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The linear stability of a liquid film falling down an inclined flexible plane under the
influence of gravity is investigated using analytical and computational techniques. A
general model for the flexible substrate is used leading to a modified Orr–Sommerfeld
problem addressed numerically using a Chebyshev tau decomposition. Asymptotic limits
of long waves and small Reynolds numbers are addressed analytically and linked to
the computations. For long waves, the flexibility has a destabilising effect, where the
critical Reynolds number decreases with decreasing stiffness, even destabilising Stokes
flow for sufficiently small stiffness. To pursue this further, a Stokes flow approximation
was considered, which confirmed the long-wave results, but also revealed a short wave
instability not captured by the long-wave expansions. Increasing the surface tension has
little effect on these instabilities and so they were characterised as wall modes. Wider
exploration revealed mode switching in the dispersion relation, with the wall and surface
mode swapping characteristics for higher wavenumbers. The zero-Reynolds-number
results demonstrate that the long-wave limit is not sufficient to determine instabilities
so the numerical solution for arbitrary wavenumbers was sought. A Chebyshev tau
spectral method was implemented and verified against analytical solutions. Short wave
wall instabilities persist at larger Reynolds numbers and destabilisation of all Reynolds
numbers is achievable by increasing the wall flexibility, however increasing the stiffness
reverts back to the rigid wall limit. An energy decomposition analysis is presented and
used to identify the salient instability mechanisms and link them to their physical origin.

Key words: thin films, flow–structure interactions

1. Introduction

The dynamics of thin films have intrigued scientists for the past half-century owing
to their appearance in many daily life settings and their relevance to a wide variety of
industrial and biophysical applications. In particular, films falling down an inclined flat
plate under the influence of gravity, which have received considerable attention since
the experimental work of Kapitza & Kapitza (1949) and Binny (1957), showed that
they are accompanied by the development of large-amplitude surface waves. Many other
applications of falling films arise in processes such as distillation and chemical reaction
engineering, making the problem of fundamental interest.

† Email address for correspondence: d.papageorgiou@imperial.ac.uk
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Benjamin (1957) and Yih (1963), studied the hydrodynamic stability problem for falling
films, and showed that the flow is unstable to long-wave surface modes that travel at
twice the speed of the unperturbed flow at the interface. Instability is shown to require
inertia (non-zero Reynolds number): for a given inclination angle β to the horizontal,
there exists a critical Reynolds number, Rc say, above which the flow is unstable; Rc
decreases to zero as β → π/2 when the incline becomes vertical. These linear surface
modes initially produce two-dimensional nonlinear waves whose structure is influenced
inlet forcing as described in the experiments of Liu, Schneider & Gollub (1995). A detailed
computational study of the stability problem at arbitrary wavenumbers was carried out
by Floryan, Davis & Kelly (1987); they focused on small angles of inclination (at most
4 degrees) that require large critical Reynolds numbers for instability, and showed clearly
the presence of an interfacial mode or surface mode, and a shear mode. Further down
the plate the two-dimensional waves become susceptible to secondary instabilities to
form three-dimensional waves (Liu et al. 1995). For Reynolds numbers close to Rc, a
nonlinear theory for long waves was developed by Benney (1966) who took into account
inertial, viscous and capillary effects. At about the same time, Shkadov (1967) used
Polhausen approximation ideas originally applied to boundary layers to derive a weighted
residual model equation that compared favourably with experiments. In recent years such
weighted residual nonlinear models have received considerable attention, e.g. Ruyer-Quil
& Manneville (2000); see also the monograph by Kalliadasis et al. (2012). It is also
interesting to note that a weakly nonlinear simplification of the Benney equation results
in the Kuramoto–Sivashinsky (KS) equation, see Sivashinsky & Michelson (1980), that
supports complex dynamics including spatiotemporal chaos.

Fluid flow over flexible surfaces has also been considered widely due to numerous
physiological and technological applications. Of interest here is the work of Carpenter
& Garrad (1985) who consider spring-backed flexible plates (Kramer-type compliant
surfaces) as a passive control mechanism of instabilities and transition to turbulence in
boundary layers. Related studies for flows in channels with such compliant walls can
be found in Gajjar & Sibanda (1996), Davies & Carpenter (1997) and a recent study of
the effect of in-wall flexible blips on boundary layer flows, Pruessner & Smith (2015).
For multi-fluid flows, Halpern & Grotberg (1992) modelled the closure of liquid-coated
pulmonary airways using lubrication theory and an elastic wall model that contains tension
and damping. Flexible membrane models accounting for tension and damping (only a
subset of the effects accounted for in spring-backed compliant surfaces) have been shown
to enhance the rupture of thin films and destabilize the leading ridge of a thin liquid drop
falling down a flexible incline Matar & Kumar (2004, 2007).

Falling liquid film flows down flexible inclined substrates has been considered by several
authors employing different models for the deformation of the substrate. The prevalent
studies can be broadly categorized into two physical models for the elastic substrate:
(i) the spring-backed plate membrane model of Carpenter & Garrad (1985) used in the
present study, and (ii) an elastic solid substrate of finite thickness over which the liquid
film falls. For completeness, we review the literature of elastic solid substrates and make
connections to the present study. Elastic substrate models couple the elastic deformation
field with the fluid flow and are typically characterized by the shear modulus of the
material. The independent studies of Shankar & Sahu (2006) and Gkanis & Kumar (2006)
were among the first to consider a Newtonian fluid falling film on a deformable solid layer.
At first glance, the conclusions between the two studies appear inconsistent. Shankar &
Sahu (2006) conclude that the presence of the solid can stabilise the flow completely for
ranges of a given Reynolds number and inclination angle; indeed, their long-wave analysis
predicts that at zero Reynolds number the applied strain (the ratio of viscous to elastic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.538


Stability of falling liquid films on flexible substrates 900 A40-3

forces) only acts to stabilise the flow, even though finite wavenumber instabilities are
possible. On the other hand, Gkanis & Kumar (2006) start with inertialess falling films that
are stable when flowing over flat rigid substrates, and show that elasticity can destabilize
the flow for both linear elastic as well as neo-Hookean nonlinear models. The reason
for the differences are due to the models considered; Shankar & Sahu (2006) assume a
linear viscoelastic model for elasticity where the deviatoric part of the elastic stress tensor
includes a term proportional to μs∂t(∂ui/∂xj + ∂uj/∂xi), where μs is the viscosity of the
solid, and this term is responsible for the different stability characteristics. Such models
were used extensively in different setups involving falling films, including the presence
of multiple solid layers (Sahu & Shankar 2016) and depth-dependent shear modulus in
the elastic medium (Mandloi & Shankar 2020), as well as studies utilizing neo-Hookean
substrates to model soft elastomeric coatings (Baingne & Sharma 2019, 2020; Gaurav &
Shankar 2007, 2010 and Jain & Shankar 2007). A recent exposition of the different models
and their evaluation regarding elastohydrodynamic instabilities in shear channel flows can
be found in Patne & Shankar (2019). Also of note is the weakly nonlinear study of Chokshi
& Kumaran (2008) who study high Reynolds number wall mode instabilities in Couette
flows where one of the substrates is elastic and neo-Hookean, and the work of Thaokar,
Shankar & Kumaran (2001) where a comparison is undertaken between Couette flow
over a spring-backed plate model with that over a compressible viscoelastic membrane
model. Of interest to our study is the spring-backed model in Thaokar et al. (2001)
that is additionally allowed to extend tangentially via a phenomenological model linking
tangential displacement linearly to the excess tangential stress of the fluid at the wall. It
is found that in the absence of tangential motion (i.e. a plate model essentially identical
to ours), the flow is stable in the low-Reynolds-number regime, at least for the range of
parameters considered. Allowing tangential wall motion is found to induce instability even
at zero Reynolds number and we expect analogous instabilities in the problem studied here
also if tangential wall motion were allowed. Thaokar et al. (2001) also emphasize that at
large Reynolds numbers the tangential wall motion is a higher-order effect and does not
affect the stability characteristics. In the present work we pick a Carpenter-type model
without any tangential wall displacement in the linearized motion as has been done by
numerous other authors as described next.

Simpler forms of the model used here were considered by Matar, Craster & Kumar
(2007) who investigated the effect of substrate flexibility on the nonlinear long-wave
regime in falling film flows. With a flexible membrane model similar to that used by
Halpern & Grotberg (1992) for flow in flexible tubes, they measured substrate flexibility
through wall tension and damping terms. Using lubrication theory they then derived
coupled Benney-like evolution equations for the film thickness and substrate deflection,
followed by a weakly nonlinear analysis that produced coupled equations analogous to
the Kuramoto–Sivashinsky equation. At higher Reynolds numbers, integral theory was
used to derive extensions of the Shkadov equations (Shkadov 1967). It was found that
decreasing wall tension or damping promotes chaotic behaviour in the weakly nonlinear
regime (negligible inertia), and significant substrate deformations in the integral theory
(significant inertia). In a follow-up study Sisoev et al. (2010) carried out additional
computations and construction of nonlinear travelling waves, and their stability, that could
be compared with experiments. Extensions of Matar et al. (2007) and Sisoev et al. (2010)
have also been carried out to include several other fluid dynamical effects, for example,
viscoelasticity in the liquid film, and insoluble surfactants on the free surface (Peng, Zhang
& Zhuge 2014 and Peng et al. 2016).

The present work considers instabilities of falling films over compliant surfaces that
account for more physical mechanisms than those studied to date. We choose the general
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model of Carpenter & Garrad (1985) that is representative of a large range of substrates
due to the inclusion of inertia, rigidity, stiffness, tension and damping, and carry out a
detailed theoretical investigation into the effect of each of these characteristics on the linear
stability of arbitrary wavelength disturbances. Hence, our study extends that of Matar et al.
(2007) who considered substrate tension and damping only, as well as a restriction to
long waves, albeit nonlinear. As found in our computations the long-wave assumption
may not be a good one for certain wall parameters, with finite wavenumber disturbances
being the only unstable modes beyond critical. Since the Reynolds numbers for falling
films are lower than the aerodynamic ones considered in Carpenter & Garrad (1985) and
Pruessner & Smith (2015), for example, we derive the wall equation starting from the
general nonlinear force balance and include the effects of viscous fluid traction that are
neglected at high speed. In a way similar to that of Yih (1963), the linear stability is
analysed by solving an Orr–Sommerfeld equation with modified boundary conditions due
to the compliant wall.

Wall stiffness and damping are found to have the greatest influence on the stability of
long waves. This is particularly interesting in view of previous studies that concentrated
on long waves but with stiffness absent. The rigid wall limit can be approached in different
ways, and particularly as either of the stiffness or damping parameters become large. In
either limit, a falling film on a rigid wall at a given inclination angle β is unstable to long
waves above a critical Reynolds number. We find that starting with large stiffness and
reducing it in turn decreases the critical Reynolds number. Below a certain stiffness the
flow is unstable to all Reynolds numbers, even zero, providing a new type of inertialess
instability absent for rigid walls. On the other hand, starting with large damping and
reducing it, once again introduces instability by reducing the critical Reynolds number.
There is an intricate interplay between the relative sizes of stiffness and damping and we
identify parameters for which the stability characteristics are very different from the rigid
wall case.

Regarding the other wall parameters, i.e. inertia, tension and rigidity, we find that
their effect is predominantly on short waves. In fact for ranges of parameters these
shorter waves are found to dominate the instability. This emerges through mode crossing
where, as parameters vary, the second stable mode dominates over the first long wave,
an exchange of stabilities takes place and instability is supported at a finite wavenumber
and a neighbouring band around it. We give several examples of such instabilities and
emphasize that they cannot be captured with long-wave theories. Interestingly, such
instabilities were found to persist as the Reynolds number was decreased and also in the
zero-Reynolds-number limit also described here.

The structure of the paper is as follows. In § 2 we formulate the problem, and describe
our flexible wall model (its derivation is included in the appendix). In § 3 we state the
appropriate Orr–Sommerfeld boundary value problem and analyse the long-wave and
Stokes flow limits in §§ 4 and 5. In § 6 we briefly describe the numerical methods and
present code validations, and in § 6.2 we present our results for arbitrary wavenumbers
and extensive ranges of parameters. Section 7 is devoted to a discussion and conclusions.

2. Formulation

2.1. Governing equations
We shall consider the dynamics of an incompressible Newtonian fluid of viscosity μ
and density ρ falling under the influence of gravity down an infinitely long, flexible,
impermeable surface inclined at an angle β to the horizontal, shown in figure 1. Above
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g

β

x

z

z = η(x, t)

z = h(x, t)
Fluid ρ,μ

Free surface

Flexible wall

p = p0
σ

FIGURE 1. Schematic of the problem.

the film lies a passive, inviscid gas of constant pressure p0, and the surface tension
coefficient of the gas–liquid interface is denoted by σ . We use a rectangular coordinate
system (x, y, z) with x measured down the slope (streamwise), y measured in the
transverse direction and z measured normal to the slope. As we will exclusively deal
with two-dimensional instabilities, we will neglect variation in the y direction. Hence,
the instantaneous substrate deflection from its equilibrium position z = 0 at time t is
denoted by z = η(x, t), and the instantaneous height of the gas–liquid interface relative to
z = 0 is denoted by z = h(x, t). In this coordinate system, the velocity field in the liquid is
u = (u(x, z, t), 0, v(x, z, t))with u and v the streamwise and normal velocity components,
and acceleration due to gravity takes the form g = (g sinβ, 0,−g cosβ). The governing
equations in the fluid are the two-dimensional Navier–Stokes equations

ut + uux + vuz = −px

ρ
+ μ

ρ
(uxx + uzz)+ g sinβ, (2.1a)

vt + uvx + vvz = −pz

ρ
+ μ

ρ
(vxx + vzz)− g cosβ, (2.1b)

ux + vz = 0, (2.1c)

where p is the fluid pressure and the subscripts denote partial derivatives. The boundary
conditions on the liquid air interface are the kinematic condition and normal and tangential
stress balances, which can be written as

ht + uhx = v, (2.2a)

(1 − h2
x)(uz + vx)+ 4hxvz = 0, (2.2b)

−( p − p0)+ 2μ
(

1 + h2
x

1 − h2
x

)
vz = σhxx

(1 + h2
x)

3/2
, (2.2c)

and it is understood that they are evaluated at z = h(x, t). To arrive at these, the
incompressibility condition (2.1c) has been used to simplify (2.2b), and subsequently
(2.2b) to simplify (2.2c). These are the typical boundary conditions for a free surface
with constant surface tension used for fluid films, and the derivation of which can be seen
in, for example, Matar et al. (2007) and Tseluiko & Papageorgiou (2006).
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x

z

hs

Array of springs

z = η

b

Fluid substrate

ps

Rigid surface

FIGURE 2. Schematic representation of the flexible wall model. An elastic sheet of thickness
b lies above a rigid surface and backed by an array of springs embedded in a fluid. The
distance between springs is much smaller than any instability wavelength, enabling a continuum
description.

Next we consider the flexible wall. The physical model we will use is shown
schematically in figure 2, and was first described in Carpenter & Garrad (1985) to model
actual coatings used by Kramer (1957). To gain insight into the origin of the terms in a
linear wall equation proposed by Carpenter & Garrad (1985), and also to include the fluid’s
viscous traction (not present in Carpenter & Garrad (1985)), we start with a nonlinear
model that includes all the relevant physics and then simplify it using the reasonable
assumption that longitudinal deflections are much smaller than transverse ones. This in
turn provides a modified version of the linear wall equation used in Carpenter & Garrad
(1985). This derivation is included in appendix A.

We will assume the surface of the compliant wall backing to be a two-dimensional
inextensible elastic sheet of infinite length (in x and y directions), which is isotropic,
and impermeable. Assume that it is thin enough for the longitudinal tension T to be
approximately constant across its thickness. It is supported a distance hs above a rigid
surface by an array of springs each of stiffness K, with a fluid also backing the elastic
plate, its motion unaffected by the presence of the springs. Provided the wavelengths of
any instabilities considerably exceed the distance between the springs, we can assume the
effect of the springs on the plate can be modelled as a continuous elastic foundation of
stiffness K for motion in the z direction. We will also assume the presence of damping in
the z direction. The linear (in η) model equation we will use for the substrate deflection
η(x, t) is given by (see appendix A)

ρwbηtt + Dηt − Tηxx + Bηxxxx + Kη = ps − p + 2μ(vz − ηx(uz + vx)), (2.3a)

where ρw is the plate density, b is the plate thickness, D is the damping coefficient, T
is the tension, B is the flexural rigidity, ps is the substrate pressure on the back of the
plate provided by the substrate fluid, and all fluid dynamical variables on the right-hand
side are evaluated on the substrate, z = η(x, t). The case of a viscous and interactive
fluid substrate can and has been considered just as in Carpenter & Garrad (1985), but
the two interesting limits of (i) zero substrate viscosity; and (ii) hs � (film thickness) can
be shown to be equivalent to modifying the wall parameters AD and AI (which we define
in § 2.2) while keeping ps constant throughout. Thus, for simplicity, we shall assume ps

is constant, determined by the constant height solution, and corresponding to a passive
substrate fluid.

Equation (2.3a) is almost identical to that of Carpenter & Garrad (1985), except for
the appearance of normal viscous wall traction from the fluid on the plate: the terms

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.538


Stability of falling liquid films on flexible substrates 900 A40-7

proportional to μ on the right-hand side. The wall equations used by Halpern & Grotberg
(1992), and subsequently Matar et al. (2007) and Matar & Kumar (2004, 2007), retain this
term but neglect bending stresses and wall inertia to retain just damping and tension on
the left-hand side (with no stiffness). For linear stability analysis, the equations of Matar
et al. (2007) and Matar & Kumar (2004, 2007) are a special case of (2.3a) since for small
deflections they are identical to (2.3a) but with ρwb,B,K set to zero. The η2

x terms in their
equations do not enter into their lubrication analysis anyway since they expand only up
to O(δ) in the lubrication parameter, δ = film thickness/wavelength. Thus, for thin films,
the wall equation above is an extension of the forms used in the literature (Carpenter &
Garrad 1985; Matar et al. 2007; Matar & Kumar 2004, 2007).

In addition to (2.3a), the linearised form of the no-slip condition on the plate surface
becomes

u = 0, v = ηt on z = η. (2.3b)

In practice, the material properties ρwb (mass per unit area), B (flexural rigidity), T
(tension) and D (damping coefficient) are not all independent, but related, among other
quantities, via the Young’s modulus, E, and the Poisson ratio, ν, of the plate material. The
flexural rigidity is given by

B = Eb3

12(1 − ν2)
. (2.4)

The damping coefficient can be determined from the damping ratio, ζ , via the relation

D = 2ζ
√

Kρwb. (2.5)

If required, actual values of the above quantities would have to be determined
experimentally or found in materials tables.

The steady base flow of the system (2.1a)–(2.1c) along with the conditions
(2.2a)–(2.3b), with constant film thickness h0 and no substrate deflection, η = 0, is given
by (bars denote base state quantities)

ū = g sinβ
2ν

z(2h0 − z), v̄ = 0,

h̄ = h0, η̄ = 0,

p̄ = p0 + ρg cosβ(h0 − z), p̄s = p0 + ρgh0 cosβ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

2.2. Non-dimensionalisation of governing equations
Our non-dimensionalisation is identical to that of Floryan et al. (1987), with velocities
scaled by the Nusselt value um = ρgh2

0 sinβ/2μ, lengths with the film thickness h0, time
with h0/um and pressure fields with typical viscous stresses μum/h0 (after a shift by p0).
Writing

x∗ = x

h0
, z∗ = z

h0
, t∗ = tum

h0
, h∗ = h

h0
, η∗ = η

h0
, (2.7a–e)

u∗ = u
um
, v∗ = v

um
, p∗ = ( p − p0)h0

μum
, p∗

s = ( ps − p0)h0

μum
, (2.8a–d)
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casts the Navier–Stokes equations (2.1a)–(2.1c) into (after dropping stars)

R (ut + uux + vuz) = −px + uxx + uzz + 2, (2.9a)

R (vt + uvx + vvz) = −pz + vxx + vzz − 2 cotβ, (2.9b)

ux + vz = 0, (2.9c)

where
R = ρumh0/μ, (2.10)

is the Reynolds number. Note that the viscous pressure scaling is appropriate for our study
since the zero-Reynolds-number limit can be taken in a straightforward way. Conditions
(2.2a)–(2.2b) at the free surface z = h are unchanged, while the normal stress balance
(2.2c) becomes

− p + 2
(

1 + h2
x

1 − h2
x

)
vz = Shxx(

1 + h2
x

)3/2 , (2.11)

where S = σ/μum measures the ratio of capillary forces to inertial forces (it is an
inverse Weber number). We note that the surface tension parameter S can be written as
S = KaR−2/3( 3

2 sinβ)−1/3, where Ka = (3ρσ 3/gμ4)1/3 is the Kapitza number – see Floryan
et al. (1987) for example – this is used in code validation comparisons with Floryan et al.
(1987).

The conditions on the wall z = η become

u = 0, v = ηt, (2.12a)

AIηtt + ADηt − ATηxx + ABηxxxx + AKη = ps − p + 2 (vz − ηx (uz − vx)) , (2.12b)

where five additional dimensionless groups emerge, AI , AD, AT , AB, AK , and are defined by

AI = wall inertia
viscous stress

= ρwbu2
m

h0

h0

μum
= ρwbum/μ, (2.13a)

AD = damping
viscous stress

= Dum
h0

μum
= Dh0

μ
, (2.13b)

AT = wall tension
viscous stress

= T
h0

h0

μum
= T
μum

, (2.13c)

AB = flexural rigidity
viscous stress

= B
h3

0

h0

μum
= B

h2
0μum

, (2.13d)

AK = spring stiffness
viscous stress

= Kh0
h0

μum
= Kh2

0

μum
. (2.13e)

Note that we have chosen the same time scales for the fluid and wall equations in order to
ensure the most general fluid-structure interaction. It then follows that in situations where
the wall time scales are much larger than the fluid ones, the parameter AI in our model
will be small (indeed it can be set to zero). With the above scalings the dimensionless base
flow becomes

ū = z(2 − z), v̄ = 0, h̄ = 1, η̄ = 0, (2.14a–d)

p̄ = 2 cotβ(1 − z), p̄s = 2 cotβ. (2.15a,b)
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3. Linear stability

We linearise about the steady state (2.15a,b) and look for normal mode solutions
for the perturbations of the form (ũ, ṽ, p̃, h̃, η̃) = (û(z), v̂(z), p̂(z), ĥ, η̂) eiα(x−ct) + c.c.,
where tilde decorations denote the perturbations and α and c are the non-dimensional
wavenumber and phase velocity, respectively. Introducing a perturbation streamfunction
ψ̃ = φ(z) eiα(x−ct), so that û = φ′(z), v̂ = −iαφ(z) (primes denote z-derivatives) and
eliminating the pressure leads to the Orr–Sommerfeld equation

(
d2

dz2
− α2

)2

φ − iαR (ū − c)
(

d2

dz2
− α2

)
φ + iαRū′′φ = 0. (3.1)

Working with the boundary conditions on the free surface (2.2a), (2.2b), (2.11), and
eliminating p̂ and ĥ gives, now at z = 1:

BC1 φ′′ +
(
α2 + 2

1 − c

)
φ = 0, (3.2)

BC2 iφ′′′ + (
αR (1 − c)− 3 iα2)φ′ −

(
2α cot(β)+ Sα3

1 − c

)
φ = 0. (3.3)

A similar linearisation of (2.12a)–(2.12b) at the elastic wall yields, now at z = 0:

cη̂ = φ, (3.4)

φ′ = −2η̂, (3.5)

−α2c2AI η̂ − iαcADη̂ + α2AT η̂ + α4ABη̂ + AK η̂ = −p̄′η̂ − p̂ + 2
(−iαφ′ − iαη̂ū′) .

(3.6)

Finally, using (3.4) to eliminate η̂, and the expression p̂ = R[−(ū − c)φ′ + ū′φ] + (φ′′′ −
α2φ′)/(iα) from (2.9b), we obtain, at z = 0:

BC3 φ′ = −2φ/c, (3.7)

BC4
(−α2c2AI − iαcAD + α2AT + α4AB + AK − 2 cot(β)

)
φ = − c

iα
φ′′′ + 2 iαφ.

(3.8)

In the rest of the paper we will refer to conditions (3.2), (3.3), (3.7) and (3.8) as BC1,
BC2, BC3 and BC4. The Orr–Sommerfeld equation (3.1) and BC1 and BC2 are the same
as for the case of a fluid film falling down a flat rigid incline, but instead of φ′(0) =
φ(0) = 0 corresponding to u = v = 0 at z = 0 for a solid wall, flexibility gives rise to
BC3 and the much more complex BC4 involving not only R but also the five parameters
AI,AD,AT,AB,AK characterizing the mechanical properties of the wall. Equation (3.1)
with boundary conditions BC1–BC4 constitutes an eigenvalue problem for c leading to a
dispersion relation,

c ≡ c(α,R, β, S,AI,AD,AT,AB,AK). (3.9)

For temporal instability, α is real and c = cr + ici is complex; stability or instability
follows for ci(α) < 0 or ci(α) > 0, respectively. Neutral curves, defined by ci = 0, in
parameter spaces such as the α–R or AK–R planes are computed and discussed extensively.
We determine such curves at arbitrary values of the parameters in order to identify the
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salient instability mechanisms. In general, this must be done numerically (see § 6.2), but
the limit of long waves, α � 1, considered next, is both informative and serves as a check
for the numerical work.

4. Asymptotic solution for long waves, α � 1

We follow Yih (1963) and look for a regular asymptotic expansion in powers of α,

φ(z;α) = φ0(z)+ αφ1(z)+ . . . , c(α) = c0 + αc1 + . . . , (4.1a,b)

where the φj(z), cj, j = 0, 1, . . . are O(1) quantities. Such expansions are especially
useful for order one Reynolds numbers, and readily provide the classical critical Reynolds
number instability threshold R > Rc = 5

4 cotβ, in the rigid wall case (Yih 1963). Here we
use a similar analysis to address the flexible wall problem at hand. Substitution of (4.1a,b)
into (3.1) and BC1–BC4 and solving order by order in α gives, at O(1),

φ0(z) = a2z2 + a3z − a3, c0 = 2, (4.2a,b)

with a2, a3 constants (normalization gives one unknown constant at leading order), and at
O(α) we find, after some algebra,

c1 = 8
15

iR − 2
3

i cotβ − 1
3

iS̃ +
i
(

S̃ + 2 cotβ
)2

3
(

S̃ − 4ÃI − 2 iÃD + AK + ÃT + ÃB

) . (4.3)

The expression for φ1(z) was deemed unilluminating and too long to include here. In (4.3)
we have chosen to retain surface tension and all wall parameters and have defined tilde
variables by

S̃ := α2S, ÃI := α2AI, ÃD := αAD, ÃT := α2AT, ÃB := α4AB. (4.4a–e)

If S, AI , AD, AT and AB are order one quantities, then their tilde equivalents are small. We
can select some (if not all) tilde quantities to be of O(1) in order to evaluate their effect in
the long-wave limit. Note that the stiffness parameter AK survives without any rescaling in
the long-wave limit, and that the next most important effect is due to damping that can be
retained if ÃD = O(1), i.e. AD ∼ 1/α. Note also that with the tilde quantities absent, the
expansion (4.3) breaks down as AK → 0 and a separate asymptotic treatment is needed –
see § 4.3.

The result (4.3) recovers the case studied by Matar et al. (2007) who considered
large surface tension falling films on vertical plates that have no stiffness (AK = 0) and
asymptotically large values of damping and tension, i.e. ÃD and ÃT non-zero in our
notation. Using these in (4.3) along with cotβ = R = 0, we find 3c1i = −(4S̃Ã2

D + S̃2ÃT +
S̃Ã2

T)/[(S̃ + ÃT)
2 + 4Ã2

D] < 0, and, hence, plate elasticity is stabilizing in this case as
found by Matar et al. (2007).
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cot(β) = 0.5
cot(β) = 1
cot(β) = 1.5
cot(β) = 1, α = 0.1

FIGURE 3. Neutral curves in the R–AK plane for various values of cotβ. Verification of the
numerical solution is also given by the dashed line for α = 0.1, with the accuracy improving as
α → 0.

4.1. Wall parameters and surface tension of O(1)
In such cases S and all tilde parameters in (4.3) tend to zero as α → 0, providing the purely
imaginary quantity

c1 =
(

8
15

R − 2
3

cotβ + 4
3AK

(cotβ)2
)

i. (4.5)

The stability boundary is given by

R = Rc = 5
4

cotβ − 5(cotβ)2

2AK
, (4.6)

with instability if R > Rc. The only wall parameter present in this result is the stiffness
AK , and we see immediately that the rigid wall result emerges for AK � 1, as expected.
The result (4.6) shows that stiffness induces long-wave instability in the sense that, for
any finite AK and a given angle β, the critical Reynolds number Rc decreases relative
to that of a rigid wall. In addition, as AK decreases to values smaller than A∗

K = 2 cotβ,
we find instability for all R, including R = 0. Figure 3 shows the neutral curves in the
R–AK plane, where the critical stiffness A∗

K = 2 cotβ is located on the R = 0 axis for a
given β as shown. The additional instability as AK is decreased is clearly seen. As the
plate becomes vertical cotβ → 0, hence, the critical Reynolds number decreases to zero
for every stiffness, however large, in agreement with the rigid wall case. The figure also
includes a neutral curve computed from the Orr–Sommerfeld problem and shown by the
dashed curve for the case α = 0.1 and cotβ = 1. We see that agreement is very good,
but this would of course deteriorate as α increases. Such computations are described later
where it is seen that short waves can become important unlike the rigid wall case.

4.2. Inclusion of damping, ÃD = O(1)
Inspection of (4.3) and (4.4a–e) shows that apart from AK which is of order one, the
next largest effect is due to the damping, ÃD = αAD. Here we investigate its effect
in the long-wave regime by assuming ÃD = O(1) with all other tilde parameters set
to zero. In a spring/damper system like the one modelled here, damping controls the
dissipation of energy in the system. Underdamped systems oscillate and overdamped
ones return to the base state monotonically; coupling this with the fluid dynamics
and interfacial perturbations is useful in understanding the fluid-structure instability
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R

FIGURE 4. Neutral curves in the AK–R plane for various ÃD = αAD = O(1), with cotβ = 1,
S̃ = ÃI = ÃT = ÃB = 0.

mechanisms. Mathematically, it is also seen from (4.3) that, for α � 1 the tension ÃT ,
rigidity ÃB and inertia ÃI just contribute to a renormalisation of the stiffness AK , whereas
the inclusion of damping implies that c1r /= 0.

The effect of damping on neutral stability curves analogous to figure 3, is depicted in
figure 4 for the fixed angle β = π/4. Since S̃ = ÃI = ÃT = ÃB = 0, (4.3) gives

c1i = 8
15

R − 2
3

cotβ + 4(cotβ)2AK

3
(

A2
K + 4Ã2

D

) . (4.7)

It is clear from (4.7) that ÃD has a stabilizing effect, and interestingly an island of
stability emerges for sufficiently small R < (5/4) cotβ and AK , as seen in figure 4 for
ÃD = 0.4. More precisely, setting R = 0 in (4.7) shows that c1i = 0 when AK = cotβ ±√
(cotβ)2 − 4Ã2

D, and as long as ÃD ≤ (1/2) cotβ, there will be a region of inertialess
instability when

cotβ −
√
(cotβ)2 − 4Ã2

D < AK < cotβ +
√
(cotβ)2 − 4Ã2

D. (4.8)

This instability region disappears when ÃD = (1/2) cotβ, with the neutral curve having
a local minimum at AK = cotβ,R = 0, as seen in figure 4 for the case ÃD = 0.5. As the
damping increases, the neutral curve tends to that for a rigid wall for all values of AK as
seen from (4.7) when ÃD � 1. It is worth noting that in the expression (4.3) the last term is
due to wall flexibility, and, hence, the rigid wall result follows if any of the wall parameters
become large.

4.3. Zero stiffness, AK = 0
Having AK /= 0 is critical for the validity of the expansion leading to (4.3); indeed, if the
other parameters are not scaled, then the asymptotic expansion breaks down as AK → 0.
This limit is not uninteresting and is comparable to the model used in Matar et al. (2007);
hence, for completeness, the alternative asymptotic solution with zero stiffness is included.
Expanding as in (4.1a,b), we now find that c0 has a non-zero imaginary part (higher-order
terms need to be determined and solvability conditions imposed as before). After a lot of
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algebra we find that

c0 = 1 + 1
AD

±
√
(AD − b)2 − (b2 − 1)

AD
, where b = 1 + 2

3
(cotβ)2 > 1. (4.9)

Inspection of the expression under the square root shows that c0i /= 0 if AD satisfies

b − (b2 − 1)1/2 < AD < b + (b2 − 1). (4.10)

It follows that as the plate becomes vertical and b → 1+, admissible damping values
get squeezed in a small region around AD = 1. On the other hand, as the plate becomes
horizontal and b → ∞, we have instability for all AD. For the numerical examples where
we typically take β = π/4, the instability window is 1

3 < AD < 3.

5. Solution in the zero-Reynolds-number limit

When R → 0, the Orr–Sommerfeld equation (3.1) reduces to

(
d2

dz2
− α2

)2

φ = 0, (5.1)

and boundary condition (3.3) on z = 1 becomes

iφ′′′ − 3 iα2φ′ − (
2α cotβ + Sα3) φ

1 − c
= 0. (5.2)

The other boundary conditions (3.2), (3.7), (3.8) remain unchanged and we emphasize
that all wall parameters and the surface tension parameter S are order one quantities.
The effects of stiffness AK and damping AD will be considered in detail below,
all other parameters held fixed mostly at unit values. The solution of (5.1) is φ =
A sinh(αz)+ B cosh(αz)+ Cαz sinh(αz)+ Dαz cosh(αz), where A,B,C,D are constants
to be found from the homogeneous boundary conditions (3.2), (5.2), (3.7), (3.8). Writing
X = (A,B,C,D)T, we have a matrix problem MX = 0 that has non-trivial solutions if
det M = 0, leading to P5(c) = 0, where P5 is a polynomial in c of degree 5. Two of the
roots were introduced into the system when multiplying boundary conditions by c and
1 − c, and are removed from the results; so P5(c) = c(1 − c)P3(c). The roots were found
analytically using the Python package Sympy and in what follows we present stability
results as crucial wall parameters such as the stiffness and damping are varied, with other
parameters held fixed at unit values.

5.1. Effect of stiffness, AK

The substrate stiffness is studied first as it was found to have the greatest effect among
the wall parameters. The growth rate ωi = αci is shown in figure 5 for the choice of the
other parameters cotβ = S = AD = AT = AB = AI = 1. Figure 5(a) demonstrates that for
AK below a critical value AKc ≈ 2.60 the flow is unstable, as predicted qualitatively, but not
quantitatively as we shall see, by the long-wave analysis. It also shows that for the special
case of zero stiffness the gradient at the origin becomes non-zero and was found to match
with the zero stiffness asymptotics of § 4.3. In figure 5(b) we show details of the growth
rate in the interval 2 < AK < 3, and find that there is a finite wavenumber instability with
α ≈ 0.67 (the wavelength is approximately 9 times the undisturbed film thickness) when
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FIGURE 5. Growth rate curves for Stokes flow for various AK indicated on the figure. The
other parameters are taken to be cotβ = S = AD = AT = AB = AI = 1.

AK just exceeds AKc. This instability occurs before the long wave one at α = 0, and as
a result the earlier long-wave prediction A∗

K = 2 cotβ (yielding the value 2 in this case)
gives a lower prediction for the critical AK calculated by considering all wavenumbers.

5.2. Effect of damping, AD

Here we take cotβ = S = AK = AT = AB = AI = 1 and consider the effect of AD on the
stability. The results are shown in figure 6 with AD varying between 0 and 2. The overall
trends are as expected with an increase in damping leading to flow stabilization. Note
that the long-wave analysis as well as results at R = 0 (omitted for brevity), show that this
stabilization is limited by the rigid wall case that derives in the limit AD → ∞. Conversely,
decreasing the damping destabilises the flow as expected, but as seen in figure 6 the
critical wavenumber α below which instability is supported is weakly affected. Some
interesting mode-crossing behaviour is also found at smaller AD, for example, the curves
corresponding to AD = 0 and AD = 0.2 in figure 6. Looking at AD = 0.2 for example,
we observe a corner in the ωi curve at α = αc ≈ 0.35 where two modes cross. Our
computations produce results for multiple modes and plots such as figure 6 are constructed
by tracking the largest value of ωi as α varies. For AD = 0.2, long-wave instability arises
due to an interfacial mode, also termed first mode in the sequel, for 0 < α � αc, and mode
switching takes place at αc with a wall mode, also termed second mode, becoming more
unstable for α � αc. The interfacial mode is characterized by being neutral at α = 0 and
long-wave unstable – see below also. To clarify the switching of the most unstable mode
from interfacial to wall mode, we plot them together for values of AD near 0.2 (all other
parameters as in figure 6), providing data for their growth rates and corresponding phase
velocity (note that there is a countable infinity of further modes that are all stable and of no
concern in this discussion). The results are shown in figure 7 for AD = 0.25, 0.2225, 0.2 in
figures 7(a)–7(c), respectively. The interfacial mode is shown in blue and passes through
the origin, and the wall mode is shown in red. For the two larger values AD = 0.25 and
0.2225, the second mode is unstable but has a smaller maximum growth rate than the first
mode. In addition, the wavespeed of the second mode is always larger than that of the
first mode as shown in figure 7(a,b). The value AD = 0.2225 provides the damping that
causes mode switching as we can see by comparison of figures 7(a) and 7(c) – here, the
real and imaginary parts of c are the same at the crossing point. Before swapping, the most
unstable mode is also long-wave unstable whereas after swapping the most unstable mode
is long-wave stable. It is also interesting to note that the wall mode appears to support
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FIGURE 6. Growth rate curves for Stokes flow for various AD indicated on the figure. The other
parameters are cotβ = S = AK = AT = AB = AI = 1. The curves for AD = 0 and AD = 0.2
indicate mode crossing at a finite α.
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FIGURE 7. Plots of the two most unstable modes: interfacial mode – blue, wall mode – red.
(a–c) Show the growth rates ωi and (d–f ) the corresponding phase velocity cr, for AD = 0.25
(a,d), AD = 0.2225 (b,e) and AD = 0.2 (c,f ). The other parameters are cotβ = S = AT = AB =
AK = AI = 1.

larger phase velocities as α → 0, something that is analogous to gravity waves in the
long-wave limit; see Whitham (1999). These waves are always stable since ωi < 0 for
the second mode if α is below a critical value. The results for AD = 0.2 with α = 0.3, for
instance, provide an interesting example where the most unstable mode travels much faster
than the analogous rigid wall mode, something that could be useful in experiments.

6. Stability characteristics at arbitrary Reynolds and wavenumbers

6.1. Numerical methods and code validation
Sections 4 and 5 produced asymptotic solutions for small α but arbitrary R, and small
R and arbitrary α, respectively. The latter analysis indicates that in the presence of
wall flexibility the maximally growing waves occur at order one wavenumbers; hence,
it is important to extend our stability studies to arbitrary wavenumbers and Reynolds
numbers computationally. We briefly describe our numerical methods used to solve the
Orr–Sommerfeld eigenvalue problem (3.1) subject to the interfacial conditions (3.2), (3.3),
and the wall conditions (3.7), (3.8). The solution is approximated by a truncated series
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of Chebyshev polynomials of the first kind, in particular, following the D2 Chebyshev
tau scheme of Dongarra, Straughan & Walker (1996). This involves introducing χ(z) =
(d2/dz2 − α2)φ(z), which transforms the single fourth-order equation for φ into a pair of
second-order equations for φ and χ . We write

φ(z) =
N+2∑
n=0

φnTn(z), χ(z) =
N+2∑
n=0

χnTn(z), (6.1a,b)

where Tn(z) is the nth Chebyshev polynomial, and N is a measure of the truncation (with
N + 3 polynomials used). Differentiation is performed directly by operating on the Tn .
Hence, substituting into the equations and BCs for (φ, χ) and using the orthogonality
properties of the Tn (Dongarra et al. 1996), we can write the system as a finite-dimensional
nonlinear eigenvalue problem for c,

(c2B2 + cB1 + B0)x = 0, where x = (φ0, . . . , φN+2, χ0, . . . , χN+2)
T, (6.2)

and B2,B1,B0 are 2(N + 3)× 2(N + 3)matrices with their bottom four rows representing
the boundary conditions (3.2), (3.3), (3.7) and (3.8) in turn expressed in terms of the
Chebyshev coefficients x. Notice that we have a nonlinear c2 term in (6.2) which is absent
for this method of discretisation for the case of flow down a rigid wall. This nonlinearity
is due solely to the inertia of the flexible wall, i.e. the second-order time derivative of η in
the equation for the wall deflection (2.12b). It appears only through (3.8) as the first term
on the left-hand side and is proportional to AI , implying that the matrix B2 contains zeros
everywhere except for the last row, and B2 = 0 if AI = 0. The eigenvalues are computed
using the Matlab routines polyeig or eig when AI /= 0 or AI = 0, respectively. Spurious
or infinite eigenvalues with unphysical growth rates arise due to the singular rows of the
matrices B2,B1, Dawkins, Dunbar & Douglass (1998): half the rows of B1 are zero owing
to the introduction of χ , and another row is zero owing to boundary condition (3.7), as
both χ and (3.7) are independent of c. We ignore these eigenvalues numerically, but the
one due to (3.7) is removed entirely by elimination; see McFadden, Murray & Biosvert
(1990) for details. The numerical results were computed for zero Reynolds number and
compared against the analytical results of § 5 for a variety of parameters, with excellent
agreement.

The code was validated by comparing computed variations of cr and ci with α, with
their long-wave counterparts presented in § 4. For completeness, a small selection of these
checks for values of the stiffness parameter AK = 0.5, 1, 10 are presented in figure 8,
with cotβ, R and the other wall parameters set to unity. The computational results are
depicted with solid curves and the corresponding long wave ones by the dashed straight
lines. Agreement improves as α decreases, as expected, and the results indicate that
long-wave theory does a reasonable job for α � 0.1, at least for this set of parameters.
Lastly, the long-wave neutral curves in the R–AK plane that were analysed in § 4 can be
reproduced by the numerics for small α. For instance, in figure 3 the computed neutral
curve corresponding to cotβ = 1 and α = 0.1 is seen to be in very good agreement with
the long-wave neutral curve for the whole range of R and AK considered.

6.2. Numerical results
We begin by presenting results for an inclination angle β = π/4 for which the critical
Reynolds number is 1.25. Smaller angles and large Reynolds numbers will be considered
later. As with the analytical results, we start by varying the stiffness parameter AK
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FIGURE 8. Comparison between computed values (solid lines) of cr and ci with the asymptotic
long-wave solution (dashed lines) for various stiffnesses AK = 0.5, 1, 10 indicated on the figure;
also, R = 1, AI = AD = AT = AB = 1, N = 50 and S = cotβ = 1.
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FIGURE 9. Neutral stability curves in the α–R plane as the wall stiffness varies (values of
AK indicated on the plot), and for surface tension values S = 1 (a) and S = 1000 (b). Other
parameters are cotβ = AD = AT = AB = AI = 1.

with AD,AT,AB,AI set to unity. Neutral stability curves in the α–R plane are given in
figures 9(a) and 9(b) for surface tension parameters S = 1 and S = 1000, respectively, the
latter being more realistic for water. In both cases the rigid wall results begin to emerge
for the largest value of AK = 5 (green curves), and we note the additional long-wave
destabilization for the S = 1000 case by the flattening of the curve near the critical R.
As AK increases further, the flattened region disappears and a larger critical R is found
due to the larger S involved. Figures 9(a) and 9(b) also show that the finite wavenumber
instabilities found analytically at R = 0 are also supported when inertia is present. For both
S = 1 and S = 1000, we observe islands of long-wave stability when R is small enough,
e.g. the neutral curve for AK = 2.6 in figure 9(a). Larger S stabilises the flow by shifting
the neutral curves to the right to larger values of R, as seen in figure 9(b). If the stiffness
is removed completely (AK = 0, blue curve) the flow becomes unstable to long waves at
all Reynolds numbers considered. For large AK , the effect of the interfacial instability is
dominant, while for small AK , wall flexibility becomes more important thus explaining the
slight effect of S in this limit.

Corresponding growth rates from figure 9(a) are presented in figures 10(a) and 10(b)
for R = 0.2 and R = 3, respectively, with the stiffness AK varying between 2.0 and 2.6.
For R = 0.2, we observe the long-wave stabilization at the largest AK = 2.6 in line with
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FIGURE 10. Effect of inertia on the growth rates ωi as AK varies (values shown on the plots):
(a) R = 0.2, (b) R = 3. The other parameters are cotβ = S = AD = AT = AB = AI = 1.

the R = 0 results of figure 5(b). As inertia increases to R = 3, however, the long-wave
stabilization is lost and the band of unstable waves as well as the maximum growth rate,
increase with R. At the same time the instability also increases with decreasing stiffness
for fixed R, as seen in figure 10(b).

Next, the effect of the wall damping AD is investigated for an inclination β = π/4, all
other parameters set to unity. Results are given in figures 11(a) and 11(b) that show the
neutral curves as AD varies, and representative growth rate curves at R = 1. From the
long-wave expression (4.3) we expect that, for large AD, the solution tends to the rigid
wall limit, however, it is not clear from the expansion how the limit is approached and
we use computations to explore this. Two things are worth pointing out from the results
of figure 11(a). First, for a given Reynolds number below the critical value for a rigid
wall, we see that the damping does not fully stabilize the solution but supports a small
band of unstable long waves – this can be seen clearly for AD = 64 in figure 11(a) at
a Reynolds number of 1 and smaller for example, and is in contrast to the large AK limit
where stabilization occurs at a large but finite AK (e.g. figure 9a for AK = 5). Second, larger
R damping is seen to have a stabilizing effect in the sense that it reduces the unstable
region in the α–R plane; compare the cases AD = 64 with AD = 4 in figure 11(a), for
example, but at the same time note that this effect is non-monotonic in AD as seen from
subsequent curves for AD = 1 and AD = 0.25. This phenomenon is due to fluid inertia and
is not seen at either long waves or zero Reynolds numbers. Figure 11(b) shows the largest
computed growth rate versus α for R = 1; we observe that an increase in damping reduces
the maximum growth rate as well as the neutral wavenumber. The results for AD ≥ 4 also
indicate the presence of a second mode as found at zero Reynolds numbers in § 5, figure 6
for instance.

The results above show that long-wave instability persists at large AD for the parameters
chosen. Combined with the results of figure 9(a), we can surmise that this instability
should in turn disappear as the stiffness AK is increased. To illustrate some of the
characteristics and, in particular, to show underlying mechanisms such as mode crossings,
we take AD = 0.32, AK = 5 and all other parameters equal to unity. At the chosen
parameter values we also find the coexistence of unstable interfacial and wall modes over
a large range of wavenumbers. Figure 12(a) shows the neutral curves in the α–R plane
for the range 0 ≤ R ≤ 4. We see that there are two modes present, the usual rigid wall
interfacial mode with a critical Reynolds number for long waves, along with a second wall
mode that has two branches for large R (the upper branch grows with R while the lower one
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FIGURE 11. Stability characteristics as AD varies. (a) The neutral curves for the parameter set
cot(β) = S = AT = AB = AK = AI = 1 and (b) the growth rate ωi when R = 1.
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FIGURE 12. (a) A neutral stability diagram; and (b) growth rate curves, each showing
the presence of two unstable modes, for the parameter set: AK = 5, cot(β) = S = AT =
AB = AI = 1. The growth rate curves also show the effect of increasing the damping (AD) on
the two modes. (a) AD = 0.32; (b) R = 0.5.

decays as R increases). An interesting finding from these results is that at small Reynolds
numbers wall flexibility can destabilize the flow by reducing the critical Reynolds number
and inducing a finite wavenumber instability. This can be seen from figure 12(a) where
the critical Reynolds number is reduced to approximately 0.332 and the first wavenumber
that becomes unstable just above critical has α ≈ 0.549. For completeness in figure 12(b),
we also present growth rates. Figure 12(b) fixes R = 0.5 (depicted by the vertical dashed
line in figure 12a), and shows the effect of varying AD between 0.1 and 0.5 on the
most dominant mode. The presence of the two modes is seen in the plots and the finite
wavenumber instability due to the wall mode is clear. The maximum growth rate increases
as AD is decreased but the maximally unstable wavenumber varies weakly. We also note
that at much higher R there is another shear instability mode and the coexistence of all
three modes and their relative growth rates are considered later.

6.3. Instabilities at high Reynolds numbers
It is well known in falling film flows that at higher Reynolds numbers shear modes of
instability enter in addition to the interfacial mode that is prominent at lower values of
R; see Floryan et al. (1987). Our model and computational tools enable us to carry out
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a detailed investigation of the effect of wall flexibility on such modes, and indeed the
interaction and competition between modes resulting from the three different physically
supported instabilities. We will mostly present our results in the form of neutral stability
curves in the R–α plane. Due to the large number of parameters, preliminary computations
were carried out to identify which wall parameters are the most important, and in what
follows we consider the effect of the stiffness parameter AK with a moderate amount of
damping also present with AD = 10. The case computed has an inclination angle β = 4◦ in
order to extend the results of Floryan et al. (1987) to include wall flexibility. Representative
results are given in figure 13 with the wall stiffness parameter AK varying from 105 in panel
(a) to 10 in panel ( f ). All other wall parameters and surface tension are set to unity.

For large stiffness AK = 105, the wall is almost rigid. The results of figure 13(a) contain
three different modes as labelled. These include the typical interfacial and shear mode
neutral curves computed by Floryan et al. (1987), and in addition a mode due to wall
flexibility; the first mode is a long-wave interfacial one supporting instability at relatively
small R, whereas the second is a shear mode that appears at larger R ≈ 5 × 103 – the
shear mode was not seen in all previous results presented because the range of Reynolds
numbers plotted was not large enough. The resulting plot is in full agreement with
Floryan et al. (1987) once differences in non-dimensionalisation are accounted for. The
wall mode enters at a critical R ≈ 5 × 104, and as AK increases this critical value also
increases. It is described in more detail below for lower stiffnesses when it becomes more
dominant.

Reducing the stiffness by an order of magnitude to AK = 104 produces the results
of figure 13(b). Several effects are notable: (i) the wall mode enters at a lower critical
Reynolds number R ≈ 6 × 103, and enhances the band of unstable wavenumbers to
include shorter waves at lower Reynolds numbers; (ii) the shear mode becomes a little
more stable entering at a critical R ≈ 6 × 103, and at the same time narrowing its band
of unstable wavenumbers; (iii) a break is observed in the interfacial mode with additional
neutral curves appearing – this is due to an interaction between the different modes and is
investigated fully for later plots by using an energy decomposition analysis.

The interaction of modes and the splitting of the interfacial mode found at large AK ,
becomes clearer as AK decreases to 103 as shown in figure 13(c). The wall mode becomes
unstable at lower values of R ≈ 103, and the intricate interaction behaviour in the lower
right-hand corner of the figure (identified by a dashed rectangular border) becomes clearer
in the enlargement given in figure 13(d). The shear mode is the lowest feature seen in the
figure, and the flow is unstable everywhere. There are either one or two unstable modes
in different parts of the depicted region. For example, fixing R = 2 × 104 and varying α,
the number of unstable modes alternate between one and two every time a neutral curve is
crossed.

In the last two figures 13(e) and 13( f ) we follow the change in the neutral curves as AK
is decreased to 100 and 10, respectively, the last case comprising the most flexible wall
considered in this study. For AK = 100, the two main modes, namely the interfacial and
wall mode, are still prominent, the former at smaller R and α and the latter at moderate
R and order one α, but the results indicate further mode interaction and switching. For
example, considering a fixed value R = 500 as α is increased from zero we initially
encounter instability due to the interfacial mode, followed by a small window of stability
before additional modes enter at moderate α, and eventually one wall mode remains at
higher wavenumbers (complete stabilisation takes place at short waves due to surface
tension). The presence of an interfacial mode at small R, coupled with a complete stability
of the system at values of R below a critical value, cease to exist for higher wall flexibility
as illustrated in the results of figure 13( f ) for AK = 10. In decreasing AK from 100 to 10,
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FIGURE 13. Neutral curves for the different modes in the R–α plane as the stiffness AK varies.
The parameters are β = 4◦, AD = 10 with all remaining parameters set to 1. The U and S labels
refer to unstable and stable regions, respectively. (a) AK = 105 (almost rigid); (b) AK = 104;
(c) AK = 103; (d) AK = 103, enlargement of dotted area in (c); (e) AK = 102; ( f ) AK = 10
(highly flexible).

the merged interfacial and wall modes evolve to give the uppermost neutral curve,
resulting in long-wave instability at small Reynolds numbers including R = 0, consistent
with figure 5. At higher R an additional mode enters with the flow remaining unstable
everywhere to the right of the uppermost neutral curve that extends back to R = 0. In
figures 13(e) and 13( f ) the horizontal dashed lines drawn through α = 1 indicate the
parameters over which we carry out an energy analysis that helps us identify the physical
origin of the different instabilities as the Reynolds number is increased. This analysis and
the results are presented next.
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6.4. Energy analysis
Due to the complexity of neutral stability plots such as those in figure 13, we provide
results of an energy decomposition of different terms in the perturbation equations in an
effort to link particular modes with their physical origin. We proceed as in the energy
decomposition analysis of Kelly et al. (1989) for rigid wall falling films. We start with the
linearised equations for the perturbations in primitive variables and take inner products
to derive an equation for the evolution of the kinetic energy of the system integrated over
the periodic domain. The length of the period is taken to be L = 2π/α, thus allowing
direct comparison to the neutral curves. The surface and wall parameters enter the equation
through the evaluation of integrals at the boundaries. Details of the derivation are given in
appendix B. The final result we need here is

1
2
∂E
∂t

= DISSI + REYNS + SURFS + WALLS + DAMP + WALLH, (6.3)

where the energy E ≥ 0 is given by

E = EKIN + ESURF + EWALL + EHYD, (6.4)

EKIN = R
∫∫

Ω

(u2 + v2) dx dz, (6.5)

ESURF = S
∫ L/2

−L/2
h2

x dx, (6.6)

EWALL =
∫ L/2

−L/2

(
AIη

2
t + ATη

2
x + ABη

2
xx + AKη

2) dx, (6.7)

EHYD = 2 cotβ
∫ L/2

−L/2
h2 dx, (6.8)

where EKIN represents the kinetic energy within the fluid, ESURF the energy stored in
the deformed surface due to surface tension, EWALL the energy contribution due to wall
flexibility and EHYD denotes the hydrostatic potential energy. The right-hand side includes
the following terms that control the rate of change of the total energy:

DISSI = −
∫∫

Ω

(|∇u|2 + |∇v|2) dx dz, (6.9)

REYNS = −2R
∫∫

Ω

uv (1 − z) dx dz, (6.10)

SURFS =
∫ L/2

−L/2
u (uz − vx) |z=1 dx, (6.11)

WALLS = −
∫ L/2

−L/2
u (uz + vx) |z=0 dx, (6.12)

DAMP = −AD

∫ L/2

−L/2
η2

t dx, (6.13)

WALLH = 2 cot(β)
∫ L/2

−L/2
ηv dx . (6.14)
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FIGURE 14. A growth rate plot (a) and the energy decompositions (b–d), see (6.3), of the three
unstable eigensolutions for the case α = 1.0026, β = 4◦, AK = 100 and AD = 10 with all other
parameters set to unity.

The viscous dissipation is denoted by DISSI and the Reynolds stress by REYNS. The
rate of work done by shear on the surface and the wall enter as SURFS and WALLS,
respectively. The damping term in the wall model contributes to the equation with the
stabilising DAMP term and, finally, WALLH denotes a term originating from the work
done by the hydrostatic pressure on the wall; see appendix B.

Picking a wavenumber α and other system parameters, the linear stability results
(eigenvalue-eigenfunction pairs) provide numerical values of each term on the right-hand
side of (6.3). In what follows we present results for α = 1.0026 and follow the instability
as the Reynolds number increases along the dashed lines in figures 13(e) and 13( f ), with
the corresponding energy decomposition results given in figures 14 and 15, respectively.

Results for AK = 102 are given in figure 14 for fixed α = 1.0026 as R varies. Figure 14(a)
shows the growth rates of the three most unstable modes for R between 1 and 2 × 103

(we restricted the range of R in order to make the results clearer). The modes are
depicted by different symbols, with the corresponding energy decomposition of each mode
provided in the accompanying plots as follows: mode 1 with square symbol is analysed in
figure 14(b); mode 2 with circles is analysed in figure 14(c); and mode 3 with triangles in
figure 14(d). In the energy decomposition panels, each term from the right-hand side of
the energy equation (6.3) is included by a different colour and identified in the legend. The
black curve denoted by TOTAL provides the sum of all terms, i.e. the right-hand side of
(6.3). As expected, the neutral Reynolds number predicted by this curve is identical to that
predicted by the corresponding growth rate of each mode in figure 14(a). In all cases the
viscous dissipation (DISS) and wall damping (DAMP) are negative for all R as expected,
and play a significant role on the overall stability characteristics. At smaller R they act to
thwart growth due to other effects ensuring that a finite R is needed for instability. Starting
with mode 1 in figure 14(b), we see that instability is mainly associated with Reynolds
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FIGURE 15. Plots showing the growth rate (a) and energy decompositions (b,c), see (6.3), of
the two unstable eigensolutions for the case α = 1.0026, β = 4◦, AK = 10, AD = 10 with all
other parameters set to 1.

stresses, surface stresses and wall stresses. As these increase with R, viscous dissipation
and wall damping also increase and delay the appearance of instability. The instability is
constrained to a small window in R mainly due to the significant decrease of the Reynolds
stresses from around R ≈ 7 × 102. We conclude that instability for this mode is due to
Reynolds and wall stresses (yellow and red curves, respectively).

For mode 2 (circles), energy growth at smaller R is dominated by Reynolds and wall
stresses as seen in figure 14(c). Other effects are stabilizing and in particular a sizeable
viscous dissipation ensures negative growth rates. As R increases to values between 102

and 103, Reynolds and wall stresses peak to maximum values before decaying significantly
by R ≈ 104. At the same time the surface shear stress term enters to provide energy growth,
and coupled with weaker viscous dissipation and wall damping, an instability ensues as
indicated in the figure. This instability is mainly due to the mechanism of energy growth
due to surface shear stresses (SURFS, blue curve).

Mode 3 (triangular symbols) in figure 14(d) has quite different energy decomposition. At
smaller R, energy growth is entirely due to wall stresses (red curve), but viscous dissipation
dominates providing stability. As R increases both wall stresses and Reynolds stresses
decrease further to reach local negative minima, until R ≈ 7 × 102 when they both provide
energy growth; in addition, the hydrostatic pressure wall mode (WALLH) produces energy
growth beyond R ≈ 103. As a result, and due to the large energy growth of the Reynolds
stresses, the growth rate increases substantially as seen in figure 14(a).

Finally, we present results for the smallest value AK = 10 considered here. As in
figure 14, we fix α = 1.0026 and look at the energetics of the dominant modes as R is
varied along the dashed line in figure 13( f ). This case is particularly interesting since
instability is supported for all R, even R = 0, unlike the other AK cases described. The
presentation of the results in figure 15 follows that above. Only two unstable modes
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exist for α = 1.0026 and 0 ≤ R ≤ 104, and their growth rates as R varies are depicted in
figure 15(a). The energy decomposition of mode 1 (square symbols) is included in
figure 15(b) and the corresponding data for mode 2 (circles) appear in figure 15(c). The
results show that for small R (including near zero) mode 1 is driven by the work done by
the hydrostatic pressure on the wall (WALLH, the light blue curve) and the wall shear
stresses (WALLS, red curve). At larger R (higher than 25, approximately) the Reynolds
stresses dominate while the effects of SURFS and WALLH level out to approximate equal
values and so the physical mechanism responsible for instability switched from boundary
effects to bulk Reynolds stresses. The surface shear stresses play no role in the dynamics
explaining why this mode is not observable in the absence of wall elasticity. We also note
that the viscous dissipation and wall damping terms suppress the instability but are not
high enough to stabilize the flow at any values of R considered. The energetics of mode 2
(circles in figure 15a) follow very similar trends to those of mode 2 of the larger AK = 102

case shown in figure 14(c), and so we can conclude that they are a continuation of one
another and we do not need to discuss it further.

7. Conclusions

We carried out a linear stability study of falling liquid films over elastic substrates.
A fairly general elastic wall model is used that has been studied in related problems –
(Carpenter & Garrad 1985; Gajjar & Sibanda 1996; Davies & Carpenter 1997; Pruessner
& Smith 2015). We retain different physical elastic effects including wall inertia, damping,
tension, flexural rigidity and stiffness and compute their effect on the stability of falling
films. In the case of rigid walls, falling films become unstable to two modes of instability
– a long-wave interfacial (free surface) mode at lower Reynolds numbers (the critical
Reynolds number tends to zero as the plate becomes vertical), and a higher Reynolds
number shear mode or Tollmien–Schlichting mode – see Floryan et al. (1987). There
are many dimensionless parameters in the problem – in addition to the five elasticity
parameters and the Reynolds number, we have the inclination angle and the surface
tension. We addressed the problem by using a combination of asymptotic analysis and
full numerical computations of the elastically modified Orr–Sommerfeld problem based
on the Chebyshev–Tau method. In order to understand the complex interaction between
modes we also used an energy analysis to decompose them into constituent parts that
originate from different physical mechanisms.

A long-wave asymptotic analysis showed that the plate stiffness AK plays a crucial
role in the dynamics. For example, the familiar rigid wall result of a critical Reynolds
number 5(cotβ)/4 (in our non-dimensionalisation) below which the flow is stable to
long waves, ceases to hold as plate stiffness decreases. In fact a critical AK is reached
below which the flow is unstable to all Reynolds numbers including zero (see figure 3),
a result that fully hinges on wall elasticity. Motivated by such results, we also carried out
an analysis at zero R which is valid for all wavenumbers. This limit is amenable to an
analytical solution as given in § 5. The results show that as the stiffness AK is reduced
from large values (i.e. rigid wall and we chose cotβ = 1 so that when AK → ∞ the flow
is stable for all wavenumbers), instability first enters at a finite wavenumber α prior to long
waves becoming unstable; see figure 5. This result indicates that straightforward long-wave
theories are not appropriate for moderate values of AK . The effect of wall damping AD was
also considered starting with AK = 1 that ensures instability at zero R. Increasing AD from
zero has a stabilising effect as expected (indeed as AD → ∞, we recover the rigid wall
case), with the interfacial/surface mode providing the dominant instability. Interestingly
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as AD is decreased further we observe mode switching with the wall mode dominating the
surface mode (see figure 7 for example).

The asymptotic limits are useful and point to the need of the full numerical solution of
the eigenvalue problem at arbitrary R and α. This was done for moderate as well as large
R in order to capture the interaction between the three modes present: surface, wall and
shear modes. In the presence of wall elasticity we again find instability below the critical
R required for rigid walls. At moderate Reynolds numbers we again find instability below
the critical R due to the presence of the elastic wall as well as mode crossing between
the surface and wall modes. The coexistence of surface and wall mode instabilities is
ubiquitous in the presence of inertia; see, for example, figure 12(b). The instability modes
become much more complicated as R is increased further. We studied the flow with an
inclination angle β = 4◦ in order to evaluate the effect of wall elasticity on the results of
Floryan et al. (1987) for a rigid wall, and carried out computations to R as large as 106.
The main parameter we studied in detail is the wall stiffness AK with other parameters
set to unity. For AK = 105, the wall is almost rigid and the results are in agreement with
Floryan et al. (1987), as shown in figure 13(a); in addition to the surface and shear modes
a wall mode enters at large R. As AK is reduced to values 104, 103, 102 and 10, the
neutral stability curves become quite intricate due to wall elasticity and its effect on the
eigenmodes and eigenvalues. Interesting instabilities arise, including mode splitting and
switching as well as a destabilization of the flow for all R when AK = 10; see figure 13( f ).
To understand such complex dynamics physically, we carried out an energy decomposition
analysis and found that inertia drives the instabilities for larger AK (e.g. AK = 100 and
higher), whereas at the smallest value studied AK = 10, at moderate Reynolds numbers
the physical mechanism mostly responsible for the instability is the wall shear stress and
the work done by the hydrostatic pressure on the wall; see figure 15.

The present work has identified some instabilities that may be observable in practice and
will hopefully motivate experiments in that direction. Of interest also would be nonlinear
studies either via direct numerical simulations or using asymptotic theories. We note,
however, that not all instabilities are long wave and, hence, lubrication type theories would
not be appropriate, whereas weighted residual methods (see Kalliadasis et al. 2012) could
be a possible direction.
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Appendix A. Derivation of flexible wall model

Even though we used Cartesian coordinates to describe the wall position z = η(x, t), it
is initially more convenient to use the parametrisation X (s, t) = (X(s, t),Z(s, t)), where
s denotes arc length. (Both coordinate systems will be used interchangeably where
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convenient.) Newton’s second law states that

ρwbX tt + D(ez · X t) ez − ∂s(Ttw)+ B∂ss(κwnw)+ K(ez · X ) ez = T · nw|x=X + psnw,

(A 1)

where ez is the unit vector in the z direction, and tw and nw are the unit tangent and normal
to the plate (defined similarly to those for the liquid–gas interface, but with h replaced
with η; thus, nw points into the fluid), with κw its curvature; ps is the substrate pressure on
the back of the plate provided by the substrate fluid, its exact form and dependence on x
and t also unknown, but assumed to be forced by the motion of the main flow and plate. Its
exact evaluation will not be needed until we begin the linear stability analysis (§ 3), where
its effect is much more easily assessed.

The first term in (A 1) represents the inertia of the plate, the third term the
plate’s inextensibility and the fourth term its rigidity. The inextensibility condition is
∂sX · ∂sX = 1 for all t, i.e. that s is indeed always the arc length, and, thus, tw = ∂sX
and κwnw = ∂ssX , allowing us to write the tension and rigidity terms in a more useful
form,

∂s(Ttw) = (TX s)s, (A 2)

B∂ss(κwnw) = BX ssss, (A 3)

(changing ∂s to subscript notation for brevity). The damping and stiffness terms are
proportional to the projections of the plate velocity and plate displacement in the z
direction. Whether we choose to project in the ez or nw direction will not affect the resulting
simplified wall equation.

We will now make the assumption of small deflections which (as well as a mechanical
restriction of motion in the longitudinal direction owing to the presence of the springs)
implies longitudinal deflections will be small compared to transverse deflections (Landau
& Lifshitz 1986). That is, we need only consider the normal (to the plate) component of the
motion equation (A 1). This assumption has been used many times in the study of viscous
fluid flows over flexible surfaces, such as Atabek & Lew (1966), Dragon & Grotberg (1991)
and Halpern & Grotberg (1992) for flexible tubes, and Matar et al. (2007) and Matar &
Kumar (2004, 2007) for flexible planes. The normal component is

ρwbX tt · nw + D(ez · X t)(ez · nw)− (TX s)s · nw

+ BX ssss · nw + K(ez · X )(ez · nw) = nw · T · nw|x=X + ps. (A 4)

Next, we reparametrise the plate position as (X(s, t),Z(s, t)) = (x, η(x, t)). Negligible
longitudinal motion implies Xt � Zt, i.e. x is approximately constant in t compared to η.
Let h0 be a characteristic film thickness and δ be the characteristic size of deflections. The
small deflection assumption means that the ratio ε = δ/h0 � 1, i.e. that the amplitude
of deflections, η, will be much smaller than the film thickness. Under this assumption,
ηx = O(ε) � 1, the relations between s and x are

ds = (1 + η2
x)

1/2dx = (1 + O(ε2)) dx, (A 5)

∂

∂s
= 1
(1 + η2

x)
1/2

∂

∂x
= (1 + O(ε2))

∂

∂x
, (A 6)
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and so the tension and rigidity terms (A 2) and (A 3) in terms of x are

(TX s)s = 1
(1 + η2

x)
1/2

Tx tw + Tηxx

(1 + η2
x)

3/2
nw

= (1 + O(ε2))Tx tw + (1 + O(ε2))Tηxx nw, (A 7)

BX ssss = B(0, ηxxxx)+ O(ε2), (A 8)

Substituting into the left-hand side of (A 4) and neglecting O(ε2) contributions in each
term, we have

ρwbηtt + Dηt − Tηxx + Bηxxxx + Kη = nw · T · nw|z=η + ps, (A 9)

where we have used nw = (0, 1)+ O(ε) and the negligible longitudinal approximation
X t ≈ (0, ηt), X tt ≈ (0, ηtt). Although we have not specified the sizes of u, v and p, we
can still linearise the right-hand side with respect to ε, (equivalently with respect to ηx ) to
obtain

nw · T · nw|z=η + ps = ps − p + 2μ
(1 + η2

x)
((1 − η2

x)vz − ηx(uz + vx))

≈ ps − p + 2μ(vz − ηx(uz + vx)). (A 10)

Another condition on the fluid–substrate interface is the no-slip condition,

u = X t, or

{
u · nw = X t · nw,

u · tw = X t · tw.
(A 11)

Since longitudinal motion is neglected, i.e. X t · tw ≈ 0, then u · tw = X t · tw implies that
u + vηx ≈ 0. If v is no larger in size than u (in fact it will be O(ε) smaller) then we can
neglect vηx to get the condition

u = 0 at z = η. (A 12)

Similarly, u · nw = X t · nw implies that −ηx u + v = −ηx Xt + ηt, but (A 9) and the
assumption Xt � ηt simplify this to

v = ηt at z = η. (A 13)

Thus, our three conditions on the plate, now in terms of η, are

v = ηt, (A 14)

u = 0, (A 15)

ρwbηtt + Dηt − Tηxx + Bηxxxx + Kη = ps − p + 2μ(vz − ηx(uz + vx)), (A 16)

with all variables evaluated at z = η.
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Appendix B. Derivation of the energy equation

The full linearised system in primitive variables are (dropping the tildes for
perturbations introduced in § 3)

R (ut + ūux + vūz) = −px + uxx + uzz, (B 1)

R (vt + ūvx) = −pz + vxx + vzz, (B 2)

ux + vz = 0, (B 3)

where ū(z) = z(2 − z). The boundary conditions are found by linearizing the kinematic,
tangential stress and normal stress balance equations (2.2a), (2.2b) and (2.11) at the
interface, and the no-slip and elastic substrate deflection equations (2.12a) and (2.12b)
at the wall. Linearization is about the base state (2.15a,b). The equations are (their normal
mode form is given in § 3):

z = 1:

v = ht + hx , (B 4)

uz + vx + 2 h = 0, (B 5)

−p + 2vz + 2 cot(β)h = Shxx . (B 6)

z = 0:

u = −2η, (B 7)

v = ηt, (B 8)

AIηtt + ADηt − ATηxx + ABηxxxx + AKη − 2(cotβ)η = −p + 2 (vz − 2ηx) . (B 9)

Multiplying (B 1) by u and (B 2) by v and adding, gives

R (uut + uūux + uūzv + vvt + vūvx) = −u · ∇p + u · ∇2u, (B 10)

where u = (u, v). The energy equation is found by integrating (B 10) over the domain
Ω = [−(L/2),L/2] × [0, 1], where L is the wavelength of a periodic disturbance (i.e.
L = 2π/α) – we also denote the boundary of Ω by Γ . We follow Kelly
et al. (1989) and also provide details due to the additional effects of wall
elasticity. Integration by parts coupled with spatial periodicity immediately yields∫∫

Ω
ūuux dx dz = ∫ 1

0 ū[ 1
2 u2]L/2

−(L/2) dz = 0 and similarly
∫∫

Ω
ūvvx dx dz = 0, and, hence, the

integral of (B 10) becomes

∂

∂t

∫∫
Ω

1
2

R
(
u2 + v2) dx dz +

∫∫
Ω

2R(1 − z)uv dx dz =
∫∫

Ω

(−u · ∇p + u · ∇2u
)

dx dz.

(B 11)

On use of (B 3) the integrand of the first term on the right-hand side of (B 11) is −u · ∇p =
−∇ · ( pu), and by the divergence theorem we find that∫∫

Ω

(−u · ∇p) dx dz =
∫ L/2

−(L/2)
( pv)|z=0 dx −

∫ L/2

−(L/2)
( pv)|z=1 dx . (B 12)

In arriving at (B 12) we note that the contributions at the boundaries x = ±L/2 cancel
since periodicity implies that

∫ 1
0 ( pu)|x=−(L/2) dz = ∫ 1

0 ( pu)|x=L/2 dz. To compute the first
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integral on the right-hand side of (B 12),we use (B 9) to eliminate p at z = 0, and (B 8) to
eliminate v in favour of ηt in almost all terms. The result is

∫ L/2

−(L/2)
( pv)|z=0 dx = −1

2
∂

∂t

∫ L/2

−(L/2)

(
AIη

2
t + ATη

2
x + ABη

2
xx + (AK − 2 cot(β))η2) dx

− AD

∫ L/2

−(L/2)
η2

t dx + 2
∫ L/2

−(L/2)
v (vz − 2ηx) |z=0 dx. (B 13)

From (B 7) we have −2ηx = ux and, hence, the last term in (B 13) vanishes by conservation
of mass. Next we consider the second integral on the right-hand side of (B 12) and now
use the kinematic condition (B 4) and normal stress balance (B 6) to eliminate p in favour
of h to find

−
∫ L/2

−(L/2)
pv|z=1 dx = − ∂

∂t

∫ L/2

−(L/2)

(
1
2

Sh2
x + (cotβ)h2

)
dx − 2

∫ L/2

−(L/2)
vvz|z=1 dx .

(B 14)

Finally, we consider the viscous term on the right-hand side of (B 11) and use integration
by parts and periodicity to yield

∫∫
Ω

u · ∇2u dx dz = −
∫∫

Ω

(|∇u|2 + |∇v|2) dx dz +
∫ L/2

−(L/2)

(
[uuz]1

0 + [vvz]1
0

)
dx .

(B 15)
With these results and defining

E = R
∫∫

Ω

(u2 + v2) dx dz + S
∫ L/2

−(L/2)
h2

x dx

+
∫ L/2

−(L/2)
(AIη

2
t + ATη

2
x + ABη

2
xx + AKη

2) dx + 2 cotβ
∫ L/2

−(L/2)
h2 dx, (B 16)

(B 11) is rearranged as

1
2
∂E
∂t

= −
∫∫

Ω

(|∇u|2 + |∇v|2) dx dz − 2R
∫∫

Ω

uv(1 − z) dx dz

− 2
∫ L/2

−(L/2)
vvz|z=1 dx +

∫ L/2

−(L/2)

(
[uuz]1

0 + [vvz]1
0

)
dx

− AD

∫ L/2

−(L/2)
η2

t dx + 2 cotβ
∫ L/2

−(L/2)
ηηt dx . (B 17)

The physical origin of the terms on the right-hand side of (B 17) are, in order of
appearance, viscous dissipation and Reynolds stresses over the whole domain, work
done by the shear at the interface and the wall, wall damping inherent in the model,
and work done by the wall against the hydrostatic pressure. The last term is replaced
by 2 cotβ

∫ L/2
−(L/2) ηv dx using boundary condition (B 8). The final form (6.3) follows by
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rearranging the work done by the shear

− 2
∫ L/2

−(L/2)
vvz|z=1 dx +

∫ L/2

−(L/2)

(
[uuz]1

0 + [vvz]1
0

)
dx

=
∫ L/2

−(L/2)

[
(uuz − vvz)|z=1 − (uuz + vvz)|z=0

]
dx

=
∫ L/2

−(L/2)
u(uz − vx)|z=1 dx −

∫ L/2

−(L/2)
u(uz + vx)|z=0 dx, (B 18)

and these are the terms SURFS and WALLS appearing in (6.3).
The final step is the calculation of the various terms in (6.3) using the computed

eigensolutions. We illustrate this for the Reynolds stress term REYNS. Introducing the
normal mode solutions of § 3, and using superscripts ‘∗’ to denote complex conjugates,
we have

REYNS = −2R
∫∫

Ω

(1 − z)uv dx dz

= 2R
∫∫

Ω

(1 − z)
(
φz eiα(x−ct) + φ∗

z e−iα(x−c∗t)
)

× (
iαφ eiα(x−ct) − iαφ∗ e−iα(x−c∗t)

)
dx dz

= 4 iπR e2αcit
∫ 1

0
(1 − z)

(
φφ∗

z − φ∗φz
)

dz

= −8πR e2αcit
∫ 1

0
(1 − z) Im

[
φφ∗

z

]
dz, (B 19)

where Im denotes the imaginary part of a quantity. Analogous calculations hold for all
other terms, enabling a numerical computation of contributing terms.
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