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Bounding Causal Effects in Ecological Inference Problems*

ALEJANDRO CORVALAN, EMERSON MELO, ROBERT SHERMAN AND

MATT SHUM

T his note illustrates a new method for making causal inferences with ecological data.
We show how to combine aggregate outcomes with individual demographics from
separate data sources to make causal inferences about individual behavior. In addressing

such problems, even under the selection on observables assumption often made in the treatment
effects literature, it is not possible to identify causal effects of interest. However, recent results
from the partial identification literature provide sharp bounds on these causal effects. We apply
these bounds to data from Chilean mayoral elections that straddle a 2012 change in Chilean
electoral law from compulsory to voluntary voting. Aggregate voting outcomes are combined
with individual demographic information from separate data sources to determine the causal
effect of the change in the law on voter turnout. The bounds analysis reveals that voluntary
voting decreased expected voter turnout, and that other causal effects are overstated if the
bounds analysis is ignored.

Ecological inference (EI) problems are a class of data combination problems in
which aggregate outcome information from one data source is combined with
individual demographic information from a separate data source to make inferences

about individual outcomes. The objectives of EI include description and prediction of
individual behavior, as well as causal inference about individual behavior. King (1997)
treats EI problems where the principal objective is description of individual behavior in
political science applications. King, Rosen and Tanner (2004) contain articles addressing
all three objectives from a number of different fields, including political science, economics,
and epidemiology.

This note applies new results from the partial identification literature to make causal
inferences with ecological data. Specifically, we use new methods in Fan, Sherman and
Shum (2014) to infer the causal effect of a change in Chilean voting law on voter turnout
in mayoral elections.

In the absence of the data combination problem, standard results from the treatment
effects literature can be used to investigate causal effects. Specifically, if data on outcomes
and covariates are observed in the same data set, then it is straightforward, under
standard assumptions using known methods, to identify and consistently estimate the
usual causal effects of interest, such as the average treatment effect (ATE) or the
average treatment effect on the treated (ATT). For example, one could apply propensity
score methods under a standard selection on observables assumption, as in Rosenbaum and
Rubin (1983).
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However, Fan et al. (2014) show that these causal effects, even under the selection
on observables assumption, cannot be identified when aggregate outcome data is
combined with individual demographic data from separate sources. The information
lost through aggregation precludes identification. However, these authors also establish
upper and lower bounds on ATE and ATT, which are valid under data combination. Moreover,
these bounds are sharp, meaning that they are the narrowest bounds possible under the
maintained assumptions.

We apply these results to our ecological data to estimate bounds on causal effects
of the change from compulsory to voluntary voting on turnout in Chilean mayoral elections.
In this application, aggregate turnout data must be combined with individual-level census
data in order to make causal inferences about the effect of this policy change on voter turnout.
For Chile as a whole, the standard difference analysis estimates almost a 27 percent decrease
in turnout for the voting-age population under the new law. The robust bounds analysis,
on the other hand, estimates anywhere from a 15 percent decrease to 1.2 percent increase
in turnout. We show that this pattern holds for many other subsets of the population:
ignoring the bounds analysis results in an overstatement of the negative effect of the
change from compulsory to voluntary voting on turnout for the voting-age population under the
new law.

THE EI FRAMEWORK AND BOUNDING CAUSAL EFFECTS

Here, we introduce the EI model considered in this paper. Then, using the results in
Fan et al. (2014), we define sharp population bounds on ATE and ATT and show how to
estimate these bounds.

Let D denote an observed binary treatment assignment indicator. That is, D = 1 if an
individual is assigned to the treatment group and D = 0 if an individual is assigned to the
control group. We adopt Rubin’s “potential outcomes” approach to describe causal effects.
This approach views each individual as having a treatment outcome Y1 and a control outcome
Y0, but only one of Y1 and Y0 is actually observed. The observed outcome is represented as
Y = Y1D + Y0(1−D). Let Z denote observed covariates, which can affect both D and (Y1, Y0).

The standard “potential outcomes” approach requires that the analyst observe (Y, D, Z) for
each individual in the sample. In the EI context, however, we observe separate outcome and
covariate data sets. The outcome data set contains (Y, D) while the covariate data set contains
(D, Z). Both data sets contain the treatment variable D that links the two sources of
information. The objective is to combine these data sources to make inferences about the effect
of treatment on outcomes.1

Next, we state two assumptions maintained in what follows. Let Ƶ denote the support
of the covariate vector Z. For each z∈Ƶ, let p(z) = {D = 1|Z = z}, the so-called
propensity score.

A1. SELECTION ON OBSERVABLES: For each z∈Ƶ, (Y1, Y0) is independent of D given Z = z.
A2. OVERLAP: For each z∈ Ƶ, 0< p(z)< 1.
Assumptions A1 and A2 are familiar from the treatment effects literature.
The selection on observables assumption A1 constitutes a “middle ground” between

the benchmark of pure randomization and the opposite extreme of pure selection bias.
Pure randomization is the assumption that (Y1, Y0, Z), the vector of potential outcomes and

1 In some applications, we observe separate outcome and covariate data sets for each treatment. That is, we
observe (Y1, D = 1) and (D = 1, Z), the treatment outcomes and covariates, in separate data sets. Likewise, we
observe (Y0, D = 0) and (D = 0, Z), the control outcomes and covariates, in separate data sets.
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observed covariates, is independent of treatment assignment, D. This ideal is achieved,
for example, in randomized trials or laboratory experiments, and guarantees that the joint
distribution of all variables that affect the outcome of interest – observed and unobserved – is
the same in both the treatment and control groups. Under pure randomization, no variables
are confounded with treatment assignment. This allows the researcher to attribute
differences between treatment and control outcomes to the only difference between the two
groups, namely, the treatment itself. In other words, under pure randomization, causal effects
of the treatment can be inferred from simple comparisons of treatment and control outcomes.
On the other hand, under pure selection bias, both observed and unobserved variables
are confounded with treatment assignment, making causal effects of the treatment impossible
to infer from simple outcome comparisons. By contrast, when A1 holds, there is
conditional randomization: given Z, there are no confounding variables. That is, given Z,
the joint distribution of all unobserved variables that affect outcomes is the same in the
treatment and control groups. A1 allows observed variables to be confounded with the treatment
in the sense that the joint distribution of observed variables is allowed to be different in
the treatment and control groups. However, A1 rules out the possibility that given Z,
unobserved variables make selection into the treatment group more (or less) likely than
selection into the control group.

The overlap assumption A2 states that for each z∈ Ƶ, there is a positive probability
that some individual is assigned to the treatment group and a positive probability
that some individual is assigned to the control group. Assumption A2 guarantees that in
large samples there will be both treatment and control outcomes for each z∈ Ƶ. Assumptions
A1 and A2 make valid comparison of treatment and control outcomes possible for
each z∈ Ƶ.

Fan et al. (2014) show that under data combination, even if A1 and A2 hold,
common causal effects like ATE and ATT cannot be identified. Instead, they derive sharp
upper and lower bounds on such causal effects using inequalities from the copula literature.
We now develop these bounds.

Recall the propensity score p(Z) = {D= 1 | Z}. Let W = 1/p(Z) and V= 1/[1 − p(Z)]. Define
p1= {D= 1}, the marginal probability of receiving treatment. Define p0 = 1 − p1.
Foreshadowing our application, we develop notation for the special but common case in which
the treatment and control outcomes Y1 and Y0, and therefore the observed outcomes Y, are
binary.

Define p00= {Y= 0 |D= 0}, p01= {Y= 0 |D= 1}, and p11= {Y= 1, D= 1}. Let X
denote an arbitrary random variable. For d = 0, 1, write FX|D(⋅ | d) for the cumulative
distribution function of X given D = d. Write QX |D(⋅ | d) for the quantile function of X given
D = d. Define the average treatment effect ATE and the average treatment effect on the treated
ATT as follows:

ATE � ðY1�Y0Þ= Y1=1f g� Y0 = 1f g;
ATT � ðY1�Y0 j D= 1Þ= Y1 = 1 j D= 1f g� Y0 = 1 jD= 1f g:

The following result is a special case of theorem 3.2 in Fan et al. (2014).

THEOREM 1: Suppose Var(X)<∞ and Var(V)<∞. If A1 and A2 hold, then

μL1�μU0 ≤ATE≤ μU1 �μL0 ;

p11=p1�μU0 j 1 ≤ATT ≤ p11=p1�μL0 j 1;
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where

μL1 = p1

ðp01
0
QW jDðu j1Þdu;

μU1 = p1

ð1
p01

QW jDðu j1Þdu;

μL0 = p0

ðp00
0
QV jDðu j0Þdu;

μU0 = p0

ð1
p00

QV jDðu j0Þdu;

μL0 j 1 =
p0
p1

ðp00
0
QV=W jDðu j0Þdu;

μU0 j 1 =
p0
p1

ð1
p00

QV=W jDðu j0Þdu:

Let (Yi, Di), i = 1,… , n1 denote iid observations of outcome and treatment variables from the
outcome data set(s). Let (Dj, Zj), j = 1,… , n2 denote iid observations of treatment and
demographic variables from the covariate data set(s). We estimate the bounds in Theorem 1
by plugging in the sample estimates for the statistical objects in the formulas. Specifically, we
use (Yi, Di), i = 1,… , n1 to construct the sample proportions p̂1; p̂0; p̂01; p̂00; and p̂11. For

example, p̂1= 1
n1

Pn1
i=1

fDi = 1g, p̂01= 1
n1p̂1

Pn1
i=1

fYi = 0; Di=1g, p̂11= 1
n1

Pn1
i=1

fYi = 1; Di=1g, and so on.

We use (Dj, Zj), j = 1,… , n2 to construct p̂ðZÞ, a consistent estimator of the propensity score.
There are many ways to estimate the propensity score. One can use parametric estimation pro-
cedures like probit or logit, semiparametric estimation procedures, or nonparametric estimation
procedures. The estimated quantile functions above are functions of the estimated quantile function
of the propensity score. For ease of notation, define P = p(Z). For d = 0, 1, we define the
estimated quantile function of P given D = d to be Q̂P jDðu j dÞ= inffa : F̂P jDða j dÞ> ug; where
F̂P jDð� j dÞ is the estimated empirical cumulative distribution function of P given D = d. That is,

with P̂j = p̂ðZjÞ, F̂P jDða j dÞ= 1
n2p̂d

Pn2
j=1

fP̂j ≤ a; Dj = dg. Using the fact that W is a monotone

decreasing function of P, and V and V/W are monotone increasing functions of P, we get that

Q̂W jDðu j dÞ=1=Q̂PjDð1�u j dÞ;
Q̂V jDðu j dÞ=1=½1�Q̂P jDðu j dÞ�;
Q̂V=W jDðu j dÞ=Q̂P jDðu j dÞ=½1�Q̂P jDðu j dÞ�:

Finally, the integrals in the expressions above are numerical integrals over the indicated subsets
of the unit interval.

Theorems 6.1 and 6.2 in Fan et al. (2016) can be used to prove that the vector of lower and
upper bound estimators for both ATE and ATT are

ffiffiffi
n

p �consistent and jointly asymptotically
normally distributed estimators of their population counterparts. This result permits us to apply
the methods in Stoye (2009) to compute asymptotic confidence intervals for ATE and ATT.
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APPLICATION TO CHILEAN VOTING SYSTEM REFORM

From the time democracy was reintroduced in Chile in 1989 until 2012, registration was
voluntary while voting was compulsory for registered voters. In early 2012, the law was
changed making registration automatic and voting voluntary in presidential, parliamentary, and
municipal elections. What effect did the change in the law have on election turnout? We answer
this question using the new methods presented in the last section. Since the first elections under
the new system were the municipal elections in 2012, we focus our analysis on the most
important of the municipal races, namely, the races for mayor.

Chile is divided into 15 regions, which are subdivided into communes or counties. Each
commune is governed by a municipality headed by a mayor and a municipal council. Municipal
elections in Chile have taken place every four years since 1992. In each election, both the mayor
and the council members are elected. Since 2004, the mayor has been elected separately from
the council members. Mayoral candidates compete for one seat in each commune and are
elected under plurality rule.

We have aggregate voting data for the first mayoral elections under voluntary voting in 2012
as well as aggregate voting data for the first direct mayoral election in 2004, when voting
was still compulsory. Our source of voting data is Instituto Nacional de Estadisticas (INE), the
Chilean National Statistics Office. Our source of covariate data is Encuesta de Caracterizacion
Socioeconomica Nacional (CASEN), the most complete Chilean socioeconomic survey. This
survey is conducted by the Chilean government every two to three years in all the communes in
the country. Unlike the aggregate voting data from INE, the CASEN data is individual-level
data. Corresponding to aggregate voting data in the 2004 election, we use the 2003 CASEN
survey, with a sample size of 257,077. Corresponding to aggregate voting data in the 2012
election, we use the 2011 CASEN survey, with a sample size of 200,302. We consider data for
individuals who are at least 18 years old, the minimum voting age.

DATA ANALYSIS AND RESULTS

A Naïve Measure

A naïve measure of the causal effect of the new voting law on turnout is the simple difference
between turnout proportions in 2012 and 2004. This measure is an unbiased estimate of the
causal effect of the change from compulsory to voluntary voting provided the distribution of all
observed and unobserved variables affecting turnout is the same in both election years. But this
is implausible. For example, the distribution of household income is different in 2004 and 2012,
and income is likely to affect turnout. Age may also be a confounding factor. Indeed, the change
to voluntary voting was motivated in part by the desire to increase turnout among young voters.
Moreover, even if a strong exogeneity condition like A1 holds, standard linear and binary
regression methods are impracticable because of the data combination problem. Similar
objections can be raised about simple difference-in-differences methods as well as standard
linear and binary regression versions of the difference-in-differences techniques.

A New Approach

Given the inadequacy of the naïve difference measure, we turn to our new approach. In the
Chilean voting application, D = 1 corresponds to being eligible to vote in voluntary Chilean
mayoral elections in 2012 and D = 0 corresponds to being eligible to vote in compulsory
Chilean mayoral elections in 2004. Y1 is a binary outcome equal to unity if, under voluntary
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voting in 2012, an eligible voter turns out to vote, and 0 otherwise. The control outcome Y0 is
a binary outcome equal to unity if, under compulsory voting in 2004, an eligible voter turns out
to vote, and 0 otherwise.2

Consider assumptions A1 and A2 in the Chilean voting application. Start with A1, the
selection on observables assumption. As discussed in the EI Framework and Bounding Causal
Effects section, A1 is a weaker assumption than pure randomization. The latter assumption
requires that the distribution of all variables that affect turnout, including observed covariates,
be the same in the 2004 and 2012 samples. However, Table 1 suggests that the distribution of
observed covariates Z is different in the two samples. By contrast, assumption A1 is flexible
enough to allow these differences in covariate distributions. At the same time, A1 requires that,
conditional on observed covariates like income and age, all unobserved variables that affect
turnout are independent of D, the treatment assignment. For example, one unobserved variable
that may affect turnout decisions is mayoral candidate quality. Assumption A1 requires that,
conditional on observed covariates, the distribution of mayoral candidate quality is the same in
2004 and 2012. While such an assumption is untestable from our data, we feel that by choosing
two election cycles relatively close in time (with many mayoral candidates contesting elections
in both years), the assumption is plausible with respect to this unobserved variable.

We discuss evidence for overlap assumption A2 after introducing the propensity score model
below. ATE is the average change in turnout in mayoral elections in 2012 relative to 2004 due to
the change from compulsory to voluntary voting, while ATT is the average change in turnout in
these elections due to the change in voting laws for those eligible to vote in 2012. As the current
law makes registration automatic, ATT is arguably the more interesting causal measure.

Here, we present estimated bounds on ATE and ATT for the entire population of Chile as well
as for interesting subsets of this population, such as the population of men, the population of
women, the 15 regions of Chile, and different age groups.

The observed covariate vector Z = (Z1,… , Z6) = (loginc, age, educ, gender, unemp,
married). Table 1 describes each component of Z and gives corresponding summary statistics
for Chile.

For a given population subset of interest, let (Yi, Di), i = 1,… , n1 denote observations of
outcome and treatment variables from the combined INE outcome data sets from 2004 and
2012, and let (Dj, Zj), j = 1,… , n2 denote observations of treatment and demographic variables

TABLE 1 Summary Statistics for Chile

2003 2011

Variables Description Mean SD Mean SD

Loginc Log of annual household income 11.1 1.2 11.9 1.2
Age In years 42.7 17.3 44.3 18.0
Educ Completed years of schooling 8.7 4.4 10.1 4.3
Gender 1 If female 0.51 0.49 0.53 0.49
Unemp 1 If unemployed 0.05 0.22 0.04 0.20
Married 1 If married 0.60 0.49 0.55 0.49
Sample size 173,625 144,428

2 For convenience, we use registration as a proxy for voting in 2004. As voting is compulsory in 2004, the
differences between those who register and those who vote in 2004 is very small. Also, under compulsory voting,
Y0 = 0 if an eligible voter is not registered, as registration is a necessary condition for voting.
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from the combined CASEN covariate data sets from 2003 and 2011. Note that n1 is the sample
size of the combined INE outcome data sets and n2 the sample size of the combined CASEN
covariate data sets.

For estimating the bounds on ATE and ATT, we first estimate the propensity score
p(Zj) = {Dj = 1 | Zj} using the CASEN data (Dj, Zj), j = 1,… , n2 from each population subset
of interest. For the country as a whole and for each of the 15 regions of Chile we estimate the
propensity score by estimating the probit regression:

Dj = 1 j Zj
� �

=Φðβ0 + β1Z1j + β2Z2j + β3Z3j + β4Z4j + β5Z5j + β6Z6jÞ:

Note that the probit assumption implies that fDj = 1 j Zjg= fDj = 1 j Z 0
jβg, where β = (β0,

β1,… , β6). Thus, conditioning on the vector Zj is equivalent to conditioning on the linear index
Z 0
jβ. We also estimate propensity score models for men and women separately, and for separate

age categories 18 − 24, 25− 29, 30− 34, 35− 39, 40 − 44, 45 − 49, 50− 54, 55− 59, 60 − 64,
65 − 69, and 70 − 74.3

Table 2 presents coefficient estimates and standard errors for the probit regression for the entire
country. All the variables make a statistically significant marginal contribution and so have power to
predict treatment assignment. The first five variables make positive contributions, whereas the
married variable makes a negative contribution. The significant positive coefficient on loginc implies
that ceteris paribus, the higher a person’s income, the more likely that person is an eligible voter in
2012 rather than in 2004. Similar interpretations can be made for the other variables in the model.

At this point it is convenient to return to the overlap assumption A2. A2 says that for each
possible value of Z, there is a positive probability of obtaining an observation from 2012 as well
as from 2004. Figure 1 is a plot of the estimated propensity score ^fD= 1 j Z 0β̂g versus its
estimated index Z 0β̂, where β̂ is the probit maximum likelihood estimator (of β) whose estimated
components are given in Table 2. For each possible value of the estimated index Z 0β̂, the
estimated propensity score is strictly between 0 and 1, an informal visual confirmation of A2. In
Figure 2, we provide corresponding histograms of the estimated propensity scores in both the
2004 and 2012 subsamples. Note that they share large regions of common support, providing
additional evidence of the plausibility of A2.

Before discussing the results of the bounds analysis, it is instructive to make the following
observation. Suppose that the set of observed covariates Z has no power to predict treatment
assignment D. This holds, for example, if D is independent of Z. Now, if D is independent of Z
and A1 holds, then (Y1, Y0, Z) is independent of D, which is the pure randomization assumption.
Under pure randomization, ATE and ATT are equal and the simple difference estimator

TABLE 2 Estimated Propensity Score Model for Chile

Variables Coefficient SE

Loginc 0.32 0.002
Age 0.008 0.0002
Educ 0.034 0.0006
Gender 0.074 0.005
Unemp 0.12 0.01
Married −0.15 0.005
n2 318,053

3 The separate models for men and women have the same form as the probit regression above, except that the
gender variable Z4 is dropped from the model. Similarly, the probit regression for the separate age categories has
the same form except that the age variable Z2 is dropped.
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Pn1
i=1

Yi Di

Pn1
i=1

Di

�
Pn1
i=1

Yið1�DiÞ
Pn1
i=1

ð1�DiÞ
is a consistent estimator of both ATE and ATT. In other words, under pure

randomization, no bounds analysis is needed and estimates of ATE and ATT are identical. As we now
show, our results belie the pure randomization assumption and support the need for bounds analysis.

Figure 3 displays 95 percent confidence intervals for ATE and ATT for the country as
a whole, as well as for men and women separately. For better visual effect, these confidence
intervals are represented as boxes, where the length of a box is the length of the corresponding
confidence interval. Focus on the box for ATE for the country. The ordinate of any point
on the top (bottom) of this box is the upper (lower) bound estimate for ATE given in Theorem 1

Fig. 1. Informal visual confirmation of the overlap assumption A2 for the country as a whole
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Fig. 2. Estimated densities for the probability of voting in 2004 and 2012
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plus a standard error correction computed using the procedure of Stoye (2009).4 The box is split
in the middle by a line. The starred point represents the simple difference estimate defined
in the last paragraph.5 Corresponding statements apply to the other ATE boxes and to the
ATT boxes.

Consider the ATE boxes in Figure 3. For the country as a whole as well as for men and women
separately, the simple difference estimates suggest that voluntary voting decreased voter turnout.
This suggestion is confirmed by the robust bounds analysis: each 95 percent confidence interval
upper bound is below the zero level.

Next consider the ATT boxes in Figure 3 and recall that ATT may be the more relevant
causal measure since registration and therefore eligibility is automatic under current
Chilean law. The robust bounds do not contain the simple difference estimates. Under A1,
this is strong evidence against the pure randomization assumption and strong evidence for
the need for this type of bounds analysis. If the bounds analysis were ignored, the negative
effect of voluntary voting on turnout for eligible voters in 2012 would be overstated. In fact,
all three ATT boxes contain the point 0, although just barely. This suggests that we cannot
reject the hypothesis that voluntary voting had no effect on turnout in 2012 at the
5 percent level.

Figure 4 displays bounds results for ATE and ATT for the 15 regions comprising Chile. As
a reference point, the last box in Figure 4 represents the results in Figure 3 for the country as
a whole. The results for the individual regions are qualitatively the same as those for the country
as a whole. All the ATE boxes are below the zero level and, with the exception of Region 15,

–0.5

0

0.5

Country Men Women

ATE

–0.5

0

0.5

Country Men Women

ATT

Fig. 3. 95 percent confidence intervals, represented as boxes, for average treatment effect (ATE) and
average treatment effect on the treated (ATT) of the change from compulsory to voluntary voting on turnout
in Chile, for the country as a whole and by gender

4 As mentioned in the EI Framework and Bounding Causal Effects section, the procedure of Stoye (2009) is
valid under joint asymptotic normality of the lower and upper bound estimators given in Theorem 1. The joint
asymptotic normality results are given in theorem 6.1 and theorem 6.2, respectively, in Fan et al. (2016). The
asymptotic standard errors in these theorems are estimated with the bootstrap to produce our standard error
corrections. The standard error corrections in this application are typically negligible compared with the length of
the bounds.

5 The turnout difference estimates can be taken as exact population differences. The reason is that they are
based on very large sample sizes, making the length of the corresponding confidence intervals 0 for all practical
purposes.
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Fig. 4. 95 percent confidence intervals, represented as boxes, for average treatment effect (ATE) and
average treatment effect on the treated (ATT) of the change from compulsory to voluntary voting on turnout
in Chile, for the country as a whole and by region
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Fig. 5. 95 percent confidence intervals, represented as boxes, for average treatment effect (ATE) and
average treatment effect on the treated (ATT) of the change from compulsory to voluntary voting in Chile, by
age category
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contain the corresponding simple differences estimates. The ATT boxes for Regions 5, 11, 12,
and 13 are all below the zero level, implying that voluntary voting has, at the 5 percent level, a
statistically significant negative effect on turnout in these regions. In all regions except possibly
Regions 1 and 13, ignoring the bounds analysis and taking the simple difference estimates at
face value overstates the negative effect of voluntary voting on turnout for those eligible to vote
in 2012.

Finally, consider Figure 5, which displays results for ATE and ATT conditional on age. The
results are qualitatively similar to those presented in the previous figures. However, focus on the
two youngest age categories, and recall that one of the motivations for changing from
compulsory to voluntary voting was to try to increase turnout among young voters. The ATE
and the ATT boxes both straddle the zero level for the 18–24 and 25–29 age categories, and the
ATT box for the 18–24 age category is nearly above the zero level. While not conclusive at
the 5 percent significance level, the results do not rule out the possibility that voluntary
voting had a positive effect on turnout among younger voters, in line with the intended goals
of the policy change.

CONCLUSION

This note shows how to apply new partial identification results from the treatment effects
literature on data combination to make inferences about causal effects in EI problems.
More broadly, the need to combine different data sources in causal effect modeling appears
commonplace in political science. Other potential applications include measuring the effect of
introducing electronic voting on vote outcomes, the effects of war on health outcomes, or the
effects of political turmoil on economic activity. In all these cases, one needs to combine
aggregate (precinct-level, regional-level, or country-level) outcome data with demographic
confounders measured at the individual level.

We apply our methodology to bound causal effects of a change from compulsory to voluntary
voting on turnout in recent Chilean mayoral elections. Our bounds analysis reveals that the
change had a negative effect on expected turnout and that ignoring this analysis leads to
overstating the negative effect of the change on those who are eligible to vote under the current
voluntary voting laws. We plan to extend our analysis to recent parliamentary and presidential
elections in Chile.
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