cambridge.org/jhl

Research Paper

Cite this article: Atopkin DM, Besprozvannykh WV, Ha DN, Nguyen VH, Nguyen VT (2020). New species of *Parasaccocoelium* (Haploporidae) and new genus *Pseudohaplosplanchnus* (Haplosplanchnidae) from mullet fish in the Far East of Russia and Vietnam: morphological and molecular data. *Journal of Helminthology* **94**, e154, 1–8. https://doi.org/10.1017/ S0022149X20000371

Received: 8 October 2019 Revised: 8 April 2020 Accepted: 16 April 2020

Key words:

Haplosplanchnidae; Haploporidae; Parasaccocoelium; Pseudohaplosplanchnus; mullet; molecular data; Russian Far East; Vietnam; phylogenetic relationships

Author for correspondence: D.M. Atopkin, E-mail: atop82@gmail.com

© The Author(s), 2020. Published by Cambridge University Press

New species of *Parasaccocoelium* (Haploporidae) and new genus *Pseudohaplosplanchnus* (Haplosplanchnidae) from mullet fish in the Far East of Russia and Vietnam: morphological and molecular data

D.M. Atopkin^{1,2} ⁽ⁱ⁾, V.V. Besprozvannykh¹, D.N. Ha³, V.H. Nguyen³

and V.T. Nguyen⁴

¹Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; ²Department of Cell Biology and Genetics, Far Eastern Federal University, Ajax-10 str., Vladivostok 690051, Russia; ³Institute of Ecology and Biological Resources, Vietnamese Academy of Sciences and Technology, Hanoi, Vietnam and ⁴Hai Duong Medical Technical University, Vietnam

Abstract

A description and the molecular characterization of two new species in the Haploporidae and Haplosplanchnidae families are provided herein. Parasaccocoelium armatum n. sp. was collected from the intestine of a Mugil cephalus Linnaeus, 1758 from the Primorsky region, Russia, and Pseudohaplosplanchnus catbaensis n.g. n. sp. was collected from Moolgarda seheli (Forsskål, 1775) in the coastal waters of Cat Ba Island, Vietnam. The morphological features of P. armatum n. sp. closely resemble those of Parasaccocoelium polyovum, but these species differ from one another by hermaphroditic sac and vitellaria area length and by maximal egg size. The main difference between P. armatum n. sp. and P. polyovum is the presence of an armed hermaphroditic duct in the new species. Molecular data support the case for inclusion of the studied trematodes in P. armatum n. sp. Worms P. catbaensis n. g. n. sp. from the mullet from Vietnam are morphologically close to Haplosplanchnus (Haplosplosplanchninae). The only difference between P. catbaensis n. g. n. sp. and species of Haplosplanchnus is the presence of few (1–7) large eggs, measuring $135-142 \times 92-104 \mu m$, versus numerous small eggs with a maximal size of 75×50 µm. Phylogenetic analysis showed that there is a contradiction between the morphological similarity of the worms and their position in the Haplosplanchnidae system, based on the genetic data. Results of this study indicate that P. catbaensis n. g. n. sp. is genetically distant from other representatives of Haplosplanchnus, despite their morphological similarity. According to the molecular data, P. catbaensis n. g. n. sp. is close to Hymenocotta mulli Manter, 1961 (Hymenocottinae). However, these species are considerably different to each other morphologically. Molecular data argue for the possibility of establishing a new subfamily for P. catbaensis n. g. n. sp. However, considering earlier studies of Haplosplanchnidae, we support the view that creating new subfamilies within this family is unreasonable because of the lack of molecular data for most haplosplanchnid species, which are necessary to resolve the problematic systematics and phylogeny of this family.

Introduction

Zhukov (1971) established the new genus *Parasaccocoelium* Zhukov, 1971 as a member of Haploporidae Nicoll, 1914. The type species of this genus, *Parasaccocoelium mugili* Zhukov, 1971, was found in the intestine of *Planiliza haematocheila* (Temminck & Schlegel, 1845) in the Japan Sea Basin (Zhukov, 1971). Overstreet & Curran (2005) decided that the genus *Parasaccocoelium* Zhukov, 1971 was invalid and transferred a single species of this genus, *P. mugili*, to the genus *Pseudohapladena* Yamaguti, 1952. Later, on the basis of morphological and molecular data, the validity of the genus *Parasaccocoelium* and the type species *P. mugili* was confirmed, and two new species, *Parasaccocoelium haematocheilum* Besprozvannykh, Atopkin, Ermolenko & Nikitenko, 2015 and *Parasaccocoelium polyovum* Besprozvannykh, Atopkin, Ermolenko & Nikitenko, 2015 (Besprozvannykh *et al.*, 2015) were described from intestines of mullet from south of the Russian Far East.

Concerning Haplosplanchnoidea Poche, 1926, most of the representatives of this subfamily were detected in mullet from the Indo-Western Pacific (Madhavi, 2005), as was the case for *Parasaccocoelium* species. Species identification of most worms in both *Haplosplanchnus* Looss, 1902 and other genera of the Haplosplanchnidae Poche, 1926 were based only on morphometric data. Until now, molecular data have been available for a few species only (Cribb *et al.*, 2001; Olson *et al.*, 2003; Besprozvannykh *et al.*, 2016; Huston *et al.*, 2017, 2018). In

Table 1. List of taxa incorporated in the molecular analysis of the family Haploporidae, with the number of DNA sequences given in parentheses.

Species	Author	GenBank accession numbers
Waretrematinae		
Parasaccocoelium armatum n. sp. (n = 2)	This study	MT298950-MT298951
Parasaccocoelium polyovum (n = 2)	This study	MT298952-MT298953
Parasaccocoelium polyovum (n = 2)	Beprozvannykh et al., 2015	HF548476-HF548477
Parasaccocoelium haematochelium (n = 2)	Beprozvannykh <i>et al.</i> , 2015	HF548467-HF548468
Parasaccocoelium mugili (n = 1)	Beprozvannykh <i>et al.</i> , 2015	HF548473
Elonginurus mugilus (n=2)	Atopkin <i>et al.</i> , 2019	MH763761-MH763762
Capitimitta darwiensis (n = 1)	Pulis & Overstreet, 2013	KC206497
Capitimitta costata (n = 1)	Pulis & Overstreet, 2013	KC206498
Skrjabinolecithum spasskii (n = 3)	Atopkin <i>et al.</i> , 2015	HE806371,HG530228,LK022754
Skrjabinolecithum pyriforme (n = 1)	Besprozvannykh <i>et al.</i> , 2017a	HE806361
Skrjabinolecithum spinosum (n = 1)	Besprozvannykh et al., 2017b	MF176831
Carassotrema sp. (n = 1)	Ding, 2018, unpublished	MH285255
Carassotrema koreanum (n = 1)	Atopkin <i>et al.</i> , 2019	MH763760
Spiritestis herveyensis (n = 1)	Pulis & Overstreet, 2013	KC206500
Outgroup		
Forticulcitinae		
Forticulcita apiensis	Andres et al., 2015	KP761087
Forticulcita plantata	Andres et al., 2015	KP761086
Xiha fastigata	Andres et al., 2015	KP761088

2018, Huston *et al.* established the new genus *Trigonocephalotrema* Huston, Cutmore & Cribb, 2018 with three new species, which were included into the Haplosplanchnidae on the basis of morphological and molecular characteristics. Differentiation at molecular level between *Trigonocephalotrema* and other representatives of the Haplosplanchnidae required the erection of a new subfamily for this new genus. Given the low number of species within this family for which morphological and molecular data are available, the authors found this insufficient for haplosplanchnid systematics and retained the generic status of *Trigonocephalotrema* trematodes, further proposing to avoid the concept of subfamilies for the Haplosplanchnidae.

In the present study, we provide morphological and molecular data for a new species of the genus *Parasaccocoelium* collected from *Mugil cephalus* from south of the Far East of Russia, and also for worms of a new genus of Haplosplosplanchninae Poche, 1926 and we present molecular data for *Hymenocotta mulli* collected from *Moolgarda seheli* off the coast of Vietnam.

Material and methods

Collection of trematodes

Adult worms were collected from the intestines of mullet fish (Mugilidae) from coastal waters of the Primorsky region of the south of the Russian Far East and Cat Ba Island, Vietnam. Worms from the fish, previously defined under a microscope, were rinsed in saline, killed in hot distilled water and preserved in 70% ethanol. After fixation, they were replaced in 96% ethanol. Whole-mounts were made by staining specimens with alum carmine, dehydrating the worms in graded ethanol series and

clearing in clove oil. The clove oil treatment was followed by mounting the specimens in Canada balsam under a coverslip on a glass slide. All measurements are given in micrometres.

DNA extraction, amplification and sequencing

Two adult specimens of *Parasaccocoelium armatum* n. sp., five specimens of *Pseudohaplosplanchnus catbaensis* n. g. n. sp. and two specimens of *H. mulli* from 96% ethanol were used for molecular analysis (table 1). Total DNA was extracted from flukes using a 'hot shot' technique (Truett, 2006).

Nuclear 18S ribosomal DNA (rDNA) and 28S rDNA fragments were successfully amplified using polymerase chain reaction (PCR). Then, 18S rDNA was amplified with the primers 18S-E (5' CCG AAT TCG ACA ACC TGG TTG ATC CTG CCA GT 3') and 18S-F (5' CCA GCT TGA TCC TTC TGC AGG TTC ACC TAC 3'), as described earlier (Littlewood & Olson, 2001). Initial PCR reaction was performed in a total volume of 20 μ l containing 0.25 mM of each primer pair, 25 ng of total DNA in water, 5× Taq buffer, 1.25 mM dNTPs, 1.5 mM magnesium and one unit of Taq polymerase. Amplification of a 2000-bp fragment of 18S rRNA gene was performed in a GeneAmp 9700 (Applied Biosystems, Waltham, Massachusetts, USA), with a 5-min denaturation at 96°C, 35 cycles of 1 min at 96°C, 20 s at 58°C and 5 min at 72°C, and a 10-min extension at 72°C. Negative and positive controls using both primers were used.

The 28S rDNA was amplified with the primers DIG12 (5'-AAG CAT ATC ACT AAG CGG-3') and 1500R (5'-GCT ATC CTG AGG GAA ACT TCG-3') (Tkach *et al.*, 2003) with an annealing temperature of 55°C. PCR products were directly sequenced using an ABI

Table 2. List of taxa incorporated in the molecular analysis of the superfamily Haplosplanchnoidea, with the number of DNA sequences given in parentheses.

		GenBank accession numbers	
Species	Author	18S	285
Haplosplanchnoidea			
Pseudohaplosplanchnus catbaensis n. g. n. sp. (n = 4)	This study	MT298954-MT298957	MT298959MT298962
Haplosplanchnus pachysomus (n = 4)	Besprozvannykh et al., 2016	LK932143-LK932146	LK932149-LK932152
Haplosplanchnus pachysomus (n = 1)	Blasco-Costa et al., 2008, unpublished	FJ211224	FJ211241
Provitellotrema crenimugilis (n = 2)	Besprozvannykh et al., 2016	LK932147-LK932148	LK932153-LK932154
Haplosplanchnus purii (n = 1)	Blasco-Costa et al., 2008, unpublished	FJ211225	FJ211242
Schikhobalotrema sparisomae (n = 1)	Blasco-Costa et al., 2008, unpublished	FJ211223	FJ211240
Schikhobalotrema huffmani (n=2)	Huston et al., 2017		
Schikhobalotrema sp. (n = 1)	Cribb et al., 2001; Olson et al., 2003	AJ287574	AY222238
Trigonocephalotrema euclidi (n = 1)	Huston et al., 2018	MG386254	MG386255
Trigonocephalotrema hipparchi (n = 1)	Huston et al., 2018	MG386257	MG386258
Trigonocephalotrema sohcahtoa (n = 1)	Huston et al., 2018	MG386260	MG386261
Trigonocephalotrema sp. (n = 1)	Huston et al., 2018	MG386263	MG386264
Hymenocotta mulli (n=1)	Cribb et al., 2001; Olson et al., 2003	AJ287524	AY222239
Hymenocotta mulli (n=1)	This study		
Hymenocotta mulli (n = 1)	This study		
Outgroup			
Echinostomatoidea			
Psilochasmus oxyurus	Olson et al., 2003; Tkach et al., 2000	AY222135	AF151940
Echinostoma trivolvis	Olson <i>et al.</i> , 2003	AY222132	AY222246
Paramphistomoidea			
Diplodiscus subclavatus	Cribb et al., 2001; Olson et al., 2003	AJ287502	AY222212
Solenorchis travassosi	Olson <i>et al.</i> , 2003	AY222110	AY222213
Pronocephaloidea			
Catatropis indicus	Olson <i>et al.</i> , 2003	AY222114	AY222220
Lankatrema mannarense	Olson <i>et al.</i> , 2003	AY222116	AY222222

Big Dye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, Massachusetts, USA), as recommended by the manufacturer, with the internal sequencing primers described by Tkach *et al.* (2003) for 28S rDNA. PCR product sequences were analysed using an ABI 3130 genetic analyser (Applied Biosystems, Waltham, Massachusetts, USA) at the Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS. Sequences were submitted to the GenBank database (National Center for Biotechnology Information (NCBI)).

Alignments and phylogenetic analysis

rDNA sequences were assembled with SeqScape v.2.6 software, provided by Applied Biosystems (Waltham, Massachusetts, USA) . Alignments and estimations of the number of variable sites and sequence differences were performed using the MEGA 7.0 software (Kumar et al., 2016). The values of genetic *p*-distances were calculated for the 28S rDNA fragment. Phylogenetic relationships were obtained using a concatenated data set of the complete 18S rRNA gene and partial sequences of the 28S rRNA gene. Phylogenetic analysis was performed using the Bayesian algorithm

with the MrBayes version 3.1.2 software (Huelsenbeck *et al.*, 2001). The best nucleotide substitution models – the TIM3 + G (Darriba *et al.*, 2012) for Waretrematinae and TVM + I+G (Posada, 2003) for Haplosplanchnoidea – were estimated with jModeltest version 2.1.5 software (Darriba *et al.*, 2012). Bayesian analysis was performed using 10,000,000 generations with two independent runs. Summary parameters and the phylogenetic tree were calculated with a burn-in of 25% of generations. The significance of the phylogenetic relationships was estimated using posterior probabilities (Huelsenbeck *et al.*, 2001). GenBank sequence data for representatives of Waretrematinae and Haplosplanchnoidea and outgroup taxa used in molecular analysis, including references and accession numbers, are given in the tables 1 and 2.

Results

Parasaccocoelium armatum n. sp.

Taxonomic summary

Type host. Mugil cephalus Linnaeus, 1758.

Number of fish examined. 97.

Fig. 1. *Parasaccocoelium armatum* n. sp.: (a) holotype, lateral view; (b, c) ventral view; (d) hermaphroditic sac; (e) pad with two spines. *Pseudohaplosplanchnus catbaensis* n. g. n. sp.: (f) holotype, lateral view; (g) ventral view; (h) terminal genitalia. Scale-bars in μ m.

Infection of fish. 1.

Intensity of infection. 17 worms.

Site. Intestine.

Type locality. Primorsky region, Kievka River (42°85′20″N, 13° 38′390″E).

Type deposition. Type number 152-Tr, paratype number 153-156-Tr. This material is held in the parasitological collection of the Zoological Museum (Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia; e-mail: petrova@ibss. dvo.ru). Deposited: 2019.05.05.

Etymology. Species was named because of presence of arming of hermaphroditic canal.

Description

Based on five specimens (fig. 1a-e; table 3). Body elongated, fusiform with spines from anterior end to ventral sucker. Forebody

4

and posterior end of body capable of retracting into inside of body. Eyespot pigment dispersed in forebody. Oral sucker subterminal. Prepharynx long or short. Pharynx transversally oval. Oesophagus shorter, equal or longer than prepharynx, bifurcating at level of or posterior to posterior margin of ventral sucker. Caeca short, sac-shaped terminate near posterior margin middle third of body. Ventral sucker larger than oral sucker, on border of anterior and middle third of body, or in beginning middle third of body. Testis single, V-shaped or from two equal lobes in posterior third of body. Hermaphroditic sac sac-shaped, extends posteriorly beyond ventral sucker, contains internal seminal vesicle, some prostatic cells and long hermaphroditic canal. Hermaphroditic canal thick-walled, muscular and armed with six rows of pads. Pads with two spines on reticular sclerotized base. External seminal vesicle round, extended to ovary. Genital pore, immediately anterior to ventral sucker. Ovary round or oval anterior to testis. Uterus short, located from hermaphroditic sac up to anterior margin of the testis, containing 2-7 eggs. Uterine seminal receptacle present. Metraterm short, with thin walls. Eggs light yellow, oval, operculate, at various stages of embryogeny. Vitellarium in

Table 3. Measurements (in micrometres) of adult worms of new species.

Holotype Range Mean Parasaccoccelum polyoum (tesprovomk et al., 2015) Holotype Range Mean Body length 955 847-955 909 327-832 1278 785-1278 1133 Body width 200 200-246 223 146-262 462 431-554 447 Formbody length 281 184-522 270 123-69 474 316-539 447 Body/width 281 58-89 70 50-77 166 166-212 190 Oral sucker length 81 58-89 75 60-85 133 193-277 223 Ventral sucker width 86 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-76 11		Parasaccocoelium armatum n. sp. n = 5			Pseudohaplosplanchnus catbaensis n. g. n. sp. n = 5			
Body length 955 947-955 909 227-822 1278 785-1278 1131 Body width 200 200-246 223 146-622 462 431-55 447 Fornbody length 281 184-322 270 123-669 474 316-39 447 Body (orbody length 284 280-34.3 29.7 37.0 462 190 Oral sucker length 81 58-89 70 50-77 166 166-212 190 Ventral sucker length 96 73-100 87 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker 11.19 1.12-1.33 1.12 10.71-710 112 11.12 11.17 11.18 11.17 Prepharynx kength 39 27-33 31 27-42 116 116-135 126 Pharynx kength 58 58-76 58		Holotype	Range	Mean	Parasaccocoelium polyovum (Besprozvannykh et al., 2015)	Holotype	Range	Mean
Body width 200 200-246 223 146-622 462 431-554 447 Forebody length 281 184-322 270 123-269 442 316-53 447 Body/forebody length 29.4 28.0-34.3 29.7 - 37.0 37.0 37.04.49 31.6-539 37.0 Oral sucker length 81 58-89 70 50-77 166 166-212 190 Oral sucker length 81 58-89 70 60-85 193 193-277 223 Ventral sucker length 96 77-00 87 58-92 193 193-277 223 Ventral/oral sucker 11.19 11.12-133 11.12 10.73-120 11.10 11.13 11.17 Ventral/oral sucker 1.1 11.10-153 11.19 10.74-1.06 1 1<1.08-1.31	Body length	955	847–955	909	327-832	1278	785–1278	1133
Forebacky length281184-322270122-269474316-539447Body/orebody length29.428.0-34.329.7-37.037.0436-5358.5Oral sucker length8158-897050-77166166-212190Oral sucker width6158-897068-95166166-212193193.277223Ventral sucker width9677-1008958-92193193.277223Ventral sucker width9677-1008958-92193193.277223Ventral sucker width9677-1008958-92193193.277223Ventral/oral sucker11.1911.12.1311.1910.71-12011.1011.08-13111.17Ventral/oral sucker1.111.15.1311.1910.71-12011.011.08-13111.17Ventral/oral sucker1.111.15.1311.1910.71-12011.011.0111.17Ventral/oral sucker1.053-5118.119.1210.71-12011.011.1711.17Prepharyn kength6354-555839-58166116-1311.011.0Ovary width6554-555839-58164116-1311.011.0Ovary width169162-20017165-23154154.10154.10154.10Ovary width169162-20017165-23154154.1316	Body width	200	200-246	223	146-262	462	431-554	487
Bady/s 28.4 28.0-34.3 29.7 - 37.0 37.0-44.9 39.5 Oral sucker length 81 58-89 70 50-77 166 166-212 190 Oral sucker length 96 73-100 87 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-91 10.171 11.171 Preparyn kingth 100 35-131 88 19-92 69 19-69 166 116 116 116 116 167 167 164 164 164	Forebody length	281	184-322	270	123–269	474	316-539	447
Oral sucker length 81 58-89 70 50-77 166 166-212 190 Oral sucker width 81 58-89 75 60-85 166 166-212 190 Ventral sucker length 96 73-100 87 58-92 193 193-277 223 Ventral vord sucker 96 77-100 89 58-92 193 193-277 223 Ventral vord sucker 96 77-100 89 58-92 193 193-277 223 Ventral vord sucker 1:1.19 1:1.12-1:33 1:1.24 1:0.73-120 1:1.09 1:1.07 Ventral vord sucker - 1:1.05-1:33 1:1.19 1:0.74-106 - - 1:1.17 Ventral vord sucker - 1:0.73 2:1.17 1:0.74 1:1.17 Prepharynx length 100 35-131 88 19-92 69 1:1.61-135 1:1.61 Obary width 6.5 4.5 5.8 39-5.8 1:66 1:1.61-135 <t< td=""><td>Body/forebody length ratio %</td><td>29.4</td><td>28.0-34.3</td><td>29.7</td><td>-</td><td>37.0</td><td>37.0-44.9</td><td>39.5</td></t<>	Body/forebody length ratio %	29.4	28.0-34.3	29.7	-	37.0	37.0-44.9	39.5
Oral sucker width 81 58-89 75 60-85 166 166-212 190 Ventral sucker length 96 73-100 87 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral/oral sucker meth ratio 11.10 11.12-13 11.12 10.73-120 11.20 11.08-1.31 11.17 Ventral/oral sucker width ratio 100 35-131 88 19-92 69 19-69 50 Prepharynx length 100 35-131 88 19-92 616 116-135 126 Pharynx length 100 35-131 88 19-92 69 19-69 50 Ovary width 65 54-65 58 39-58 146 119-158 141 Ovary width 62 46-73 57 27-58 77 54-116 81 Ovary width 162 101 152-200 154 154-200	Oral sucker length	81	58-89	70	50-77	166	166-212	190
Ventral sucker length 96 73-100 87 58-92 193 193-277 223 Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral/oral sucker length ratio 11.19 1:1.12-1.33 1:1.24 1:0.73-1.20 1:1.09 1:1.08-1.31 1:1.17 Ventral/oral sucker width ratio - 1:1.05-1.53 1:1.19 1:0.74-1.06 - - 1:1.08-1.31 1:1.17 Prepharynx length 100 35-131 88 19-92 69 19-69 50 Pharynx length 39 27-39 31 27-42 116 116-135 126 Pharynx width 65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-46 -<	Oral sucker width	81	58-89	75	60–85	166	166-212	190
Ventral sucker width 96 77-100 89 58-92 193 193-277 223 Ventral/oral sucker length ratio 1:1.19 1:1.12-1.33 1:1.24 10.073-1.20 1:1.02 1:1.08-1.31 1:1.17 Ventral/oral sucker width ratio - 1:1.05-1.53 1:1.19 1:0.74-1.06 - 1:1.08-1.31 1:1.17 Prepharynx length 100 35-131 88 19-92 69 19-69 50 Pharynx length 39 77-39 31 27-42 116 116-155 126 Pharynx width 65 54-65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-46 -	Ventral sucker length	96	73-100	87	58–92	193	193–277	223
Ventraljoral sucker length ratio 1:1.19 1:1.12-1.33 1:1.24 1:0.71-1.20 1:1.20 1:1.08-1.31 1:1.17 Ventraljoral sucker width ratio - 1:1.05-1.53 1:1.19 1:0.74-1.06 - 1:1.08-1.31 1:1.17 Prepharynx length 100 35-131 88 19-92 69 19-69 50 Pharynx length 39 27-39 31 27-42 116 116-135 126 Pharynx width 65 54-65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-66 - - - Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-233 154 154-200 175 Testis width 123 112-123 132 56-123 154 140 141-13 162 Hermaphroditic sac width 181 18-212	Ventral sucker width	96	77-100	89	58–92	193	193–277	223
Ventral/oral sucker width ratio - 1:1.05-1.53 1:1.19 1:0.74-1.06 - 1:1.08-1.31 1:1.17 Prepharynx length 100 35-131 88 19-92 69 19-69 50 Pharynx length 39 27-39 31 27-42 116 116-135 126 Pharynx width 65 54-65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-46 - - - Ovary length 58 58-77 64 23-50 77 54-116 81 Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-233 154 154-103 162 Hermaphroditic sac width 181 112-123 132 58-123 154 162 175 Hermaphroditic sac width 181 181-212 200 96-173 -	Ventral/oral sucker length ratio	1:1.19	1:1.12-1.33	1:1.24	1:0.73-1.20	1:1.20	1:1.08-1.31	1:1.17
Prepharynx length 100 35-131 88 19-92 69 19-69 50 Pharynx length 39 27-39 31 27-42 116 116-135 126 Pharynx width 65 54-65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-46 - - - Ovary length 58 58-77 64 23-50 77 54-116 81 Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-223 154 154-103 162 Hermaphroditic sac 181 181-212 200 96-173 - <td>Ventral/oral sucker width ratio</td> <td>-</td> <td>1:1.05-1.53</td> <td>1:1.19</td> <td>1:0.74-1.06</td> <td>-</td> <td>1:1.08-1.31</td> <td>1:1.17</td>	Ventral/oral sucker width ratio	-	1:1.05-1.53	1:1.19	1:0.74-1.06	-	1:1.08-1.31	1:1.17
Pharynx length 39 27-39 31 27-42 116 116-135 126 Pharynx width 65 54-65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-46 - - - Ovary length 58 58-77 64 23-50 77 54-116 81 Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-223 154 154-103 162 Hermaphroditic sac 181 181-212 312 58-123 154 154-173 162 Hermaphroditic sac 181 181-212 200 96-173 - <	Prepharynx length	100	35-131	88	19–92	69	19-69	50
Pharynx width 65 54-65 58 39-58 146 119-158 141 Oesophagus length 227 81-227 149 27-46 - - - Ovary length 58 58-77 64 23-50 77 54-116 81 Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-223 154 154-200 175 Testis width 123 112-123 132 58-123 154 154-173 162 Hermaphroditic sac width 181 181-212 200 96-173	Pharynx length	39	27–39	31	27–42	116	116-135	126
Oesophagus length 227 81-227 149 27-46 - - Ovary length 58 58-77 64 23-50 77 54-116 81 Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-223 154 154-200 175 Testis width 123 112-123 132 58-123 154 154-173 162 Hermaphroditic sac length 181 181-212 200 96-173 - <td>Pharynx width</td> <td>65</td> <td>54-65</td> <td>58</td> <td>39–58</td> <td>146</td> <td>119–158</td> <td>141</td>	Pharynx width	65	54-65	58	39–58	146	119–158	141
Ovary length 58 58-77 64 23-50 77 54-116 81 Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-00 171 85-223 154 154-200 175 Testis width 123 112-123 132 58-123 154 154-173 162 Hermaphroditic sac width 181 181-212 200 96-173 - <	Oesophagus length	227	81-227	149	27–46	-	-	-
Ovary width 62 46-73 57 27-58 77 73-92 82 Testis length 169 162-200 171 85-223 154 154-200 175 Testis width 123 112-123 132 58-123 154 154-173 162 Hermaphroditic sac length 181 181-212 200 96-173 - <td>Ovary length</td> <td>58</td> <td>58-77</td> <td>64</td> <td>23–50</td> <td>77</td> <td>54-116</td> <td>81</td>	Ovary length	58	58-77	64	23–50	77	54-116	81
Testis length169162-20017185-223154154-200175Testis width123112-12313258-123154154-173162Hermaphroditic sac length181181-21220096-173Hermaphroditic sac width8177-858050-96Pars prostatica length196173-196184Vitelline field sinistral length192162-262207104-146Vitelline field dextral length169169-20419850-96Post-testicular length158112-15814042-339Armed hermaphroditic duct+++Egg length65-6965-69-61-85135-142135-142Egg width35-3935-39-39-5092-10492-104	Ovary width	62	46-73	57	27–58	77	73–92	82
Testis width123112-12313258-123154154-173162Hermaphroditic sac length181181-21220096-173 $ -$ Hermaphroditic sac width8177-858050-96 $ -$ Pars prostatica length $ -$ 196173-196184Vitelline field sinistral length192162-262207104-146 $ -$ Vitelline field dextral length169169-20419850-96 $ -$ Post-testicular length158112-15814042-339 $ -$ Armed hermaphroditic duct $+$ $+$ $+$ $ -$ Egg length65-6965-69 $-$ 61-85135-142135-142 $-$ Egg width35-3935-39 $-$ 39-5092-10492-104 $-$	Testis length	169	162-200	171	85–223	154	154-200	175
Hermaphroditic sac length 181 181-212 200 96-173 - - - Hermaphroditic sac width 81 77-85 80 50-96 -	Testis width	123	112-123	132	58–123	154	154–173	162
Hermaphroditic sac width8177-858050-96 $ -$ Pars prostatica length $ 196$ $173-196$ 184 Vitelline field sinistral length 192 $162-262$ 207 $104-146$ $ -$ Vitelline field dextral length 169 $169-204$ 198 $50-96$ $ -$ Post-testicular length 158 $112-158$ 140 $42-339$ $ -$ Armed hermaphroditic duct $+$ $+$ $+$ $ -$ Egg length $65-69$ $65-69$ $ 61-85$ $135-142$ $135-142$ $-$ Egg width $35-39$ $35-39$ $ 39-50$ $92-104$ $92-104$ $-$	Hermaphroditic sac length	181	181-212	200	96-173	-	-	-
Pars prostatica length $ 196$ $173-196$ 184 Vitelline field sinistral length 192 $162-262$ 207 $104-146$ $ -$ <t< td=""><td>Hermaphroditic sac width</td><td>81</td><td>77–85</td><td>80</td><td>50–96</td><td>-</td><td>-</td><td>-</td></t<>	Hermaphroditic sac width	81	77–85	80	50–96	-	-	-
Vitelline field sinistral length192162-262207104-146 $ -$ Vitelline field dextral length169169-20419850-96 $ -$ Post-testicular length158112-15814042-339 $ -$ Armed hermaphroditic duct+++ $ -$ Egg length65-6965-69 $-$ 61-85135-142135-142 $-$ Egg width35-3935-39 $-$ 39-5092-10492-104 $-$	Pars prostatica length	-	-	-	-	196	173–196	184
Vitelline field dextral length169169-20419850-96 $ -$ Post-testicular length158112-15814042-339 $ -$ Armed hermaphroditic duct $+$ $+$ $+$ $ -$ Egg length65-6965-69 $-$ 61-85135-142135-142 $-$ Egg width35-3935-39 $-$ 39-5092-10492-104 $-$	Vitelline field sinistral length	192	162-262	207	104-146	-	-	-
Post-testicular length 158 112-158 140 42-339 - - - Armed hermaphroditic duct + + + -	Vitelline field dextral length	169	169-204	198	50–96	-	-	-
Armed hermaphroditic duct + + - <td>Post-testicular length</td> <td>158</td> <td>112-158</td> <td>140</td> <td>42-339</td> <td>-</td> <td>-</td> <td>-</td>	Post-testicular length	158	112-158	140	42-339	-	-	-
Egg length 65-69 65-69 - 61-85 135-142 135-142 - Egg width 35-39 35-39 - 39-50 92-104 92-104 -	Armed hermaphroditic duct	+	+	+	-	-	-	-
Egg width 35-39 35-39 - 39-50 92-104 92-104 -	Egg length	65–69	65–69	-	61-85	135-142	135-142	-
	Egg width	35–39	35–39	-	39–50	92-104	92-104	-

two lateral fields formed from compact follicles of round forms, extending between posterior half of ventral sucker and testis, and can partly cover ovary and testis. Vitelline fields located diagonally relative to each other. Anterior-edge dextral vitelline field at level of posterior half of ventral sucker. Anterior-edge sinistral vitelline field at level of posterior-end dextral vitelline field. Excretory bladder Y-shaped.

Molecular data

Two sequences of 28S rDNA fragments 1086 bp in length of *P. armatum* n. sp. contained no variable sites. The sequences were

submitted to the NCBI database with accession numbers MT298950-MT298951.

Remarks

Currently, there are three species within *Parasaccocoelium* from mullet from south of the Russian Far East (Besprozvannykh *et al.*, 2015). *Parasaccocoelium armatum* n. sp. is a fourth species that has been found in mugilids from this region. *Parasaccocoelium armatum* n. sp. is most similar to *P. polyovum* based on morphology, including the form of the body, testis,

Fig. 2. Phylogenetic tree of the subfamily Waretrematinae based on the analysis of partial 28S rRNA gene sequences; nodal numbers indicate posterior probabilities for Bayesian inference algorithms.

ovary, hermaphroditic sac and its reciprocal arrangement and number of eggs within the uterus - more than four (P. mugili, P. haematocheilum have from one to four eggs). However, these species differ from each other by hermaphroditic sac and vitellaria field length and by maximal egg size (table 3). Moreover, vitellaria fields are arranged parallel one to another in P. polyovum and diagonally in P. armatum n. sp. The main difference between P. armatum n. sp. specimens and other Parasaccocoelium species is the presence of an armed hermaphroditic duct. Molecular data support the generic membership of P. armatum n. sp., and, associated with morphological data, indicate a close relationship between the new species and P. polyovum within the monophyletic Parasaccocoelium (fig. 2). Additionally, the genetic p-distance value between P. armatum n. sp. and P. polyovum $(0.37\% \pm 0.19\%)$ is comparable with the interspecific genetic differentiation level for the genus Parasaccocoelium (0.78% ± 0.26%). Nucleotide sequences of 28S rDNA of P. armatum n. sp. and P. polyovum are different by four fixed substitutions.

Family Haplosplanchnidae Poche, 1926

Subfamily Haplosplosplanchninae Poche, 1926

Pseudohaplosplanchnus n. g.

Diagnosis

Body elongated, narrowed posterior end capable of retracting into inside of body. Eyespot pigment dispersed in forebody. Oral sucker subterminal. Prepharynx short. Pharynx transversally oval. Oesophagus absent. Caecum single, reaching level of anterior border ovary. Ventral sucker at level of mid-body, larger than oral sucker. Testis single, in posterior third of body, round or oval. Seminal vesicle tubular, reaching to level posterior border ventral sucker. Pars prostatica thin-walled, surrounded by prostatic cells. Hermaphroditic duct short. Genital pore median, close to anterior border of ventral sucker. Ovary spherical, pre-testicular or contiguous with testis. Seminal receptacle round, contiguous to ovary. Uterus in middle third of body. Eggs large, few, operculated, in distal part of uterus only, containing miracidia with eyespot. Vitellaria in two lateral fields formed from follicles of irregular forms, extending between level of middle ventral sucker and posterior-end testis. Excretory bladder Y-shaped with muscular sphincter. Found in intestine of Mugilidae fishes in Halong Bay, northern Vietnam.

Taxonomic summary

Type species. Pseudohaplosplanchnus catbaensis n. sp.

Etymology. The genus was named *Pseudohaplosplanchnus* n. g. n. sp. on the basis of morphological similarity of these flukes with representatives of the genus *Haplosplanchnus*.

Pseudohaplosplanchnus catbaensis n. sp.

Taxonomic summary

Type host. Moolgarda seheli (Forsskål, 1775).

Number of fish examined. 80.

Infection of fish. 5.

Intensity of infection. 1-4 worms per fish.

Site. Intestine.

Type locality. Coastal water of Cat Ba Island, Ha Long Bay, northern Vietnam (20°88′40″N, 10°68′590″E).

Type deposition. Type number 157-Tr, paratype number 158-161-Tr. This material is held in the parasitological collection of the Zoological Museum (Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia; e-mail: petrova@ibss. dvo.ru). Deposited: 2019.05.05.

Etymology. Species was named with respect to first description place – Cat Ba Island, Vietnam.

Description

Based on five specimens (fig. 1f-h; table 3). Body elongated, narrowed posterior end capable of retracting into inside of body. Eyespot pigment dispersed in forebody. Oral sucker subterminal. Prepharynx short. Pharynx transversally oval. Oesophagus absent. Caecum single, reaching level of anterior border ovary. Ventral sucker in mid-body larger than oral sucker. Testis single, in posterior third of body, round or oval. Seminal vesicle tubular, reaching to level of posterior border ventral sucker. Prostatic part thin-walled, surrounded by prostatic cells. Hermaphroditic duct short. Genital pore median, close to anterior border of ventral sucker. Ovary spherical, pre-testicular or contiguous with testis. Seminal receptacle round, contiguous to ovary. Uterus in middle

Fig. 3. Phylogenetic tree of the family Haplosplanchnidae based on the analysis of combined 18S rRNA (complete) and of 28S rRNA (partial) gene sequences; nodal numbers indicate posterior probabilities for Bayesian inference algorithms. Sequences from the present study are marked in bold.

third of body, with several loops, reaching level of ovary. Eggs 1–7 in number, large, operculated, in distal part of uterus containing miracidia, with eyespot. Vitellaria in two lateral fields formed from follicles of irregular forms extending, between level of middle ventral sucker and level of posterior-end testis. Excretory bladder Y-shaped with muscular sphincter.

Molecular data

Four successfully amplified and sequenced 18S rDNA of *P. catbaensis* n. sp. were 1785 bp in length and contained one variable singleton site. Five 28S rDNA fragments 1069 bp in length of *P. catbaensis* n. g. n. sp. comprised single variable singleton site. The sequences of 18S rDNA and 28S rDNA were submitted to the NCBI database with accession numbers MT298954-MT298957 and MT298959-MT298962, respectively.

Remarks

Pseudohaplosplanchnus catbaensis n. g. n. sp. is similar to representatives of Haplosplosplanchninae by a combination of morphological characteristics, including the presence of a single intestine, single testis and the absence of a cirrus sac. Among haplosplanchnins, these worms are morphologically closer to *Haplosplanchnus* species. The single difference between *Pseudohaplosplanchnus* n. g. and *Haplosplanchnus* is the presence of few (1–7) large eggs (135–142 × 92–104 µm) in the uterus of *Pseudohaplosplanchnus* n. g. versus numerous small eggs with a maximal size of 75 × 50 µm (Al-Bassel, 1997; Nahhas, Rhodes & Seeto, 1997) in the uterus of *Haplosplanchnus*. Despite the morphological similarity of representatives of these two genera, the validity of *Pseudohaplosplanchnus* n. g. is supported by molecular data. The 28S rDNA-based genetic distances between

Pseudohaplosplanchnus n. g. and *Haplosplanchnus* are in the intergeneric range, indicating *Pseudohaplosplanchnus* n. g. does not belong to *Haplosplanchnus*. On the other hand, molecular data show that the new genus is closely related to *Hymenocotta* Manter, 1961 (Hymenocottinae Yamaguti, 1971) (fig. 3).

Phylogenetic analysis, based on the available molecular data for the Haplosplanchnidae, including type species for Haplosplanchnus and Trigonocephalotrema, revealed that representatives of the Haplosplanchnoidea, Schikhobalotrematinae Skrjabin & Guschanskaja, 1955 and the genus Trigonocephalotrema formed three distinct, highly supported clades. Of these, the Haplosplanchnoidea and Schikhobalotrematinae were closely related to each other with high statistical support, and the genus Trigonocephalotrema appears as a sister clade with poor support (fig. 3). Another highly supported clade contained representatives of the Hymenocottinae, including our new samples of H. mulli and specimens of P. catbaensis n. sp.

The situation with representatives of the genera Trigonocephalotrema and Pseudohaplosplanchnus n.g. is paradoxical. On the one hand, representatives of Trigonocephalotrema possess a combination of morphological characteristics that are representative of worms of the Hymenocottinae and Schikhobalotrematinae (Schikhobalotrema). In particular, specimens of Trigonocephalotrema, like Hymenocotta, possess a peculiar-shaped oral sucker. Pseudohaplosplanchnus n. g. worms are morphologically similar to Haplosplanchnus (Madhavi, 2005). On the other hand, analysis of genetic *p*-distances and phylogenetic relationships indicate a considerable level of differentiation of Trigonocephalotrema from both Hymenocotta and Schikhobalotrema (p-distance values are $14.2\% \pm 1.0\%$ and $11.9\% \pm 0.8\%$, respectively), and the same for Pseudohaplosplanchnus n. g. and Haplosplanchnus ($15.64\% \pm 1.0\%$). Overall, p-distance values and the results of phylogenetic analysis of *Pseudohaplosplanchnus* n. g. (fig. 3) indicate that a new subfamily for this genus, and for *Trigonocephalotrema*, can be proposed. However, phylogenetic analysis showed that there is a contradiction between the morphological similarity of these worms and their position in the Haplosplanchnidae system, based on the genetic data. Considering these results, we support the view of Huston *et al.* (2018), who state that erecting new subfamilies within the Haplosplanchnidae is questionable because of the lack of molecular data for most haplosplanchnid systematics and phylogeny of this family.

Financial support. The present study was supported by a grant (grant number VAST.DA47.12/16-19).

Conflicts of interest. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional guides on the care and use of laboratory animals.

References

- Al-Bassel DAML (1997) A review of the trematode genera Haplosplanchnus Looss, 1902 and Prohaplosplanchnus Tang and Lin, 1978 with redescription of three species from the mullet in Libya. Qatar University Science Journal 17 (1), 133–142.
- Andres MJ, Curran SS, Fayton TJ, Pulis EE and Overstreet RM (2015) An additional genus and two additional species of Forticulcitinae (Digenea: Haploporidae). *Folia Parasitologia* 62, 025.
- Atopkin DM, Beloded AY and Ngo HD (2015) Molecular genetic characterization of the far eastern trematode *Skrjabinolecithum spasskii* Belous, 1954, (Digenea, Haploporidae), a parasite of mullets. *Russian Journal of Molecular Biology* 49, 373–379.
- Atopkin DM, Besprozvannykh VV, Ha DN, Nguyen HV, Khamatova AY and Vainutis KS (2019) Correction to: Morphometric and molecular analyses of *Carassotrema koreanum* Park 1938 and *Elonginurus mugilus* Lu 1995 (Digenea: Haploporidae) Srivastava, 1937 from the Russian Far East and Vietnam. *Parasitology Research* 118(7), 2327.
- Besprozvannykh VV, Atopkin DM, Ermolenko AV and Nikitenko AY (2015) Restoration of the genus *Parasaccocoelium* Zhukov, 1971 (Digenea: Haploporidae) and a description of two new species from mugilid fish in the Far East of Russia. *Journal of Helminthology* **89**(5), 565–576.
- Besprozvannykh VV, Atopkin DM, Ngo HD, Ermolenko AV, Ha NV, Tang NV and Nikitenko AY (2016) Morphometric and molecular analyses of two digenean species from the mullet: *Haplosplanchnus pachysomus* (Eysenhardt, 1892) from Vietnam and *Provitellotrema crenimugilis* Pan, 1984 from the Russian southern Far East. *Journal of Helminthology* **90**(2), 238–244.
- Besprozvannykh VV, Atopkin DM, Ermolenko AV and Beloded AY (2017a) Morphometric and molecular analyses for a new species *Skrjabinolecithum pyriforme* n. sp. (Digenea: Haploporidae) in mullet fish from the Primorsky Region, Russia. *Journal of Helminthology* **91**, 625–632.
- Besprozvannykh VV, Atopkin DM, Ngo HD, Ha NV, Tang NV and Beloded AY (2017b) Morphometric and molecular analyses of two digenean species from the mullet: *Skrjabinolecithum spinosum* n. sp. from the Russian southern Far East and *Unisaccus tonkini* n. sp. from Vietnam. *Journal of Helminthology* 92, 713–724.

- Cribb TH, Bray RA, Littlewood DTJ, Pichelin S and Herniou EA (2001) Relationships of the Digenea – evidence from molecules and morphology. pp. 186–193 *in* Littlewood DTJ and Bray RA (*Eds*) *Interrelationships of Platyhelminthes*. London, Taylor & Francis.
- Darriba D, Taboada GL, Doallo R and Posada D (2012) jModeltest2: more models, new heuristics and parallel computing. *Nature Methods* 9, 772.
- Huelsenbeck JP, Ronquist F, Nielsen R and Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. *Science* **294**, 2310–2314.
- Huston DC, Cutmore SC and Cribb TH (2017) Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of *Schikhobalotrema huffmani* n. sp. Acta Parasitologica 62 (3), 502–512.
- Huston DC, Cutmore SC and Cribb TH (2018) *Trigonocephalotrema* (Digenea: Haplosplanchnidae), a new genus for trematodes parasitising fishes of two Indo-West Pacific acanthurid genera. *Invertebrate Systematics* 32, 759–773.
- Kumar S, Stecher G and Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33, 1870–1874.
- Littlewood DTJ and Olson PD (2001) Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. pp. 262–278 in Littlewood DTJ and Bray RA (*Eds*) Interrelationships of Platyhelminthes. London, Taylor & Francis.
- Madhavi R (2005) Superfamily Haplosplanchnoidea Poche, 1926. pp. 175–191 in Jones A, Bray RA and Gibson DI (*Eds*) Keys to the Trematoda, vol. 2. Wallingford, CAB International.
- Nahhas FM, Rhodes DY and Seeto J (1997) Digenetic trematodes of marine fishes from Suva, Fiji, family Haplosplanchnidae Poche, 1926: description of new species, a review and an update. Suva, Fiji Islands, The University of the South Pacific, 93 pp.
- **Olson PD, Cribb TH, Tkach VV, Bray RA and Littlewood DTJ** (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). *International Journal for Parasitology* **33**, 733–755.
- Overstreet R and Curran S (2005) Family Haploporidae Nicoll, 1914. pp.129-165 *in* Gibson DI, Jones A and Bray RA (*Eds*) *Keys to the Trematoda*, vol. 2. Wallingford, CAB International.
- **Posada D** (2003) Using MODELTEST and PAUP* to select a model of nucleotide substitution. pp. 6.5.1–6.5.14 in Current Protocols in Bioinformatics, Baxevanis et al. (eds). Ney York, John Wiley & Sons.
- Pulis E and Overstreet R (2013) Review of haploporid (Trematoda) genera with ornate muscularisation in the region of the oral sucker, including four new species and a new genus. Systematic Parasitology 84, 167–191.
- Tkach V, Pawlowski J and Mariaux J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. *International Journal for Parasitology* **30**, 83–93.
- Tkach VV, Littlewood DTJ, Olson PD, Kinsella JM and Swiderski Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). *Systematic Parasitology* **56**, 1–15.
- Truett GE (2006) Preparation of genomic DNA from animal tissues. pp. 33– 46 in Kieleczawa J (Ed) The DNA book: protocols and procedures for the modern molecular biology. Burlington, Massachusetts, Jones & Bartlett Publisher.
- Zhukov EV (1971) New trematodes of marine and freshwater fishes from the basins of the Japanese and Yellow seas. *Parazitologiya* 2, 155–161 (in Russian).