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Turbulent spots occur in shear flows confined between two walls and are surrounded
by robust quadrupolar flows. Although the far-field decay of such large-scale flows
has been reported to be exponential, we predict a different algebraic decay for the
case of plane Couette flow. We address this problem theoretically, by modelling an
isolated spot as an obstacle in a linear plane shear flow with free-slip boundary
conditions at the walls. By seeking invariant solutions in a co-moving Lagrangian
frame and using geometric scale separation, a set of differential equations governing
large-scale flows is derived from the Navier–Stokes equations and solved analytically.
The wall-normal velocity turns out to be exponentially localised in the plane, while
the quadrupolar in-plane velocity field, after wall-normal averaging, features a
superposition of algebraic and exponential decays. The algebraic decay exponent
is −3. The quadrupolar angular dependence stems from (i) the shearing of the
streamwise velocity and (ii) the breaking of the spanwise homogeneity. Near the spot,
exponentially decaying solutions can generate reversed quadrupolar flows. Eventually,
by noting that the algebraically decaying in-plane flow is two-dimensional and
harmonic, we suggest a topological origin to the quadrupolar large-scale flow.

Key words: transition to turbulence, Navier–Stokes equations

1. Introduction

Localised turbulent structures associated with subcritical transition to turbulence
were first observed by Reynolds (1883) in pipe flow, where the flow is confined in
the radial direction and the spatial localisation can manifest itself only along the
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axial direction. The velocity field associated with these structures is exponentially
localised (Ritter et al. 2018), hence interactions between adjacent turbulent patches
are clearly short range (Samanta, Lozar & Hof 2011). As an extension of the
quasi-one-dimensional pipe flow, planar shear flows evolve freely in both the
streamwise and spanwise directions, consequently richer dynamics emerges with
underlying mechanisms that are harder to decipher. At the lowest Reynolds number
where turbulence is reported, laminar–turbulent coexistence takes the form of localised
turbulent patches, termed spots, interspersed amidst otherwise a linearly stable laminar
base flow. Since their discovery by Emmons (1951) in a water table study, turbulent
spots have been subsequently observed experimentally in most incompressible shear
flows confined between two walls including counter-rotating Taylor–Couette flow
(Coles 1965), plane Poiseuille flow (Carlson, Widnall & Peeters 1982; Alavyoon,
Henningson & Alfredsson 1986), plane Couette flow (Daviaud, Hegseth & Bergé
1992; Tillmark & Alfredsson 1992) and Couette–Poiseuille flow (Klotz et al. 2017).
More recently, advances in numerical techniques have enabled the observation of
turbulent spots in annular flows confined between two co-axial cylinders (Ishida,
Duguet & Tsukahara 2016), as well as in a sinusoidal shear flow, now known
as Waleffe flow, with stress-free boundary conditions (Schumacher & Eckhardt
2001; Chantry, Tuckerman & Barkley 2016). Despite their apparent difference in
shape, turbulent spots feature generic small-scale coherent structures in the form
of elongated streamwise velocity streaks maintained by counter-rotating streamwise
vortices (Dauchot & Daviaud 1995b; Bottin, Dauchot & Daviaud 1998; Jiménez 2018).
Spots can decay, or spread, exhibiting complex growth dynamics (Duguet, Schlatter
& Henningson 2010; Duguet, Maitre & Schlatter 2011; Couliou & Monchaux 2017).
At Reynolds numbers higher than the onset of turbulence, localised initial conditions
lead to turbulent spots quickly invading the whole domain (Lundbladh & Johansson
1991; Dauchot & Daviaud 1995a; Couliou & Monchaux 2017).

The presence of turbulent spots in planar shear flows is always accompanied by the
existence of large-scale circulations. Reported examples include plane Poiseuille flow
(Henningson & Kim 1991; Lemoult, Aider & Wesfreid 2013), plane Couette flow
(Lundbladh & Johansson 1991; Lagha & Manneville 2007; Duguet & Schlatter 2013;
Couliou & Monchaux 2015) and Waleffe flow (Schumacher & Eckhardt 2001; Chantry
et al. 2016). Despite their different driving mechanisms, symmetries and boundary
conditions, the large-scale flows in these planar systems share several properties. The
wall-normal velocity features small-scale fluctuations which decay rapidly away from
the spot (Eckhardt & Pandit 2003). The large-scale in-plane velocities vary more
slowly, they are directed inward along the streamwise direction and outward along
the spanwise direction, giving rise to a quadrupolar circulation.

In the present study, we focus on the case of plane Couette flow. The associated
linear base flow profile is known to be linearly stable for all Reynolds numbers
(Romanov 1973), here defined as Re = Uh/ν, where ±U is the speed of counter-
moving plates, h is the half-gap size between them and ν is the kinematic viscosity
of the fluid. It admits a simple analytical expression for the base flow: U= (Sy, 0, 0),
where the shear S = U/h. The homogeneous shear of the base flow leads to
plausible mathematical simplifications, while the absence of mean advection makes
the long-term tracking of turbulent spots simpler. Therefore, plane Couette flow is an
ideal system for analytical and experimental studies of localised turbulent spots and
for the investigation of the large-scale flows around them.

Turbulent spots in plane Couette flow are sustained above Re ≈ 325 and take a
rhombic shape, with the dimension along the streamwise direction being slightly
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larger than its counterpart in the spanwise direction (Daviaud et al. 1992; Tillmark
& Alfredsson 1992; Dauchot & Daviaud 1995a; Couliou & Monchaux 2018). During
its initial growth, a turbulent spot undergoes a spanwise expansion resulting from
two combined mechanisms: the stochastic nucleation of new streaks at the spanwise
laminar–turbulent interface (Duguet et al. 2011) and the motion of the interface due
to the spanwise advection by large-scale flows (Duguet & Schlatter 2013; Couliou &
Monchaux 2016, 2017). At later stages, growing turbulent spots start to distort and
several spots might interact with each other. Two neighbouring spots can approach
and merge, forming a single stripe inclined with respect to the streamwise direction
(Duguet et al. 2010). Moreover, large-scale flows introduce modifications to the
base flow and depending on their far-field decay, they may contribute to a long-range
modulation among turbulent spots (Prigent et al. 2002, 2003), leading to the formation
of laminar–turbulent banded patterns or labyrinths (Barkley & Tuckerman 2007;
Duguet et al. 2010). Therefore, in order to understand the underlying mechanism
for the spreading and suppression of localised turbulence by large-scale flows and to
formulate an interaction rule among spots, it is necessary to know how the large-scale
flow intensities decay with the distance from the spot.

For Re < 325 turbulent spots in plane Couette flow are not sustained. However,
they can be sustained artificially if they are continuously forced by the presence
of a permanent disturbance, e.g. a transverse jet (Daviaud et al. 1992; Tillmark &
Alfredsson 1992) or a solid obstacle (Bottin, Dauchot & Daviaud 1997; Couliou
& Monchaux 2017). Even at low Reynolds numbers Re 6 10, a continuous forcing
localised in space triggers a permanent response interpretable as a non-turbulent spot
(Tardu 2012).

The physical origin of the large-scale flow is the mismatch of the streamwise flow
rates across the laminar–turbulent interface (Duguet & Schlatter 2013). The mismatch
is associated with the presence of overhang regions, where the flow is turbulent near
one wall and laminar near the other (Coles 1965; Lundbladh & Johansson 1991).
The scaling behaviour of the large-scale flows away from turbulent spots is far from
clear and even controversial. Schumacher & Eckhardt (2001) have investigated the
growth of turbulent spots in Waleffe flow. By averaging between the two walls, they
observed quadrupolar flows apparently similar to those in plane Couette flow with
no-slip boundary conditions (Duguet & Schlatter 2013; Couliou & Monchaux 2016).
In a moderate periodic domain of size 80h × 2h × 80h, where 2h is the gap width,
they found that the kinetic energy of the large-scale flow exhibits an exponential
decay in space, with a decay rate almost independent of the turbulent fluctuations
inside the spot. More recently, Brand & Gibson (2014) analysed a localised steady
solution of plane Couette flow in a periodic domain of size 200h × 2h × 200h.
They found that the quadrupolar flow decays exponentially in both streamwise and
spanwise directions, thereby supporting the previous observation by Schumacher &
Eckhardt (2001). However, closer examination of the database obtained in Duguet &
Schlatter (2013) reveals a deviation from the exponential scaling for turbulent spots
in larger computation domains, though no scaling rule can be firmly established. In
experiments by Couliou & Monchaux (2015), no clear scaling has emerged from the
data due to the difficulty of measuring low-amplitude velocities.

Despite the ubiquitous observation of spots in experiments and direct numerical
simulations, as well as their importance for understanding growth dynamics and
pattern formation, no analytical solution for quadrupolar flows has been obtained
by solving the Navier–Stokes equations. In this work, we present an analytical
derivation for quadrupolar circulations in a flow with a linear laminar profile, but
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confined by free-slip boundary conditions at the walls, instead of no slip. As we
shall see, such a trade-off is a necessary compromise for the analytical approach. The
reasons for choosing to accomplish an analytical study are (i) the current technical
limitations in addressing experimentally or numerically the prediction of the far-field
decay and (ii) the general lack of analytical studies on spatial localisation in the
Navier–Stokes equations and their importance for a genuine understanding of the
underlying localisation mechanisms.

The plan of the paper is as follows: a derivation of equations governing the
large-scale flow is given in § 2, in addition to a modelling of turbulent spots based
on symmetry arguments. In § 3, the proposed governing equations for the poloidal
and toroidal functions are supplemented with free-slip boundary conditions and solved
analytically. The characteristics of the quadrupolar flow are recovered in § 4 from the
poloidal and toroidal functions, along with a brief argument for the topological origin
of quadrupolar circulation in planar shear flows. Finally, conclusions drawn from the
present study and outlooks are given in § 5.

2. Formulation

In this section, we present a derivation for a linearised model characterising the
spatial distribution of the large-scale flow. Throughout the derivation, two assumptions
have been exploited: (i) the intensity separation between the large-scale flow in the
far field and the relative speed of counter-moving plates in § 2.1; and (ii) the scale
separation between the wall-normal and the homogeneous directions in § 2.2. In order
to solve the derived model, boundary conditions are discussed in § 2.4 and the forcing
term representing a localised turbulent spot is modelled in § 2.5.

2.1. Linearised Navier–Stokes equations
Turbulent spots in plane Couette flow are limited to a bounded region in two
homogeneous directions, but extend all the way across the gap. Localised distribution
of the small-scale turbulent fluctuations inside the spot leads to the large-scale flow
penetrating deeply into the laminar regions. At large distances from the spot, the
decaying large-scale flow contributes to a weak deviation from the laminar base flow.
Following Li & Widnall (1989), we consider a decomposition of the instantaneous
flow characteristics, i.e. the velocity u and the pressure p, into a base flow (U, P),
turbulent fluctuations (u′, p′) inside the turbulent spot and a perturbation (ũ, p̃)
representing the large-scale flow

u=U+ u′ + ũ, p= P+ p′ + p̃, (2.1a,b)

where, denoting by overbar the ensemble averaging, the large-scale flow is given by

ũ= u−U, p̃= p− P. (2.2a,b)

By taking the ensemble average of the Navier–Stokes equations, in Cartesian
coordinates, where the axes x, y and z are aligned with the streamwise, wall-normal
and spanwise directions, the large-scale flow (ũ, p̃) is governed by

Dtũ+ ũ · ∇U+ u′ · ∇u′ =−ρ−1
∇p̃+ ν∇2ũ, (2.3)

∇ · ũ= 0, (2.4)
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where ρ is the fluid density and

Dt = ∂t +U · ∇ (2.5)

denotes the material derivative. In (2.3), terms that are quadratic in ũ are neglected,
reflecting the observation that the large-scale flow is a weak perturbation on the
background laminar shear flow, that is |ũ| � U. The preceding equations are
supplemented with the Dirichlet boundary conditions

u′ = ũ= 0, (2.6)

at the walls y=±h and at infinity, i.e. |x|, |z|→∞.
Note that, subjected to the shearing of the base flow, perturbations generated at the

spot are advected away and decay in amplitude. Since, our focus is on the large-scale
flow in the far field, not flow structures inside turbulent spots, we propose to seek
invariant solutions ũ(xL, yL, zL) in a co-moving Lagrangian frame attached to the base
flow

xL = x− Syt, yL = y, zL = z, (2.7a−c)

where the subscript L denotes variables in the Lagrangian frame. Hence

Dtũ= 0. (2.8)

This assumption coincides with Kelvin’s solution for ship wakes (Kelvin 1887) and
Taylor’s hypothesis on turbulence (Taylor 1938). The fulfilment of the Lagrangian
invariance with our solution for quadrupolar flows is inspected in § 3.1 and § 4.1,
respectively.

By applying the divergence operator to (2.3) and using equation (2.4), the Poisson
equation for pressure is

ρ−1
∇

2p̃=−2S∂xũy −∇ · u′ · ∇u′. (2.9)

It is seen that the perturbed pressure comes from two distinct origins: (i) the spatial
variation of the perturbed velocity, and (ii) the divergence of the Reynolds stresses.
Consequently, the perturbed pressure can be further decomposed into

p̃= p̃(i) + p̃(ii), (2.10)

where p̃(ii) is denoted, up to an additive constant, by

ρ−1
∇

2p̃(ii) =−∇ · u′ · ∇u′. (2.11)

It is seen from (2.11) that, since the Reynolds stresses are not divergence free, the
divergence of the Reynolds stresses will always generate a corresponding pressure
field p̃(ii) so as to make the sum

qũ =−u′ · ∇u′ − ρ−1
∇p̃(ii), (2.12)

satisfy the incompressible condition

∇ · qũ = 0. (2.13)
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This observation reflects the mathematical fact that, for incompressible flows, the role
of the pressure is to project the compressible nonlinear terms onto the subspace of
divergence-free flow fields. Therefore, we interpret qũ as a forcing term mimicking
the presence of an autonomous turbulent spot.

By using equations (2.8) and (2.12), and dropping the superscript (i) denoting the
origin, the momentum equation (2.3) can be expressed as

ũ · ∇U=−ρ−1
∇p̃+ ν∇2ũ+ qũ, (2.14)

where the incompressibility constraint (2.4) leads to the following Poisson equation

ρ−1
∇

2p̃=−2S∂xũy. (2.15)

Due to the presence of the variable part of the pressure gradient in (2.12), the forcing
term need not vanish at the walls. However, in order to simplify the algebra, we
impose the Dirichlet boundary conditions for the forcing

qũ|y=±h = 0, (2.16)

complementary to the boundary conditions (2.6). Another calculation without
imposing the Dirichlet boundary condition (2.16) yields similar results (Wang 2019).
Alternatively, Li & Widnall (1989) and Lagha & Manneville (2007) have modelled
an isolated turbulent spot as a Gaussian distribution of Reynolds stresses in the
homogeneous directions, deviating from the current approach.

2.2. Geometric scale separation in plane Couette flow
A distinguishing feature of planar shear flows is that, unlike localised turbulent
fluctuations, the large-scale flow is spatially extended in the homogeneous directions,
whereas highly confined in the wall-normal direction due to the presence of walls.
Since the large-scale flows do not present an obvious well-defined length scale, let
us denote by λ the distance from a localised turbulent spot to where the large-scale
flow is measured. The planar geometry entails the existence of a small parameter

η= h/λ� 1. (2.17)

This slenderness is associated with a separation of geometric scales. Due to the
confinement by the walls, the perturbed flow occurs at length scales ≈h in the
wall-normal direction, while it is extended in the homogeneous directions. In a
periodic box of size [500h, 2h, 500h], for instance, the large-scale flow is observed at
scales λ ≈ 100h, cf. figure 3 in Duguet & Schlatter (2013). For this particular case,
η≈ 10−2 measures the separation between the small and large scales.

In this study, we suggest to exploit this geometric scale separation. We thus rescale
the homogeneous coordinates x and z by λ, and the wall-normal coordinate y by h

x= λx∗, y= hy∗, z= λz∗, (2.18a−c)

where the superscript ∗ denotes rescaled dimensionless variables. As such, the
walls are now located at y = ±1. We choose to rescale in-plane velocities by U.
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The incompressibility constraints (2.4) and (2.13) lead to the following substitution
for the velocity components

ũx =Uũ∗x, ũy = ηUũ∗y, ũz =Uũ∗z , (2.19a−c)

and for the forcing

qũx = (νU/h2)q∗ũx
, qũy = η(νU/h2)q∗ũy

, qũz = (νU/h2)q∗ũz
, (2.20a−c)

where the scaling for the forcing terms is selected so as to balance the viscous
dissipation. Similarly, the scaling for the pressure, as in lubrication theory (Howison
2005)

p̃= ρ(νUλ/h2)p̃∗, (2.21)

is built on a balance between the pressure gradients and the dominant viscous terms
in the homogeneous directions. Note that the scaling (2.21) is justified provided that
the reduced Reynolds number α is small

α = ηRe� 1. (2.22)

This condition is satisfied as soon as the scale separation η−1 sufficiently large,
cf. equation (2.17), and it shall be assumed henceforth.

Substituting the preceding scaling relations into (2.14), the rescaled non-dimensional
Navier–Stokes equations are

(η2∂2
x∗ + ∂

2
y∗ + η

2∂2
z∗)ũ

∗

x = ∂x∗ p̃∗ + αũ∗y − q∗ũx
, (2.23a)

(η2∂2
x∗ + ∂

2
y∗ + η

2∂2
z∗)ũ

∗

y = η
−2∂y∗ p̃∗ − q∗ũy

, (2.23b)

(η2∂2
x∗ + ∂

2
y∗ + η

2∂2
z∗)ũ

∗

z = ∂z∗ p̃∗ − q∗ũz
, (2.23c)

and the Poisson equation (2.15) becomes

(∂2
x∗ + η

−2∂2
y∗ + ∂

2
z∗)p̃

∗
=−2α∂x∗ ũ∗y . (2.24)

In contrast to lubrication theory, wherein the Laplace operator reduces to a second-
order derivative with respect to y∗, the full operator is retained here.

We observe from (2.23b) that the vertical pressure gradient is larger, by a factor
η−2, than remaining terms in the equation, hence it cannot be balanced. The formal
procedure consists of expanding the perturbed pressure as

p̃∗ = p̃∗(0) + η2p̃∗(1) +O(η4). (2.25)

Substituting the expansion into equations (2.23) and collecting powers of η−2 reveals
that

∂y∗ p̃∗(0) = 0. (2.26)

This means that, due to the confinement by the walls, the leading-order pressure
p̃∗(0) is only effective in generating large-scale flows in the homogeneous directions.
The first-order correction p̃∗(1) enters equation (2.23b), generating small-scale vertical
motions of O(h), but has negligible effect on generating the large-scale in-plane
flows of O(λ). Since equations (2.23) are linear and since we are interested in the
angular dependence and scaling characteristics of the large-scale flows, we filter out
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the irrelevant small-scale vertical motions by truncating the perturbative expansion
(2.25) to the lowest order

p̃∗ = p̃∗(0). (2.27)

Substituting the truncation (2.27) into equations (2.23) and using (2.26), we obtain

(η2∂2
x∗ + ∂

2
y∗ + η

2∂2
z∗)ũ

∗

x = ∂x∗ p̃∗ + αũ∗y − q∗ũx
, (2.28a)

(η2∂2
x∗ + ∂

2
y∗ + η

2∂2
z∗)ũ

∗

y =−q∗ũy
, (2.28b)

(η2∂2
x∗ + ∂

2
y∗ + η

2∂2
z∗)ũ

∗

z = ∂z∗ p̃∗ − q∗ũz
. (2.28c)

For completeness, the perturbed pressure can be recovered by solving the following
two-dimensional Poisson equation

(∂2
x∗ + ∂

2
z∗)p̃

∗
=−2α∂x∗ ũ∗y, (2.29)

as soon as the wall-normal velocity is determined.

2.3. Poloidal–toroidal decomposition
In order to guarantee that the validity of the incompressible constraints (2.4) and (2.13)
is not effected by the truncation (2.27), we represent the perturbed velocity ũ using
the poloidal–toroidal decomposition

ũ∗ =∇∗ × (ψ̃∗ey)+∇
∗
×∇

∗
× (φ̃∗ey), (2.30)

where ∇∗ = (η∂x∗, ∂y∗, η∂z∗) is now the scaled gradient operator, φ̃∗ and ψ̃∗ are the
poloidal and toroidal functions, respectively, and ey is the unit vector pointing towards
positive y. Similarly, the forcing term q∗ũ can be expressed in terms of the poloidal q∗

φ̃

and the toroidal q∗
ψ̃

components as

q∗ũ =∇
∗
× (q∗

ψ̃
ey)+∇

∗
×∇

∗
× (q∗

φ̃
ey). (2.31)

Hence, rather than working with the three-dimensional velocity field, we pursue in this
paper the poloidal–toroidal formulation à la Marqués (1990)

(η2∂2
x + ∂

2
y + η

2∂2
z )φ̃ =−qφ̃, (2.32a)

(η2∂2
x + ∂

2
y + η

2∂2
z )ψ̃ =−qψ̃ + ηα∂zφ̃, (2.32b)

where the superscript ∗ denoting rescaled dimensionless variables is now dropped for
simplicity. Here, equation (2.32a) is obtained by substituting the decomposition (2.30)
and (2.31) into equation (2.28b), while equation (2.32b) is obtained by taking the curl
of (2.28) and projecting onto the ey component. In order to simplify the expression,
the two-dimensional Laplace operator (∂2

x + ∂
2
z ) has been removed from both sides of

(2.32). Consequently, φ̃ and ψ̃ are determined only up to an additive function hφ̃(x, z)
and hψ̃(x, z) satisfying the two-dimensional Laplace equations

(∂2
x + ∂

2
z )hφ̃(x, z)= (∂2

x + ∂
2
z )hψ̃(x, z)= 0. (2.33)

Stemming from the Dirichlet boundary conditions (2.6), equation (2.33) is supple-
mented with boundary conditions

hφ̃(x, z)||x|,|z|→∞ = hψ̃(x, z)||x|,|z|→∞ = 0, (2.34)
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such that hφ̃(x, z) and hψ̃(x, z) are identically zero

hφ̃(x, z)= hψ̃(x, z)= 0. (2.35)

Therefore, φ̃ and ψ̃ are uniquely determined by the second-order differential
equations (2.32). Similarly, combining equations (2.29) and (2.30) and taking out
the two-dimensional Laplace operator (∂2

x + ∂
2
z ), the perturbed pressure becomes

p̃= 2η2α∂xφ̃. (2.36)

The preceding equations can be solved classically using Fourier transforms as soon as
the boundary conditions as well as the forcing terms qφ̃ and qψ̃ are specified.

2.4. Boundary conditions
The original boundary conditions for the plane Couette problem are no slip (2.6),
which can be expressed in terms of the wall-normal components of the velocity and
vorticity as

ũy|y=±1 = ∂yũy|y=±1 = ω̃y|y=±1 = 0. (2.37)

Stemming from the poloidal–toroidal decomposition (2.30), there is a correspondence
between the velocity–vorticity and poloidal–toroidal formulations

ũy =−η
2(∂2

x + ∂
2
z )φ̃, (2.38)

ω̃y =−η
2(∂2

x + ∂
2
z )ψ̃. (2.39)

Hence, the preceding no-slip boundary condition (2.37) can be rewritten in terms of
the poloidal and toroidal functions as

φ̃|y=±1 = ∂yφ̃|y=±1 = ψ̃ |y=±1 = 0. (2.40)

Here, the constraints on ∂yφ̃ and ψ̃ together ensure that the tangential velocities
vanish at the walls. Note that there are four boundary conditions imposed on φ̃,
compatible with the presence of the fourth-order differential operator ∇4 in the
original momentum equation for φ̃, cf. equation (14b) in Marqués (1990). In this
work, however, the removal of the vertical pressure gradient, which arises as a
natural consequence of the geometric scale separation (2.17), not only filters out
irrelevant small-scale motions driven by the vertical pressure gradient, but also leads
to mathematical simplifications by reducing the fourth-order differential equation
with respect to y to a second-order one. Therefore, equation (2.32a) can support
only two boundary conditions at the walls. This observation implies that the filtered
small-scale motions must play a dominant role in satisfying the no-slip boundary
conditions (2.40). Consequently, by removing them, we have to relax the no-slip
boundary conditions to free-slip boundary conditions in order to ensure that the
resulting problem is mathematically well posed.

Numerical simulations of Waleffe flow with stress-free boundary conditions (as
considered by Schumacher & Eckhardt (2001), Chantry et al. (2016) and Chantry,
Tuckerman & Barkley (2017)),

ũy|y=±1 = ∂
2
y ũy|y=±1 = ∂yω̃y|y=±1 = 0, (2.41)
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suggest that the presence of slip at the walls does not affect the generic properties of
the large-scale flow. The stress-free boundary conditions can be expressed in terms of
φ̃ and ψ̃ as

φ̃|y=±1 = ∂
2
y φ̃|y=±1 = ∂yψ̃ |y=±1 = 0, (2.42)

where vanishing ∂2
y φ̃|y=±1 and ∂yψ̃ |y=±1 ensure that the tangential stresses are zero

at the walls. However, since the linear laminar profile of plane Couette flow does
not satisfy the stress-free boundary conditions, one needs to modify the base flow
by, for instance, the inclusion of a sinusoidal body force. Moreover, similar to the
no-slip boundary conditions, there are four constraints imposed on φ̃, incompatible
with the second-order differential equation (2.32a). Therefore, in general, the stress-
free boundary conditions (2.42) cannot be satisfied, unless φ̃ solves

∂2
y φ̃ = cφ̃, (2.43)

up to a multiplying constant c. In this case, two constraints for φ̃ are simultaneously
satisfied. Examples include trigonometric and hyperbolic trigonometric functions.

As a compromise between the number of boundary conditions that can be imposed
on equation (2.32a) and the compatibility with the linear base flow, we consider in
this paper a flow with mixed boundary conditions as in Eckhardt & Pandit (2003).
More specifically, we require that the laminar profile satisfies the no-slip boundary
conditions (2.6) of the full Navier–Stokes equations, whereas the perturbation satisfies
the following free-slip boundary conditions:

φ̃|y=±1 = 0 and ∂yψ̃ |y=±1 = 0. (2.44a,b)

Here, the constraint on φ̃ signifies that there is no penetration at the walls, while
the constraint on ψ̃ is borrowed from the stress-free boundary conditions (2.42). It is
demonstrated in § 3.1 that the perturbed flow field obtained in this paper also satisfies
the stress-free boundary conditions (2.42), while the generality of the proposed free-
slip boundary conditions (2.44) is discussed from a topological point of view in § 4.4.

2.5. Forcing selection
By seeking an equilibrium solution in an Eulerian frame attached to spots, Li &
Widnall (1989) obtained doubly localised solutions in plane Poiseuille flow. With
the same assumption, Brand & Gibson (2014) obtained a similar solution for plane
Couette flow. Note that these solutions are similar in size and structure to turbulent
spots obtained from direct numerical simulations. Consequently, rather than the
detailed dynamics, we perceive large-scale flows as arising from the blockage effect
of localised turbulent spots. This leads to a formulation of the forcing terms by
making the minimal assumption in § 2.5.1. Based on the parity analysis of (2.32),
we conclude in § 2.5.2 that the formation of quadrupolar flows is associated with the
forcing components that are symmetric with respect of the mid-plane y= 0.

2.5.1. Minimal assumption model for a localised spot
In order to solve equations (2.32), we must specify an analytical form for the

forcing (qφ̃, qψ̃), yet the selection must not predetermine the large-scale flow. As
such, we make the minimal assumption by modelling a localised turbulent spot as
an obstacle in the xy-plane, that will deflect the streamwise velocity into vertical
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momentum, without imposing a wall-normal vorticity distribution in the xz-plane.
By virtue of the conservation of angular momentum, the vertical momentum will
alternate sign on each side of the obstacle. Assuming that the vertical momentum
is concentrated on a mathematical filament along the y-axis which terminates at the
walls, the minimal forcing is

qφ̃ =−Ag(y)δ′(x)δ(z), (2.45)
qψ̃ = 0. (2.46)

Here, A is the amplitude of the forcing and the prime, which denotes a derivative
with respect to the scaled x-axis, i.e. η∂x, arises as a consequence of opposite vertical
momentum. Note that the poloidal forcing (2.45) imposes a counter-rotating pair of
streamwise circulations in the yz-plane. The form factor

g(y)|y=±1 = 0 (2.47)

is adjusted so as to satisfy the Dirichlet boundary condition (2.16).
The sign of A remains undetermined, and it shall be concluded by comparing the

analytic solution with previous experimental and numerical results in § 4.2. Denoting
the integral

G=
∫ 1

−1
g(y) dy. (2.48)

For AG> 0, the forcing term (2.45) introduces an overall spanwise vorticity which is
opposite in sign to that of the base flow; whereas for AG< 0, the spanwise vorticity
associated with the spot is aligned with that of the base flow.

2.5.2. Parity of the forcing
Although the characteristics of turbulent spots, as well as of the large-scale flows

around them, are strongly three-dimensional, the quadrupolar circulation is revealed at
the mid-plane y= 0 or after applying the y-average, denoted by

〈 〉 =
1
2

∫ 1

−1
dy, (2.49)

to the perturbed in-plane flow 〈ũ2D〉 = (〈ũx〉, 〈ũz〉). Here, the y-averaged in-plane
velocities

〈ũx〉 =−η∂z〈ψ̃〉 + η∂x〈∂yφ̃〉, (2.50)

〈ũz〉 =+η∂x〈ψ̃〉 + η∂z〈∂yφ̃〉 (2.51)

can be decomposed into a divergence-free component characterised by the
streamfunction 〈ψ̃〉 and a curl-free component characterised by the velocity potential
〈∂yφ̃〉. The latter is identically zero with the Dirichlet boundary conditions (2.44):

〈∂yφ̃〉 =
1
2(φ̃|y=+1 − φ̃|y=−1)= 0. (2.52)

Therefore, the in-plane flow 〈ũ2D〉 is divergence free, arising from the non-vanishing
〈ψ̃〉.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.190


892 A27-12 Z. Wang, C. Guet, R. Monchaux, Y. Duguet and B. Eckhardt

Since the differential operator in (2.32) is strictly second order, the parity of the
poloidal and toroidal functions is uniquely determined by the parity of the forcing.
More specifically, the odd component of qφ̃ leads to ψ̃ vanishing upon y-averaging.
Since qψ̃ is zero by assumption, the quadrupolar flow must stem from the even part
of the forcing. Accordingly, we restrict ourselves to the case where g(y) is an even
function of y.

Let g(y) be an arbitrary even function satisfying the Dirichlet boundary condition
(2.47), it can be expanded using Fourier series as

g(y)=
∞∑

n=1

an cos(ξny), (2.53)

where an denote the Fourier coefficients and the wavenumbers are discretised

ξn = (n− 1
2)π for n= 1, 2, 3 . . . (2.54)

In this model, the index n signifies that there are n mutually counter-rotating vortices
stacking along the y-axis. Based on the minimal assumption meant to model a
localised filament-like spot, the present analysis can be applied to not only the
transitional flows with Re ≈ 300 but to all regimes with Re > 0 down to the Stokes
regime.

3. Analytical solutions for poloidal and toroidal functions
In this section, the modal solutions for the poloidal and toroidal functions are

presented in § 3.1 and their inverse Fourier transform are evaluated in § 3.2. Moreover,
the origin of the quadrupolar angular dependence and the algebraic decay in the
toroidal function is uncovered in §§ 3.1 and 3.2, respectively.

3.1. Modal solutions
The homogeneity in x and z justifies the use of a Fourier transform in the
corresponding directions with wavenumbers Kx and Kz. For any function f̂ , let f̃
be denoted by

f̃ (x, y, z)=
1

2πη

∫∫
∞

−∞

f̂ (y,Kx,Kz)ei(Kxx+Kzz)/η dKx dKz, (3.1)

where the presence of η in the basis function signifies the smallness of wavenumbers
Kx,Kz∼O(η) associated with the large-scale motion. Expanding the potential functions
φ̃ and ψ̃ , as well as the forcing terms qφ̃ and qψ̃ , using (3.1) and substituting the
expansions into (2.32) gives

(∂2
y −K2)φ̂ = i

AKx

2πη

∞∑
n=1

an cos(ξnyL), (3.2a)

(∂2
y −K2)ψ̂ = iαKzφ̂, (3.2b)

where K =
√

K2
x +K2

z is the radial wavenumber. The preceding equations are
supplemented with the Fourier-transformed free-slip boundary conditions

φ̂|y=±1 = 0 and ∂yψ̂ |y=±1 = 0. (3.3a,b)
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Using the method of undetermined coefficients, equations (3.2) are solved recursively,
yielding

φ̂ =−i
AKx

2πη

∞∑
n=1

an cos(ξny)
K2 + ξn

2 , (3.4)

ψ̂ =−
αAKxKz

2πη

∞∑
n=1

an

(K2 + ξn
2)2

[
cos(ξny)+ ξn sin(ξn)

cosh(Ky)
K sinh(K)

]
, (3.5)

where the complementary solutions involving hyperbolic trigonometric functions arise
so as to satisfy the corresponding boundary conditions at the walls. Note that the
modal solution φ̂ has vanishing second-order derivatives

∂2
y φ̂|y=±1 = 0, (3.6)

at the walls. Therefore, the obtained solutions (3.4) and (3.5) satisfy, upon inverse
Fourier transforms, not only the free-slip boundary conditions (2.44) but also the
stress-free boundary conditions (2.42).

Note that the solutions (3.4) and (3.5) do not fulfil the Lagrangian invariance (2.8)
in general. The reason is that, by using equation (2.8), the solution space of equations
(2.32) is strictly larger than the space of Lagrangian invariant solutions. Therefore,
additional treatment is required to extract Lagrangian invariance from solutions (3.4)
and (3.5). Substituting the Fourier transform for φ̃ and ψ̃ into equation (2.8), the
Lagrangian invariance requires that both integrands vanish

y(iKx/η)φ̂ = y(iKx/η)ψ̂ = 0. (3.7)

Locally, equation (3.7) is satisfied only at the mid-plane where y= 0. This is exactly
the circumstance under which quadrupolar flows are experimentally measured: a
deviation from the mid-plane leads to a distortion of quadrupolar flows and their
annihilation near the walls. Alternatively, since φ̂ and ψ̂ are even functions of y, the
Lagrangian invariance is restored through a wall-normal average

〈y(iKx/η)φ̂〉 = 〈y(iKx/η)ψ̂〉 = 0, (3.8)

revealing a quadrupolar y-averaged flow. This implies that, rather than a general
property of the large-scale flow, the Lagrangian invariance is specific to the symmetric
quadrupolar circulation.

In order to facilitate a comparison with previous numerical studies (Schumacher &
Eckhardt 2001; Brand & Gibson 2014), we focus on the quadrupolar y-averaged flow.
Upon averaging in y, the modal solutions (3.4) and (3.5) become

〈φ̂〉 =−i
AKx

2πη

∞∑
n=1

bn

K2 + ξ 2
n

, (3.9)

〈ψ̂〉 =−
αAKxKz

2πηK2

∞∑
n=1

bn

K2 + ξ 2
n

, (3.10)

where the hyperbolic trigonometric functions arising from the complementary solutions
cancel by averaging and

bn = an sin(ξn)/ξn (3.11)

are the modified Fourier coefficients.
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Let us introduce the polar decomposition for the wavenumbers

Kx =K cos(ϕ), Kz =K sin(ϕ). (3.12a,b)

The quadrupolar nature of the solution stems from the angle dependence of the
product

KxKz =
1
2 K2 sin(2ϕ), (3.13)

which generates second azimuthal harmonics in the xz-plane. The presence of KxKz
in (3.10) is inscribed in the obstacle interpretation of the poloidal forcing (2.45) and
the structure of the toroidal equation (3.2b), hence it is independent of the particular
choice of the boundary conditions.

3.2. Inverse Fourier transform
After obtaining the modal solutions, we still face the task of inverting the Fourier
transform. Let us introduce polar coordinates via

x� = r� cos θ, z� = r� sin θ, (3.14a,b)

where the spatial coordinates are re-scaled as x�= x/η and z�= z/η, so that the spatial
coordinates are normalised by the half-gap size h, cf. equation (2.17). Dropping the
superscript �, the inverse Fourier transform for the y-averaged poloidal and toroidal
functions can be expressed in polar coordinates as

〈φ̃〉 =
1

2πη

∫
∞

0

∫ 2π

0
〈φ̂〉eiKr cos(ϕ−θ)K dK dϕ (3.15)

= −
A

4π2η2

∞∑
n=1

∫
∞

0

bnK2

K2 + ξ 2
n

dK
∫ 2π

0
i cos(ϕ)eiKr cos(ϕ−θ) dϕ, (3.16)

and

〈ψ̃〉 =
1

2πη

∫
∞

0

∫ 2π

0
〈ψ̂〉eiKr cos(ϕ−θ)K dK dϕ (3.17)

= −
αA

8π2η2

∞∑
n=1

∫
∞

0

bnK
K2 + ξ 2

n

dK
∫ 2π

0
sin(2ϕ)eiKr cos(ϕ−θ) dϕ. (3.18)

Since integrands involving the angular variables are decoupled from those with
wavenumbers, they can be evaluated independently, yielding∫ 2π

0
i cos(ϕ)eiKr cos(ϕ−θ) dϕ =−2π cos(θ)J1(Kr), (3.19)∫ 2π

0
sin(2ϕ)eiKr cos(ϕ−θ) dϕ =−2π sin(2θ)J2(Kr), (3.20)

where Jm(Kr) denotes the mth-order Bessel function of the first kind. Substitution
gives

〈φ̃〉 =
A cos(θ)

2πη2

∞∑
n=1

bn

∫
∞

0

K2J1(Kr)
K2 + ξ 2

n

dK =
A cos(θ)

2πη2

∞∑
n=1

bnξnK1(ξnr), (3.21)
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〈ψ̃〉 =
αA sin(2θ)

4πη2

∞∑
n=1

bn

∫
∞

0

KJ2(Kr)
K2 + ξ 2

n

dK

=
αA sin(2θ)

2πη2

∞∑
n=1

bn

[
(ξnr)−2

−
1
2

K2(ξnr)
]
, (3.22)

where Km(ξnr) is the mth-order modified Bessel function of the second kind. The
integral (3.21) is given by (6.565.4) in Gradshteyn & Ryžhik (2014). The integral
(3.22) is not elementary, therefore a special treatment is required, see appendix A.
The occurrence of the term 1/(ξnr)2 in the y-averaged toroidal field in (3.22) is at
the root of the predicted algebraic decay of the in-plane velocity components. The
mathematical origin of that term can be traced to the recurrence relation of the Bessel
function J2(Kr), cf. equation (A 3) and the integral (A 7) in appendix A.

Note that, the quantities α, A and η only appear in (3.21) and (3.22) as amplitudes,
not as arguments, they do not affect the angular dependence and the scaling
characteristics of the quadrupolar flow, only its strength. Consequently, the qualitative
features of the quadrupolar flow depend only on the Fourier coefficients an of the
forcing.

4. Quadrupolar flows

In this section we present the full analytical expressions for the main flow
components of the quadrupolar y-averaged flow in § 4.1, as well as their scaling
behaviours in the far field in § 4.2. We also uncover in § 4.3 an unexpected property
of the flow circulation at intermediate distances from the spot, and eventually explain
in § 4.4 the origin of the quadrupolar flow from a topological point of view.

4.1. Analytical expressions for the quadrupolar y-averaged flow
From the analytical solutions for the poloidal and toroidal functions, various
y-averaged flow variables can be recovered, yielding

〈ũx〉 = −[sin(θ)∂r + cos(θ)r−1∂θ ]〈ψ̃〉

= −
ARe cos(3θ)

πη

∞∑
n=1

bnξn

[
(ξnr)−3

−
1
8

K1(ξnr)−
1
2
(ξnr)−1K2(ξnr)

]

−
ARe cos(θ)

8πη

∞∑
n=1

bnξnK1(ξnr), (4.1)

for the streamwise velocity,

〈ũz〉 = +[cos(θ)∂r − sin(θ)r−1∂θ ]〈ψ̃〉

= −
ARe sin(3θ)

πη

∞∑
n=1

bnξn

[
(ξnr)−3

−
1
8

K1(ξnr)−
1
2
(ξnr)−1K2(ξnr)

]

+
ARe sin(θ)

8πη

∞∑
n=1

bnξnK1(ξnr), (4.2)
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for the spanwise velocity,

〈ũy〉 =−[∂
2
r + r−1∂r + r−2∂2

θ ]〈φ̃〉 =−
A cos(θ)

2πη2

∞∑
n=1

bnξ
3
n K1(ξnr), (4.3)

for the wall-normal velocity,

〈ω̃y〉 = −[∂
2
r + r−1∂r + r−2∂2

θ ]〈ψ̃〉

=
ARe sin(2θ)

4πη

∞∑
n=1

bnξ
2
n [K0(ξnr)+ 2(ξnr)−1K1(ξnr)], (4.4)

for the wall-normal vorticity, and eventually

〈p̃〉 = 2ηα[cos(θ)∂r − sin(θ)r−1∂θ ]〈φ̃〉

= −
ARe cos(2θ)

2π

∞∑
n=1

bnξ
2
n [K0(ξnr)+ 2(ξnr)−1K1(ξnr)]

−
ARe
2π

∞∑
n=1

bnξ
2
n K0(ξnr), (4.5)

for the pressure, where the spatial derivatives ∂x and ∂z have been expressed in polar
coordinates. As a result of the Lagrangian invariance of the y-averaged poloidal and
toroidal functions, the quadrupolar y-averaged flow, i.e. equations (4.1)–(4.3), is also
Lagrangian invariant, satisfying

〈Dtũ〉 = 〈∂tũ〉 + 〈y∂xũ〉 = 0. (4.6)

For the same reasons, the reversed quadrupolar flow predicted in § 4.3.2 is Lagrangian
invariant.

Note that, while the scaling of flow variables 〈ũy〉, 〈ω̃y〉, and 〈p̃〉 is solely
characterised by the modified Bessel functions of various orders, the in-plane
velocities 〈ũx〉 and 〈ũz〉 feature a superposition of algebraic power-law functions 1/r3

and modified Bessel functions Km(ξnr). Therefore, a qualitatively different asymptotic
behaviour is expected for 〈ũx〉 and 〈ũz〉.

4.2. Algebraic asymptote of the quadrupolar y-averaged flow
Since, independently of its order m, the modified Bessel function Km(ξnr) decays faster
than exponential in the asymptotic limit, cf. equation (9.7.2) in Abramowitz & Stegun
(1965)

Km(ξnr)=
√

π

2
e−ξnr

√
ξnr

[
1+O

(
1
ξnr

)]
, as r→∞, (4.7)

the wavenumber ξn can be regarded as the inverse of a screening length over which
contributions from Km(ξnr) are negligible. Consequently, the asymptotic behaviour of
the quadrupolar y-averaged flow must be characterised by the slower algebraic decay.
It is seen from equations (4.1) and (4.2) that, in the absence of the modified Bessel
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functions, each Fourier mode contributes to the same algebraic asymptote

〈ũx〉 =−
ARe cos(3θ)

πη

∞∑
n=1

bnξ
−2
n r−3, (4.8)

〈ũz〉 =−
ARe sin(3θ)

πη

∞∑
n=1

bnξ
−2
n r−3, (4.9)

provided that r � 1/ξ1. In other words, unlike previous findings by Schumacher &
Eckhardt (2001) and Brand & Gibson (2014), we find that the far-field decay of the
quadrupolar in-plane flow is algebraic, whose power-law exponent is −3. In particular,
for

A
∞∑

n=1

bnξ
−2
n > 0, (4.10)

the angular dependence of the asymptotic solutions (4.8) and (4.9) entails a
quadrupolar angular dependence with streamwise inflow and spanwise outflow,
consistently with previous experimental and numerical observations. We, therefore,
conclude that the localised perturbation in equations (2.45) and (2.46) gives rise to
the algebraically decaying quadrupolar in-plane flows in the far field.

Featuring modified Bessel functions, the flow variables 〈ũy〉, 〈ω̃y〉 and 〈p̃〉 decay
faster than exponentially and are thereby referred to as exponentially localised.
Consequently, we define a spot as exponentially localised if and only if both 〈ũy〉

and 〈ω̃y〉 are exponentially localised. It shall be discussed in § 4.4 that, independently
of the boundary conditions at the walls and details of the base flows, the angular
dependence and the scaling characteristics of the quadrupolar y-averaged flow around
an exponentially localised turbulent spot are unique and given by equations (4.8) and
(4.9), in the asymptotic limit.

4.3. Coexistence of exponential and algebraic decays
Although the asymptotic solutions (4.8) and (4.9) capture the scaling characteristics
of the quadrupolar y-averaged flows in the far field, as one approaches the origin
from infinity, the first Fourier mode with wavenumber ξ1 comes into play at scales
of O(1/ξ1), followed by the second Fourier mode with wavenumber ξ2 at scales of
O(1/ξ2), and so forth. Observing from (3.22), the exponentially decaying components
K2(ξnr) have the same angular dependence but with opposite sign as compared to
the algebraically decaying components (ξnr)−2, constituting an exponentially localised
reversed quadrupolar flow. Since exponential functions decay faster than algebraic
ones, we may expect situations where the exponential decay takes over the algebraic
decay near the turbulent spot, thus revealing a reversed quadrupolar flow.

4.3.1. Single-mode model versus two-mode model
We restrict ourselves to a minimal forcing with only the first two Fourier modes,

implying a single-vortex and a triple-vortex configurations, respectively. In this case,
there remains two free parameters in the solutions, namely the amplitude of the
forcing A and the ratio between the first two Fourier coefficients, denoted by

γ = a2/a1. (4.11)
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For small values of γ , the y-dependence of the forcing is dominated by the lowest
Fourier mode n= 1. An increase in γ signals a shift towards the second Fourier mode.

Without loss of generality, the coefficient of the first Fourier mode is selected to be
a1 = 1 such that the first two modified Fourier coefficients are given by

b1 =
2
π

and b2 =−
2

3π
γ . (4.12a,b)

Consequently, equation (4.10) reduces to

A
2∑

n=1

bnξ
−2
n =

8A
π3

(
1−

γ

27

)
> 0. (4.13)

There are two parameter combinations that can lead to the experimentally observed
quadrupolar flows with streamwise inflow and spanwise outflow: (i) A> 0 and γ < 27;
and (ii) A< 0 and γ > 27. Note that the latter depicts two counter-clockwise spanwise
circulations near the walls, separated by a negative spanwise vorticity at the centre of
a localised spot, and similarly for the case: A>0 and γ <0. Since these configurations
have not been reported in previous studies, we therefore focus on the parameter regime

A> 0 and 0 6 γ < 27. (4.14a,b)

More specifically, for the single-mode model: A> 0 and γ = 0, the poloidal forcing
imposes a uniform spanwise circulation in the xy-plane that counter-acts the base flow.
For the two-mode model: A > 0 and 0 < γ < 27, the forcing term signifies a three-
vortex configuration with three mutually counter-rotating spanwise vortices stacking
along the y-axis, wherein both vortices near the walls rotate with the base flow.

With this choice, the integral (2.48) reduces to

G=
∫ 1

−1

[
cos
(

1
2
πy
)
+ γ cos

(
3
2
πy
)]

dy=−
4

3π
(γ − 3). (4.15)

Following the discussion in § 2.5.1, for 0 6 γ < 3, the forcing term is dominated by
the circulating cell in the centre, resulting in an overall spanwise vorticity which is
opposite in sign to that of the base flow. On the other hand, for 3 < γ < 27, two
circulating cells near the walls become dominant, hence the induced spanwise vorticity
by the poloidal forcing is aligned with the base flow. In order to highlight these two
distinct cases and their impact on the large-scale flow, two representative ratios: γ = 0
(single-mode model) and γ = 15 (two-mode model), are considered. As we shall see
in § 4.3.2, the flow configuration is insensitive to the precise values of γ in parameter
regime: γ ∈ (3, 27).

4.3.2. Reversed quadrupolar flow
In order to highlight the flow topology, we show in figure 1 the directional field

for the in-plane velocities, defined as the vector 〈ũ2D〉(x, z) = (〈ũx〉, 〈ũz〉) normalised
by its length |〈ũ2D〉|(x, z), so that all vectors have unit length. In both cases γ = 0
and γ = 15, the directional field outside the square box exhibits generic quadrupolar
angular dependence, hence it is referred to as the far field. Conversely, the directional
field inside the box exhibits a dependence on γ and it is referred to as the core region.
For γ = 0, the streamlines, visualised as level curves of the toroidal function 〈ψ̃〉, are
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FIGURE 1. Directional field for the y-averaged in-plane velocities 〈ũ2D〉, defined as
〈ũ2D〉/|〈ũ2D〉|, exhibits a quadrupolar angular dependence, i.e. with inflow along the
streamwise x-axis and outflow along the spanwise z-axis, cf. equations (4.1) and (4.2).
Despite the difference in the forcing (a) γ = 0 and (b) γ = 15, the flow field (left)
outside the inset (right) remains essentially unchanged. The streamlines shown in the
insets are visualised as level curves of the toroidal function 〈ψ̃〉, increasing from blue
to red (colour online). In the case γ = 15, the streamlines reveal the coexistence of a
reversed quadrupolar flow centred at the origin and four vortices separated by the invariant
manifolds of four hyperbolic saddle points, denoted by red circles.

homoclinic to the origin, forming an ideal quadrupole. For γ = 15, the large-scale flow
features a reversed quadrupole centred at the origin, surrounded by four large vortices.
Since the precise value of each contour depends on the product ARe/η and the ratio
γ , the colour bars are best interpreted as indicators for relative magnitudes only. It
should be re-emphasised that, in the present study, the turbulent spot is assumed to
be infinitesimally small, whereas it is of finite size in reality.

Figure 2 displays a superposition between the contours of the wall-normal vorticity
〈ω̃y〉 and the quadrupolar directional field from figure 1. It is seen that in both cases,
i.e. the single-mode and two-mode models, the predominant wall-normal vorticity
〈ω̃y〉 corresponds to a quadrupolar angular dependence with streamwise outflow and
spanwise inflow, opposite in sign to the in-plane circulation in figure 1. These reversed
quadrupolar flows arise from the exponentially localised components of the toroidal
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FIGURE 2. Superposition between the contour plots of the y-averaged wall-normal
vorticity 〈ω̃y〉, where (a) γ = 0 and (b) γ = 15 and the in-plane directional field,
cf. equation (4.4). Note that the exponentially decaying 〈ω̃y〉 takes opposite signs to
the circulation direction of the two-dimensional vector field 〈ũ2D〉, indicating that the
algebraically decaying component of the quadrupolar flows is irrotational.

function 〈ψ̃〉, consistently with the irrotational property of the quadrupolar flow in
the far field. Since the wall-normal vorticity 〈ω̃y〉 is obtained by taking the curl of
the in-plane velocity 〈ũ2D〉, it is independent of turbulent motions inside the spot.

Following the pioneering direct numerical simulation by Lundbladh & Johansson
(1991), we present in figure 3 the contours for the y-averaged velocity components.
For γ = 0, the contours of the in-plane velocity components 〈ũx〉 and 〈ũz〉 are
homoclinic to the origin, forming sextupoles; while those for the wall-normal velocity
〈ũy〉 form a dipole corresponding to a spanwise vorticity in accord with that of the
base flow. In the case γ = 15, the symmetry associated with the sextupole of the
in-plane velocity components is broken, accompanied by a reversal of the wall-normal
velocity 〈ũy〉 in the core, cf. figure 3(c,d).

In order to understand the symmetry breaking observed in figure 3, we display in
figure 4(a,b) the decay of velocity components: |〈ũx〉| and |〈ũy〉| along the streamwise
x-axis. The decay of the wall-normal vorticity |〈ω̃y〉| and the pressure |〈p̃〉| is also
included as a reference. In both cases γ = 0 and γ = 15, the in-plane velocity
components are dominated by the algebraic decay, whose power-law exponent is −3,
in the limit r→∞. For γ = 15, the decay of flow variables are characterised by
the presence of interfaces at which they flip sign. In particular, the location of the
interfaces for 〈ũx〉 and 〈ũy〉 along the x-axis is plotted in figure 4(c) as a function of γ .
The interface for 〈ũx〉 appears first as γ increases past γ =3 and quickly shifts towards
infinity at γ = 27. For γ > 27, the flow field is characterised by an experimentally
unobserved anti-quadrupolar flow with streamwise outflow and spanwise inflow,
consistent with the expectation (4.13). On the other hand, the interface for 〈ũy〉

appears as soon as the second Fourier mode comes into play, i.e. γ > 0. With
increasing values of γ , the interface for 〈ũy〉 persists and is almost independent of
γ . Therefore, within the framework of the linear theory of quadrupolar flows, the
second Fourier mode ξ2 is a necessity in order to capture the reversal observed in
figure 3(c,d).
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FIGURE 3. Contour plots for the y-averaged (a,b) streamwise velocity 〈ũx〉, cf. equation
(4.1); (c,d) wall-normal velocity 〈ũy〉, cf. equation (4.3); and (e, f ) spanwise velocity 〈ũz〉,
cf. equation (4.2). The left and right columns correspond to the cases of γ = 0 and γ = 15,
respectively.

For completeness, the contours of the y-averaged pressure are shown in figure 5.
For γ = 0, the y-averaged pressure 〈p̃〉 is exponentially localised with negative
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FIGURE 4. Decay of flow variables along the diagonal axis. In order to establish a
comparison, the flow variables |〈ũx〉| (solid line), |〈ũy〉| (dashed line), |〈ω̃y〉| (crosses) and
|〈p̃〉| (dash-dot line) are normalised by their amplitudes ARe/η, A/η2, ARe/η and ARe,
respectively. While |〈ũy〉|, |〈ω̃y〉| and |〈p̃〉| decay exponentially, |〈ũx〉| scales algebraically
in the far field, with a power-law exponent −3, independent of the ratio: (a) γ = 0 and
(b) γ = 15. The inset reveals that the interface in (b) is where the velocity component
〈ũx〉 flips sign. (c) Location of the interfaces for 〈ũx〉 (solid line) and 〈ũy〉 (dashed line)
along the streamwise x-axis for γ = a1/a2 ∈ [0, 30].

branches aligned with the streamwise direction and with the positive branches along
the spanwise direction. For γ = 15, the symmetry of the pressure field is broken by
the emergence of the reversed pressure in the core region, linked to the interface
observed in figure 4(b).

4.4. Topological origin of the quadrupolar flow
We discuss in this section the consequence of an exponentially localised turbulent spot,
where both 〈ũy〉 and 〈ω̃y〉 decay exponentially. Since 〈ω̃y〉 is exponentially localised,
the algebraically decaying component of the y-averaged in-plane flow 〈ũ2D〉 must be
irrotational. Recalling from (2.52) that the y-averaged in-plane flow field between
two walls is incompressible, we conclude that the algebraically decaying component
of 〈ũ2D〉 is harmonic, i.e. both divergence free and curl free. To summarise, the
algebraically decaying components of the y-averaged in-plane flow are harmonic if
the y-averaged wall-normal vorticity is exponentially localised. This observation can
be extended to all planar shear flows confined between two walls.

Since 〈ũy〉 is also exponentially localised, the quadrupolar y-averaged flow 〈ũ〉 can
be decomposed into a two-dimensional algebraically decaying harmonic component
〈ũ〉H and a three-dimensional exponentially decaying component 〈ũ〉E such that

〈ũ〉 = 〈ũ〉H + 〈ũ〉E, (4.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.190


Quadrupolar flows around spots in internal shear flows 892 A27-23

z

4

2

0

-2

-4

-4 -2 0 2 4
x

4

2

0

-2

-4

-4 -2 0 2 4
x

8.00

0.06

0

-0.06

-8.00

10.00

0.05

0

-0.05

-10.00

(÷ 10-2 ARe) (÷ 10-1 ARe)

(a) (b)

FIGURE 5. Contours of the y-averaged pressure 〈p̃〉: (a) γ = 0 and (b) γ = 15,
cf. equation (4.5).

where 〈ũ〉H and 〈ũ〉E both satisfy the Dirichlet boundary conditions

〈ũ〉H→ 0, 〈ũ〉E→ 0 as r→∞. (4.17a,b)

In the framework of algebraic topology, we interpret such an exponentially localised
turbulent spot as an isolated zero of the two-dimensional vector field bounded by
the Dirichlet boundary conditions at infinity. Denote by C any simple closed curve
enclosing the isolated zero and p = (rp, θp) a point on C. Let p travel along C
counter-clockwise, the corresponding vector 〈ũ〉H(rp, θp) attached to the point rotates
continuously. Upon returning to its original position, it rotates by an angle 2kπ for
some integer k, (see, e.g. chapter 9 in Chaikin & Lubensky (1995)). We denote by
k the Poincaré index of the exponentially localised turbulent spot after averaging
between the two walls. It can be shown that k is a topological invariant solely
determined by the characteristics of the turbulent spot inside C. It is independent
of the exact form of C (Guckenheimer & Holmes 2013). According to the Hodge
decomposition theorem (see, e.g. Theorem 2.2.1 in Jost (1995)), such a harmonic
field 〈ũ〉H is unique per Poincaré index, and it is independent of boundary conditions
of ũ at the walls. The exponentially decaying component 〈ũ〉E, however, depends on
details such as the boundary conditions at walls, the base flow profile and the forcing.
These contributions lead to a deviation from the canonical harmonic flow given by
(4.8) and (4.9). This deviation is however localised in the core region only. In the
asymptotic limit where the contribution from 〈ũ〉E is negligible, the large-scale flow
around an isolated turbulent spot is characterised by the harmonic component 〈ũ〉H ,
which is uniquely determined by the index of the turbulent spot and independent of
the boundary conditions at the walls.

According to the Poincaré–Hopf theorem (see, e.g. Lefschetz (1949)), the index of
an isolated turbulent spot is also unique and characterised by the Euler characteristics
of the planar geometry. The index of an isolated turbulent spot can be extracted from
figure 1. For γ = 0, the directional field has one fixed point, namely the quadrupole,
with index +3; while for γ = 15, the directional field possesses nine fixed points
including a quadrupole with index +3, four vortices with index +1 each, and four
saddles with index −1 each, such that the total sum of the indices is +3 and remains
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unchanged. Therefore, we conclude without any proof that the index of an isolated
turbulent spot in planar shear flow satisfying the Dirichlet boundary conditions (4.17)
is uniquely equal to +3.

The uniqueness of the harmonic vector field, which is ensured by the Hodge
decomposition theorem, and the uniqueness of the index of an isolated turbulent spot,
which is ensured by the Poincaré–Hopf theorem, together imply that the topology of
the harmonic vector field 〈ũ〉H is uniquely determined by the planar geometry, namely,
the two-dimensional plane with Dirichlet boundary conditions at infinity and a simple
isolated zero at the origin. Therefore, we expect that the y-averaged large-scale
flow around an exponentially localised turbulent spot confined between two walls
is generically quadrupolar and decays algebraically with power-law exponent −3 in
the asymptotic limit r→∞. In other words, the origin of the ubiquitously observed
quadrupolar circulations around turbulent spots in planar shear flows is topological.

5. Conclusions and outlooks
Using scale analysis and symmetry argument, we have derived a set of linear

second-order differential equations for the poloidal and toroidal functions characterising
the spatial evolution of large-scale flows around an isolated spot, namely equations
(2.32).

Since the large-scale flow decays, as long as the far field is of concern, the
intensity separation justifies a linearisation about the base flow and a seeking for
invariant solutions in the co-moving Lagrangian frame. With this formalism, we get
around of the difficulty associated with the variable coefficients in y, a typical feature
of all shear flows. Scale analysis reveals that the variable part of the vertical pressure
gradient does not contribute to the large-scale velocity field in the homogeneous
directions. It is therefore neglected. Physically, this corresponds to a filtering of the
smallest-scale wall-normal flows driven by the vertical pressure gradient, as well as
the corresponding in-plane motions so as to satisfy the incompressibility constraint.
Mathematically, the elimination of the vertical pressure gradient reduces the poloidal
equation from a fourth-order differential equation with respect to the wall-normal
variable y to a second-order one. Hence the no-slip boundary conditions, which
require both the poloidal function and its derivative along the vertical direction
to vanish at the walls, cannot be satisfied. Consequently, we relaxed the no-slip
conditions to the free-slip boundary conditions. It is noteworthy that the obtained
poloidal functions have vanishing second-order derivatives at the walls, hence the
perturbed flow presented in this paper satisfies not only the free-slip but also the
stress-free boundary conditions.

Note that these simplifications rely only on (i) the intensity separation between the
large-scale flow in the far field and the characteristic velocity scale of the base flow;
and (ii) the scale separation between wall-normal and homogeneous directions, we
expect them to be readily applicable to any planar shear flows confined between two
walls.

The proposed governing equations have been solved analytically using Fourier
transform. Comparing the obtained solutions with experimental and numerical
observations, we conclude that the quadrupolar flows, which are experimentally
measured at the mid-plane and numerically revealed through a wall-normal average,
are the stationary wake pattern ‘behind’ a localised spot in planar shear flows. In this
sense, quadrupolar flows arise as a consequence to the blockage effect of localised
structures in shear flows, rather than the detailed turbulent dynamics inside the spot.
A closer examination of the analytical solutions leads to the following three main
predictions.
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5.1. The asymptotic decay of the quadrupolar flow is algebraic
While the wall-normal velocity component is exponentially localised, the in-plane
velocities feature a superposition between an algebraic and an exponential decay.
That is, the decay of the in-plane velocity components is exponential near an isolated
turbulent spot and it is algebraic with a power-law exponent −3 in the far field. Note
that, this observation does not contradict previously reported exponential decay in
moderately sized systems by Schumacher & Eckhardt (2001) and Brand & Gibson
(2014), where no algebraic decay was found. The algebraic decay can be masked
by the exponential decay near the turbulent spot and unveil itself only at larger
distances than computed in these numerical investigations. Note that algebraic decay
of the large-scale flow implies that the associated length scale diverges, namely
λ → ∞, hence the scale-separation criterion (2.22) for large-scale flows is always
valid, independent of the Reynolds number.

5.2. Existence of an exponentially localised reversed quadrupolar flow
The existence of reversed quadrupolar flow is a robust outcome of the proposed
model (2.32) but it has never been reported explicitly in the literature. As soon
as the negative spanwise vorticity is generated near the walls inside the spot and
becomes dominant, the exponentially localised reversed quadrupolar flow emerges.
This reversed quadrupolar flow leads to four large circulating cells in the xz-plane and
a spanwise circulation that counteracts the base flow in the xy-plane. The predicted
flow resembles those observed in previous experiment (Couliou & Monchaux 2015)
and numerical simulation (Lundbladh & Johansson 1991). However, since the spot is
pointwise in our model, this resemblance can be fortuitous. On the other hand, instead
of the in-plane velocities, the existence of the reversed quadrupolar flow, hence the
validity of the linearised theory, can be unambiguously tested by investigating the
wall-normal vorticity. We expect that, independently of the domain size and the
resolution, the wall-normal vorticity displays quadrupolar contours and is of opposite
sign to the direction of quadrupolar circulation in the far field. Since these reversed
solutions are exponentially localised, their presence does not affect the algebraically
decaying large-scale flow in the asymptotic limit r→∞.

5.3. Topological origin of the algebraically decaying quadrupolar flow
By exploiting the exponential localisation of the wall-normal components of velocity
and vorticity fields, as well as the non-penetrating boundary conditions at the walls,
we have uncovered a topological origin for quadrupolar circulations in planar shear
flows. More specifically, the algebraically decaying component of the large-scale flow
is two-dimensional and harmonic, which is uniquely determined by the index of the y-
averaged turbulent spots. For planar shear flows confined between two walls, the index
of an isolated turbulent spot is unique and equals +3. Therefore, independently of
the details of the driving mechanism and of the boundary conditions at the walls, we
conclude that the presence of quadrupolar circulations around localised turbulent spots
in planar shear flows confined between two walls, e.g. plane Couette, plane Poiseuille,
Couette–Poiseuille and Waleffe flows, is generic.

Many other questions remain open and deserve verification using either experimental
or numerical means. In particular, with the increase in computer memory, a direct
numerical simulation of the fully resolved nonlinear Navier–Stokes equations with
no-slip boundary conditions, in domains large enough to unambiguously verify the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.190


892 A27-26 Z. Wang, C. Guet, R. Monchaux, Y. Duguet and B. Eckhardt

present predictions about decay exponent, is currently becoming feasible. Similarly,
the minimal assumption adopted in the present modelling to mimic a localised
turbulent spot by a filament-like obstacle can be compared with the nonlinear
simulations and tested. Alternatively, the linearised model (2.32) can give the Green’s
function, see e.g. Blake (1971), Liron & Mochon (1976) and Grenier & Nguyen
(2019), which could be used to derive the response to any vorticity distribution
mimicking an actual spot or band. Finally, a generalisation of the present derivation
to arbitrary boundary conditions at the wall, to pressure-driven flows such as Poiseuille
or Couette–Poiseuille flows, to even to non-planar geometries and even to external
boundary-layer flows would be welcome.
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Appendix A

This appendix contains details for calculating the following integral, cf. equation
(3.22): ∫

∞

0

KJ2(Kr)
K2 + ξ 2

n

dK. (A 1)

Denote Zm(x) the mth order Bessel functions of the first kind Jm(x), the modified
Bessel functions of the second kind Km(x) and any linear combinations of these
functions. The recurrence formula reads (see (8.471.1) in Gradshteyn & Ryžhik 2014)

xZm−1(x)+ xZm+1(x)= 2mZm(x). (A 2)

Substituting m = 1 and x = Kr into (A 2), then the Bessel function J2(Kr) can be
expressed as

J2(Kr)=
2

Kr
J1(Kr)− J0(Kr). (A 3)

Thus, equation (A 1) can be split into two integrals∫
∞

0

KJ2(Kr)
K2 + ξ 2

n

dK =
2
r

∫
∞

0

J1(Kr)
K2 + ξ 2

n

dK −
∫
∞

0

KJ0(Kr)
K2 + ξ 2

n

dK. (A 4)
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Using the identity
1

K2 + ξ 2
n

=
1
ξ 2

n

(
1−

K2

K2 + ξ 2
n

)
, (A 5)

the first integral on the right-hand side of (A 4) can be, again, split into two, yielding∫
∞

0

KJ2(Kr)
K2 + ξ 2

n

dK = +
2
ξ 2

n r

[∫
∞

0
J1(Kr) dK −

∫
∞

0

K2J1(Kr)
K2 + ξ 2

n

dK
]

−

∫
∞

0

KJ0(Kr)
K2 + ξ 2

n

dK. (A 6)

The preceding integrals can be found as equations (6.511.1) and (6.565.4) in
Gradshteyn & Ryžhik (2014), respectively. They are∫

∞

0
Jm(Kr) dK =

1
r
, (A 7)

for m>−1; and ∫
∞

0

KmJm(Kr)
(K2 + ξ 2

n )
µ+1

K dK =
rµξm−µ

n

2µΓ (µ+ 1)
Km−µ(ξnr), (A 8)

for −1<m< 2µ+ 3/2 and ξn > 0. Here, Γ (µ+ 1) denotes the gamma function.
Using these formulae, the integral (A 6) becomes∫

∞

0

KJ2(Kr)
K2 + ξ 2

n

dK =
2
ξ 2

n r

[
1
r
− ξnK1(ξnr)

]
−K0(ξnr). (A 9)

This expression can be further simplified by using the recurrence relation (A 2),
yielding ∫

∞

0

KJ2(Kr)
K2 + ξ 2

n

dK = 2(ξnr)−2
−K2(ξnr). (A 10)

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1965 Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables. Courier Corporation.

ALAVYOON, F., HENNINGSON, D. S. & ALFREDSSON, P. H. 1986 Turbulent spots in plane Poiseuille
flow-flow visualization. Phys. Fluids 29 (4), 1328–1331.

BARKLEY, D. & TUCKERMAN, L. S. 2007 Mean flow of turbulent-laminar patterns in plane Couette
flow. J. Fluid Mech. 576, 109–137.

BLAKE, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc.
Camb. Phil. Soc. 70 (2), 303–310.

BOTTIN, S., DAUCHOT, O. & DAVIAUD, F. 1997 Intermittency in a locally forced plane Couette
flow. Phys. Rev. Lett. 79 (22), 4377–4380.

BOTTIN, S., DAUCHOT, O. & DAVIAUD, F. 1998 Experimental evidence of streamwise vortices as
finite amplitude solutions in transitional plane Couette flow. Phys. Fluids 10 (10), 2597–2607.

BRAND, E. & GIBSON, J. F. 2014 A doubly localized equilibrium solution of plane Couette flow.
J. Fluid Mech. 750, R3.

CARLSON, D. R., WIDNALL, S. E. & PEETERS, M. F. 1982 A flow-visualization study of transition
in plane Poiseuille flow. J. Fluid Mech. 121, 487–505.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.190


892 A27-28 Z. Wang, C. Guet, R. Monchaux, Y. Duguet and B. Eckhardt

CHAIKIN, P. M. & LUBENSKY, T. C. 1995 Principles of Condensed Matter Physics. Cambridge
University Press.

CHANTRY, M., TUCKERMAN, L. S. & BARKLEY, D. 2016 Turbulent-laminar patterns in shear flows
without walls. J. Fluid Mech. 791, R8.

CHANTRY, M., TUCKERMAN, L. S. & BARKLEY, D. 2017 Universal continuous transition to
turbulence in a planar shear flow. J. Fluid Mech. 824, R1.

COLES, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.
COULIOU, M. & MONCHAUX, R. 2015 Large-scale flows in transitional plane Couette flow: a key

ingredient of the spot growth mechanism. Phys. Fluids 27 (3), 034101.
COULIOU, M. & MONCHAUX, R. 2016 Spreading of turbulence in plane Couette flow. Phys. Rev. E

93, 013108.
COULIOU, M. & MONCHAUX, R. 2017 Growth dynamics of turbulent spots in plane Couette flow.

J. Fluid Mech. 819, 1–20.
COULIOU, M. & MONCHAUX, R. 2018 Childhood of turbulent spots in a shear flow. Phys. Rev. F

3 (12), 123901.
DAUCHOT, O. & DAVIAUD, F. 1995a Finite amplitude perturbation and spots growth mechanism in

plane Couette flow. Phys. Fluids 7, 335–343.
DAUCHOT, O. & DAVIAUD, F. 1995b Streamwise vortices in plane Couette flow. Phys. Fluids 7,

901–903.
DAVIAUD, F., HEGSETH, J. & BERGÉ, P. 1992 Subcritical transition to turbulence in plane Couette

flow. Phys. Rev. Lett. 69, 2511–2514.
DUGUET, Y., MAITRE, O. L. & SCHLATTER, P. 2011 Stochastic and deterministic motion of a

laminar-turbulent front in a spanwisely extended Couette flow. Phys. Rev. E 84 (6), 066315.
DUGUET, Y. & SCHLATTER, P. 2013 Oblique laminar-turbulent interfaces in plane shear flows. Phys.

Rev. Lett. 110, 034502.
DUGUET, Y., SCHLATTER, P. & HENNINGSON, D. S. 2010 Formation of turbulent patterns near the

onset of transition in plane Couette flow. J. Fluid Mech. 650, 119–129.
ECKHARDT, B. & PANDIT, R. 2003 Noise correlations in shear flows. Eur. Phys. J. B 33 (3),

373–378.
EMMONS, H. W. 1951 The laminar-turbulent transition in a boundary layer-part I. J. Aeronaut. Sci.

18 (7), 490–498.
GRADSHTEYN, I. S. & RYŽHIK, I. M. 2014 Table of Integrals, Series, and Products. Academic

Press.
GRENIER, E. & NGUYEN, T. T. 2019 Green function of Orr–Sommerfeld equations away from

critical layers. SIAM J. Math. Anal. 51 (2), 1279–1296.
GUCKENHEIMER, J. & HOLMES, P. 2013 Nonlinear Oscillations, Dynamical Systems, and Bifurcations

of Vector Fields. Springer.
HENNINGSON, D. S. & KIM, J. 1991 On turbulent spots in plane Poiseuille flow. J. Fluid Mech.

228, 183–205.
HOWISON, S. 2005 Practical Applied Mathematics: Modelling, Analysis, Approximation. Cambridge

University Press.
ISHIDA, T., DUGUET, Y. & TSUKAHARA, T. 2016 Transitional structures in annular Poiseuille flow

depending on radius ratio. J. Fluid Mech. 794, R2.
JIMÉNEZ, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.
JOST, J. 1995 Riemannian Geometry and Geometric Analysis. Springer.
KELVIN, LORD 1887 On ship waves. Proc. Inst. Mech. Engrs 38, 641–649.
KLOTZ, L., LEMOULT, G., FRONTCZAK, I., TUCKERMAN, L. S. & WESFREID, J. E. 2017

Couette–Poiseuille flow experiment with zero mean advection velocity: subcritical transition to
turbulence. Phys. Rev. F 2, 043904.

LAGHA, M. & MANNEVILLE, P. 2007 Modeling of plane Couette flow. I. Large scale flow around
turbulent spots. Phys. Fluids 19, 094105.

LEFSCHETZ, S. 1949 Introduction to Topology. Princeton University Press.
LEMOULT, G., AIDER, J. L. & WESFREID, J. E. 2013 Turbulent spots in a channel: large-scale

flow and self-sustainability. J. Fluid Mech. 731, R1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.190


Quadrupolar flows around spots in internal shear flows 892 A27-29

LI, F. & WIDNALL, S. E. 1989 Wave patterns in plane Poiseuille flow created by concentrated
disturbances. J. Fluid Mech. 208, 639–656.

LIRON, N. & MOCHON, S. 1976 Stokes flow for a Stokeslet between two parallel flat plates. J. Engng
Maths 10 (4), 287–303.

LUNDBLADH, A. & JOHANSSON, A. V. 1991 Direct simulation of turbulent spots in plane Couette
flow. J. Fluid Mech. 229, 499–516.

MARQUÉS, F. 1990 On boundary conditions for velocity potentials in confined flows: application to
Couette flow. Phys. Fluids 2 (3), 729–737.

PRIGENT, A., GRÉGOIRE, G., CHATÉ, H. & DAUCHOT, O. 2003 Long-wavelength modulation of
turbulent shear flows. Physica D 174 (1-4), 100–113.

PRIGENT, A., GRÉGOIRE, G., CHATÉ, H., DAUCHOT, O. & VAN SAARLOOS, W. 2002 Large-scale
finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501.

REYNOLDS, O. 1883 An experimental investigation of the circumstances which determine whether the
motion of water shall be direct or sinuous, and of the law of resistance in parallel channels.
Phil. Trans. R. Soc. Lond. A 174, 935–982.

RITTER, P., ZAMMERT, S., SONG, B., ECKHARDT, B. & AVILA, M. 2018 Analysis and modeling of
localized invariant solutions in pipe flow. Phys. Rev. F 3, 013901.

ROMANOV, V. A. 1973 Stability of plane-parallel Couette flow. Funct. Anal. Applics 7, 137–146.
SAMANTA, D., LOZAR, A. D. & HOF, B. 2011 Experimental investigation of laminar turbulent

intermittency in pipe flow. J. Fluid Mech. 681, 193–204.
SCHUMACHER, J. & ECKHARDT, B. 2001 Evolution of turbulent spots in a parallel shear flow. Phys.

Rev. E 63, 046307.
TARDU, S. 2012 Forcing a low Reynolds number channel flow to generate synthetic turbulent-like

structures. Comput. Fluids 55, 101–108.
TAYLOR, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. 164 (919), 476–490.
TILLMARK, N. & ALFREDSSON, P. H. 1992 Experiments on transition in plane Couette flow. J. Fluid

Mech. 235, 89–102.
WANG, Z. 2019 Localised and bifurcating structures in planar shear flows. PhD thesis, Nanyang

Technological University.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

19
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.190

	Quadrupolar flows around spots in internal shear flows
	Introduction
	Formulation
	Linearised Navier–Stokes equations
	Geometric scale separation in plane Couette flow
	Poloidal–toroidal decomposition
	Boundary conditions
	Forcing selection
	Minimal assumption model for a localised spot
	Parity of the forcing


	Analytical solutions for poloidal and toroidal functions
	Modal solutions
	Inverse Fourier transform

	Quadrupolar flows
	Analytical expressions for the quadrupolar y-averaged flow
	Algebraic asymptote of the quadrupolar y-averaged flow
	Coexistence of exponential and algebraic decays
	Single-mode model versus two-mode model
	Reversed quadrupolar flow

	Topological origin of the quadrupolar flow

	Conclusions and outlooks
	The asymptotic decay of the quadrupolar flow is algebraic
	Existence of an exponentially localised reversed quadrupolar flow
	Topological origin of the algebraically decaying quadrupolar flow

	Acknowledgements
	Appendix A 
	References


