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Abstract

The development of a fuzzy wavelet neural network (FWNN) for the prediction of electricity consumption is presented. The
fuzzy rules that contain wavelets are constructed. Based on these rules, the structure of FWNN-based system is described.
The FWNN system is applied for modeling and prediction of complex time series. The gradient algorithm and genetic al-
gorithm are used for learning of FWNN parameters. The developed FWNN is applied for prediction of electricity consump-
tion. This process has high-order nonlinearity. The statistical data for the last 10 years are used for the development of
FWNN prediction model. The effectiveness of the proposed system is evaluated with the results obtained from the simula-
tion of FWNN-based prediction system and with the comparative simulation results of previous related models.

Keywords: Fuzzy Wavelet Neural Network; Neurofuzzy Modeling; Prediction of Electricity Consumption; Time Series
Prediction; Wavelet Network

1. INTRODUCTION

The future behavior of a dynamic system can be predicted
on the basis of historical states of that system or relationship
of this behavior to other relevant variables. Electricity con-
sumption prediction mainly deals with the amount of electric-
ity that should be generated over a specific period of time.
Such prediction plays an important role in the planning of
electricity systems and greatly influences the national econ-
omy and people’s daily life. The accuracy of electricity pre-
diction is important for electricity utilities and for consumers.

A number of studies have been published about modeling
of electricity consumption using regression analysis and econo-
metric models and time series analysis. Recently, electricity
consumption models using weather and population size
(Yan, 1998), using economical and climatic variables (Rajan
& Jain, 1999) and using economical variables (Egelioglu
et al., 2001; Ceylan & Ozturk, 2004) have been studied.
These models need measuring the number of climatic and
economical variables. Sometimes obtaining the values of
these variables is very difficult over the prediction period,
and this is not enough for accurate model development.

Time series models have been extensively used in elec-
tricity consumption prediction. These are the growth curve

model (Ang & Ng, 1992) and the autoregressive moving av-
erage (ARIMA) model (Abdel-Aal & Al-Garni, 1997a; Saab
et al., 2001). These models need a large number of historical
data to obtain satisfactory prediction accuracy, and this accu-
racy depends on the order of nonlinearity of the considered
problem. Like ARIMA models, the gray forecasting models
were developed for electricity demand and load forecasting
(Yao et al., 2003; Yao & Chi, 2004). These prediction models
are based on technical analysis of time series, such as looking
for trends, stationarity, seasonality, random noise variation,
and moving average (Box et al., 1994). These time series
models are linear models, and they do not provide enough
satisfactory prediction accuracy for nonlinear processes.

Many studies have been devoted to the development and
improvement of time series forecasting models. Chaotic time
series were modeled and predicted using soft computing meth-
odologies such as neural networks (NNs), fuzzy logics, and ge-
netic algorithms (GAs; Lapades & Farber, 1987; Hill et al.,
1994; Jang, 1997; Nunnari et al., 1998; Smaoui, 2000; Zhang
& Chan, 2000). These models are nonlinear models, and have
shown clear advantages over the traditional statistical ones
(Maddala, 1996). NNs have recently been widely used for pre-
diction of time series. Because of nonlinearity existing in elec-
tricity load series, NN models have gained importance in elec-
tricity demand and load forecasting (Abdel-Aal & Al-Garni,
1997b; Al-Shehri, 1999; Hsu & Chen, 2003). Their prediction
capability exceeds those of the conventional methods. In this

Reprint requests to: Rahib H. Abiyev, Department of Computer Engineer-
ing, Near East University, P.O. Box 670, Lefkosha, TRNC, Mersin-10,
Turkey. E-mail: rahib@neu.edu.tr

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2009), 23, 109–118. Printed in the USA.
Copyright # 2008 Cambridge University Press 0890-0604/08 $25.00
doi:10.1017/S0890060409000018

109

https://doi.org/10.1017/S0890060409000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000018


paper, to increase prediction accuracy and reduce search space
and time for achieving the optimal solution, the combination of
soft-computing technologies, such as wavelet NNs (WNNs)
with a fuzzy knowledge base is used for time series prediction,
in particular, for the prediction of electricity consumption in
North Cyprus.

Fuzzy technology is an effective tool for dealing with com-
plex, nonlinear processes characterized with ill-defined and
uncertain factors. Traditionally, to develop a fuzzy system, hu-
man experts often carry out the generation of IF–THEN rules
by expressing their knowledge. In the case of complicated pro-
cesses, it is difficult for human experts to test all the input–
output data and find necessary rules for the fuzzy system. To
solve this problem and simplify the generating of IF–THEN
rules, several approaches have been applied (Yager & Zadeh,
1994; Jang, 1997). Today, the use of NNs takes more impor-
tance for this purpose. NN models basically use the sigmoid
activation function in neurons. However, the sigmoid function
is not orthogonal, and the energy of the sigmoid function is
limitless, and this leads to slow convergence. Wavelet function
is a waveform that has limited duration and an average value of
zero. The integration of the localization properties of wavelets
and the learning abilities of NN shows advantages of WNNs
over NN in complex nonlinear system modeling. A WNN
that uses wavelet functions have been proposed by researchers
for solving approximation and classification problems (Kugar-
ajah & Zhang, 1995; Zhang & Benviste, 1995; Zhang et al.,
1995). WNNs are used for the prediction of chaotic time series
(Cao et al., 1995), for short-term and long-term prediction of
electricity load (Chang et al., 1998; Khao et al., 2004). The
wavelet analysis approximates the decomposed time series at
different levels of resolution. Fuzzy WNN (FWNN) combines
wavelet theory, fuzzy logic, and NNs. The synthesis of fuzzy
wavelet neural inference system includes the finding of the op-
timal definitions of the premise and consequent part of fuzzy
IF–THEN rules through the training capability of WNNs, eval-
uating the error response of the system. A combination of fuzzy
technology and WNN has been considered for solving signal
processing and control problems (Lin & Wang, 1996; Thuil-
lard, 2000). Fuzzy systems with linear combination of the basis
function (Lin & Wang, 1996), wavelet network model of fuzzy
inference system (Thuillard, 2001; Guo et al., 2005) are pro-
posed. Thuillard (2001) proposed to choose the membership
functions from the family of scaling functions, and to construct
the fuzzy system using wavelet techniques. Fuzzy wavelet net-
work that includes combinations of three subnets: pattern rec-
ognition subnet, fuzzy reasoning subnet, and control synthesis
subnet is introduced (Lin et al., 2005). The use of such multi-
layer structures complicates the architecture of the system. The
FWNN structure that is constructed on the base of a set of fuzzy
rules is proposed and used for approximating nonlinear func-
tions (Daniel et al., 2001). The FWNN-based controller is de-
veloped for the control of dynamic plants (Abiyev, 2005) and
time series prediction (Abiyev, 2006). The combination of
wavelet network and fuzzy logic allows us to develop a system
that has fast training speed, and to describe nonlinear objects

that are characterized with uncertainty. Wavelet transform
has the ability to analyze nonstationary signals to discover their
local details. Fuzzy logic allows us to reduce the complexity of
the data and to deal with uncertainty. An NN has a self-learning
characteristic that increases the accuracy of the prediction.
These methodologies are used here to construct fuzzy wavelet
neural inference system to solve electricity consumption pre-
diction problem.

The paper is organized as follows: Section 2 presents the
structure and learning algorithms of the FWNN system. Brief
descriptions of the gradient descent algorithm and GA used
for learning of FWNN are given. Section 3 contains simula-
tion results of the FWNN used for prediction of chaotic time
series. The application of developed structure is used for elec-
tricity consumption prediction. Comparative results of differ-
ent models for time series prediction are given. Finally, a brief
conclusion is presented in Section 4.

2. FWNN

Wavelets are defined in the following form:

Cj(x) ¼ 1ffiffiffiffiffiffiffi
jajj

p c
x� bj

aj

� �
, aj = 0, j ¼ 1, . . . , n: (1)

Here,Cj(x) represents the family of wavelet obtained from the
single c(x) function by dilations and translations, where aj ¼

fa1j, a2j, . . . , amjg and bj ¼ fb1j, b2j, . . . , bmjg are the dilation
and translation parameters, respectively; x¼ fx1, x2, . . . , xmg
are input signals; and c(x) is localized in both time space and
frequency space and is called a mother wavelet.

Wavelet networks include wavelet functions in the neurons
of hidden layer of network. The output of WNN is calculated as

y ¼
Xk

j¼1
wjCj(x) ¼

Xk

j¼1
wjjajj�(1=2)

c(a�1
j x� dj): (2)

Here, dj ¼ a21
j �bj, Cj(x) is the wavelet function of the jth unit

of the hidden layer, wj is the weight coefficients between the in-
put and hidden layers, and ai and bj are parameters of the wave-
let function. WNN has good generalization ability, can approx-
imate complex functions to some precision very compactly, and
can be easily trained than other networks, such as multilayer
perceptrons and radial-based networks (Szu et al., 1996;
Khao, 2004). A good initialization of the parameters of
WNNs allows to obtain fast convergence. A number of methods
is implemented for initializing wavelets, such as orthogonal least
square procedure, clustering method (Kugarajah & Zhang,
1995; Zhang & Benviste, 1995). The optimal dilation and trans-
lation of the wavelet increases training speed and obtains fast
convergence. The approximation and convergence properties
of WNN are presented in Zhang et al. (1995).

This paper presents FWNN that integrate wavelet functions
with the Takagi–Sugeno–Kanag (TSK) fuzzy model. The ker-
nel of the fuzzy system is the fuzzy knowledge base that con-
sists of input–output data points of the system interpreted into
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linguistic interpretable fuzzy rules. The consequent parts of
TSK type fuzzy IF–THEN rules are represented by eithera con-
stant or a function. As a function, most of the fuzzy and neuro-
fuzzy models use linear functions. Neurofuzzy systems can
describe the considered problem by means of combination of
linear functions. Sometimes these systems need more rules
for modeling complex nonlinear processes to obtain the desired
accuracy. Increasing the number of the rules leads to increasing
number of neurons in the hidden layer of the network. To im-
prove the computational power of the neurofuzzy system, we
use wavelets in the consequent part of each rule. In this paper,
the fuzzy rules that are constructed by using wavelets are used.
They have the following form:

If x1is A11 and x2 is A12 and � � � and xm is A1m,

then y1 is
Xm
i¼1

wi1(1� z2
i1)e�ðz

2
i1=2Þ

If x1is A21 and x2 is A22 and � � � and xm is A2m,

then y2 is
Xm
i¼1

wi2(1� z2
i2)e�ðz

2
i2=2Þ

. . .

If x1is An1 and x2 is An2 and � � � and xm is Anm,

then yn is
Xm
i¼1

win(1� z2
in)e�ðz

2
in=2Þ: ð3Þ

Here, x1, x2, . . . , xm are input variables, y1, y2, . . . , yn are output
variables that are Mexican Hat wavelet functions, Aij is a
membership function for the ith rule of the jth input defined

as Gaussian membership function. n is the number of fuzzy
rules. Conclusion parts of rules contain WNNs. The WNNs in-
clude Mexican Hat wavelet function (Fig. 1). Here fuzzy rules
provide the influence of each WNN to the output of FWNN.
The use of WNN with different dilation and translation values
allows to capture different behaviors and essential features of
the nonlinear model under these fuzzy rules. The proper fuzzy
model that is described by IF–THEN rules can be obtained by
learning dilation and translation parameters of conclusion
parts and the parameters of membership function of premise
parts. Here, because of the use of wavelets, the computational
strength and generalization ability of FWNN is improved,
and FWNN can describe the nonlinear processes with desired
accuracy.

The structure of fuzzy wavelet system is given in Figure 2.
The FWNN includes six layers. In the first layer, the number
of nodes is equal to the number of input signals. These nodes
are used for distributing input signals. In the second layer,
each node corresponds to one linguistic term. For each input

Fig. 1. Mexican hat wavelet.

Fig. 2. Structure of fuzzy wavelet neural network.
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signal entering to the system, the membership degree to
which input value belongs to a fuzzy set is calculated. To
describe linguistic terms, the Gaussian membership function
is used.

m1j(xi) ¼ e�½ðxi�cijÞ2=s2
ij �, i ¼ 1, . . . , m, j ¼ 1, . . . , n: (4)

Here, m is number of input signals; n is number of fuzzy rules
(hidden neurons in third layer); cij and sij are center and width
of the Gaussian membership functions, respectively; and
m1j(xi) is membership function of ith input variable for jth term.

In the third layer, the number of nodes corresponds to the
number of rules R1, R2, . . . , Rn. Each node represents one
fuzzy rule. The AND (min) operation is used here to calculate
the values of output signals of the layer.

mj(x) ¼
Y

i

m1j(xi), i ¼ 1, . . . , m, j ¼ 1, . . . , n, (5)

where P is the min operation.
These mj(x) signals are input signals for the next layer. This

layer is a consequent layer. It includes n WNNs that are denoted
by WNN1, WNN2, . . . , WNNn. In the fifth layer, the output sig-
nals of third layer are multiplied by the output signals of wavelet
networks. The output of jth wavelet network is calculated as

yj ¼ wjCj(z); Cj(z) ¼
Xm
i¼1

1ffiffiffiffiffiffiffiffi
jaijj

p (1� z2
ij)e
�z2

ij=2: (6)

Here, zij ¼ (xi 2 bij)/aij. Here, aij and bij are parameters of
the wavelet function between ith (i ¼ 1, . . . , n) input and
jth ( j ¼ 1, . . . , m) WNN. In sixth and seventh layers
defuzzification is made to calculate the output of whole
network. In this layer the contribution of each WNN to the
output of the FWNN is determined.

u ¼
Xn

j¼1
m j(x)yj

�Xn

j¼1
m j(x): (7)

Here, yj are the output signals of WNNs. After calculating the
output signal of the FWNN, the training of the network starts.

2.1. Learning using gradient descent

At the beginning, the parameters of FWNN are generated ran-
domly. The parameters are the membership function of lin-
guistic values in the second layer of the network and the pa-
rameters of the WNN. To generate a proper FWNN model,
the training of the parameters has been carried out. Training
includes the adjusting of the parameter values of the member-
ship functions cij(t) and sij(t) (i ¼ 1, . . . , m, j ¼ 1, . . . , n) in
the premise part and parameter values of the WNNs wj(t),
aij(t), bij(t) (i ¼ 1, . . . , m, j ¼ 1, . . . , n) in the consequent
part. In this paper we applied gradient learning with an adaptive
learning rate. The adaptive learning rate guarantees the converg-

ence and speeds up the learning of the network. In addition, the
momentum is used to speed up the learning processes.

At first, on the output of network, the value of cost function
is calculated.

E ¼ 1
2

XO
i¼1

(ud
i � ui)

2: (8)

Here, O is the number of output signals of the network (in a
given case O ¼ 1), ud

i and ui are desired and current output
values of the network, respectively. The parameters wj, aij,
bij (i ¼ 1, . . . , m, j ¼ 1, . . . , n) of WNN and param-
eters of membership function cij and sij (i ¼ 1, . . . , m, j ¼
1, . . . , n) of neurofuzzy structure are adjusted using the
following formulas.

wj(t þ 1) ¼ wj(t)þ g
@E

@wj
þ l (wj(t)� wj(t � 1)),

aij(t þ 1) ¼ aij(t)þ g
@E

@aij
þ l(aij(t)� aij(t � 1)),

bij(t þ 1) ¼ bij(t)þ g
@E

@bij
þ l(bij(t)� bij(t � 1)),

i ¼ 1, . . . , m; j ¼ 1, . . . , n; (9)

cij(t þ 1) ¼ cij(t)þ g
@E

@cij
, sij(t þ 1) ¼ sij(t)þ g

@E

@sij
,

i ¼ 1, . . . , m, j ¼ 1, . . . , n (10)

Here, g is the learning rate, l is the momentum, m is the num-
ber of input signals of the network (input neurons), and n is
the number of fuzzy rules (hidden neurons).

The values of derivatives in Eq. (9) are computed using the
following formulas.

@E

@wj
¼ @E

@u

@u

@yj

@yj

@wj
¼ (u(t)� ud(t)) � mj � cj(z)

�Xn

j¼1
m j,

@E

@aij
¼ @E

@u

@u

@yj

@yj

@cj

@cj

@zij

@zij

@aij
¼ dj(3:5z2

ij � z4
ij � 0:5)e�z2

ij=2
. ffiffiffiffiffiffiffi

a3
ij

r� �
,

@E

@bij
¼ @E

@u

@u

@yj

@yj

@cj

@cj

@zij

@zij

@bij
¼ dj(3zij � z3

ij)e
�z2

ij=2
. ffiffiffiffiffiffiffi

a3
ij

r� �
, (11)

here

dj ¼
@E

@u

@u

@yj

@yj

@cj
¼ (u(t)� ud(t)) � mj � wj

�Xn

j¼1
m j,

i ¼ 1, . . . , m, j ¼ 1, . . . , n:

The derivatives in Eq. (10) are determined by the following
formulas.

@E

@cij
¼
X

j

@E

@u

@u

@mj

@mj

@cij
, (12)

R.H. Abiyev112

https://doi.org/10.1017/S0890060409000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000018


@E

@sij
¼
X

j

@E

@u

@u

@mj

@mj

@sij
: (13)

Here

@E

@u
¼ u(t)� ud(t),

@u

@mj
¼ yj � uPn

j¼1 mj
,

i ¼ 1, . . . , m, j ¼ 1, . . . , n (14)

@mj(xi)

@cij
¼

mj(xi)
2(xi � cij)

s2
ij

if j node

is connected to rule node j

0, otherwise

8>>><
>>>:

@mj(xi)

@sij
¼

mj(xi)
2(xi � cij)2

s3
ij

if j node

is connected to rule node j

0, otherwise

8>>><
>>>:

(15)

Using Eqs. (11)–(15), the derivatives in Eqs. (9) and (10)
are calculated and the correction of the parameters of
FWNN is carried out.

2.2. GA learning

Sometimes the network learning using the gradient method
for nonlinear processes cannot guarantee an optimal solution.
In practical applications, the gradient method might find the
set of suboptimal weight from which it cannot escape. That
is, sometimes the gradient method has “local minima” prob-
lem and could not find a global optimal solution. GAs are
effective optimization techniques that can be used to improve
training of the FWNN and avoid the local minima problem.
GA is a directed random search method that exploits historical
information to direct the search into the region of better
performance within the search space (Goldberg, 1998). In
this paper, the real coded GA with gradient descent algorithm
is applied for searching optimal values of the parameters of
the FWNN.

During optimization, the number of chromosomes, which
is defined as population size, is generated randomly. Chromo-
somes consist of genes and represent the network parameters.
These parameters characterize the parameters of antecedent
and consequent parts of the FWNN. The long chromosomes
are used to represent all parameter values.

GA learning is applied to train the parameter values in
chromosomes. GA learning is carried out by GA operators.
The main operations in GA are selection, crossover, and mu-
tation. The aim of the selection is to give more reproductive
chance to population members (or solutions) that have higher
fitness. The tournament selection is applied for selection of
new generation. In this method, two members of the popula-
tion are selected and their fitness values are compared. The
member with high fitness is selected for the next generation.

Crossover and mutation are two main components in the
reproduction process in which selected pairs mate to produce
the next generation. The purpose of crossover and mutation is
to give the next generation of solutions chance to differ from
their parental solutions. Both components intend to give chil-
dren chance to differ from their parents, and hope that some of
the children can be closer to the optimal destination than their
parents.

The real coded multipoint crossover operation is used
for the correction of individuals. According to crossover rate,
the individuals are selected for the crossover operation to gen-
erate a new solution. The high value of the crossover rate led
to a quick generation of a new solution. The typical value of
the crossover rate is selected in the interval [0.5, 1]. In cross-
over operation two parent members X ¼ (x1, x2, . . . , xn) and
Y ¼ ( y1, y2, . . . , yn) are selected. After crossover operation,
the new members will have the form X 0 ¼ (x 01, x 02, . . . , x 0n)
and Y 0 ¼ ( y 01, y 02, . . . , y 0n). The crossover operation has been
performed using the following formula.

x 0i ¼ xi þ d(yi � xi),

y 0i ¼ xi þ d(xi � yi), (16)

when F(X ) . F(Y ). Here, xi and yi are the ith genes of the
parents X and Y, x 0i and y 0i are the ith genes of the parents X 0

and Y 0. The value d is changed between 0 and 1.
The simple mutation operation is applied. In this operation,

for each gene, a random number is generated. If this random
number is less than the mutation rate, then the corresponding
gene is selected for mutation. During mutation a small ran-
dom number, taken from the interval [0, 1], is added to the
selected gene to determine its new value. A large value of
the mutation rate leads to a purely random search. The typical
value of mutation rate is selected from the interval [0, 0.1].

3. SIMULATION OF TIME SERIES PREDICTION

3.1. Time series prediction

The FWNN structure and its learning algorithms are applied
for modeling and predicting the future values of chaotic time
series. As an example, the Mackey–Glass time series data set
was taken. This is a benchmark problem in the areas of NN
and fuzzy systems. This time series data set was created
with the use of the following Mackey–Glass time-delay dif-
ferential equation.

dx(t)
dt
¼ 0:2x(t � t)

1þ x10(t � t)
� 0:1x(t): (17)

This time series is chaotic, and the trajectory is highly sensi-
tive to initial conditions. To obtain the data set, the fourth-order
Runge–Kutta method is applied to find a numerical solution to
the above Mackey–Glass equation. Here we assume that x(0)¼
1.2, t ¼ 17, and x(t) ¼ 0 for t , 0. The task is to predict
the values x(t þ pr) from input vectors [x(t 2 18) x(t 2 12)

FWNN for prediction of electricity consumption 113

https://doi.org/10.1017/S0890060409000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000018


x(t 2 6) x(t)] for any value of the time t, where pr is the pre-
dicting step. The value of pr is assumed to be 6. Using statistical
data obtained from Eq. (17), the learning of FWNN has been
carried out. The learning is accomplished by using GA and
the gradient descent algorithm. The gradient method has good
learning speed, but it has a local minima problem. GA can
find a global optimal solution, but it has low learning speed.
During learning, at first step, the GA operators are applied
for learning the network parameters. This process is continued
up to given number of iterations. The learned values of param-
eters are saved in the file. Then using the gradient descent
algorithm, the learning of the same parameter values is con-
tinued. The usage of such approach allows us to speed up
learning process and finds a global optimal solution.

For comparative analysis, the obtained results are com-
pared with existing online models applied to the same task.
The 16 rules are used in the neurofuzzy part of the FWNN.
As a performance criterion, the nondimensional error index
(NDEI), which is defined as the root mean square error
(RMSE) divided by the standard deviation of target series
is used. NDEI is determined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(xd
i � xi)2

s
,

NDEI ¼ RMSE
s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (xd

i � xi)2PN
i¼1 (xd

i � �x)2

s
(18)

Here,

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(xd
i � �x)2

s
, �x ¼

PN
i¼1 xd

i

N
,

where xd
i and xi denote the desired output and model output,

respectively, and x̄ is the mean of target series.
In the first experiment 1000 data points (t ¼ 117–1118)

are extracted from the time series and used as a learning data.
The first 500 data points were used for learning, and the second

Fig. 3. (a) The six-step ahead prediction for Mackey–Glass time series from t¼ 117–1118 and (b) prediction error. The first 500 data points
are used for training and the second 500 for testing.

Fig. 4. Convergence graphics. (- - -) NDEI of NN, (– . –) NDEI of WNN, and
(—) NDEI of FWNN.
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500 data points were used for testing. During learning, the val-
ues of RMSE and NDEI were 0.00345 and 0.015401, respec-
tively. After learning, in the generalization step, RMSE ¼
0.0036 and NDEI¼ 0.016. In Figure 3a, the trajectories of de-
sired and predicted values for both training and checking data
for pr¼ 6 are shown. Here, the solid line indicates the trajectory
of statistical data and the dashed line indicates the predicted
value of time series. The difference between them is very
small. These differences might only be seen in large scale.
In Figure 3b, the prediction error is shown. For comparative
analysis, the feedforward NN and WNN-based prediction
models are developed. The result of the feedforward NN-based
model is obtained when the number of hidden neurons was 60.
The convergence graphic, describing the learning process of
NN-, WNN-, and FWNN-based prediction models are given
in Figure 4. The result of the WNN-based prediction model
is obtained using 16 hidden neurons. Table 1 demonstrates
the training and offline prediction results of feedforward
NN-, WNN-, and FWNN-based models for Mackey–Glass
time series. Comparisons of test results of different prediction
models for Mackey–Glass time series are given in Table 2. In
addition, using 58 fuzzy rules, the learning of FWNN has
been performed. Figure 5 depicts the prediction error obtained
for the test data from the FWNN model.

In the second experiment, using 58 fuzzy rules, the learning
of FWNN for pr ¼ 84 has been performed. The value of
NDEI was 0.046. The increasing number of rules affects to
the decreasing of the NDEI value. Table 3 demonstrates the off-
line prediction results of different models used for Mackay–
Glass time series. In the table the results from second to fifth
lines are from Crowder (1990). As shown, the prediction error
of the FWNN model is lower than those obtained from other
models.

3.2. Modeling of electricity consumption

The FWNN system is applied for constructing a prediction
model of electricity consumption in North Cyprus. Cyprus
does not have petroleum and gas reserves and imports them
from abroad. Energy is supplied by the KIB-TEK Company.
Here the main goal is to meet customer demand. For planning
utilities, it is needed to develop an electricity consumption
model. The statistical data for the last 10 years were obtained
from KIB-TEK. It was important to know in what volume of
electricity would be used in the near future (after a few
month), even an approximate value would be sufficient.

The FWNN structure and its learning algorithm is used to
construct the prediction model. In the prediction problem, it is
needed to predict the value of electricity consumption in the
near future x(t þ pr) on the base of sample data points fx(t 2

(D 2 1)D), . . . , x(t 2 D), . . . , x(t)g. Here, pr is the prediction
step. Five input data points [x(t 2 12) x(t 2 6) x(t 2 5)
x(t 2 2) x(t)] are used as input to the prediction model. The
output training data corresponds to x(t þ 12). In other words,
because the electricity consumption is considered monthly,
the value that is to be predicted will be after pr ¼ 12 months.

Table 2. Comparisons of test results of different
prediction models for Mackey–Glass time series

Method Prediction Error, NDEI

Autoregressive model 0.19
Backpropagation NN 0.02
Sixth-order polynomial 0.04
Linear predictive method 0.55
ANFIS (Jang, 1993) 0.007
Neural tree (Chen et al., 2005) 0.0069
WNN 0.0071
FWNN 0.0036

Table 3. Prediction results comparisons

Method Epochs NDEI

FWNN 500 0.046
Cascaded-correction NN 500 0.32
Sixth-order polynomial 500 0.85
Backpropagation NN 500 0.05
Linear predictive method 2000 0.60

Table 1. Six-step ahead prediction results for Mackey–Glass
time series

NDEI

Method Epochs Training Testing

Feedforward NN 5000 0.0391 0.041
WNN 2000 0.0302 0.031
FWNN 1000 0.0154 0.016

Fig. 5. Prediction error.
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The training input/output data for the prediction system will
be a structure whose first component is the five dimension in-
put vector, and the second component is the predicted output.

To start the training, the FWNN structure is generated. It in-
cludes five input and one output neurons. Sixteen hidden neu-
rons (rules) are used in the hidden layer of the neurofuzzy part
of FWNN. The second layer of the system includes a Gaussian
membership function for each input signal. Eleven neurons are
used in the conclusion part of the hidden layer of the WNN net-
work. The initial values of the membership functions are gen-
erated equally spaced, and these values cover the whole input
space. The training of the parameters was performed by using
learning algorithms described in Section 2.

For training of the system, the statistical data describing
monthly electricity consumption from January 1995 to Decem-
ber 2005 are considered. The data from January 2006 to De-
cember 2006 are used for diagnostic testing. All input and out-
put data are scaled in the interval [0, 1]. The training is carried
out for 1000 epochs. The values of the parameters of the
FWNN system were determined at the conclusion of training.

Once the FWNN has been successfully trained, it is then
used for the prediction of the 2006 monthly electricity con-
sumption. The training and test values of NDEI were 0.2288
and 0.2441 correspondingly.

In Figure 6a, the output of the FWNN system for 12-step
ahead prediction of electricity consumption for learning and
generalization step is shown. Here the solid line is desired
output, and the dashed line is the FWNN output. Figure 6b
demonstrates the 12-step ahead prediction of FWNN.

The plot of prediction error is shown in Figure 7. As shown
in the figure, in the generalization step (end part of the error
curve), the value of error increases. The result of the simula-
tion of the FWNN prediction model is compared with the re-
sult of simulation of the feedforward NN-based prediction
model. To estimate the performance of the neural and
FWNN prediction systems, the NDEI values of errors be-
tween the predicted and current output signal are compared.

Table 4 provides the comparative results of simulations. As
shown in the table, the performance of FWNN prediction is
better than the performance of the NN model.

Fig. 6. The twelve-step ahead prediction. Plot of output signals: (dotted line) generated by FWNN and (solid line) predicted signal.
(a) Curves describing learning and testing data together and (b) curves for testing data.

Fig. 7. A plot of the prediction error.
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The simulation results satisfy the efficiency of the applica-
tion of FWNN technology in constructing a prediction model
of electricity consumption.

4. CONCLUSION

The time series prediction model is developed by integrating
fuzzy logic, neural networks, and wavelet technology. The
wavelet networks are used to construct the fuzzy rules, and
the functionality of the fuzzy system is realized by the neural
network structure. The gradient and GAs are applied for optimi-
zation of the parameters in the premise and consequent parts of
fuzzy rules in the FWNN structure. The structure and learning
algorithms of the FWNN system is applied for modeling and
prediction of complex time series. Simulation results demon-
strated that the applied FWNN structure has better performance
than other models. The developed FWNN structure is applied to
develop a model for predicting future values of electricity con-
sumption. This process is high order nonlinear. Using statistical
data, the prediction model is constructed. The test results of the
developed system are compared with these obtained from the
feedforward NN-based system, and the first one has demon-
strated better performance.
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