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Stability of flow in a channel with
longitudinal grooves
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The travelling wave instability in a channel with small-amplitude longitudinal
grooves of arbitrary shape has been studied. The disturbance velocity field is always
three-dimensional with disturbances which connect to the two-dimensional waves in
the limit of zero groove amplitude playing the critical role. The presence of grooves
destabilizes the flow if the groove wavenumber β is larger than βtran ≈ 4.22, but
stabilizes the flow for smaller β. It has been found that βtran does not depend on the
groove amplitude. The dependence of the critical Reynolds number on the groove
amplitude and wavenumber has been determined. Special attention has been paid
to the drag-reducing long-wavelength grooves, including the optimal grooves. It has
been demonstrated that such grooves slightly increase the critical Reynolds number,
i.e. such grooves do not cause an early breakdown into turbulence.
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1. Introduction
It has been known since the original work of Reynolds (1883) that surface

roughness plays an important role in the laminar–turbulent transition. This problem
has most often been studied in the context of the identification of conditions when
the presence of roughness can be ignored, i.e. when the wall can be viewed as
hydraulically smooth. A similar question for turbulent flows, but posed in the context
of drag determination, has been studied starting with Hagen (1854) and Darcy (1857);
excellent reviews have been given by Jimenez (2004) and Herwig, Gloss & Wenterodt
(2008).

The analysis of roughness effects must begin with modelling the wall geometry.
There is an uncountable number of possible roughness forms and even the term
‘roughness’ is not well defined; it only means that the wall is not smooth. It might
therefore be more instructive to carry out the discussion by referring to the effects
of surface roughness as the effects of surface topography. Typical experimental
investigations use artificially altered surface topographies (artificially created roughness
forms), e.g. sets of cones, spheres, prisms, parallelepipeds, etc., with different spatial
distributions (Schlichting 1979). Sand paper with various grain sizes is an especially
popular roughness representation due to the belief that it accounts for the randomness
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of roughness forms. The most common measure of topographic features (roughness
properties) is the equivalent sand roughness (Moody & Princeton 1944); see Herwig
et al. (2008) for recent extensions of this concept. The most effective method for the
theoretical modelling of surface topography relies on the reduced geometry model
(Floryan 1997). The global geometric properties are extracted using projection of
the surface geometry onto a convenient functional space, e.g. Fourier space, with
the expectation that only a few leading Fourier modes from the Fourier expansion
representing the surface topography matter. This technique permits the identification
of the features of the topography that have a decisive influence on the flow response,
with irrelevant geometric details removed from consideration so they do not mask
the essential mechanisms. Indeed, it has been demonstrated that, in many instances,
it is sufficient to use only the leading Fourier mode to capture the main physical
processes with accuracy sufficient for most applications (Floryan 2007).

Use of the reduced geometry model leads to the need for the determination of the
basic state as well as the disturbance field in irregular domains bounded by walls
with shapes expressed in terms of arbitrary Fourier expansions. A systematic analysis
of a large number of configurations is possible using either the immersed boundary
conditions method (IBC) (Szumbarski & Floryan 1999; Husain, Floryan & Szumbarski
2009; Husain & Floryan 2010; Mohammadi & Floryan 2012; Moradi & Floryan 2012)
or the domain transformation method (DT) (Husain & Floryan 2010; Mohammadi
& Floryan 2012). Both techniques permit the determination of the flow details with
spectral accuracy for the complete range of topographies of practical interest and a
seamless transition between different topographic forms. Methods based on the domain
perturbation have limited applicability and are unsuitable for this class of problems
(Cabal, Szumbarski & Floryan 2001).

There is a large amount of experimental data dealing with the effects of surface
topography (roughness) on the laminar–turbulent transition (Schlichting 1979).
A frequently used criterion (Morkovin 1990) for the determination of the critical
roughness size states that the roughness Reynolds number Rek = Ukk/ν < 25 for
the roughness to be active, where Uk is the undisturbed velocity at height k. This
criterion does not provide any insight into the flow mechanics and is unable to deal
with so-called distributed surface roughness. A more fundamental understanding of
the mechanics of the flow response has been achieved only recently (Floryan 2007)
and has led to the formulation of a formal criterion for hydraulic smoothness. This
criterion states that the surface topography is hydraulically active only when it is
able to induce flow bifurcation (Floryan 2007) and the relevant critical conditions can
be identified using linear stability theory. The existing analyses have been focused
on two-dimensional (independent of the spanwise coordinate) distributed topography
(distributed roughness). It has been found that two-dimensional distributed roughness
destabilizes travelling wave disturbances (Floryan 2005; Asai & Floryan 2006),
with the two-dimensional waves determining the critical conditions (Floryan 2007).
The same roughness can amplify disturbances in the form of streamwise vortices
(Floryan 2007). Depending on the roughness amplitude and wavenumber, and the
flow Reynolds number, the first bifurcation can lead to either the onset of travelling
waves or streamwise vortices. Qualitatively similar flow responses have been found
in the case of Couette flow (Floryan 2002) and flow in a converging–diverging
channel (Floryan 2003; Floryan & Floryan 2010). The same roughness has been
found to increase transient growth with the optimal disturbances having the form
of streamwise vortices (Szumbarski & Floryan 2006). The effect of transition in the
form of roughness patterns is addressed by Floryan & Asai (2011). Roughness may
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Stability of flow in a channel with longitudinal grooves 615

appear in the form of a roughness patch and the effect of the beginning and the end
of the patch and the question of how quickly the flow recovers from such transition
have been studied by Inasawa, Floryan & Asai (2014).

The results discussed above apply to distributed topography (distributed roughness)
that has a two-dimensional form and is transverse with respect to the flow direction.
The present analysis is focused on the same two-dimensional topography but oriented
parallel to the flow direction and, thus, it contributes to the better understanding of
the effects of distributed roughness. It is convenient to refer to this form of surface
topography as longitudinal grooves or riblets, as is the case in turbulent flows. It is
well known that riblets can reduce frictional drag in turbulent flow (Walsh 1983); see
Dean & Bhushan (2010) and Jin & Herwig (2014) for recent reviews. It has been
shown only recently that they can also reduce drag in laminar flow (Mohammadi &
Floryan 2013a,b; Moradi & Floryan 2013a). The effect of riblets on the flow stability
and laminar–turbulent transition is less understood. Techniques for the analysis of
the stability of riblet-modified flows are described in Ehrenstein (1996), Szumbarski
(2007) and Boiko & Nechepurenko (2010). Ehrenstein (1996) considered riblets
with a scalloped cross-section and concluded that they always destabilize the flow.
Rothenflue & King (1995) observed riblet-induced formation of a streamwise pair
of vortices during boundary-layer transition. The same riblets amplify the growth
of two-dimensional travelling waves but delay the transformation of Λ-vortices into
turbulent spots (Grek, Kozlov & Titarenko 1996). In the case of three-dimensional
boundary layers, riblets are able to suppress the development of travelling waves
(Boiko et al. 1997) as well as the streak instability (Boiko et al. 2007). Luchini &
Trombetta (1995) found that riblets slightly reduce the critical Reynolds number. The
two-dimensional waves were found to be amplified and three-dimensional structures
damped by the grooves in K-type transition while in the oblique transition caused
by two oblique waves the breakdown to turbulence was delayed by riblets (Klamp,
Meinke & Schröder 2010). Sinusoidal riblets of very high amplitude were found to
produce significant destabilization in pressure-driven flows (Szumbarski 2007). The
above summary demonstrates that riblets may produce a number of effects but the
complete analysis is not yet available.

The primary objective of this work is to carry out a systematic analysis of the
effects of small-amplitude two-dimensional grooves of various shapes and being
parallel to the flow direction on the stability of pressure-driven flows in a channel. The
new results expand the understanding of the effects of distributed surface roughness
and how such roughness is able to influence the laminar–turbulent transition and,
thus, complement results available for the same grooves placed transversely with
respect to the flow (Floryan 2007). Because of the drag-reducing capabilities of the
long-wavelength grooves, special attention is paid to flow stability in the presence of
such grooves. Section 2 discusses the form of the mean flow. The problem formulation
is given in § 2.1, the numerical solution is discussed in § 2.2, the small wavenumber
approximation is presented in § 2.3 and properties of such flows are discussed in
§ 2.4. Section 3 is focused on the linear stability of the grooved modified flow. The
problem formulation is presented in § 3.1 and the numerical solution is discussed in
§ 3.2. Section 4 is devoted to the presentation of the results. Sinusoidal grooves are
discussed in § 4.1. Grooves with arbitrary shapes are discussed in § 4.2. The stability
of flow in a channel with optimal grooves is described in § 4.3. Section 5 provides a
summary of the main conclusions.
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y

x Reference flow direction
z

FIGURE 1. Sketch of the flow system problem.

2. Flow in a channel with longitudinal grooves
2.1. Problem formulation

Consider flow along a straight channel extending to ∓∞ in the x direction. The flow
is driven by a constant pressure gradient and has the form

V0(x)= [u0(x), v0(x)]= [u0(y), 0] = [1− y2, 0], p0(x)=−2x/Re
ψ0(x)=−y3/3+ y+ 2/3, Q0 = 4/3,

}
(2.1)

where the fluid movement is directed towards the positive x-axis, the Reynolds number
Re is defined on the basis of the maximum x-velocity and the channel half-height,
x = (xi + yj), the velocity vector is defined as V0 = (u0i + v0 j), ψ0 stands for the
stream function and Q0 denotes the flow rate.

Modify this channel by placing longitudinal grooves of arbitrary shape on both walls
(see figure 1). The geometry of the grooves is expressed in terms of Fourier series of
the form

yL(z)=−1+
NA∑

n=−NA

H(n)
L einβz, yU(z)= 1+

NA∑
n=−NA

H(n)
U einβz (2.2a,b)

where yL(z) and yU(z) are the locations of the lower and upper walls, respectively, NA

is the number of Fourier modes required to describe the geometry, λ= 2π/β denotes
the groove wavelength, β stands for the wavenumber, and H(n)

L = H∗(−n)
L and H(n)

U =
H∗(−n)

U are the reality conditions where stars denote complex conjugates. The choice of
H(n)

L and H(n)
U is restricted by the no-contact condition between the walls. Our interest

is only in grooves that do not change the mean channel opening and, thus, H(0)
L =

H(0)
U = 0.
The velocity field in the grooved channel is described by the x-momentum equation

of the form
∂2uB

∂z2
+ ∂

2uB

∂y2
= Re

dpB

dx
(2.3)
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Stability of flow in a channel with longitudinal grooves 617

where the velocity vector has components (uB, 0, 0) in the (x, y, z) directions, and is
supplemented by boundary conditions of the form

uB(yL, z)= 0, uB(yU, z)= 0. (2.4a,b)

In the above, the subscript B is used to denote flow quantities in the grooved
channel. The fixed flow rate constraint of the form

Q= 1
2π/β

∫ z=2π/β

z=0

∫ y=yU(z)

y=yL(z)
uB(y, z) dy dz= 4

3
(2.5)

is used as the closing condition. This constraint states that the flow rates in the smooth
and grooved channels are identical. The addition of grooves changes the wall shear
stress distribution as well as the wetted surface area and, thus, necessitates use of a
different pressure gradient in order to maintain the same flow rate (Moradi & Floryan
2013b). The magnitude of the pressure gradient modification provides a quantitative
measure of drag changes induced by the grooves.

Flow in the grooved channel is represented as a superposition of the smooth-
channel-flow and the grooved-induced modifications, i.e.

VB(x)= [uB(y, z), 0, 0] =V0(x)+V1(x)= [u0(y), 0, 0] + [u1(y, z), 0, 0], (2.6a)
pB(x)= p0(x)+ p1(x) (2.6b)

where subscript 1 identifies modifications. The resulting field equation, the boundary
conditions and the constraint have the form

∂2u1

∂z2
+ ∂

2u1

∂y2
= Re

dp1

dx
, (2.7)

u0(z, yL)+ u1(z, yL)= 0, u0(z, yU)+ u1(z, yU)= 0, (2.8a,b)

Q= 1
2π/β

∫ z=2π/β

z=0

∫ y=yU(z)

y=yL(z)
[u0(y)+ u1(y, z)] dy dz= 4

3
. (2.9)

2.2. Numerical solution
A spectrally accurate solution is desired. Two methods for dealing with the
irregularities of the boundaries have been used, i.e. the IBC method (Mohammadi &
Floryan 2012) and the DT method (Moradi & Floryan 2013b). The former method
is more computationally efficient and, thus, has been used in the majority of the
investigation, while the latter one has been used to investigate limiting cases and
to provide an accuracy check for the IBC method. While the applicability of the
IBC method is limited by the groove amplitude, it provides complete access to the
amplitudes of interest in this study. The over-constrained version of this method
may provide access to larger amplitudes if required (Husain et al. 2009). The IBC
method uses a regular solution domain with the flow domain placed in its interior and
enforces the flow boundary conditions as internal constraints. The spatial discretization
of the field equation uses a Fourier expansion in the z direction, i.e.

u1(y, z)=
n=+∞∑
n=−∞

u(n)1 (y)e
inβz, (2.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

50
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.508


618 H. V. Moradi and J. M. Floryan

where u(n)1 = u(−n)∗
1 is the reality condition and star denotes the complex conjugate.

The modal functions are discretized using Chebyshev expansions. The algebraic
equations are constructed using the Galerkin projection method. The construction of
the boundary constraints uses Fourier expansions for all boundary variables. Extraction
of the lowest modes leads to the explicit form of the boundary constraints which
are imposed using the tau concept (Canuto et al. 2006). The flow rate constraint is
discretized directly and is used as the condition required for the direct evaluation of
the pressure correction simultaneously with the flow field. The number of Chebyshev
polynomials and Fourier modes used in the solution were arrived at through numerical
experimentation and have been selected to assure a minimum of six-digit accuracy.
Details of the algorithm can be found in Mohammadi & Floryan (2012). The DT
method uses the same spatial discretization as the IBC method with the boundary
conditions imposed in a classical manner using the tau concept. Details can be found
in Moradi & Floryan (2013b).

2.3. Small wavenumber approximation
The flow field can be determined analytically for long-wavelength grooves
(Mohammadi & Floryan 2013a). The solution domain is regularized using a
transformation of the form

χ = βz, ς = 2[y− yu(z)]
yu(z)− yL(z)

+ 1, (2.11a,b)

which maps the grooved channel into a straight strip in the (ς, χ) plane and the
χ -coordinate plays the role of a slow scale. The field equation assumes the form

∂2uB

∂ς 2
+ g1(χ, ς)

∂uB

∂ς
+ g2(χ, ς)

∂2uB

∂χ∂ς
+ g3(χ, ς)

∂2uB

∂χ 2
− g4(χ, ς)Re

dpB

dz
= 0, (2.12)

where the known coefficients of the form

g1(χ, ς) = ςzz/(ς
2
z + ς 2

y ), g2(χ, ς)= 2βς z/(ς
2
z + ς 2

y ), g3(χ, ς)

= β2/(ς 2
z + ς 2

y )g4(χ, ς)

= 1/(ς 2
z + ς 2

y ) (2.13)

contain information about the groove geometry. In the above

ςz =−βH−1(Gχ + ςHχ), ςzz =−β2H−1(2β−1ςzGχ +Gχχ + ςHχχ),

ςy =H−1,

G= (yU + yL)/2, H = (yU − yL)/2.

 (2.14)

The boundary conditions and flow rate constraint take the form

uB(χ,∓1)= 0, (2.15)

Q= 1
2π

∫ χ=2π

χ=0

∫ ς=+1

ς=−1
HuB(χ, ς)dςdχ = 4

3
. (2.16)

Assume a solution of the form

uB =U0 + βU1 + β2U2 + β3U3 +O(β4), (2.17)
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Stability of flow in a channel with longitudinal grooves 619

pB(x)=
(

dP0

dx
+ β dP1

dx
+ β2 dP2

dx
+ β3 dP3

dx

)
x+ c+O(β4), (2.18)

where c is an arbitrary constant, substitute into the field equations, the boundary
conditions and the constraint and retain the four leading-order terms. The resulting
systems are given in appendix A and their solutions have the form

U0 = I−1
1 (1− ς 2)H2, dP0/dx=−2Re−1I−1

1 ,

U1 = 0, dP1/dx= 0,
U2 =−I−1

1 (1− ς 2)H2(G2
χ −H2

χ −HHχχ − ςHGχχ/3− I−1
1 I2),

dP2/dx=−2Re−1I−2
1 I2,

U3 = 0, dP3/dx= 0,

 (2.19)

where

I1 = 1
2π

∫ χ=2π

χ=0
H3dχ, I2 = 1

2π

∫ χ=2π

χ=0
H3(G2

χ −H2
χ −HHχχ)dχ. (2.20a,b)

In the case of grooves of sinusoidal shape placed at the lower wall, i.e.

yL(z)=−1+ SL cos(βz), yU(z)= 1, (2.21a,b)

where SL and β denote the groove amplitude and the wavenumber, respectively, the
above expressions simplify to the following form

U0(χ, ς)= (1+ 3S2
L/8)

−1(1− 0.5SL cos χ)2(1− ς 2),

dP0/dx=−2Re−1(1+ 3S2
L/8)

−1,

U1(χ, ς)= 0, dP1/dx= 0,
U2(χ, ς)= 0.5(1+ 3S2

L/8)
−1(1− ς 2)(1− 0.5SL cos χ)2

× [S(cos χ − 0.5SLcos2χ)(1− ς/3)
+ (1+ 3S2

L/8)
−1(S2

L + 3S4
L/16)

]
,

dP2/dx=−S2
LRe−1(1+ 3S2

L/8)
−2(1+ 3S2

L/16),
U3(χ, ς)= 0, dP3/dx= 0.


(2.22)

The range of validity of the above solution can be determined by comparing the
pressure losses determined using the complete solution discussed in § 2.2, i.e.(

Re
dpB

dx

)
err

=
∣∣∣∣(Re

dpB

dx

)
c

−
(

Re
dpB

dx

)
a

∣∣∣∣ , (2.23)

where subscripts a and c denote the asymptotic and the complete solutions,
respectively. The results displayed in figure 2 demonstrate that the asymptotic solution
can be used up to β = 0.5 for the range of S of interest in this analysis.

2.4. Description of the flow
The introduction of grooves increases the wetted surface area and changes the
distribution of the wall shear stress, with both of these effects contributing to
changes in the drag experienced by the fluid. Results presented in figure 3 for simple
sinusoidal grooves given by (2.21a,b) demonstrate that grooves with the wavenumber
β < ∼0.965 reduce the overall drag. This effect is associated with the acceleration
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FIGURE 2. Variations of the error (Re dpB/dx)err of the small-wavenumber approximation
of the stationary state (see (2.23)) and variations of the pressure gradient correction
Re dp1/dx for grooves with geometry described by (2.22) with the amplitude SL= 0.05 as
a function of the groove wavenumber β. Dotted lines identify the small β asymptote for
the pressure gradient correction as well as the large β upper bound for the same quantity.

of the flow in the widest channel opening resulting in the formation of stream tubes
of high-velocity fluid; see Moradi & Floryan (2013b) for a detailed discussion. The
pressure gradient reduction is well captured by the asymptotic solution (2.22) for
β < ∼0.6 (see figure 2). The magnitude of this reduction can be increased through
the use of grooves with an optimized shape (Mohammadi & Floryan 2013a; Moradi
& Floryan 2013a). The flow topology becomes very simple when β→ 0 as the flow
becomes nearly independent of the spanwise coordinate. The topology changes in a
different manner for β →∞ as the grooves become narrower and viscous friction
prevents the fluid from moving inside the grooves (see figure 4) forcing the flow to
lift up above the grooves. The mean geometric channel opening remains the same
but the effective hydraulic channel opening decreases forcing the flow to accelerate
above the grooves; nevertheless, the Reynolds number remains the same due to the
fixed flow rate constraint. The flow topology can be described as consisting of a
nearly rectilinear flow above the grooves with a boundary layer of complex structure
adjacent to the grooves. The lower bound on the pressure gradient correction can be
determined by ignoring the boundary layer and approximating the flow with flow in
a channel with the height reduced by SL, i.e.

Re
dp1

dx
= 2

[
1−

(
1− SL

2

)−3
]
. (2.24)

The above relation provides a good approximation for β =O(102), as documented
by the results displayed in figure 2.

3. Linear stability analysis
The stability properties of the flow described above are of interest due to the

drag-reducing abilities of long-wavelength grooves; it is of interest to determine the
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FIGURE 3. Variations of the pressure gradient correction Re dp1/dx as a function of the
groove wavenumber β and the groove height SL for the groove geometry described by
(2.21a,b).

0 0.15
–1.05

–1.00

–0.95

10

50100200

Smooth
channel

Bottom of
the grooves

Tip of the
grooves

FIGURE 4. Distributions of the streamwise velocity component uB at the widest channel
opening for the groove geometry described by (2.21a,b) with the amplitude SL = 0.05.

maximum Re for which such flow remains laminar. The same grooves, especially
grooves with short wavelengths, represent a special category of distributed surface
roughness and, thus, it is of interest to determine how such roughness affects the
onset of the laminar–turbulent transition. Both questions can be addressed with the
help of linear stability theory. It is assumed that the flow system has a low disturbance
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level and, thus, the stability question can be addressed using the asymptotic stability
concept. In the case of a noisy environment one would need to analyze transient
disturbance growth (Szumbarski & Floryan 2006).

3.1. Problem formulation
The stability analysis begins with the governing equations expressed in terms of the
vorticity transport and continuity equations, i.e.

∂ω/∂t− (ω · ∇)V + (V · ∇)ω= Re−1∇2ω, (3.1a)
∇ ·V = 0, (3.1b)
ω=∇×V, (3.1c)

where ω and V denote the vorticity and velocity vectors, respectively. Three-
dimensional disturbances are superposed on the base flow in the form

ω=ωB(y, z)+ωD(x, y, z, t), V =VB(y, z)+VD(x, y, z, t) (3.2a,b)

where subscript D refers to the disturbance field. The flow quantities (3.2) are
substituted into (3.1), the mean parts are subtracted and the equations are linearized.
The resulting disturbance equations have the form

∂ξD

∂t
− ηB

∂uD

∂y
− ∂uB

∂y
ηD − ϕB

∂uD

∂z
− ∂uB

∂z
ϕD + uB

∂ξD

∂x

= 1
Re

(
∂2ξD

∂x2
+ ∂

2ξD

∂y2
+ ∂

2ξD

∂z2

)
, (3.3a)

∂ηD

∂t
− ηB

∂vD

∂y
− ϕB

∂vD

∂z
+ uB

∂ηD

∂x
+ ∂ηB

∂y
vD + ∂ηB

∂z
wD

= 1
Re

(
∂2ηD

∂x2
+ ∂

2ηD

∂y2
+ ∂

2ηD

∂z2

)
, (3.3b)

∂ϕD

∂t
− ηB

∂wD

∂y
− ϕB

∂wD

∂z
+ uB

∂ϕD

∂x
+ ∂ϕB

∂y
vD + ∂ϕB

∂z
wD

= 1
Re

(
∂2ϕD

∂x2
+ ∂

2ϕD

∂y2
+ ∂

2ϕD

∂z2

)
, (3.3c)

∂uD

∂x
+ ∂vD

∂y
+ ∂wD

∂z
= 0, (3.3d)

where ωB = (0, ηB, ϕB), VD = (uD, vD, wD) and ωD = (ξD, ηD, ϕD). The homogeneous
boundary conditions of the form

VD(x, y, z, t)= 0 at y= yL(z) and y= yU(z) (3.4)

complete the formulation. Equations (3.3a) have coefficients that are functions of y
and z and, thus, the solution can be written in the form

VD(x, y, z, t) = GD(y, z)ei(δx+µz−σ t) + c.c. (3.5a)
ωD(x, y, z, t) = ΩD(y, z)ei(δx+µz−σ t) + c.c. (3.5b)
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where δ and µ are the real wavenumbers, σ =σr+ iσ i, σi describes the rate of growth
of disturbances, σr describes their frequency and c.c. stands for complex conjugate,
i.e. the stability problem is posed as the temporal stability. Here GD(y, z) and ΩD(y, z)
are the z-periodic amplitude functions and, thus, they can be expressed in terms of the
Fourier series of the form

GD(y, z) =
m=+∞∑
m=−∞

[g(m)u (y), g(m)v (y), g(m)w (y)]eimβz + c.c. (3.6a)

ΩD(y, z) =
m=+∞∑
m=−∞

[g(m)ξ (y), ig(m)η (y), g(m)ϕ (y)]eimβz + c.c. (3.6b)

Substitution of (3.6) into (3.5) leads to the disturbance velocity and vorticity
components of the form

VD(x, y, z, t) =
m=+∞∑
m=−∞

[g(m)u (y), g(m)v (y), g(m)w (y)]ei[δx+(µ+mβ)z−σ t] + c.c. (3.7a)

ωD(x, y, z, t) =
m=+∞∑
m=−∞

[g(m)ξ (y), ig(m)η (y), g(m)ϕ (y)]ei[δx+(µ+mβ)z−σ t] + c.c. (3.7b)

Substitution of (3.7) and (2.10) into (3.3) and separation of Fourier modes leads,
after rather lengthy algebra, to a system of linear ordinary differential equations for
g(m)η (y) and g(m)v (y) of the form

T (m)(y)g(m)v (y)=
n=+∞∑
n=−∞
[H(m,n)

v (y)g(m−n)
v (y)+H(m,n)

η (y)g(m−n)
η (y)], (3.8a)

S(m)(y)g(m)η (y)+C(m)(y)g
(m)
v (y)=

n=+∞∑
n=−∞
[E(m,n)v (y)g(m−n)

v (y)+ E(m,n)η (y)g(m−n)
η (y)] (3.8b)

where −∞ < m < +∞ and the explicit forms of the operators T , S, C, Ev, Eη, Hv,
Hη are given in appendix B. The above formulation is similar to the Bloch theory
(Bloch 1928) for systems with spatially periodic coefficients and to the Floquet theory
(Coddington & Levinson 1965) for systems with time periodic coefficients. Groove
effects are contained in the right-hand side (RHS) of (3.8) and in the boundary
conditions (3.4). When the groove amplitude approaches zero, the RHS becomes zero
and the modal equations decouple. In this limit, (3.8) describe a system of oblique
Tollmien–Schlichting (TS) waves propagating independently of each other. In analogy
to the stability of parallel flows, we shall refer to the T , S and C operators as the
TS, Squire and coupling operators, respectively (Floryan 1997).

Equations (3.8) together with the homogeneous boundary conditions (3.4) form an
eigenvalue problem and have a non-trivial solution only for certain combinations of
(δ, µ, σ ) for the specified flow conditions (Re) and for the specified groove geometry
(β,H(n)

L ,H(n)
U ). The required dispersion relation has to be determined numerically and

the relevant methodology is described in the next section.
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3.2. Numerical solution
The problem to be solved consists of an infinite system of ordinary differential
equations (3.8) with the homogeneous boundary conditions (3.4). The Fourier
expansions (3.7) are truncated after term NN and the modal functions are discretized
using the Chebyshev expansions of order NT of the form

[g(m)v (y), g(m)η (y)] =
+∞∑
k=0

[G(m)
k,v ,G(m)

k,η ]Tk(y)≈
NT∑

k=0

[G(m)
k,v ,G(m)

k,η ]Tk(y), (3.9)

where Tk denotes the Chebyshev polynomial of the kth order, and G(n)
k,v and G(n)

k,η stand
for the unknown coefficients of the expansions. The Galerkin projection method is
used to form a system of linear algebraic equations. Details of the discretization
process are presented in appendix C.

The homogeneous boundary conditions are enforced using the IBC method
(Szumbarski & Floryan 1999; Floryan 2002). Appendix D provides details of
the discretization process. Four equations for G(n)

k,v and two equations for G(n)
k,η

corresponding to the highest Chebyshev polynomials are eliminated for each Fourier
mode providing space for the imposition of the boundary relations (tau method). An
over-constrained version of this method provides access to larger groove amplitudes
(Husain et al. 2009). The DT method (Cabal, Szumbarski & Floryan 2002) provides
another alternative if grooves with very large amplitudes are of interest.

The resulting homogeneous algebraic system can be posed in various ways. For the
global solution the system is posed as a general eigenvalue problem of the form

AE= σBE, (3.10)

where E denotes the eigenvectors and the σ -spectrum is determined numerically.
These solutions are expensive numerically and suffer from accuracy problems when
large matrices are involved. Efficiencies can be found by using the Arnoldi method
(Saad 2003) which permits evaluation of only a selected part of the spectrum. Local
solutions are still more computationally efficient and more accurate but produce a
limited number of eigenvalues, mostly just one eigenvalue. These solutions are used
for tracing selected eigenvalues through the parameter space. The process starts with
an initial guess either for the eigenvalue or for the eigenvector and iterations are used
to converge to the true eigenvalue and/or eigenvector.

Three methods for eigenvalue tracing have been used. In the first method, one of
the homogeneous boundary conditions is replaced by an inhomogeneous boundary
condition imposed on a different quantity resulting in an inhomogeneous system
which can be easily solved. The true eigenvalue is found if the solution of the
inhomogeneous system happens to satisfy the eliminated boundary condition. Since
this is not true in general, the eigenvalue is searched for by looking for the zero of
the replaced boundary condition using the Newton–Raphson procedure. The boundary
condition for the vertical velocity component at the lower wall has been replaced
in this study with a condition for the second derivative of the vertical velocity
component. A good initial guess for σ significantly accelerates convergence. In the
second method the eigenvalue is searched for by looking for zeros of determinant of
(A− σB) where the system is posed as

(A− σB)E= 0. (3.11)
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10 40 70

10–5

10–1

1

0.1

0.05

0.03

0.02

FIGURE 5. Variations of the Chebyshev norm ‖Φ(n)(y)‖ω (see (3.14)) as a function of the
Fourier mode number n for the groove geometry described by (2.21a,b) with SL = 0.05
for the flow Reynolds number Re= 6500 and the disturbance wavenumbers δ = 1.02 and
µ= 0.

In the third method, the inverse iterations method, we compute an approximation
for the eigenvector Ea corresponding to the unknown eigenvalue σa using an iterative
process in the form

(A− σ0B)E(n+1) = BE(n), (3.12)

where σ0 and E(0) are the eigenvalue and the eigenvector (an eigenpair) corresponding
to the unaltered flow. If σa is the eigenvalue closest to σ0, E(n) converges to Ea. The
eigenvalue σa is evaluated using

σa = E(n)Ta AE(n)a /E
(n)T
a BE(n)a (3.13)

where ‘T’ denotes the complex conjugate transpose. The inverse iterations method was
found to be generally more efficient compared with the Newton–Raphson method. The
tracing of eigenvalues has been extended over several Brillouin zones (Bloch 1928) in
the µ direction in order to demonstrate how the leading eigenvalue is affected by the
groove wavelength. The tracing process needs to be carefully implemented for small
β as the widths of the Brillouin zones decrease rapidly and the eigenvalues become
tightly spaced.

The accuracy and cost of the discretization depend on the rate of convergence
of expansions (3.7) as well as the Fourier expansions used in the construction of
the boundary constraints (see appendix D). Convergence can be assessed using the
energy of the Fourier modes, which is measured using the Chebyshev norm for the
x-component of the disturbance velocity, i.e. g(m)u (y), defined as

‖Φ(n)(y)‖ω =
{∫ 1

−1
g(m)u (y)g(m)∗u (y)ω(y) dy

}1/2

, (3.14)

where ω( y) = 1/
√

1− y2 and star denotes complex conjugate. Results presented
in figure 5 demonstrate that the rate of convergence of these expansions strongly
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0 20 40

0

6

(× 10–3)

10.1

0.05

0.01

FIGURE 6. Variations of the growth rate σi of disturbances with the wavenumbers δ=1.02
and µ= 0 as a function of the number of Fourier modes used in the numerical solution
of the stability problem for flow with the Reynolds number Re = 6500 in the grooved
channel with the groove geometry described by (2.21a,b) with SL = 0.05.

depends on β. The convergence is very good for β > 0.1 and use of 10 Fourier
modes guarantees a minimum of six-digit accuracy. A decrease of β leads to a
significant reduction of the convergence rate and achieving the same accuracy with
β = 0.01 requires use of around 70 Fourier modes. The evaluation of the eigenvalues
requires fewer modes as illustrated in figure 6, e.g. use of just five modes gives
six-digit accuracy when β > 0.1 but around 30 modes are required for β = 0.01.

4. Results
It is known that flow in a smooth channel becomes unstable at Re = 5772.2

with the two-dimensional TS waves with the wavenumber δ = 1.0205 travelling
in the downstream direction playing the critical role (Orszag 1971). Once these
waves reach sufficient amplitude, the disturbance growth becomes dominated by a
three-dimensional secondary instability driven by a parametric resonance (Orszag &
Patera 1983). The instability has a subcritical character and an increase of the level
of disturbances can reduce the critical Reynolds number down to Re≈ 2700 (Herbert
1977). For a sufficiently high level of environmental disturbances the instability
process can be dominated by the transient growth of disturbances with the optimal
disturbances rather than the TS waves playing the critical role (Szumbarski & Floryan
2006). The addition of grooves is expected to modify travelling waves but, at the
same time, it might create new disturbance structures at the onset.

The role of the grooves in the instability process depends on their shape and
amplitude. We begin the discussion with the simple sinusoidal grooves placed at the
lower wall only. The channel geometry is described by (2.21) with the amplitude
SL and the wavenumber β being the only geometrical parameters. This geometry
corresponds to the leading Fourier mode in the Fourier expansion (2.2) representing
an arbitrary groove shape. We shall limit our interests to small groove amplitudes,
i.e. SL 6 0.05.
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0 0.025 0.050

(× 10–3)

7
4.22

0.2 0.5
10.5

2.5

FIGURE 7. Variation of the growth rate σi of disturbances with the wavenumbers δ= 1.02
and µ = 0 as a function of the groove amplitude SL for the groove geometry described
by (2.21a,b) for flow with the Reynolds number Re= 6500.

4.1. Sinusoidal grooves
The investigation of spectra under a variety of conditions has led to the conclusion
that there is only one class of unstable disturbances exists in the range of parameters
considered; these disturbances connect to the classical travelling waves in the limit
of SL→ 0. No sign of any instability that may lead to the formation of streamwise
vortices has been found. This should not be surprising as longitudinal grooves do not
generate the centrifugal force field which is responsible for the formation of such
vortices in the case of transverse grooves (Floryan 2003).

The transition between the characteristics of disturbances in the grooved and
smooth channels is illustrated in figure 7 for a wide range of β. It can be seen
that disturbances in the grooved channel evolve towards the same travelling wave
as SL is reduced. Figure 8 displays variations of the critical Reynolds number as a
function of the orientation of the disturbance wavevector. The wavevector is defined
as q = (δ, µ), it has magnitude |q| = (δ2 + µ2)1/2 and its orientation is expressed in
terms of the inclination angle defined as θ =± tan−1(µ/δ). During test computations
the magnitude of the wavevector was kept constant while its orientation was varied.
It can be seen that disturbances with the wavevector aligned with the flow direction
have the smallest Rec. Although the Squire theorem (Squire 1933) does not apply to
flows in grooved channels, these results lead to a conclusion equivalent to the Squire
theorem. The reader may note that the critical disturbances are not two-dimensional
in the grooved channel due to the modulating effect of the geometry. We shall,
nevertheless, refer to these disturbances as ‘two-dimensional’ waves based on their
properties in the limit SL → 0. The rest of this discussion will be focused on the
‘two-dimensional’ waves unless otherwise explicitly noted.

Results displayed in figure 7 demonstrate that grooves may either stabilize or
destabilize the flow depending on the groove wavenumber, with transition occurring
at β = βtran ≈ 4.22 and being independent of the groove amplitude. Grooves with
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Rec

0 10 20

5000

6400

1

10
4.22

Smooth
channel

(deg.)

FIGURE 8. Variations of the critical Reynolds number of disturbances with the wavevector
q= (δ, µ) of constant magnitude as a function of its inclination angle θ for the groove
geometry described by (2.21a,b) with the amplitude SL = 0.05. Solid lines correspond to
|q| = 1.02 and dotted lines to |q| = 1.0.

100 10

1

2

Drag reduction zone

0.010.03

Drag increase zone

Zone IZone II

Smooth
channel

(× 10–3)

FIGURE 9. Variations of the growth rate σi of disturbances with the wavenumber δ= 1.02
as a function of the groove wavenumber β for the groove geometry described by (2.21a,b)
for flow with the Reynolds number Re= 6500. The dotted-line indicates the wavenumber
that separates the drag reducing and drag increasing zones.

shorter wavelengths destabilize the flow with the growth rate increasing rapidly with
an increase of SL. Long-wavelength grooves stabilize the flow but the decrease of the
amplification rate is much weaker than the increase observed for the short-wavelength
grooves. The qualitatively different effects of β are well illustrated in figure 9 which
displays variations of the amplification rate as a function of β for fixed SL. Rapid
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(a) (b) 

(c) (d ) 

0 1–1

0

1

Smooth channel

Tip of the grooves

0 1

0 1 0 1

Smooth channel

Tip of the grooves

–1

0

1

–1

0

1

–1

0

1

y

Smooth channel

Tip of the grooves

y

Smooth channel

Tip of the grooves

FIGURE 10. Eigenfunctions g(n)u (y), n=0, 1, 2, describing two-dimensional travelling-wave
disturbances with the wavenumber δ = 1.02 in a channel with grooves whose geometry
is described by (2.21a,b) with SL = 0.05. Results displayed in (a–d) correspond to the
onset conditions for the groove wavenumbers β = 10, 4.22, 1.0 and 0.2, i.e. Recr= 5028.5,
5773.5, 5886 and 6227.5, respectively. The normalization condition maxy∈[0,1] |g(0)u (y)| = 1
has been used for the presentation purposes. Solid and dashed lines identify the real and
imaginary parts. Thin dashed-dotted and dotted lines identify the real and imaginary parts
of the eigenfunction for the smooth channel with the same Reynolds number.

destabilization in zone I (large β) as well as gradual stabilization in zone II (β= 0(1))
are clearly visible. The groove wavenumber that corresponds to the transition between
the drag reducing and the drag increasing grooves, i.e. βcr, lies deep inside zone II
and does not have any significance as far as stability properties of the flow are
concerned.

Eigenfunctions g(n)u (y) corresponding to the onset conditions, i.e. condition where
the amplification rate changes sign from negative to positive, displayed in figure 10
for a wide range of β permit description of the disturbance flow topology. The
eigenfunctions are normalized with the maximum of g(0)u (y) in the upper half of the
channel, i.e. maxy∈[0,1] |g(0)u (y)| = 1. It can be seen that near the upper (smooth) wall
and for large β the dominant eigenfunctions, i.e. eigenfunctions with index 0, are very
similar to the eigenfunction in a smooth channel; higher eigenfunctions are negligible
in this zone. Significant differences appear when β is reduced below βtran ≈ 4.22
with the magnitudes of the higher eigenfunctions reaching the level of approximately
80 % of the dominant eigenfunction. The reader may note the appearance of large
differences between the phase of the dominant ‘grooved’ eigenfunction and the
‘smooth’ eigenfunction. Analysis of the lower part of the channel shows that higher
eigenfunctions are always important close to the grooved wall; their magnitudes
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(c) (d ) 
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FIGURE 11. Pathlines in the y–z plane for the disturbance flow field corresponding to
‘two-dimensional’ disturbances with the wavenumber δ = 1.02 at the onset for flow in
a channel with grooves described by (2.21a,b) with SL = 0.05. (a–d) display results for
(β, Rec)= (10, 5028.5), (4.22, 5773.5), (1.0, 5886), (0.2, 6227.5), respectively.

increase from approximately 20 % of the dominant eigenfunction at large β to
approximately 80 % at small β. Noticeable differences in the phase distribution of the
‘smooth’ and the dominant ‘grooved’ eigenfunctions can already be seen at large β;
these differences increase significantly as β decreases.

The topology of the disturbance velocity field at the onset is complex, highly
three-dimensional and dependent on β, as illustrated in figures 11 and 12. Pathlines
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(a) (b) (c)

(d ) (e) ( f )
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FIGURE 12. Pathlines in the x–z plane at y = 0 for the disturbance flow field
corresponding to ‘two-dimensional’ disturbances with the wavenumber δ = 1.02 at the
onset for flow in a channel with grooves described by (2.21a,b) with SL = 0.05. (a–f )
display results for (β, Rec)= (10, 5028.5), (5, 5652.4), (4.35, 5755), (4.22, 5773.5), (1.0,
5886), (0.5, 6073.1), respectively.

in the y–z plane displayed in figure 11 demonstrate the simple structure of the
flow in the upper part of the channel for large enough β (see figure 11a,b) being
replaced by progressively more complex, three-dimensional topology as β decreases
(see figure 11c,d). At small enough β the topology corresponds to the appearance
of a sink at the wall in the narrowest channel opening (figure 11c) and, for a still
smaller β, it is supplemented by a source at a small distance away from the wall
in the widest channel opening (figure 11d), giving the appearance of the formation
of a separation bubble. The flow topology close to the lower wall is more complex.
At large β (figure 11a), a source appears at the trough producing a structure similar
to a separation bubble. A decrease of β eliminates this bubble (see figure 11b).
A further decrease of β increases the strength of this source, resulting in an unusual
structure displayed in figure 11(c). At β = 0.2 (figure 11d) the topology corresponds
to that created by a line source parallel to the wall with the wall acting like a sink
resulting in the formation of a distinct layer of trapped fluid adjacent to the wall. A
high level of three-dimensionality of the flow field is underscored by the form of the
pathlines in the (x, z) plane at a fixed y. Figure 12 displays such pathlines at y= 0
for several values of β at the onset. Pathlines look like spirals for β ≈ βtran ≈ 4.22
(see figure 12c,d), they look like closed loops for smaller β (see figure 12e, f ), but
appear to correspond to sets of point/line sinks for larger β (see figure 12a,b).

The neutral curves for the ‘two-dimensional’ waves in the (δ, Re) plane are
fairly similar to the analogous curves for the smooth channel, as illustrated in
figure 13. At small β the critical Reynolds number decreases as the groove amplitude
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FIGURE 13. Neutral curves in the (Re, δ)-plane for the ‘two-dimensional’ disturbances in
a channel with grooves whose geometry is described by (2.21a,b). (a–c) display results
for the groove wavenumbers β = 0.2, 4.22, 10, respectively.

increases while the critical disturbance wavenumber δcr remains nearly unchanged
(figure 13a). At β = βtran both Rec and δcr are marginally affected by variations of
SL (figure 13b). At large β the critical Reynolds numbers decreases as SL increases
while δcr marginally increases.

The stabilizing/destabilizing effects of the grooves are well illustrated by the neutral
curves in the (β, δ) plane. Figure 14(a) displays results for the nominally subcritical
Reynolds number Re = 5500. The flow is stable for small enough β but becomes
unstable once β reaches a certain minimum value; a further increase of β results in
a large expansion of the range of the unstable δ. The minimum value of β required
for the onset of the instability decreases with an increase of SL. A similar process can
be observed for the nominally critical Reynolds number Re= 5772.25 (see figure 14b)
where there is only one unstable δ for small enough β, but its range expands once
β reaches a certain minimum, SL-dependent value. Figure 14(c) corresponds to the
nominally supercritical Reynolds number Re= 6000. It can be seen that an increase
of SL decreases the range of unstable δ for small βs, even leading to complete flow
stabilization. The process is opposite for β > βtran ≈ 4.22 where a large expansion of
the unstable δ is observed.

Figure 15 illustrates variations of the critical Reynolds number Rec as a function
of β and SL and provides a basis for a compact summary of the main results.
The flow stability is not affected by the grooves with β = βtran ≈ 4.22 regardless of
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FIGURE 14. Neutral curves in the (β, δ)-plane for the ‘two-dimensional’ disturbances in
a channel with grooves whose geometry is described by (2.21a,b). (a–c) display results
for flow with Re= 5500, 5772.25, 6000, respectively.

their amplitude. The flow is destabilized for larger β with Rec decreasing with an
increase of β and this destabilization is more effective for larger SL. The smallest
critical Reynolds number of Rec = 4955 is achieved for β = 10 and SL = 0.05 which
are the upper limits of these parameters considered in the present study; further
reduction of Rec might be achieved with larger groove amplitudes and wavenumbers.
The flow is stabilized for β < βtran ≈ 4.22 as Rec increases with a decrease of β;
the stabilization is more effective for larger SL. The largest critical Reynolds number
of Rec = 6138 is achieved for β = 0.4 and SL = 0.05 which define the limits of the
present investigation.

The effect of the placement of the grooves on both walls is illustrated in figures
16–20. The channel geometry is described as

yL(z)=−1+ SL cos(βz), yU(z)= 1+ SU cos(βz+ φ) (4.1a,b)

i.e. both sets of grooves have the same amplitude but the upper grooves are shifted
by φ with respect to the lower grooves. Figure 16 corresponds to φ = π, i.e. the
channel assumes the converging–diverging form. The range of drag-reducing grooves
expands to β < 1.2, i.e. it is larger than that achieved with grooves on one wall only
(compare figures 3 and 16a), and the magnitude of drag reduction increases by a
factor of up to five. This effect is associated with a more efficient formation of the
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FIGURE 15. Variations of the critical Reynolds number Rec as a function of the groove
wavenumber β and the groove amplitude SL for channel with geometry described by
(2.21a,b). The dotted-line corresponds to Re dp1/dx= 0.
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FIGURE 16. Variations of the pressure gradient correction Re dp1/dx (a) and the critical
Reynolds number Rec (b) as a function of the groove wavenumber β and the groove height
S (= SU = SL) for the channel geometry given by (4.1) with φ=π. The dotted line in (b)
corresponds to Re dp1/dx= 0.

high-velocity stream tubes in the widest channel opening; these tubes are essential
for the drag reduction (Mohammadi & Floryan 2013b; Moradi & Floryan 2013a).
The flow stability is not affected by the grooves with β = βtran ≈ 4.4, and the flow
is more destabilized by the short wavelength grooves as well as more stabilized by
the long-wavelength grooves (compare figures 15 and 16b). Figure 17 corresponds
to φ = π/2. The range of drag-reducing grooves is limited to β < 0.9575 and the
maximum possible drag reduction is reduced to approximately 50 % of that achieved
with φ = π. The critical Reynolds number Rec is not affected by grooves with β =
βtran ≈ 4.35, the long-wavelength grooves are less effective in flow stabilization but
the short-wavelength grooves remain as effective in flow destabilization as for φ =π.
Figure 18 corresponds to φ= 0, i.e. the channel assumes a wavy form. Such grooves
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FIGURE 17. The same as in figure 16 but for the channel geometry given by (4.1) with
φ =π/2.
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FIGURE 18. The same as in figure 16 but for the channel geometry given by (4.1) with
φ = 0.

are unable to reduce drag as shown in figure 18(a); this is related to the fact that the
high-velocity stream tubes cannot be formed as channel opening varies minimally in
the spanwise direction. The critical Re is not affected by grooves with β=βtran≈ 4.35.
The short-wavelength grooves are as effective in flow destabilization as other groove
configurations. The long-wavelength grooves stabilize the flow for 1 < β < 4.35 but
the stabilizing effect disappears for longer wavelengths (figure 18b). The effects of the
phase shift between the upper and lower groove systems are summarized in figure 19.
Grooves lose drag-reducing capability for φ<0.5 for all β studied; their drag-reducing
ability is confined to the left upper corner in the (φ, β) plane (see figure 19a) and this
is where the largest flow stabilization is observed (figure 19b). The relative position
of the short-wavelength grooves does not affect their stability characteristics as all of
them reduce Rec at the same rate; this is related to the groove-induced stream lift-up
phenomenon (Mohammadi & Floryan 2013b). Figure 20 illustrates effects of the phase
shift for the unequal groove amplitudes at both walls. The drag-reducing ability is
preserved for all φ as the channel opening changes in the spanwise direction. The
flow stabilization in the left upper corner is less effective than for grooves with equal
amplitudes (figure 19) and, similarly, flow destabilization for large β is less extreme.
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FIGURE 19. Variations of the pressure gradient correction Re dp1/dx (a) and the critical
Reynolds number Rec (b) as a function of the groove wavenumber β and the phase shift
φ between groove systems on both walls for the channel geometry given by (4.1) with
and SL = SU = 0.05. Dotted lines correspond to Re dp1/dx= 0. Points D, E are located at
(φ, β)= (0.167π, 0.4), (π, 1.2), respectively.
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FIGURE 20. Variations of the pressure gradient correction Re dp1/dx (a) and the critical
Reynolds number Rec (b) as a function of the groove wavenumber β and the phase shift
φ between groove systems on both walls for the channel geometry given by (4.1) SL =
2SU = 0.05. Dotted lines correspond to Re dp1/dx= 0. Points D, E are located at (φ, β)=
(0, 0.5), (π, 1.1), respectively.

4.2. Grooves with arbitrary shapes
The previous section provides a detailed discussion of the instability in a channel with
sinusoidal grooves. We shall now turn our attention to grooves of arbitrary shapes.
Grooves with triangular, trapezoidal and rectangular shapes shown in figure 21
have been selected for the analysis. Each shape has been represented using a Fourier
expansion, e.g. (2.2), which has been truncated after a finite number of terms. Neutral
stability curves of the type displayed in figure 22 have been computed for each shape
represented by different numbers of Fourier terms. It can be seen that Rec determined
for the triangular grooves represented using the leading term from the Fourier
expansion, the first two terms, and the first three terms are nearly identical. The same
conclusion applies to the trapezoidal grooves; in this case the difference between
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FIGURE 21. Groove shapes used in this study: (a) triangular groove; (b) trapezoidal
groove; (c) rectangular groove. Here λ denotes the groove wavelength.
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FIGURE 22. The neutral curves in the (Re, δ)-plane for flow in channels with
triangular grooves (dashed-dotted lines), trapezoidal grooves (dashed lines; a = b = λ/6,
c= d= λ/3, see figure 21b for notation), and rectangular grooves (solid lines: a= b= λ/2,
see figure 21c for notation). All grooves have the same amplitude SL= 0.05 and the same
wavenumber β = 1. Their shapes are described using 1, 3, 7 leading Fourier modes from
the complete Fourier expansion describing the geometry.

shapes represented by either three or five Fourier modes is negligible (the reader
may note that the even terms in the Fourier expansions are zero for such shapes). It
can be concluded that the difference between Rec determined either on the basis of
the shape represented by its leading Fourier mode or using the complete shape is at
most 0.05 %. Rectangular grooves pose a challenge due to the existence of the Gibb’s
phenomenon (Wilbraham 1848; Gibbs 1898, 1899). In this case, results displayed in
figure 22 demonstrate that one needs to use up to seven Fourier modes in the shape
representation for the accurate determination of Rec. Use of only one Fourier mode
to represent the groove shape results in an error of Rec not larger than 0.5 %. This
demonstrates the generality of the results discussed in the previous section as the
sinusoidal groove can be interpreted as representing an arbitrary groove replaced by
the leading Fourier mode from its Fourier representation. The results illustrated in
figure 22 form the basis of the reduced geometry model which significantly simplifies
the analysis of the effects of grooves on the flow stability. There is no need to study
all possible shapes as results based on the leading Fourier mode provide accuracy
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FIGURE 23. The optimal shapes for β = 0.2, 0.5 for the equal-depth (a) and the unequal-
depth grooves (b) with SL = 0.01, 0.03, 0.05 in the former case and SL,U = 0.01, 0.03,
0.05 in the latter case (see the text for details). The best-fitted trapezoid (a= b= λ/8, c=
d = 3λ/8) displayed in (a) overlaps with the actual grooves after all shapes had been
rescaled with the groove amplitude. The universal Gaussian function ȳ=−e−4z̄2 displayed
in (b) overlaps with the actual grooves after all shapes have been rescaled with the peak-
to-bottom distance as the vertical length scale, i.e. ȳL = (yL + 1− SL,U)/(Dopt + SL,U), and
width at half-height Whalf as the horizontal length scale, i.e. z̄= (z− z0)/Whalf .

sufficient for most applications. The stability characteristics can be determined only
once and then made available in the tabulated/graphical form, i.e. § 4.1. The above
discussion also demonstrates that the stability response of the flow is insensitive to
details of the groove geometry.

4.3. Optimal grooves
It is known that longitudinal grooves are able to significantly reduce the laminar drag
if the groove wavenumber is sufficiently small; this effect occurs only for grooves
with β < βcr ≈ 0.965 (see § 2.4). The best groove shape for the maximization of the
drag reduction has been determined in Moradi & Floryan (2013a) for annular flow
and by Mohammadi & Floryan (2013b) for planar flow. The shape of the optimal
groove depends on the type of constraint. In the case of equal-depth grooves both
height and depth are imposed and kept equal. In the case of the unequal-depth grooves
the height is imposed while the depth is determined through the optimization process;
the resulting grooves has different height and depth. In the former case, the optimal
grooves are well approximated by a certain universal trapezoid (see figure 23a; a=b=
λ/8 and c= d= 3λ/8). In the latter case, they are well approximated by a Gaussian
function (see figure 23b; ȳ= e−4z̄2). It is of interest to determine the effects of such
grooves on the flow stability as this would provide a limit on their applicability as
drag-reducing devices. The optimization process requires access to more information
about the groove geometry; the number of Fourier modes that has to be used increases
to approximately 5–7 (Moradi & Floryan 2013a,b) and forms the basis for the reduced
geometry model for groove optimization. In the stability analysis the optimal shapes
were represented using at least ten Fourier modes in order to reduce any potential
error margin.

Neutral curves in the (Re, δ)-plane for equal-depth grooves represented using the
universal trapezoid are displayed in figure 24. It can be seen that such grooves
stabilize the flow beyond what is possible with the sinusoidal grooves, however, the
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FIGURE 24. Neutral curves in the (Re, δ) plane for channel fitted with optimal, equal-
depth grooves at the lower wall. The groove geometry is represented by the universal
trapezoid with a= b= λ/8 and c= d= 3λ/8 (see figure 23 for notation). Results for the
sinusoidal grooves are given for reference (dashed lines). Figure 24(a–c) provide results
for the groove wavenumbers β = 0.2, 0.5 and 0.8, respectively.

corresponding increase of Rec is fairly small. Figure 25 displays neutral curves for
the unequal-depth grooves at the lower wall with heights fixed at SL,U = 0.01, 0.03,
0.05 and depths determined by the optimization process. There are no reference
curves in this figure as a single Fourier mode cannot describe such geometries. Since
the optimal depth increases significantly with reduction of β and an increase of SL,U,
results are presented only for those cases where the depth did not breach the limit
of 0.05 used throughout this analysis. It can be seen that the range of stabilization
achieved with these grooves is similar to that found in the case of the equal-depth
grooves (compare figures 24 and 25).

5. Conclusions

The analysis of the stability of the flow in a channel fitted with longitudinal
grooves has been carried out. Only grooves with an amplitude less than S = 0.05
were considered. It is known that, in general, the effects of grooves can be divided
into effects associated with a change in the mean position of the wall and effects
associated with the shape-induced modulations. This analysis is focused on the
modulation effects. Grooves may have an arbitrary but Fourier transformable form
that does not affect the mean position of the wall. As there is an uncountable number
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FIGURE 25. Neutral curves in the (Re, δ) plane for a channel fitted with the optimal
unequal-depth grooves at the lower wall. The groove geometry is represented using the
universal Gaussian function. Solid, dashed and dashed-dotted lines correspond to grooves
with heights SL,U = 0.01, 0.03 and 0.05, respectively. Results are presented only for these
cases where the optimal depth has not breached the limit of 0.05 used throughout this
analysis. Three curves are given for β = 0.8 (SL,U = 0.01, 0.03, 0.05), two curves are
given for β = 0.5 (SL,U = 0.01, 0.03) and one curve is given for β = 0.2 (SL,U = 0.01).

of possible groove shapes, the applicability of the reduced geometry concept has been
investigated; it has been shown that such a model applies to the analysis of flow
stability in the presence of longitudinal grooves. This model permits the replacement
of an arbitrary groove with the leading term from the Fourier expansion describing
its geometry. The difference between the critical Reynolds numbers determined using
either the complete groove geometry or just the leading Fourier term from its Fourier
representation is below 1 % for the system parameters used in this study.

A detailed analysis has been carried out for sinusoidal grooves, i.e. grooves
represented by a single Fourier mode. Only disturbances corresponding to travelling
waves in the limit of zero groove amplitude have been found. It is known that the
two-dimensional waves play a critical role in a smooth channel. It has been shown
that disturbances corresponding to the two-dimensional waves in the limit of zero
groove amplitude play the critical role in the grooved channel.

The presence of grooves leads to flow stabilization for groove wavenumbers β <
βtran ≈ 4.22 and flow destabilization for larger β. The destabilization is quite strong
as the critical Reynolds number increases fairly rapidly with an increase of β, but
stabilization associated with the reduction of β is mild. The stabilizing/destabilizing
effects increase with an increase of the groove amplitude. Variations of the critical
Reynolds number over the whole range of groove wavenumbers and groove amplitudes
of interest have been given. Their results permit the assessment of stability properties
of grooves of an arbitrary shape through invocation of the reduced geometry model.

The topology of the disturbance velocity field at the onset is highly three-
dimensional. Its structure is rather simple for large β with groove effects limited
to the neighbourhood of the grooved wall. Reduction of β below βtran leads to large
changes and increased complexity of the flow structure with groove effects visible in
the whole flow domain.

Special attention has been paid to the effects of long-wavelength, drag-reducing
grooves. It has been shown that such grooves lead to a small increase of the critical
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Reynolds number compared with the smooth channel. The stabilizing effect has been
found in the case of the optimal equal-depth grooves as well as in the case of the
optimal unequal-depth grooves. It can be concluded that the use of the drag-reducing
grooves does not lead to an early breakdown into turbulence and, thus, the flow should
remain laminar over approximately the same range of Reynolds numbers as found in
the case of smooth channel.
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Appendix A. Solution of the stationary state in the small wavenumber limit
The governing equations, the boundary conditions and the constraints forming the

four leading-order systems resulting from the small-wavenumber approximation (see
§ 2.3):

O(β0) : ∂
2U0

∂ς 2
− ReH2 dP0

dx
= 0, U0(χ,±1)= 0,

1
2π

∫ χ=2π

χ=0

∫ ς=1

ς=−1
HU0 dς dχ = 4

3
,

(A 1a–c)

O(β1) : ∂
2U1

∂ς 2
− ReH2 dP1

dx
= 0, U1(χ,±1)= 0,

∫ χ=2π

χ=0

∫ ς=1

ς=−1
HU1 dς dχ = 0,

(A 2a–c)

O(β2) : ∂
2U2

∂ς 2
− ReH2 dP2

dx
+ [2HχGχ + 2ςH2

χ −H(Gχχ + ςHχχ)]∂U0

∂ς

− 2H(Gχ + ςHχ)
∂2U0

∂ς∂χ
+H2 ∂

2U0

∂χ 2
+ ReH2(Gχ + ςHχ)

dP0

dx
= 0,

U2(χ,±1)= 0,
∫ χ=2π

χ=0

∫ ς=1

ς=−1
HU2 dς dχ = 0, (A 3a–c)

O(β3) : ∂
2U3

∂ς 2
− ReH2 dP3

dx
= 0, U3(χ,±1)= 0,

∫ χ=2π

χ=0

∫ ς=1

ς=−1
HU3 dς dχ = 0.

(A 4a–c)

Appendix B. Definitions of operators T, S,C, Ev, Eη,Hv,Hη
Here we give definitions of the operators T, S, C, Ev, Eη, Hv, Hη appearing in the

linear disturbance equations (see § 3.1)

T (m)( y)= Re−1(D2 − k2
m)

2 + i(D2 − k2
m)[σ − δu0(y)] + iδD2u0(y) (B 1)

S(m)(y)= Re−1[D2 − k2
m − iδReu0(y)+ iσ ], (B 2)

C(m)(y)= tmDu0(y) (B 3)

H(m,n)
v (y)=−iδ(D2 + k2

m)u
(n)
1 (y)+

2inβtm−n

k2
m−n

Du(n)1 (y)D+
iδ

k2
m−n

[k2
m − (nβ)2]u(n)1 (y)D

2,

(B 4)
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H(m,n)
η (y)= 2nβδ2

k2
m−n

[Du(n)1 (y)+ u(n)1 (y)D], (B 5)

E(m,n)v (y)=
[
−tmDu(n)1 (y)+ nβ

(
1+ nβtm−n

k2
m−n

)
u(n)1 (y)D

]
, (B 6)

E(m,n)η (y)= iδ
(

1− n2β2

k2
m−n

)
u(n)1 (y), (B 7)

tm =µ+mβ, k2
m = δ2 + t2

m, (B 8a,b)

where Dn = dn/dyn.

Appendix C. Discretization of the disturbance equations
The flow domain is contained between (−1 − yb) and (1 + yt), where yb and yt

denote locations of the groove extremities. In order to use the standard definition of
the Chebyshev polynomials, this domain is mapped into (−1,1) using a transformation
of the form

ŷ= [y− (1+ yt)]Γ + 1, Γ = 2(2+ yt + yb)
−1. (C 1)

The T , S, C, Ev, Eη,Hv, Hη operators in the new coordinate system take the form

T (m)(ŷ)= Re−1(Γ 2D2 − k2
m)

2 + i(Γ 2D2 − k2
m)[σ − δu0(ŷ)] + iδΓ 2D2u0(ŷ) (C 2)

S(m)(ŷ)= Re−1[Γ 2D2 − k2
m − iδReu0(ŷ)+ iσ ], (C 3)

C(m)(ŷ)= tmΓDu0(ŷ) (C 4)

H(m,n)
v (ŷ)=−iδ(Γ 2D2 + k2

m)u
(n)
1 (ŷ)+

2inβtm−nΓ
2

k2
m−n

Du(n)1 (ŷ)D

+ iδΓ 2

k2
m−n

[k2
m − (nβ)2]u(n)1 (ŷ)D

2, (C 5)

H(m,n)
η (ŷ)= 2nβδ2Γ

k2
m−n

[Du(n)1 (ŷ)+ u(n)1 (ŷ)D], (C 6)

E(m,n)v (ŷ)= Γ
[
−tmDu(n)1 (ŷ)+ nβ

(
1+ nβtm−n

k2
m−n

)
u(n)1 (ŷ)D

]
(C 7)

E(m,n)η (ŷ)= iδ
(

1− n2β2

k2
m−n

)
u(n)1 (ŷ). (C 8)

The unknown modal functions are expressed as Chebyshev expansions (3.9) and the
mean flow and the reference flow quantities are expressed in terms of the relevant
Chebyshev expansions of the form

u(n)1 (ŷ)=
NT∑

k=0

G(n)
l,BTk(ŷ), (C 9)

u0(ŷ)=−T2(ŷ)/(2Γ 2)− 2 (1+ yt − 1/Γ ) T1(ŷ)/Γ
+ [1− (1+ yt − 1/Γ )2 − 1/(2Γ 2)

]
T0(ŷ),

Du0(ŷ)=−2T1(ŷ)/(Γ 2)− 2(1+ yt − 1/Γ )T0(ŷ)/Γ,
D2u0(ŷ)=−2T0(ŷ)/Γ 2.

 (C 10)
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Substitution of (C 9) and (C 10) into (C 2)–(C 8) results in an algebraic system of
the form

NT∑
k=0

{
Re−1Γ 4D4Tk − Γ 2(2Re−1k2

m + iδu0)D2Tk

+ [Re−1k4
m + iδ

(
Γ 2D2u0 + k2

mu0
)]

Tk
}

G(m)
k,v

−
+NN∑

n=−NN

+NT∑
k=0

[H(m,n)
v TkG

(m−n)
k,v +H(m,n)

η TkG
(m−n)
k,η ]

=−iσ
+NT∑
k=0

(Γ 2D2Tk − k2
mTk)G

(m)
k,v , (C 11a)

NT∑
k=0

[Re−1Γ 2D2Tk − (Re−1k2
m + iδu0)Tk]G(m)

k,η + tmΓDu0TkG
(m)
k,v

−
+NN∑

n=−NN

+NT∑
k=0

[E(m,n)v TkG
(m−n)
k,v + E(m,n)η TkG

(m−n)
k,η ] =−iσ

+NT∑
k=0

TkG
(m)
k,η . (C 11b)

Application of the Galerkin projection method leads to a linear system for the
expansion coefficients of the form

NT∑
k=0

[
Re−1Γ 4〈Tj,D4Tk〉 − 2Re−1k2

mΓ
2〈Tj,D2Tk〉 + Re−1k4

m〈Tj, Tk〉

− iδΓ 2〈Tj, u0D2Tk〉 + iδk2
m〈Tj, u0Tk〉 + iδΓ 2〈Tj,D2u0Tk〉

]
G(m)

k,v

+
NN∑

n=−NN

NT∑
l=0

[
iδk2

m〈Tj, TlTk〉 + iδΓ 2〈Tj,D2TlTk〉 − 2inβδtm−nΓ
2

k2
m−n

〈Tj,DTlDTk〉

− iδΓ 2(k2
m − n2β2)

k2
m−n

〈Tj, TlD2Tk〉
]

G(n)
l,BG(m−n)

k,v

−
NN∑

n=−NN

NT∑
l=0

2nβδ2Γ

k2
m−n

(〈Tj,DTlTk〉 + 〈Tj, TlDTk〉
)

G(n)
l,BG(m−n)

k,η

=−iσ
(
Γ 2〈Tj,D2Tk〉 − k2

m〈Tj, Tk〉
)

G(m)
k,v , (C 12a)

NT∑
k=0

[
Re−1Γ 2〈Tj,D2Tk〉 − Re−1k2

m〈Tj, Tk〉 − iδ〈Tj, u0Tk〉
]

G(m)
k,η + tmΓ 〈Tj,Du0Tk〉G(m)

k,v

+
NN∑

n=−NN

NT∑
l=0

[
tmΓ 〈Tj,DTlTk〉 − nβΓ

(
1+ nβtm−n

k2
m−n

)
〈Tj, TlDTk〉

]
G(n)

l,BG(m−n)
k,v

+
NN∑

n=−NN

NT∑
l=0

iδ
(

n2β2

k2
m−n

− 1
)
〈Tj, TlTk〉G(n)

l,BG(m−n)
k,η =−iσ 〈Tj, Tk〉G(m)

k,η . (C 12b)

The inner product 〈Tj,DnTlDmTk〉 is defined as

〈Tj,DnTlDmTk〉 =
∫ 1

−1
Tj(ŷ)DnTl(ŷ)DmTk(ŷ)ω(ŷ) dŷ, (C 13)
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where ω(y) = 1/
√

1− y2. Evaluation of these products can be simplified by taking
advantage of the orthogonality properties of the Chebyshev polynomials (See
appendix A).

Appendix D. Description of boundary relations required to complete formulation
of the linear stability problem

The homogeneous boundary conditions (3.4) need to be expressed in terms of
η(m)(ŷ) and g(m)v (ŷ). They can be written for the lower wall in the form

uD(x, ŷL, z, t)=
+NN∑

n=−NN

[
iδΓ
k2

n

Dg(n)v (ŷL)− tn

k2
n

η(n)(ŷL)

]
ei[δx+(µ+nβ)z−σ t] = 0, (D 1)

vD(x, ŷL, z, t)=
+NN∑

n=−NN

g(n)v (ŷL)ei[δx+(µ+nβ)z−σ t] = 0, (D 2)

wD(x, ŷL, z, t)=
+NN∑

n=−NN

[
itnΓ

k2
n

Dg(n)v (ŷL)+ δ

k2
n

η(n)(ŷL)

]
ei[δx+(µ+nβ)z−σ t] = 0. (D 3)

The location of this wall is given as

ŷL(z)=
NA∑

n=−NA

A(n)L einβz (D 4)

where A(n)L =−Γ (2+ yt −H(n)
L )+ 1 for n= 0 and A(n)L = ΓH(n)

L for n 6= 0. As the first
step, consider boundary condition (D 1). Substitution of (3.9) into (D 1) leads to

+NN∑
n=−NN

+NT∑
k=0

iδΓ
k2

n

DTk(ŷL(z))G
(n)
k,ve

i[δx+(µ+nβ)z−σ t]

−
+NN∑

n=−NN

+NT∑
k=0

tn

k2
n

Tk(ŷL(z))G
(n)
k,ηe

i[δx+(µ+nβ)z−σ t] = 0. (D 5)

Values of the Chebyshev polynomials and their first derivatives along the wall
appearing in the above relation i.e. Tk(ŷL(z)) and DTk(ŷL(z)), represent periodic
functions of z and, thus, can be expressed using Fourier expansions of the form

Tk(ŷL(z))=
+∞∑

m=−∞
(wL)

(m)
k eimβz, DTk(ŷL(z))=

+∞∑
m=−∞

(dL)
(m)
k eimβz. (D 6a,b)

The reader may note that substitution of (D 6) into (D 5) leads to a certain Fourier
expansion whose convergence rate affects the number of Fourier modes that have to
be used in the solution. The expansion has, in general, a different convergence rate
from expansion (3.7).

Evaluation of coefficients (wL)
(m)
k begins with the lowest-order Chebyshev polynomial,

i.e.

T0 = 1H⇒
+∞∑

m=−∞
w(m)

L,0eimβz = 1H⇒
{

w(0)
L,0 = 1

w(m)
L,0 = 0, m 6= 0,

(D 7)
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T1
[
ŷL(z)

]= ŷL(z)H⇒
+∞∑

m=−∞
w(m)

L,1eimβz =
+∞∑

m=−∞
A(m)L eimβz H⇒w(m)

L,1 = A(m)L . (D 8)

The remaining coefficients w(m)
L,k (k > 2) can be computed using the Chebyshev

recursion relation which results in

w(m)
L,k+1 = 2

NA∑
n=−NA

A(n)L w(m−n)
L,k −w(m)

L,k−1, k > 2. (D 9)

Evaluation of the coefficients (dL)
(m)
k also begins with the lowest-order polynomial,

i.e.

DT0 = 0H⇒
+∞∑

m=−∞
d(m)L,0 eimβz = 0H⇒ d(0)L,0 = 0, (D 10)

DT1 = 1H⇒
+∞∑

m=−∞
d(m)L,0 eimβz = 1H⇒

{
d(0)L,0 = 1

d(m)L,0 = 0, m 6= 0,
(D 11)

DT2
[
ŷL(z)

]= 4ŷL(z)H⇒
+∞∑

m=−∞
d(m)L,2 eimβz =

+∞∑
m=−∞

4A(m)L eimβz H⇒ d(m)in,2 = 4A(m)in .

(D 12)

The remaining coefficients d(m)L,k , k > 3 can be computed using the Chebyshev
recursive formula and have the following form

d(m)L,k+1 = 2
NA∑

n=−NA

A(n)L d(m−n)
L,k − d(m)L,k−1 −w(m)

L,k , k > 3. (D 13)

Substitution of (D 6) into (D 5) and separation of Fourier modes lead to a boundary
relation of the form

+NN∑
n=−NN

+NT∑
k=0

iδΓ
k2

m

(dL)
(n−m)
k G(n)

k,v −
+NN∑

n=−NN

+NT∑
k=0

tm

k2
m

(wL)
(n−m)
k G(n)

k,η = 0 (D 14)

which expresses condition (D 1). Following the same procedure, the boundary
conditions for vD and wD can be written in the form

+NN∑
n=−NN

+NT∑
k=0

(wL)
(n−m)
k G(n)

k,v = 0. (D 15)

+NN∑
n=−NN

+NT∑
k=0

itmΓ

k2
m

(dL)
(n−m)
k G(n)

k,v +
+NN∑

n=−NN

+NT∑
k=0

δ

k2
m

(wL)
(n−m)
k G(n)

k,η = 0. (D 16)

Boundary relations for the upper wall can be obtained by simply changing subscript
‘L’ into ‘U’ in the above equations. These relations provide the groove-induced
coupling between different Fourier modes. The other coupling is provided by the
field equations (3.8).
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In general, the total number of available boundary relations is NN+NTNA, where NN

is the number of Fourier modes used in the discretization of the field equations, NT

is the number of the Chebyshev polynomials used in the discretization of the modal
functions and NA denotes the number of Fourier modes used to describe the groove
geometry. Since only NN modes are used in the numerical solution, one can enforce
only NN of these conditions. The remaining conditions can either be used a posteriori
as a convenient test for the consistency of the algorithm or can be utilized directly
leading to the over-determined formulation (Husain et al. 2009).
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