation comprising six pairs of correspondences between
randomly located features corrupted with Gaussian noise.
The results, in Fig. 8, reveal that the experimentally obtained
covariance approaches the theoretical model as the number
of Monte Carlo trials increases.

At this point, we have described a closed-form, optimal
solution for the map transformation and derived a Gaussian
approximation to its associated uncertainty for any given
set of correspondences. The derived expressions are
needed during the RANSAC stage discussed in Section 6,
specifically in the step denoted as opt transf in Algorithm 1.

8. Results
In this section, we present experiments aimed at testing
the robustness of our approach. For all these results, we
have employed the Harris corner detector and the linear-
polar descriptor to establish correspondences between 10 cm
resolution grid maps.

8.1. Performance under errors and noise
Maps built by a mobile robot at different moments in time
may present significant differences due to both dynamic
objects and errors in the robot localization while mapping. To
quantify the accuracy of our method against such differences,
we have matched a reference map, built from real data, to a
transformed one with known ground-truth translation and
rotation—see the left column in Fig. 9.

Two sources of errors have been evaluated. First, the
estimated robot path in the environment (which in turn
determines the accuracy of the map itself16) has been
deliberately corrupted by Gaussian noise with a standard
deviation of σp. As σp increases, so does the degradation of
the test map, as illustrated in the top row of the figure. It can be
seen how the corresponding errors in the map transformation
as detected by our method increases with larger σp, which is
explained by both the more erroneous locations of detected
features and their more reduced repeatability, shown in the
rightmost column of the figure. Note that repeatability is
a desired property of any feature detector since it ensures
that the same physical point is detected in two different
maps in spite of potential changes in orientation or minor
differences in the feature surroundings. For completeness,
we also repeated this experiment with a standard RANSAC
implementation. Note that since in this test map there exist
no chances for multi-hypothesis matching (that is, the map
does not present a real ambiguity), the accuracy of standard
RANSAC should match that of our method, and indeed this
is what we verified.

Second, we also evaluated the effects of noise in the laser
scanner ranges, characterized by a standard deviation of σl .
As reflected in Fig. 9, our method is less sensitive to this kind
of error, probably because the preprocessing of map images
smoothes out part of the noisy measurements.

We must remark that the error and noise levels probed in
this characterization are much higher than those expected
in real-world conditions (the ranges of realistic values are
marked in the graphs). Therefore, the errors of our method
under normal conditions are expected to be below 10 cm,
approximately.

8.2. Performance in loop-closure detection
The following benchmark characterizes the performance
of our method in its natural application to hierarchical
SLAM,5, 12 that is, in detecting loop closures from local,
metric submaps. For this aim, we have selected four publicly
available datasets. Three of them, the Freiburg campus
dataset, the Intel dataset and the MIT dataset, are published
in the Radish repository,21 while the fourth was collected by
the authors at the Málaga campus.5 See Fig. 10 for example
submaps from each dataset.

All these datasets have been processed within our Hybrid
Metric-Topological (HMT) SLAM framework, presented
elsewhere.5 In this framework, the original sequence of
robot observations is grouped into segments of consecutive
observations (the submaps) according to a natural metric
of similarity.6 For convenience, we disabled topological

5 Available online at http://www.mrpt.org/Malaga 2006 campus
dataset
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Fig. 9. Characterization of our method under the presence of localization errors (σp) and laser sensor errors (σl). The average error in the
map transformation (from the most likely Gaussian mode in the SOG) and the average number of matches between the pair of maps are
shown by the thick plot, while the ±1σ confidence intervals are represented by the shaded region.
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Fig. 10. (Colour online) (a–c) Some examples of map-to-map matchings as detected by the proposed method. (d) A pair of submaps for
which a multi-modal transformation is detected. The two different hypotheses are represented by the overlay of the submap #20 over
submap #18 in the right-hand images.
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Fig. 11. (Colour online) Results of the loop-closure benchmark. The submaps corresponding to each of the two datasets have been separated
by thick lines and inter-dataset blocks have been shaded for clarity.

loop-closure detection in this framework to obtain the raw se-
quence of submaps in each dataset. Among them, some areas
will appear several times corresponding to loop closures.

The so obtained set of 59 submaps is an ideal testbed
for the method proposed in this paper, since we can now
try to match each submap with the rest, including those
in different datasets (from which no valid transformation
should result). The detailed results of executing the 1711
map-to-map matchings are shown in Fig. 11, where each
entry in the table specifies the outcome from our method and
whether the two maps actually do correspond or not, that is,
it shows the loop-closure ground truth (obtained by human
inspection). Note that there are two possible kinds of errors in
this experiment: false positives (our method detecting a loop
closure that does not really exist) and false negatives (where
a real loop closure is overlooked). In global SLAM, the
former is far more important because a single false positive
may completely ruin the map. However, note that in HMT–

SLAM, candidate false positives may not be that critical as
long as they can be discarded if the uncertainty of the metric
information is not too high.5

As can be seen in the figure, our method correctly
detects as non-matchings virtually all the cases where each
submap belongs to a different dataset. Two datasets deserve
additional attention. First, the Intel dataset leads to several
false positives, which is explained by the symmetry of the
environment, i.e. all its submaps are very similar. Second,
the Málaga 2006 campus dataset also suffers from many
false positives, most of them attributable to the environment
consisting of an array of three exactly identical buildings.
Such potential errors, as mentioned above, can be easily
discarded in a posterior stage by checking the consistency
of the loop-closure hypothesis and the metric information
within a hierarchical map.

The overall performance is also summarized in Table I,
where for the sake of a fair validation we do not count the
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Table I. Results for the loop-closure detection benchmark.

Result Disregarding ambiguity

True positives 97.56% (40/41) –
False positives 3.47% (58/1670) 1.38% (23/1670)
True negatives 96.53% (1612/1670) 98.62% (1647/1670)
False negatives 2.44% (1/41) –

elements in the main diagonal of Fig. 11 (matching each
submap to itself), which were correctly detected by our
method. It is remarkable that only one loop closure out of 41
was not recognized (a ∼ 2.4% fail rate). We also show in the
table the ratio of false positives modified by disregarding the
errors clearly attributable to a real repetitive environment,
not to errors in our detection method.

Regarding the computation time of this benchmark, it
took 1740 s to compute the 1711 matchings in a Pentium
Core Duo @ 2.2 GHz (using a single execution thread),
yielding an average 1.02 s per match. Note that this includes
the detection and descriptor extraction phases, not only the
descriptor matching.

9. Conclusions
In this paper, we have proposed a new approach to grid
matching, based on existing computer vision techniques
(detectors and descriptors) and providing the modifications
required by the ambiguity typically found in our problem by
means of a multi-hypothesis RANSAC stage. The resulting
method has been demonstrated to assess a 97% success
ratio in detecting loop closures while also being reliable
against sensor noise and errors in the robot positioning.
In contrast to previous works, our proposal does not rely
on an accurate knowledge of the robot heading, thus
making it suitable to a larger number of real-world SLAM
problems. Also, by keeping the probabilistic nature of the
problem throughout the whole process, potentially including
multimodal distributions, our method has important and
direct applications to hierarchical robot map building of
large-scale environments.

Appendix : Pairings test of consistency
In the following, we derive the test for the hypothesis that
a given pair of features in maps a and b do actually match.
Our statistical test relies solely on the rigid-body constraint
that dictates that both inter-feature distances d2

a and d2
b ,

measured in each map, must be equal. Note the usage of
squared distances due to convenience during the derivation.
A schematic illustration of these distances can be observed
with an example in Fig. 7(a).

Following the assumptions presented in Section 7, the
uncertainty in the feature points is modeled by a 2D isotropic
Gaussian with a standard deviation of σ . Then, each of the
squared distances d2

i is

d2
i = |pi,1 − pi,2|2 = (xi,1 − xi,2)2 + (yi,1 − yi,2)2, (17)

and, by means of linear uncertainty propagation, we can
model each d2

i as a Gaussian with mean d̄2
i and variance

σ 2
d2

i

= J�J�, where J is the Jacobian of Eq. (17) and �

is the covariance of the feature point coordinates. It is
clear that, assuming independence for the coordinates, this
covariance amounts to σ 2I4; thus, by replacing the values of
the Jacobians, we obtain

σ 2
d2

i

= σ 2JJ� = 8σ 2d̄2
i . (18)

Having the distribution of each variable d2
i , we can define

the auxiliary variable z as the difference between the two
squared distances, that is, z = d2

a − d2
b . Under the hypothesis

of the pairing to be valid, both distances da and db should
be equal, thus z should be null. This allows us to test the
hypothesis with a confidence c by means of the following χ2

test:

χ2 =
(
d̄2

a − d̄2
b

)2

8σ 2
(
d̄2

a + d̄2
b

) < χ2
1,c, (19)

where χ2
n,c is the inverse of the χ2 cumulative distribution

function with n degrees of freedom. In the denominator, we
also use the fact that the variance of z is the sum of the
variances of the individual squared distances.
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