Aggregating Causal Judgments

Richard Bradley, Franz Dietrich, and Christian List*f

Decision making typically requires judgments about causal relations: we need to know
the causal effects of our actions and the causal relevance of various environmental factors.
We investigate how several individuals’ causal judgments can be aggregated into collective
causal judgments. First, we consider the aggregation of causal judgments via the aggrega-
tion of probabilistic judgments and identify the limitations of this approach. We then ex-
plore the possibility of aggregating causal judgments independently of probabilistic ones.
Formally, we introduce the problem of causal-network aggregation. Finally, we revisit the
aggregation of probabilistic judgments when this is constrained by prior aggregation of
qualitative causal judgments.

1. Introduction. Decision making typically requires judgments about causal
relations. Home owners need to know whether putting locks in their doors will
make their houses more secure. Jurors need to know whether the accused is
causally responsible for damages before they can assess whether he or she is
legally responsible. Aid agencies need to know how the different projects they
can invest in will affect the lives of those they are concerned about, and so on.
Opinions about the nature and strength of causal relations often differ, even
among experts. How to handle such diversity of opinion is the topic of this
article. We investigate the possibility of coherently aggregating different
causal judgments into a single one that may be applied to the decision prob-
lem at hand.
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The basic setup of this aggregation problem is as follows. Individuals
make judgments about both the nature of the causal relations between the
variables in some set V = {V, W, . . .} and the probabilities of these vari-
ables taking certain values, unconditionally or conditionally, on the values
of other variables. The task is to construct a single aggregate judgment on
the causal relations between the variables and the relevant probabilities in a
way that preserves, as much as possible, the information contained in the
individuals’ judgments. For present purposes, we assume that individuals’
judgments are coherent. More generally, one might allow (localized) inco-
herence in some of the individuals’ judgments or allow that individuals do
not make judgments about all causal relations or all probabilities in ques-
tion. Their judgments could be restricted to just certain variables relevant
to the decision problem at hand or, further still, to just some subset of them
or just one type of judgment: causal or probabilistic.

The causal judgments of individuals could be represented in a number
of different ways, but here we adopt the framework familiar from the work
of Pearl (2000), Spirtes, Glymour, and Scheines (2000; see also Glymour,
Spirtes, and Scheines 1990), and others, in which they are represented by
Bayesian networks: directed acyclic graphs (DAGs) with associated condi-
tional probabilities. We do not intend thereby to take a position on the na-
ture of causal judgments or on the question of whether they can ultimately be
analyzed probabilistically." Anyone who holds the view that causal judgments
are just features of probability judgments—for instance, that to judge that X
causes Yis to hold certain conditional probability judgments, such as that the
conditional probability of ¥ given X exceeds its unconditional probability—
is free to regard the Bayesian network representations as adding no infor-
mation to the underlying probability judgments. In principle, we could also
study the aggregation of causal judgments in another framework, for instance,
by representing causal judgments as counterfactual beliefs of the right kind.

A DAG represents an individual’s qualitative judgment of causal rele-
vance and irrelevance between variables. Her quantitative judgment of causal
dependence is reflected in the associated conditional probabilities for the
values of these variables, given the values of any variables on which they are
directly causally dependent. The individual’s unconditional probabilities for
the values of the given variables can then be computed from their condi-
tional probabilities together with the individual’s unconditional probabili-
ties for the parent variables. Consider the following example, which we will
use at various points in the discussion.

Example: Predicting Famine.—An aid agency wishes to do some ad-
vance planning for its famine relief operations and consults several experts

in order to determine the risk of famine in a particular region. All agree that

1. A probabilistic analysis may involve variables not included in the DAGs we consider.
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the relevant variables are R: rainfall, ¥: crop yields, P: political conflict, and
of course F: famine. But they disagree both on the causal relations between
the four variables and on the probabilities of the various values that these
variables may take. All consider rainfall to be the main determinant of crop
yield. However, while Expert 1 thinks that poor crop yield and disruptive
political conflict are the main causes of famine, Expert 2 thinks that the
causal influence of political conflict on famine is indirect, via the effect of
the disruption of agricultural production on crop yields. Expert 3 considers
the relationship between political conflict and famine to be more compli-
cated still, with political conflict both causing famine directly, by disrupt-
ing food distribution, and indirectly, through the influence on crop yields.
These three opinions are represented in figure 1 by a set of DAGs.

The fact that individuals make both causal and probabilistic judgments
raises the question whether aggregation of both kinds of judgments should
be conducted all at once or in two stages. In section 2, we focus on what we
call one-stage aggregation, in which only probability judgments are aggre-
gated. This approach draws on the standard literature on probabilistic opin-
ion pooling (as reviewed, e.g., by Genest and Zidek 1986). It is motivated
mainly by the thought that the probability judgments of individuals reflect
their causal judgments in various ways and hence that the problem of causal
judgment aggregation may be solved by constraining probability aggrega-
tion so as to preserve the causal information contained in probability judg-
ments. Our verdict on this possibility, however, is largely negative. In sec-
tions 3-5, we therefore pursue an alternative two-stage approach, aggregating
first the qualitative causal judgments represented by the DAGs (sec. 3) and then

R R R

P /Y P /Y P /Y
F F F
Bpert 1 Bpert 2 Brpert 3

Figure 1. Expert causal judgments.
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the quantitative probabilistic ones (sec. 4 and 5), on the assumption that a con-
sensus about the causal relations between variables has been reached. Our
analysis builds on results from the literature on binary judgment aggregation,
which combines ideas from social choice theory with ideas from logic.?

2. One-Stage Aggregation. The problem of aggregating causal judgments
has not received much attention, at least in the form presented here, but there
is a vast literature on aggregating expert opinions, mainly in statistics, and es-
pecially on aggregating expert probabilities. (As already mentioned, an ex-
cellent guide to that literature is the survey paper of Genest and Zidek [1986].)
In this section, we draw on this literature to examine the possibility of rea-
sonable one-stage aggregation of several individuals’ judgments. One-stage
aggregation may be the only method available in cases in which individuals
make no explicit causal judgments or their causal judgments are very incom-
plete. It is natural, moreover, for those holding a probabilistic view about
causation to rely on this method. But one-stage aggregation may also be moti-
vated by the less controversial thought that the causal judgments of indi-
viduals are reflected in (even if they are not reducible to) the relations be-
tween the individuals’ unconditional and conditional probabilities for the
relevant events. If this is so, then even on a nonreductionistic view about
causal judgments one may hope that probability aggregation could be con-
strained in a manner that preserves the causal judgments implicit in prob-
abilistic ones.

Broadly, there are three classical approaches to probability aggregation:
linear pooling, geometric pooling, and supra-Bayesian approaches. The last
approach is directed at a problem slightly different from ours—namely, that
of how an individual expert should modify his judgments in light of the
expressed judgments of other experts—and so we can set it aside. The other
two approaches assume that the experts’ opinions have reached an equilib-
rium state and that no further modification of their viewpoints will take place
before the relevant decision has to be made.

Consider an opinion aggregation problem of the following form. A set
of events is given (e.g., the event “high political conflict” or “low political
conflict and famine”), and the task is to merge the probability judgments of

individuals 1, . . ., n (the “experts”) on these events into an aggregate prob-
ability judgment on the events.” So, we have to merge (individual) proba-
bility functions Pry, . . ., Pr, into an (aggregate) probability function Pr. Many

2. The formal logic-based analysis of binary judgment aggregation was introduced by
List and Pettit (2002, 2004) and, in generalized form, by Dietrich (2007). For a survey, see
List and Puppe (2009). For another early contribution, see Pauly and van Hees (2006).

3. Events can be identified with subsets of a given set of possible worlds. In many formal
results, the set of events considered (i.e., the domain of the individual probability functions
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aggregation rules are imaginable. Formally, a probability aggregation rule
is a function that assigns to each n-tuple (Pry, . . ., Pr,) (called a profile) of
individual probability functions an aggregate probability function Pr.

Of the various possible aggregation rules, linear pooling stands out for a
variety of formal and conceptual reasons (e.g., Aczél and Wager 1980; Lehrer
and Wagner 1981; McConway 1981; Dietrich and List 2007b). In particular,
the following axiomatic argument can be given. Let us require the aggrega-
tion rule to satisfy two seemingly natural conditions:

Ind.—(Event-wise Independence) The aggregate probability of any given
event X depends only on the individuals’ probabilities of X (regardless of
the individuals’ probabilities of other events Y).*

ZP.—(Zero Preservation) The aggregate probability of any given event X
is zero whenever all individuals give X zero probability.’

Applied to the event “famine,” for instance, Zero Preservation implies
that famine is assigned an aggregate probability of zero if all individual
experts assign a probability of zero to it. Event-wise independence implies
that the aggregate probability of famine depends only on the probabilities
that the individual experts assign to that event, not on the probabilities they
assign to a certain level of crop yield, political conflict, and so on. (This is not
to deny, of course, that individuals form their judgments regarding famine in
light of their judgments on crop yield, political conflict, etc.)

Perhaps surprisingly, the only aggregation rules satisfying these two con-
ditions are linear pooling functions: the aggregate probability of any event X
is a (possibly weighted) arithmetic average of the individual probabilities of
X; that is,

Pr(X) =w/Pr,(X)+ ... +w,Pr,(X),

where the weights w,, . . ., w, >0 add up to one and are the same for all events
X (Aczél and Wager 1980; McConway 1981).° Examples of linear pooling

Pry, ..., Pr, and the aggregate probability function Pr) forms an algebra: the negation
(complement) of any event is also an event, and the disjunction (union) of any two events is
an event too.

4. Formally, Pr(X) is a function of Pr;(X), . . ., Pr,(X). This function may be a different
one for different events X.
5. Formally, Pr(X) = 0 if Pry(X)=...=Pr,(X) = 0.

6. This result requires that the set of events considered forms an algebra (see n. 3) and
contains at least three events apart from the contradiction (empty set of worlds) and the
tautology (set of all worlds). For a generalization, see Dietrich and List (2007b). Other
relevant contributions include Wagner (1982, 1985).
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functions are equal-weight averaging (w, = . .. = w, = 1/n) and dicta-
torial aggregation (some individual i has weight w, = 1, and all others
have weight 0).

The natural interpretation of these weights is in terms of judgmental com-
petence, so that the choice of a particular linear pooling rule is dictated by
considerations of the relative expertise of the individuals whose opinions are
being sought. In this light, the fact that linear pooling rules assign weights to
the opinions of individuals that are independent of the object of these opin-
ions seems quite unsatisfactory, since individuals may be more or less ex-
pert on different kinds of issues, and it would seem natural to vary the weights
on their opinions to reflect this. The aid agency would do well to consult cli-
matologists, agriculturalists, and political scientists to reach a balanced view
on the causes of famine, but in doing so it would be reasonable for it to give
more weight to the climatologists’ probabilities for rainfall than to the po-
litical scientists’ but more weight to the political scientists’ probabilities for
political conflict.”

Our main concern here, however, is with the question of whether linear
pooling functions satisfactorily respect the causal knowledge of the individual
experts. An individual’s causal judgments will be reflected in certain (un-
conditional or conditional) independencies in his or her probability judgments.
For instance, if individual i believes that events X and Y do not causally affect
each other but have a common cause Z (and have no other common causes,
except for those that affect X' and Yvia Z), then he or she will take X and Y to
be probabilistically independent given Z,* because any probabilistic corre-
lation between X and Y is “screened off” by conditionalizing on Z. A mini-
mal requirement of respecting causal judgments is that at least unanimously
held causal judgments be reflected in the aggregate probability function Pr.
That is, Pr should display at least those (conditional) independencies that are
supported by unanimous causal judgments. For example, if all individuals
judge X and Y to be causally independent with common cause Z, then that
independence judgment should be reflected in the aggregate probability func-
tion Pr. This motivates the following condition on probability aggregation:

IP.—(Independence Preservation) For any given events X, ¥, Z, if all individ-
uals judge X and Y to be probabilistically independent given Z, then this con-
ditional independence also holds under the aggregate probability function.’

7. See Bradley (2007) for further discussion of this issue. On problems with the as-
signment of differentiated expert rights, see also Dietrich and List (2008).

8. Formally, Pr(XY|Z) = Pr(X|Z) Pr(Y|Z).

9. Formally, if, for all individuals #, Pr(Z) > 0 and Pr(XY|Z) = Pr(X|Z) Pr(Y|Z), then also
Pr(Z) > 0 and Pr(XY|Z) = Pr(X|Z) Pr(Y|Z).
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Note that, by preserving all unanimous probabilistic independencies (con-
ditional or unconditional), we may also preserve independencies that are
not grounded in unanimous causal judgments. For instance, it may be that
all individuals judge X and Y to be independent given Z, but some do so on
the grounds of judging that X indirectly causes Y through Z, others on the
grounds of judging that Y indirectly causes X through Z, still others on the
grounds of judging that X, ¥, and Z are entirely causally disconnected. Even
in this case of causal disagreement, Independence Preservation requires the
preservation of probabilistic conditional independence. The purely probabi-
listic informational basis of one-stage aggregation does not allow us to dis-
tinguish between different motivations (causal or other) behind probabilis-
tic independencies. Without explicit causal information, all we can do is to
use Independence Preservation to preserve all unanimous causal judgments,
at the cost of preserving even those conditional independencies that are not
causally motivated.

It turns out, however, that Independence Preservation is violated by all lin-
ear pooling functions (unless some individual i gets maximal weight w, = 1)
and thus by all nondictatorial probability aggregation rules satisfying Event-
wise Independence and Zero Preservation. This fact, proven in Genest and
Wagner (1984), can be illustrated by using our earlier example.'” Suppose the
aid agency consults a couple of experts in order to determine the risk of fam-
ine in a particular region and that both experts agree that famine is caused by
a combination of drought (the event of rainfall R below some critical thresh-
old) and political instability (the event of political conflict P above some
critical threshold), which undermines local solutions to poor crop yields.
Furthermore, they agree that these two factors are both causally and probabi-
listically independent, at least in the short term. But they disagree on the
probability of drought and of political instability. Since neither speaks with
greater authority than the other, the aid agency calculates its probabilities for
these events by taking the linear average of the judgments of the two experts.

Let D and 7, respectively, denote the occurrence of drought and political
instability in the region and D/ their concurrence. Let Pr,, Pr,, and Pr, respec-
tively, be the probability functions of Expert 1, Expert 2, and the aid agency.
Since pooling happens by averaging, the aid agency will assign the follow-
ing probabilities:

_ Pr (D) + Pry(D) Pr(/) Pr, (1) + Pr,(I)
2 ’ 2 ’
Pr,(DI) + Pry(DI)  Pr(D)Pr,(I) + Pry(D) Pry(1)
2 N 2 ’

Pr(D)

Pr(DI) =

10. Relatedly, Spirtes et al. (2000) observe that if we mix two or more probability distribu-
tions that each display certain conditional independence relations, the resulting mixture may
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where the last identity uses the experts’ judgments that D and 7 are inde-
pendent. These independence judgments are preserved if and only if Pr
(DI) = Pr(D) Pr(I); that is, if and only if

Pr,(D) Pr,(I) 4 Pr,(D) Pr,(1) _ Pr (D) + Pry(D) " Pr,(I) + Pr,(I)
2 2 2 '

By multiplying both sides of this equation by 4, developing the product on the
right-hand side, and simplifying, it follows that

Pr,(D)Pr,(I) + Pry(D)Pr,(I) = Pr,(D)Pry(I) + Pr,(D)Pr, (1)
< Pr(D)(Pr,(I) — Pry(1)) = Pry(D)(Pr, (1) — Pry(1))
< (Pry(D) — Pry(D))(Pr,(I) — Pry(1)) = 0.

The latter can hold only if Pr,(D) = Pr,(D) or Pr,(/) = Pry(/), that is, if the
experts agree on the probability of drought or of political instability—which
is not the case by assumption. So equal-weight linear pooling violates Inde-
pendence Preservation. Similar violations can be constructed for nonequal
weights (unless one individual i gets maximal weight w, = 1).

While we have focused on linear pooling as a way of aggregating proba-
bility judgments, the difficulty with preserving causal insights at the aggre-
gate level is a very general one. Genest and Wagner (1984) have shown that
Independence Preservation is violated by many (linear or nonlinear) proba-
bility aggregation rules, including geometric averaging, the most prominent
alternative to linear averaging. Thus, the difficulty of preserving causal knowl-
edge is not an artifact of requiring Event-wise Independence (a condition vio-
lated, e.g., by geometric averaging).

Genest and Wagner (1984) interpret this finding as evidence that Inde-
pendence Preservation is not a reasonable condition. We would not like to
go so far. In our view, those unanimous independence judgments that are
grounded in unanimous causal judgments about the world should not be
overruled. We take Genest and Wagner’s impossibility finding not as a rea-
son to abandon the goal of preserving judgments of independence but as a
reason to move to a two-stage approach that explicitly takes qualitative causal
judgments into account.

3. Two-Stage Aggregation: The Qualitative Stage. Under our proposed
two-stage approach to aggregation, qualitative causal judgments are aggre-

fail to display those conditional independence relations. In particular, if we take two or
more probability distributions that are each compatible with the same DAG (satistying the
causal Markov condition), their linear mixture may not be compatible with that DAG.
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gated first, and quantitative, probabilistic ones only subsequently. Further-
more, the latter are aggregated in a way that differs from standard probabil-
ity aggregation, namely, in a way that is constrained by the qualitative causal
judgments formed at the first stage. This two-stage approach will satisfy a
version of Independence Preservation restricted to unanimously held causal
independencies.

As before, let V= {V, W, ...} be a (finite) nonempty set of variables. In
our example of the aid agency above, V contains the variables R (rainfall),
Y (crop yields), P (political conflict), and F' (famine). How can we represent
qualitative judgments on how the variables in V are causally interrelated?
Let us introduce a binary predicate symbol ¢ to represent a causal rele-
vance relation on V, where, for any two variables Vand W in V, we write
VeW to mean that V' is directly causally relevant to W. (For brevity, we
speak of “causal relevance,” but we mean “direct causal relevance.”'") In
the case of the aid agency, an expert who thinks that rainfall is causally rel-
evant to crop yield whereas political conflict is not would hold that RcY but
not that PcY. A causal relevance relation c is called acyclic if, for any finite
sequence Vi, Vs, ..., V. of variables in V, it is not the case that

VieVs,, VacVs, .., VioicVy, and VicV,.

A causal relevance relation ¢ induces a directed graph whose vertices are
the variables in V and whose edges (arrows connecting vertices) are defined
as follows: for any two variables Vand Win 'V, there is an edge from V'in the
direction of W if and only if VeW. This graph is a DAG if ¢ is an acyclic
relation."

A Bayesian network is a DAG with associated conditional probabilities:
each variable in the graph is endowed with a conditional probability dis-
tribution given its parents in the graph. In this section, however, we set this
quantitative information aside and focus on qualitative features of the DAG
alone. In particular, we investigate how a group of individuals can arrive at
an aggregate judgment on what the causal relevance relation ¢ between the
variables in V is.

Consider a group of n individuals, labeled 1, 2, . . ., n, each of whom
holds a particular judgment on the nature of the causal relevance relation
between the variables in V. We write ¢, to denote the causal relevance relation
according to individual 7’s judgment. A combination of causal relevance re-
lations across the # individuals is called a profile and denoted (c,, ¢, . . . ,

11. If we wanted to use our formal framework to capture indirect as well as direct causal
relationships, we would have to invoke the transitive closure of the relation c.

12. Note that our definition of acyclicity also rules out cycles of length k = 1; i.e., we
cannot have VeV for any variable V.
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¢.). A causal judgment aggregation rule is a function that assigns to each
profile (¢, ¢,, . . ., ¢,) (in some domain of admissible profiles) a single
aggregate causal relevance relation c.

To give some examples of causal judgment aggregation rules, consider
the class of threshold rules. A threshold rule, with threshold & (where 1 <
k < n), assigns to each profile (c,, ¢,, . . ., ¢,) the causal relevance relation
¢ defined as follows: for any two variables V"and W in V,

VeW < at least k individuals have Ve, .

Examples of threshold rules are the majority rule (k = (n + 1)/2), the
union rule (k =1), and the intersection (or unanimity) rule (k = n).

Are these satisfactory causal judgment aggregation rules? It is easy to
see that each of these three rules has a considerable defect. The majority and
union rules fail to ensure acyclicity of the aggregate causal relevance rela-
tion, even when all individuals hold acyclic such relations. To see this, sup-
pose the aid agency consults three experts, with the following individual
judgments. They all agree that rainfall is causally relevant to crop yields, but
they disagree on the causal relations between the other variables. Expert 1
thinks that crop yields are causally relevant to famine, which is causally rel-
evant to political conflict. Expert 2 thinks that famine is causally relevant
to political conflict, which is causally relevant to crop yields. Expert 3 thinks
that political conflict is causally relevant to crop yields, which is causally
relevant to famine. In consequence, the causal relevance relation generated
by the majority rule violates acyclicity: the relation contains a cycle from
crop yields to famine to political conflict to crop yields. It is obvious that the
union rule has the same defect. The intersection (or unanimity) rule, by
contrast, ensures acyclicity of the aggregate causal relevance relation but
may generate a sparse or even empty such relation, with few variables deemed
causally relevant to any others, whenever there are disagreements between
the experts.

Although threshold rules are particularly salient examples of causal
judgment aggregation rules, they are by no means the only ones. So let us
adopt an axiomatic approach and look for rules satisfying certain conditions.

UD.—(Universal Domain) The causal judgment aggregation rule accepts
as admissible any logically possible profile of acyclic causal relevance re-

lations.

AC.—(Acyclicity) The aggregate causal relevance relation is always acy-
clic.
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UB.—(Unbiasedness) For any two variables 'and W in V, the aggregate
judgment on whether V' is causally relevant to W depends only on indi-
vidual judgments on whether V is causally relevant to W (the indepen-
dence requirement), and the aggregation rule is neutral between whether
or not this is the case (the neutrality requirement)."

ND.—(Nondictatorship) There does not exist a fixed individual such that,
for every admissible profile of causal relevance relations, the aggregate
causal relevance relation is the one held by that individual.

Although these conditions may seem natural at first sight, they are mutually in-
consistent.

TueoreM 1.—If V contains three or more variables, there exists no causal
judgment aggregation rule satisfying UD, AC, UB, and ND.

This result follows from an impossibility theorem by Dietrich and List
(2010a) concerning the aggregation of binary judgments on logically con-
nected propositions. Qualitative causal judgments in the sense investigated
here are simply binary (true/false) judgments on propositions of the form
“variable V'is (or is not) directly causally relevant to variable W,” where dif-
ferent such propositions constrain each other via the acyclicity constraint
on causal relevance. For example, the set of propositions {“V is directly
causally relevant to W,” “W is directly causally relevant to U,” and “U is
directly causally relevant to /”’} is logically inconsistent relative to the acy-
clicity constraint. From the theory of judgment aggregation, we know that
the aggregation of binary judgments on logically connected propositions is
subject to a family of impossibility results broadly similar to Arrow’s impos-
sibility theorem on preference aggregation, as surveyed in List and Puppe
(2009) and, more recently, List (2012). Our current theorem belongs to this
family of results. What are the possible escape routes from this impossi-
bility?

The First Route: Relaxing Universal Domain. We may use a causal
judgment aggregation rule that accepts, as admissible input, not all logically
possible profiles of acyclic causal relevance relations but only those that meet
an additional structural condition, namely, profiles that, informally speaking,

13. Formally, for any ¥ and W in V and any admissible profiles (¢, ¢, . . . , ¢,) and
(1, &, ..., ), if for all i, Ve,V if and only if not Ve W, then VeW if and only if not
Ve*Ww. This formal statement is slightly weaker than the informal one in the main text
but implies it under UD and AC.
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reflect a certain amount of cohesion across different individuals’ causal judg-
ments. The additional structural condition on profiles might be such that the
majority rule, or perhaps some other threshold rule, never generates an ag-
gregate causal relevance relation violating acyclicity. In this case, the majority
rule or threshold rule in question could be employed on this restricted domain of
admissible profiles. We consider two structural conditions of this kind.

Temporal-Order Restriction. Suppose the individuals agree on the tem-
poral order in which the events captured by the variables in V occur. Sup-
pose further they agree that a variable V' can be causally relevant to another
variable W only if V strictly precedes W in this temporal order. Call any pro-
file of causal relevance relations that is consistent with some such agreement
temporal-order restricted. Formally, a profile is temporal-order restricted
if there exists some weak order of the variables in V (a reflexive, transitive,
and connected binary relation on V) such that, for every pair of variables
and W in V, if some individual judges V' to be causally relevant to W (i.e.,
some i holds Ve, W), then V strictly precedes W in that order. For any such
profile, the causal relevance relation generated by any threshold rule is
acyclic, no matter how low or high the threshold is. The temporal constraint
on what causal relevance judgments are deemed admissible guarantees the
absence of any causal cycles at both the individual and the aggregate levels.

Unidimensional Alignment. Another structural condition on profiles that
ensures acyclic causal judgments at the aggregate level—here under the ma-
jority rule (or any threshold rule with a higher threshold)—is unidimensional
alignment (List 2003; for generalizations, see Dietrich and List 2010b). A pro-
file of causal relevance relations is called unidimensionally aligned if the
individuals can be linearly ordered from left to right such that, for each pair
of variables V" and W in V, the individuals who hold that V" is causally rele-
vant to ¥ (i.e., the individuals i with Ve, W) are all to the left or all to the right
of those who hold that V" is not causally relevant to W (i.e., the individuals
i who do not have Ve, W)."* For any unidimensionally aligned profile, the
causal relevance relation generated by the majority rule is acyclic and co-
incides with the causal relevance relation held by the median individual
with respect to the left-right ordering of the individuals. (Or, if the number
of individuals is even, it coincides with the intersection of the causal rele-
vance relations held by the two median individuals.)

It is an empirical question whether a group of experts—either before or
after a period of joint deliberation—exhibits sufficient agreement in their

14. This allows that, for some pairs of variables, the individuals affirming causal rele-
vance are to the left of those who do not, while for other pairs of variables the former are
to the right of the latter.
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causal judgments to meet the condition of temporal-order restriction or
that of unidimensional alignment. The kind of temporal agreement required
for temporal-order restriction seems empirically plausible at least in some
situations.

The Second Route: Relaxing Acyclicity. A logically possible way to
avoid the impossibility result of theorem 1 is to give up the requirement that
the aggregate causal relevance relation be acyclic. This, however, would con-
stitute a major departure from the consensus on the nature of causal rela-
tions, which are widely held to be acyclic (Pearl 2000).

The Third Route: Relaxing Unbiasedness. ~We may use a causal judg-
ment aggregation rule that violates the condition of unbiasedness. There are
two ways of relaxing this condition.

A Neutrality Relaxation. 1f we relax the neutrality part of unbiasedness,
there can exist pairs of variables Vand W in V such that the aggregation rule
is not neutral between whether or not V' is causally relevant to . Exam-
ples of causal judgment aggregation rules violating neutrality are threshold
rules with any threshold & different from simple majority. It can be shown
that a threshold rule is guaranteed to generate an acyclic causal relevance
relation if and only if the threshold & exceeds ([m — 1]/m)n, where m is
the number of variables in V.

Let us explain why this constraint on the threshold is sufficient to ensure
acyclicity. Suppose, for a contradiction, that a threshold rule with a threshold
k above ([m — 1]/m)n generates a cyclical causal relevance relation. There
must then exist an admissible profile (¢, ¢, . . ., ¢,) of individually acyclic
causal relevance such that

VICVz, ey Vm’—ICVmH and Vm/CVl,

where ¢ is the aggregate causal relevance relation and V,, V,, . . ., V,, are
distinct variables in V, with 2 < m’ < m."” Given the definition of our
threshold rule, there must be at least £ individuals with V¢V, at least k
individuals with V¢, V5, and so on. Let Ny, N,, . . ., N,, be the sets of
individuals i with Vic,V,, VielVs, . . ., VeclV), respectively. Since k exceeds
([m — 1])/m)n, each of these sets must contain more than ([m — 1]/m)n
individuals. But, for combinatorial reasons, any m or fewer subsets of size
greater than ([m — 1]/m)n from a set of »n individuals must have a non-
empty intersection. For example, any two or fewer subsets of size greater

15. Aggregate cycles of length 1 (where Vel for some variable J in V) could never
occur under any threshold rule, since no individual i will have Ve,V (assuming acy-
clicity at the individual level).
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than (1/2)n must have a nonempty intersection, any three or fewer subsets
of size greater than (2/3)n must have a nonempty intersection, and so on.
Since m’ < m, this implies that there must exist at least one individual i
who is contained in all of N,, N,, . . ., N,,, and he or she must then have

Vlc,-Vz, ey Vm/_lc,-V,,,/, and Vm/CiVl.

But this contradicts individual acyclicity, which completes the argument.

Conversely, if the threshold & does not exceed ([m — 1]/m)n, it becomes
possible to construct an admissible profile (¢, ¢,, . . ., ¢,) of individually
acyclic causal relevance relations such that, for some set of distinct vari-
ables Vi, Vs, ..., V,y,eachof VicV,, ..., V,_cV,y,and V,cV, is affirmed
by k or more individuals. For such a profile, the intersection of the relevant
sets Ny, NV,, . .., N, is empty, and hence the presence of a cycle in the
aggregate causal relevance relation does not conflict with acyclicity in the
individual relations. Formally, our necessary and sufficient condition for
acyclicity (i.e., a threshold k above ([m — 1]/m)n) can be derived from a
characterization of consistent (but possibly incomplete) quota rules in judg-
ment aggregation (Dietrich and List 2007a; the current combinatorial argu-
ment builds on a result in List [2001], chap. 9).

Note that if the set of variables V is infinite, only the intersection (or una-
nimity) rule guarantees acyclicity at the aggregate level. However, if V is
finite, then a supermajority rule with a suitably high threshold is sufficient.
A problem with this approach, as noted above, is that it may lead to sparse
or even empty aggregate causal relevance relations unless the disagreement
between experts is limited.

An Independence Relaxation. 1f we relax the independence part of
unbiasedness, there can exist pairs of variables Vand  in V such that the
aggregate judgment on whether V is causally relevant to W depends not
only on individual judgments on whether V' is causally relevant to W but
also on individual judgments involving other variables. Examples of causal
judgment aggregation rules violating independence are sequential priority
rules (adapted from List 2004) and distance-based rules (adapted from
Pigozzi 2006; Miller and Osherson 2009). Under a sequential priority rule,
the different possible pairs of variables are considered one by one in a given
order (which may be chosen, e.g., by some criterion of epistemic priority).
On each pair of variables V, IV, the aggregate judgment is then determined
as follows:

1) If the question whether V' is causally relevant to W is constrained

(in light of the acyclicity requirement) by the aggregate judgments
on pairs of variables considered earlier in the given order, then the
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aggregate judgment on Vs causal relevance to W is derived from
those earlier constraints.

ii) If it is not constrained in this way, then the aggregate judgment on
V’s causal relevance to W is made by applying some voting method,
such as majority voting, to the individual judgments on V' vis-a-vis
w.

This approach guarantees acyclicity of the aggregate causal relevance re-
lation but at the expense of path dependence: the order in which causal
judgments are made on different pairs of variables may determine what the
aggregate causal relevance relation will look like. An agenda setter on a com-
mittee of experts may strategically exploit this feature of the causal judg-
ment aggregation rule by proposing an order of priority among different pairs
of variables that is likely to give rise to aggregate causal judgments that he
or she wants the committee to make.

Under a distance-based rule, we first define a distance metric between
causal relevance relations. For instance, we could define the distance between
two relations ¢ and ¢’ to be the number of ordered pairs of variables ¥, W
onwhich cand ¢’ disagree; thatis,d(c,c’) = [{(V, W) e V* : VeW VI W }.
(This is the Hamming distance.) We then define the aggregate causal rel-

evance relation for any given profile (¢, ¢,, . . ., ¢,) as an acyclic causal
relevance relation ¢ that minimizes the total distance from the individual
causal relevance relations, that is, where >,_, _.d(c,¢;) is minimal. Since

there need not be a unique such distance-minimizing relation ¢, we may re-
quire an additional rule for breaking ties. Distance-based rules can be in-
terpreted as generating compromise causal relevance relations.

In some cases, a rather significant departure from independence (as a
property of the aggregation rule) may be desirable. Suppose, for instance,
that all individuals agree that there is a causal path from ¥V, to V,, but dif-
ferent individuals disagree about the intermediate variables along this path.
Some think that the path goes from V; to V; to V., others think it goes from ¥,
to V, to V., still others think it goes from V; to V5 to V,, and so on. In such a
case, no single causal link between any pair of variables is accepted by more
than a small minority of the individuals. If we used a causal judgment ag-
gregation rule satisfying independence, say a threshold rule with a majority
or even submajority threshold, we could end up with an empty aggregate
causal relevance relation here, without any causal links at all. This would fail
to do justice to the fact that all individuals agree that V, is at least indirectly
causally relevant to V,. We do not offer a concrete proposal on how to han-
dle such cases but mention it in order to illustrate why a significant relaxa-
tion of independence may sometimes be justified.'®

16. We are grateful to an anonymous referee for raising this point.
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The Fourth Route: Relaxing Nondictatorship. A final way to avoid the
impossibility result of theorem 1 is to allow the aggregate causal relevance
relation to be determined by an antecedently fixed individual: a “dictator.”
But since we are normally interested in the information contained in the
causal judgments of more than one individual, this is not generally an at-
tractive solution to our aggregation problem. Sometimes, however, it may
be an acceptable compromise to appoint a trusted expert as the “dictator”
for arriving at qualitative causal judgments—in the form of a DAG—while
continuing “democratically” when it comes to determining the associated
quantitative probability information at the second stage of our two-stage
approach.

Concluding Remark. ~ Which of the different possible escape routes from
the impossibility result of theorem 1 is compelling depends on details of the
decision problem at hand, the nature of the disagreements between the ex-
perts, the level of trust we place in them, whether we are worried about
possible agenda manipulation, and other factors. In the next section, we as-
sume that through one of the identified routes—excluding that of relaxing
acyclicity—a “consensus” on a causal relevance relation and thereby on a
DAG has been achieved, and we turn to the question of how the associated
conditional probabilities can be determined.

4. Preliminaries to the Quantitative Stage. We have analyzed how a group
can arrive at an aggregate judgment on the qualitative causal relations be-
tween variables. We now assume that such an aggregate causal judgment
has been reached through one of the routes just discussed and suppose that
the group seeks to make an aggregate probability judgment (about the vari-
ables taking various values) that is compatible with the given aggregate causal
judgment.

In its most general form—ignoring for the moment the causal judgment—
a probability judgment can be represented by a joint probability function
over the variables in V. For simplicity, we assume that each variable can take
finitely, or countably infinitely, many possible values. For example, we may
distinguish between a particular number of possible levels of conflict. Let
us label the variables V,, . . ., V,. A joint probability function Pr assigns
a probability Pr(v,, ..., v,) >0 to each combination (v, ..., v,) of val-
ues of these variables, where the sum of the probabilities is 1.

The joint probability Pr(v, ..., v,) can be factorized into the product
of conditional probabilities:'’

17. In this expression, the conditional probability Pr(v;|v;, . . ., v, ;) can be derived from
the joint probability function Pr via the formula Pr(v;|vi,...,v, i) =Pr(vi,...,v;)/
Pr(vi,...,v, ) (where Pr(v,,...,v;) and Pr(v,...,v,,) are marginal probabilities
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Pr(vi, ..., v) = Pr(v))Pr (v|vi)Pr (vs|vy, vi) ... Pr(vy V1, -y W)

m
= l_lPr(v_,|v,7 ey Vi)
j=1

In our famine example, where V,, V5, V3, V, are the levels of rainfall, crop
yield, political conflict, and famine, we have

Pr (vi, vy, v3, vy) = Pr(v;)Pr (n|v))Pr (vs|vi, v,)Pr(vy|vi, va, v3).

When is the probability judgment expressed by Pr compatible with a
given causal judgment? Recall that a causal judgment takes the form of a
particular DAG over the variables V,, . . ., V,,, with an arrow from ¥V, to V,
just in case V; is considered causally relevant to V, (V,cV,). For any variable
V,, we write PA(V)) to denote the list of V;’s parent variables in the graph, and
we write pa(V)) to denote any list of values of these parent variables.'®

For instance, suppose that the consensus DAG in our famine example
is as shown in figure 2: no variable is causally relevant to rainfall (V;), only
rainfall (V}) is causally relevant to crop yield (V), only crop yield (V%) is
causally relevant to political conflict (75), but both crop yield (V,) and
political conflict (¥5) are causally relevant to famine (V). Then PA(V,) con-
tains no variable, PA(V,) contains precisely V,, PA(V;) contains precisely V-,
and PA(V,) contains both ¥, and V..

Without loss of generality, suppose the variables V, . . ., V,, are labeled
such that those with no parent come first, those with a parent but no grand-
parent come next, those with a grandparent but no great-grandparent come
thereafter, and so on. If the original labeling V, . . ., V,, does not have this
property, we can simply relabel the variables appropriately and replace the
factorization (1) by one using the new labeling. So the parents of any vari-
able V; come before V" But of course not all of V;, . . ., V-, need to be
causally relevant to V. For instance, in our famine example V, but not V, is
(directly) causally relevant to V5. Since causally irrelevant variables should

have no effect on V), the conditional probability Pr(v;|v,, ..., v,;) should
be insensitive to the nonparental values among v;, ..., v;_;. In other words,
it should be sensitive only to the sublist pa(V)) of v, ..., v;_,. Formally,

derived from Pr), provided that Pr(v,,...,v,,)#0. If Pr(v,,...,v, ;) = 0, then Pr(v

[vi,...,v) can be viewed either as undefined or as a primitive not derived from the
function Pr. Under both interpretations, the factorization (1) is still possible even if some
Pr(vi, ..., vy) is zero whatever value is substituted for Pr(v,|v,, ..., v,,) (because
some other factor on the right-hand side of [1] will be zero, as will be the left-hand side
of [1]).

18. So pa(V;) is any instantiation of PA(V)).

19. Formally, PA(V)) is a sublist of (V3, ..., V;—)).
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Vo4

Figure 2. Illustrative aggregate causal judgment in the famine example.
Pr(v[vi, ..., vi) = Pr(v|pa(V})). (2)

We say that the probability judgment Pr is compatible with the given ag-
gregate causal judgment if identity (2) holds for every variable V; and every
combination of values vy, ..., v; with Pr(v,, ..., v,;)#0. (This compati-
bility requirement is the ordered Markov condition, which is, in turn, equiv-
alent to the parental Markov condition: any variable is independent of its
nondescendants given its parents.’®) The joint probability pa(V)) then re-
duces to

Pr(vi, ..., v.) = | [Pr(vlpa(¥)). (3)
=1
For instance, in our famine example,
Pr(vi, vy, v3, v4) = Pr(v))Pr (vo|vi)Pr (vs|v,)Pr(vy|va, vs).

5. Two-Stage Aggregation: The Quantitative Stage. As we seek to reach
an aggregate probability judgment that is compatible with the aggregate
causal judgment, the probability function Pr should satisfy the decomposi-
tion (3). This requirement is usually violated by standard one-stage proba-
bility aggregation, where the individual probability functions

20. There are multiple equivalent ways to define “compatibility” of Pr with the DAG. In
addition to the ordered Markov condition and the parental Markov condition, a third
definition (chosen by Pearl) is given in terms of the validity of the decomposition (3). On
the equivalence of these definitions, see theorems 1.2.6 and 1.2.7 in Pearl (2000).
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Pri(vi, ooy Vu)y ooy Pri(vyy ooy vy) (4)

are directly merged into an aggregate probability function Pr(v,, ..., v,).
On our proposed two-stage approach, by contrast, Pr is explicitly constructed
so as to meet the necessary decomposition requirement.

Let the aggregate causal relevance relation (the “consensus” DAG) be
given, and consider the decomposition constraint (3) relative to that rela-
tion. The quantitative stage of our approach now consists in

i) determining each factor of the decomposition, Pr(v;|pa(V;)), through
separate probability aggregation, and

ii) computing the joint probability function Pr(v,, ..., v,) as the
product of these separately determined factors.

More formally, for every variable V; in V and every combination pa(V))
of parental values, we merge the individual conditional probability functions

Pri(vilpa(V))), ..., Pr,(v|pa(V})) (5)
into an aggregate conditional probability function Pr(vj|pa(V;)). These

separate aggregation exercises can each be performed, for example, by linear
or geometric pooling. In our famine example, this involves

merging Pr,(v,), ..., Pr,(v;) into Pr(v,),
for any fixed v,, merging Pr, (v2|v,), ..., Pr,(v,|v,) into Pr(v,|v,),
for any fixed v,, merging Pr,(vs|v,), ..., Pr,(vs|v,) into Pr(vs|w,),
for any fixed v,, v5, merging Pr,(vy|vy,v3), ..., Pr,(vy|vs, v3) into Pr(vs|v,, v3).

(6)

The current approach has several distinctive properties, to which we now
turn.

Compatibility with Causal Judgments. The aggregate probability func-
tion Pr, given by (3), is automatically compatible with the aggregate causal
relevance relation, represented by the appropriate DAG. In particular, Pr re-
spects the causal Markov condition: any variable V; is probabilistically in-
dependent of all its causal nondescendants given its causal parents. In our
famine example, Pr makes political conflict independent of rainfall condi-
tional on crop yield,”' and famine independent of rainfall conditional on crop

21. Formally, Pr (v;, vs|vy) = Pr(v;|v)Pr(vs|v,).
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yield and political conflict.”” The causally motivated conditional indepen-
dencies are thus respected, whereas other conditional independencies may or
may not arise. By contrast, standard one-stage probability aggregation does
not generally produce an aggregate probability judgment that is consistent
with any prior judgments of causal relevance.

Preservation of Causal (Conditional) Independencies. ~What about the
preservation of unanimously held independencies between variables (both
conditional and unconditional ones)? Suppose, for example, that all in-
dividuals consider variables V; and ¥V, probabilistically independent given
V.> Does the aggregate probability judgment preserve this conditional in-
dependence? As we have seen, for standard probability aggregation methods
the answer is usually negative. Under our approach, by contrast, causal
conditional independencies are preserved. To see why, suppose all in-
dividuals judge V; and V, to be probabilistically independent given V, be-
cause of a unanimous agreement that /;’s only causal parent is /; and that V,
is not a causal descendant of V. Then the aggregate probability judgment
respects this independence: according to Pr, V; and ¥, are also probabilisti-
cally independent given V,.** The reason is that, so long as a “reasonable”
causal judgment aggregation rule is used at the first stage of our two-stage
process, we will have arrived at an aggregate causal relevance relation that
reflects the unanimous opinion on the causal relations between V, V;, and V;
the second stage then leads to a probability function that is compatible with
this aggregate causal relevance relation.>

Variable Expert Weights. In contrast to one-stage linear or geometric
pooling of probabilities, our approach is compatible with the assignment
of different weights to different experts’ judgments so as to reflect their dif-
ferent levels of competence on the relevant issues. Once the consensus DAG
for the causes of famine is given, for instance, greater weight can be as-
signed to the climatologist’s judgment in the aggregate probability for rain-
fall (Pr(v,)); to the agriculturalist’s judgment in the aggregate conditional
probability for crop yield, given a level of rainfall (Pr(v,|v;)); and to the po-

22. Formally, Pr (vi, v|va, v3) = Pr(vi|vs, v3)Pr(vy|va, v3).

23. Formally, Pr;(v;, v|v,) = Pr,(v,|v;) Pri(vi|v1).

24. Formally, Pr (v;, v |v;) = Pr (v;|v,)Pr(v;|v)).

25. Note that unanimously held conditional independencies that are not causal (i.e.,
which are not implied by the structure of the DAG, together with the Markov condition)
are not generally preserved under our approach. However, in the important special case
in which all individuals hold the same DAG (i.e., the causal structure is not in dispute)
and satisfy faithfulness in relation to their probability judgments, there will not be any
unanimously held independencies between variables (conditional or unconditional) that
are not implied by the DAG, and hence all such unanimous independencies will be pre-
served in the aggregation (assuming the unanimous DAG is also the aggregate DAG).
We are grateful to an anonymous referee for pressing this point.
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litical scientist’s judgment for the aggregate conditional probability for po-
litical conflict, given crop yields (Pr(v;|v,)). In the limit, an aggregate judg-
ment on the probability of famine might be constructed using only the
consensus DAG and the judgments of the relevant expert on each variable.
But as the literature on epistemic democracy shows, there can be advantages
to consulting a range of opinions provided that all who are consulted are
sufficiently competent. The two-stage method can be used to optimize the
balance between competence and diversity of opinion by suitable assign-
ment of weights in the aggregation of probabilities for each variable.

Complexity Reduction.  Our two-stage approach subdivides an m-dimen-
sional probability aggregation problem into several one-dimensional ones.
Rather than aggregating joint probability functions over the vector V,, . . .,
V, (of the form [4]), we aggregate conditional probability functions of a
single variable V; (of the form [5]). But we face several such aggregation
problems, namely, one for each variable V; and each fixed combination of
parent values pa,(V)). This is less demanding on the side of individual inputs,
as long as the aggregate DAG is not too rich in causal connections. To
illustrate this complexity reduction, consider our famine example again, and
suppose for simplicity that each variable can take only two values; that is,
there are only two levels of rainfall, two levels of crop yield, and so on. If we
were to aggregate the joint probability functions Pr;(v,, v,, vs, v,) directly,
each individual would have to submit 2* — 1 = 15 probability values (there
are 2* possible combinations of values v, v,, v3, v,, but once the proba-
bilities of 2* — 1 of them are specified, the remaining probability is given
by one minus the sum of'the rest). Specifying any one of these 15 probabilities
is hard in practice: what, for example, is the probability of a combination of
high rainfall and low crop yield and low political conflict and high famine?
Under our approach, by contrast, each individual has to submit only proba-
bilities or conditional probabilities of singular events, like the probability of
high rainfall or the conditional probability of high crop yield given low rainfall.
The number of required probabilities is smaller than 15 in our example. Using
(6), we can see that it equals

i (number of possible values of ¥, — 1)
51 | x number of possible parent values pa(V;)

=Q2-1)x1+Q2-1)x24+2-1)x2+(2-1)x2?
—14242+4=09.

Types of Informational Input.  Our approach not only reduces the com-
plexity of the aggregation problem,; it also uses a different informational input,
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compared to one-stage probability aggregation. First, we use the additional
information of the individuals’ qualitative causal judgments—the informa-
tion aggregated at the first stage of our two-stage process. Second, an in-
teresting question arises about the nature of the probabilistic input used at
the second stage. Consider a variable V; with parents PA(V)) in the aggre-
gate causal relevance relation (DAG). Since that relation is the result of the
aggregation of individual causal relevance relations, some individuals may
not agree that the variables listed in PA(V)) are the correct causal parents
of V. They may think instead that not all of these variables are causally
relevant to V; or that some other variables are relevant, despite not being
included in PA(V;). But then, what does such an individual’s conditional
probability Pr;(v;|pa(V;))—the informational input at the second stage—
represent? For instance, individual 1’s causal relevance relation may be of
the form V, — V, — V;, while all other individuals’ causal relevance rela-
tions may be of the form V; — V., «— V;, which might then also become the
aggregate relation. Here, individual 1 disagrees with everyone else about
both PA(V,) and PA(V5). How should we interpret individual 1’s conditional
probabilities Pr, (vy|pa(V,)) and Pr,(v;|pa(V53)) at the second stage of our
two-stage aggregation process? Similarly, what is someone supposed to
answer to the question “how probable is high political conflict given low
crop yield?” if he or she actually thinks that famine rather than crop yield
is causally relevant to political conflict?

There are at least three possible interpretations of an individual’s conditional
probabilities in such cases: an evidential, a causal, and a hypothetical one. We
begin with a discussion of the first two interpretations. To give an informal
example, suppose for a moment that, according to individual i’s qualitative
causal judgment, the variables in PA(V)) are not causally relevant to V; but
nonetheless probabilistically correlated with V. Then, if Pr,(v,|pa(V;)) rep-
resents an evidential conditional probability, its value is sensitive to pa(V))
(by probabilistic dependence), whereas if it is understood as a causal condi-
tional probability, its value does not depend on pa(V;) (by causal indepen-
dence). More generally, an evidential conditional probability represents an
agent’s belief, given a particular evidential supposition (here the supposition
that the values of the variables in PA(V)) are pa(V;)). A causal conditional
probability represents an agent’s belief, given a particular counterfactual
supposition (its content again being that the values of the variables in PA(V))
are pa(V;)). This causal conditional probability can be understood as resulting
from supposing an external intervention in our system that sets the values of
the variables PA(V)) to pa(V;). The two kinds of conditional probability take
the same value if PA(V;) consists of the correct causal parents according to
individual i’s qualitative causal judgment but may differ in general.

Formally, in the evidential case, Pr,(v,|pa(V})) is a standard conditional
probability, which can be derived from individual i’s joint probability func-
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tion over the variables using Bayes’s rule.* In the causal case, Pr,(v,|pa(V}))
can be calculated as follows (and is sometimes denoted Pr;(v;||pa(V;)) or
Pr,(v;\ pa(¥;)) to mark the difference; see also Pearl 2000).

1) Modify individual i’s causal relevance relation by deleting relevance
links from any variable to any of the variables in PA(V;). So, the
variables in PA(V) have no parents left (intuitively, they are set by an
external intervention).

ii) Modify the probability assignment to the variables PA(V)) by letting
them take the values pa(V)) with probability one (unconditionally,
since these variables no longer have any parents).

iii) Relative to this new “postintervention” Bayesian network, compute
the probability that V; takes the value v; in the usual way. This
probability then coincides with the causally understood conditional
probability Pr,(v,|pa(V;)) (= Pr,(v;|| pa(V;))) of the initial Bayesian
network.”’

Let us now turn to the third possible interpretation of the individuals’
conditional probabilities submitted at the second stage of our two-stage
aggregation process: the hypothetical interpretation. Here, individuals are
asked to entertain the hypothesis that the aggregate causal relevance relation
is correct and to express conditional probabilities based on this hypothesis.
It is unclear, however, whether and how Pr;(v;|pa(V;)) can be derived from
the individuals’ Bayesian networks. This raises a number of challenges for
future research.

6. A Final Challenge. The first stage of our two-stage approach restricts
the second by requiring the aggregate probability function to display certain
conditional independencies mandated by the aggregate causal relevance re-
lation. Roughly, the fewer causal links are accepted at the first stage, the more
probabilistic independencies are enforced at the second stage. In the extreme

26. Provided that Pr(pa(V))) # 0.

27. To be precise, this causal conditional probability measures the possibly indirect causal
effect of the variables P4(V}) on V), according to individual i’s judgment. There may be such
an effect even if none of the variables in PA(})) is directly causally relevant to V; according
to individual i’'s DAG, since V; may depend on these variables indirectly. Note that PA(V))
contains the parents of V; according to the aggregate DAG; these need not be parents of V;
according to individual i’s DAG. If we wanted to define a direct causal conditional prob-
ability of v;, given pa(V)), according to individual i’s DAG, we would have to redo the
calculation described in steps i-iii with the set of variables PA(V}) replaced by its subset
consisting only of variables that are also parents of V; according to i’s DAG. This subset
may be empty, in which case the direct causal conditional probability of v;, given pa(V}),
coincides with the unconditional probability of v;.
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case in which no variable is deemed causally relevant to any other variable,
the second stage produces an aggregate probability judgment according to
which every variable is probabilistically independent of every other. Accept-
ing few causal connections has the advantage of reducing the complexity of
the probability aggregation problem at the second stage but the potential
disadvantage of overrestricting the admissible probability assignments. This
restriction is problematic when the sparse set of accepted causal links be-
tween variables is not a result of the individuals believing in sparse causal
links but a result of a causal judgment aggregation rule setting a high
threshold for the acceptance of causal links.

We are thus faced with a trade-off between (i) the goal of reducing the
complexity of the probability aggregation problem (achieved via a high
threshold for accepting causal links between variables) and (ii) the goal of
representing causal effects between variables when there are such effects
(achieved via a low threshold for accepting causal links). We have argued
that a high threshold for accepting causal links may help to prevent a cycli-
cal aggregate causal relevance relation, whereas in other situations, partic-
ularly if the variables can be put into a temporal order, even a low threshold
(perhaps lower than the majority threshold) guarantees acyclicity. We leave
it as a challenge for future research to come up with causal judgment ag-
gregation rules that perform well on both aspects of this trade-off: being
neither too permissive nor too restrictive in accepting causal links while
avoiding cyclical causal judgments.
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