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ITERATING SYMMETRIC EXTENSIONS

ASAF KARAGILA

Abstract. The notion of a symmetric extension extends the usual notion of forcing by identifying a
particular class of names which forms an intermediate model of ZF between the ground model and the
generic extension, and often the axiom of choice fails in these models. Symmetric extensions are generally
used to prove choiceless consistency results. We develop a framework for iterating symmetric extensions in
order to construct new models of ZF. We show how to obtain some well-known and lesser-known results
using this framework. Specifically, we discuss Kinna–Wagner principles and obtain some results related to
their failure.

§1. Introduction. Forcing is one of the main tools in modern set theory. It allows
us to obtain consistency results by taking well-behaved models and extending them
in a very controlled way, so we can ensure the newmodels satisfy certain statements.
While it is true that the basic mechanics of forcing do not require the axiom of
choice, the axiom of choice is deeply integrated into how we use forcing. Firstly, the
axiom of choice cannot be violated via forcing; and secondly, the axiom of choice
is used constantly when we argue with chain conditions, the mixing lemma, closure
properties, and more. Consider these two folklore theorems:

Theorem 1.1. “If p � ∃xϕ(x), then ∃ẋ : p � ϕ(ẋ)” is equivalent to AC.
Theorem 1.2. For every κ, “If P is a κ-closed forcing, then P does not add
κ-sequences to the ground model” is equivalent to DCκ.

In fact, since the axiom of choice is equivalent to the statement “every partial
order contains a maximal antichain”, without the axiom of choice we cannot even
ensure that there are maximal antichains in our forcing notion. Indeed, forcing
without the axiom of choice admits quite a handicap.

In order to prove the relative consistency of ZF+¬AC, something that cannot be
done via forcing alone, Cohen incorporated the arguments developed and perfected
by Fraenkel, Mostowski, and Specker for constructing permutation models for
set theory with atoms (or where the axiom of regularity fails in certain ways). This
technique is nowknownas symmetric extensions, which is an additional structure to
the technique of forcing,which allows us to identify an intermediatemodelwhere the
axiom of choice fails. As the theory of forcing developed, so did our understanding
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124 ASAF KARAGILA

of symmetric extensions. Serge Grigorieff showed in [3] that symmetric extensions
are exactly HOD(V ∪x)V [G ] for some set x, for example, and thatV [G ] is a generic
extension of all of its symmetric extensions.

In this paper we develop a technique for iterating symmetric extensions. We can
see precursors to this idea in the works of Gershon Sageev [11, 12] and Gordon
Monro [9]. Sageev constructs two models using iterations and symmetries. Despite
the fact that Sageev’s constructions are not iterations of symmetric extensions per se,
it is clear from his arguments that the solution is morally an iteration of symmetric
extensions. Monro in his work constructs a sequence of models that each one is a
“morally” symmetric extension of the previous.
The motivation for developing such a technique is coming from two seemingly
unrelated problems. The first motivation is forcing over ZFmodels. If we force over
symmetric extensions—or models close enough to be symmetric extensions—we
can try and treat the forcing as an iteration over a ground model satisfying ZFC.
There we can take some advantage of the axiom of choice and its consequences on
forcing. So one goal is to help and simplify forcing over models of ZF.
The second motivation is coming from the fact that it is sometimes easier to
break a large problem into parts, and solve only a few parts of the problem at a
time, over and over again, rather than the entire problem at once. This is self-evident
by the ubiquity of problems solved via iterated forcing. This approach might allow
for simplification of Sageev’s works, which are extremely technical and are long
overdue for a good revision. We hope to address these in the future.

This paper starts by covering some preliminaries about iterated forcing and sym-
metric extensions.1 In Sections 3 and 4 we will discuss how to extend the general
structure of symmetric extensions to the iteration, and apply these in Section 5
to discuss the class of names and the forcing relation identifying the intermediate
model. We will prove in Section 7 that the term “iterated symmetric extensions” is
justified, by showing that the iteration of symmetric extensions is in fact a symmetric
iteration and vice versa. Section 8 will be devoted to a variant of the general method
where some added restrictions will allow us to access filters which are not neces-
sarily generic for the iteration. We finish the paper with an example of a symmetric
iteration in which we subsume the work of Monro in [9] into this new framework,
we discuss Kinna–Wagner Principles and construct a sequence of models, each an
extension of the previous, where slowly more and more Kinna–Wagner Principles
fail.

1.1. Motivation for the initiated. Before we begin, we would like to give some
bits of motivation while ignoring any technical ignorance the reader might have at
this point. If we try to iterate two symmetric extensions “by hand”, say P ∗ Q̇, then
we ultimately want to find a good definition for the class of names which are not
only symmetric with respect to P, but then again symmetric with respect toQ itself,
this can be done awkwardly by hand for finite steps. The limit should be something
akin to “definable from finitely many objects so far”, which makes the “by-hand”
approach much more difficult (since an object, even if guaranteed to exist, might

1Well, it actually begins with the introduction, motivation and structure of the paper, but we ignore
that for obvious reasons here.
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havedefinitions anddependency onparameters according to the generic).Moreover,
if one pays close attention to the details, there are a few immediate obstructions to
the obvious way of applying the automorphisms even for the two steps.
So the goal is to try and generalize the structure of a symmetric extension:
automorphisms, and then filters of groups. The main problem is that the structure
from the first symmetric extension acts on the second one aswell.We need to address
these actions, and create a structure that is useful, even if somewhat complicated.

§2. Preliminaries. We work in ZFC throughout the paper. The main concern of
this work is forcing, in this section we establish some notations and terminology.
We say that 〈P, 1P,≤P〉 is a notion of forcing if P is a preordered set and 1P is a
maximum element. The elements of P are called conditions, and if p, q are two
conditions in P we say that q is stronger than p if q ≤P p. We will usually omit 1P
from the definition, and when the context allows we will omit P from the subscript
as well.
We denote P-names as ẋ, and we adopt the convention that the elements of ẋ are
pairs 〈p, ẏ〉 where p is a condition in P and ẏ is a P-name of a lower rank, indeed
this lets us have a natural notion of rank on P-names, denoted by rankP(ẋ) (or
rank(ẋ) when P is clear from context2). If x is in the ground model, we will denote
by x̌ the canonical name for x, defined by recursion as x̌ = {〈1, y̌〉 | y ∈ x}. We say
that a condition p appears in ẋ, if there is some ẏ such that 〈p, ẏ〉 ∈ ẋ; similarly, we
say that ẏ appears in ẋ, if there is some condition p such that 〈p, ẏ〉 ∈ ẋ.
Definition 2.1. We say that a P-name ẋ is open if whenever 〈p, ẏ〉 ∈ ẋ and
q ≤ p, then 〈q, ẏ〉 ∈ ẋ. We say that ẋ is a simple name if every ẏ which appears in
ẋ is of the form ǎ for some a.

Proposition 2.2. Suppose that ẋ is a name such that for some A, p � ẋ ⊆ Ǎ,
then there is an open and simple name ẋ0 such that p � ẋ = ẋ0.
Proof. Define ẋ0 = {〈p, ǎ〉 | p � ǎ ∈ ẋ}, then by the properties of the forcing
relation ẋ0 is an open name, and by the definition of ẋ0 it is also simple. If p does
not force equality, let q ≤ p such that q � ẋ 
= ẋ0. Assume first there is some r ≤ q
such that for some ẏ, r � ẏ ∈ ẋ ∧ ẏ /∈ ẋ0. By the assumption that r ≤ q ≤ p we
know that r � ẋ ⊆ Ǎ, then there is some r′ ≤ r and a ∈ A such that r′ � ẏ = ǎ.
But now r′ � ǎ ∈ ẋ, and by definition 〈r′, ǎ〉 ∈ ẋ0 so in particular r′ � ǎ ∈ ẋ0,
which is a contradiction. The other inclusion is similar, and we get that no q ≤ p
can force that ẋ 
= ẋ0, so p � ẋ = ẋ0. �
Suppose that {ẋi | i ∈ I } is a collection of P-names, we write {ẋi | i ∈ I }• for
the P-name {〈1, ẋi〉 | i ∈ I }, and we call these •-names. Using this notation, for
example, x̌ = {y̌ | y ∈ x}•. This notation extends naturally to ordered pairs and
sequences, so 〈ẋ, ẏ〉• = {{ẋ}•, {ẋ, ẏ}•}•, and so on.
Let ẋ be a P-name and p ∈ P, we will write ẋ � p to be the name p interprets
correctly as ẋ, but any incompatible condition interprets as the empty set. Namely,

ẋ � p = {〈q, ẏ〉 | q ≤ p, q � ẏ ∈ ẋ, and ẏ appears in ẋ}.
2While rank functions are fairly ubiquitous in set theory, and often refer to the von Neumann rank,

we will almost always refer to the name ranks instead, and make any reference to other ranks explicit.
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One might wonder why this is not an inductive definition in which we take ẏ � p or
even ẏ � q. The matter of fact is that usually this is unneeded in most uses of the
notation.
Suppose that ẋ and Ȧ are P-names. We say that ẋ was obtained by mixing from
names which appear in Ȧ if there is a maximal antichain D and for every p ∈ D,
some ȧp which appears in Ȧ such that ẋ � p = ȧp � p.
2.1. Iterated forcing. In this work we will only consider finite support iterations.
In different sources one can find slightly different presentations of finite support
iterations. When we work in ZFC and we just want to take generic extensions, all
these presentations of the iteration poset are equivalent. However, once you want
to apply automorphisms to a forcing, the choice of the preordered set can make a
difference. For example, it is easy to construct a finitely splitting tree which is rigid,
but forcing equivalent to the full binary tree (in other words, a Cohen forcing).

Definition 2.3. Suppose that P is a notion of forcing and Q̇ is a P-name such
that 1P �P “Q̇ is a notion of forcing”. The Kunen iteration is the preordered set
given by {〈p, q̇〉 | p ∈ P, q̇ appears in Q̇, p �P q̇ ∈ Q̇}; the Jech iteration is the set
{〈p, q̇〉 | p ∈ P, q̇ obtained by mixing names which appear in Q̇, 1P �P q̇ ∈ Q̇}.
In both cases, 〈p, q̇〉 ≤ 〈p′, q̇′〉 if p ≤P p

′ and p � q̇ ≤Q̇ q̇
′. We denote this

forcing by P ∗ Q̇.
It is a standard exercise to show that for a two-step iteration using Kunen or
Jech iterations is the same. The proof allows us to extend this to any length of
iteration, provided that the limit steps are taken with finite support. While we only
consider Jech iterations in this work, the Kunen iterations will make an important
appearance in Section 8.3.
One important remark that should bemade here is that in most books concerning
iterated forcing, it is often the case that the initial assumption is that without loss of
generality Q̇ is going to be a set of ordinals, or something like this in order to ensure
some canonicity in the names for the conditions. If we plan on forcing over models
where the axiom of choice fails, this is going to be a problem, as in all likelihood we
will be interested in forcings which cannot be well-ordered. This is why in theKunen
iteration we require explicitly that q̇ appears in Q̇, and while in the Jech iterations
we allowed a greater freedom, but we still ensure that the names were mixed from
our original Q̇.
We finish by pointing out that neither definition of the iteration preordered set is
necessarily separative. It will often be convenient to jump back and forth between
the presentation of P ∗ Q̇ as a set of ordered pairs, and the separative quotient.
So we will allow ourselves to replace conditions which are equivalent when it is
convenient, but only when it is clear that we are allowed to do so. We will also take
advantage of the fact that if p �P q̇ = q̇′, then 〈p, q̇〉 and 〈p, q̇′〉 are equivalent in
the sense of the separative quotient.

2.2. Symmetric extensions. Let P be a notion of forcing, if � ∈ Aut(P), we can
extend it by recursion to an automorphism of names:

�ẋ = {〈�p, �ẏ〉 | 〈p, ẏ〉 ∈ ẋ}.
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Lemma 2.4 (The symmetry lemma). Suppose that P is a notion of forcing, � an
automorphism of P and ẋ1, . . . , ẋn are P-names. Then for every formula ϕ(u1, . . . , un)
in the language of forcing,

p � ϕ(ẋ1, . . . , ẋn) ⇐⇒ �p � ϕ(�ẋ1, . . . , �ẋn).
The following proposition is an easy corollary of the symmetry lemma.

Proposition 2.5. Suppose that ẋ is a P-name, and ẋ′ is the open name defined as

ẋ′ = {〈p, ẏ〉 | p � ẏ ∈ ẋ and ẏ appears in ẋ}.
Then for every automorphism �, 1 � �ẋ = �ẋ′.
If G is a group, we say thatF is a filter of subgroups over G if F is a nonempty
collection of subgroups of G , closed under supergroups and finite intersections. If
the trivial subgroup is in F we say that it is the improper filter.3 Such F is called
normal if whenever H ∈ F and � ∈ G , then the conjugated subgroup �H�−1 ∈ F
as well.

Remark 2.6. Note that it is enough to talk about a filter base, or rather a normal
filter base, rather than talking about filters. This will be convenient later when we
move between models and a filter in a small model might “only” be a filter base in
the larger model. But we will largely ignore this problem throughout the text.

Definition 2.7. We say that 〈P,G ,F 〉 is a symmetric system if P is a notion of
forcing, G is a group of automorphisms of P andF is a normal filter of subgroups
over G . We say that ẋ isF -symmetric if there existsH ∈ F such that for all � ∈ H ,
�ẋ = ẋ. This definition extends by recursion: ẋ is hereditarily F -symmetric, if ẋ is
F -symmetric and every name which appears in ẋ is hereditarilyF -symmetric. We
denote by HSF the class of all hereditarilyF -symmetric names.

Proposition 2.8. Let ẋ be anF -symmetric with H ∈ F witnessing that, and let
ẋ′ be as defined in Proposition 2.5. Then H witnesses that ẋ′ isF -symmetric.
Theorem 2.9. Suppose that 〈P,G ,F 〉 is a symmetric system and G ⊆ P is a
V -generic filter. Denote by N the class HSGF = {ẋG | ẋ ∈ HSF}, then N |= ZF and
V ⊆ N ⊆ V [G ].
To read more about symmetric extensions see [6], and Chapter 15 in [5].

§3. Extending automorphisms.
3.1. Two step iterations. Through this entire section, P will denote some notion
of forcing, and Q̇ will denote a name for a notion of forcing. Let us investigate how
to extend automorphisms of P and Q̇ to automorphisms of P ∗ Q̇.
Proposition 3.1. Let �̇ a P-name such that 1P �P �̇ ∈ Aut(Q̇). Then the map

〈p, q̇〉 �→ 〈p, �̇(q̇)〉 is an automorphism of P ∗ Q̇.
Proof. First we need to argue why this is a well-defined map, note that since
�̇ is guaranteed to be an automorphism of Q̇ and q̇ is guaranteed to be a con-
dition of Q̇, we can find a predense set where the value of �̇(q̇) is decided and

3It is often the case that the improper filter is not considered a filter, but allowing this can be fruitful,
as we will see in Section 6.
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mix over it. Moreover, since �̇ is a name for a well-defined function, if both q̇0
and q̇1 are forced by 1P to be equal to �̇(q̇), then it is necessarily the case that
1P �P q̇0 = q̇1.
Injectivity follows from the same argument. If 〈p, �̇(q̇)〉 = 〈p, �̇(q̇′)〉, then by
the fact 1P � “�̇ is injective” it follows that p �P q̇ = q̇′, and therefore the two
conditions are equivalent. The argument for surjectivity is also the same. So it
remains to prove that the order is preserved.
Suppose that 〈p1, q̇1〉 ≤P∗Q̇ 〈p2, q̇2〉, then p1 ≤P p2 and p1 �P q̇1 ≤Q̇ q̇2. But
because p1 �P �̇ ∈ Aut(Q̇) we have that

p1 �P q̇1 ≤Q̇ q̇2 ↔ �̇(q̇1) ≤Q̇ �̇(q̇2).

Therefore 〈p1, q̇1〉 ≤P∗Q̇ 〈p2, q̇2〉 if and only if 〈p1, �̇(q̇1)〉 ≤P∗Q̇ 〈p2, �̇(q̇2)〉. �
One might feel there is a simple analogy to the case when taking � ∈ Aut(P) and
considering 〈p, q̇〉 �→ 〈�p, q̇〉. But this is not going to be order preserving, because
there is no guarantee that �p �P q̇ ≤Q̇ q̇

′ just by assuming p �P q̇ ≤Q̇ q̇
′. In fact

there is no guarantee that �p �P �q̇ ≤Q̇ �q̇
′. The reason is simple, it might be the

case that � does not preserve Q̇ or its order. So not every � can do the job, just those
which preserve enough of the information about Q̇.

Definition 3.2. Let Ȧ is a P-name and � ∈ Aut(P). We say that � respects Ȧ if
1P � Ȧ = �Ȧ. When Ȧ is implicitly endowed with some structure (e.g., a notion of
forcing), then we require the entire structure to be respected.

Note that the collection of all automorphismswhich respect Ȧ forma subgroupof
Aut(P). Also note that if � respects Ȧ, it will invariably respect anything reasonably
definable from Ȧ (like the name for a power set of Ȧ, and so on).

Proposition 3.3. If � ∈ Aut(P) respects Q̇, then the map 〈p, q̇〉 �→ 〈�p, �q̇〉 is an
automorphism of P ∗ Q̇.
Now, if 〈�, �̇〉 is a pair such that � ∈ Aut(P) respects Q̇ and 1P �P �̇ ∈ Aut(Q̇),
we define the action of 〈�, �̇〉 on P ∗ Q̇ as the successive operation of �̇ and then �.
We introduce a notation4 to simplify this,

∫
〈�,�̇〉〈p, q̇〉 = 〈�p, �(�̇(q̇))〉 = 〈�p, ��̇(�q̇)〉.

We will also denote, for simplicity,
∫
� and

∫
�̇ the extensions of automorphisms from

Aut(P) and Aut(Q̇) respectively. So
∫
〈�,�̇〉 =

∫
�

∫
�̇
.

Proposition 3.4. The following properties are true for 〈�0, �̇0〉 and 〈�1, �̇1〉:
1.

∫
〈�1,�̇1〉

∫
〈�0,�̇0〉 =

∫
〈�1�0,�−10 (�̇1)�̇0〉.

2.
∫
〈�1,�̇1〉

−1 =
∫
〈�−11 ,�1(�̇−11 )〉.

4We will soon start applying these automorphisms to the names of other automorphisms. It is useful
to have a distinction between the names defining the automorphism and the action they induce. The
integral symbol was chosen because (1) it is not used in set theory, and (2) it is reasonably looking with
subscripts.
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Proof. First we will prove (1):∫
〈�1,�̇1〉

∫
〈�0,�̇0〉〈p, q̇〉 =

∫
〈�1,�̇1〉〈�0p, �0(�̇0(q̇))〉

= 〈�1�0p, �1(�̇1(�0(�̇0(q̇))))〉
= 〈�1�0p, �1�0((�−10 (�̇1)�̇0)(q̇))〉
=

∫
〈�1�0,�−10 (�̇1)�̇0〉〈p, q̇〉.

Now (2) follows easily, as we only need to argue that
∫
〈�1,�̇1〉

∫
〈�−11 ,�1(�̇−11 )〉 = id, and

indeed, ∫
〈�1,�̇1〉

∫
〈�−11 ,�1(�̇−11 )〉 =

∫
〈�1�−11 ,�1(�̇1)�1(�̇−11 )〉 =

∫
〈id,�1(id•)〉 = id . �

The readers who are knowledgeable in group theory might see something familiar
here: this operation looks suspiciously close to the definition of a semidirect product.
And those readers will not be wrong. The major difference here is that due to the
fact �̇ is a name for an automorphism, we are interested in

∫
�̇
as an automorphism

of the iteration, but also in how �̇ will turn out in the generic extension. And it
might be that 1P 
 � �̇ = �̇, but there is some p such that p � �̇ = �̇, so in different
generic extensions �̇ will become different automorphisms.
Before proceeding, one might wonder why did we choose

∫
�

∫
�̇ as the order of

operation, rather than
∫
�̇

∫
�
.

Proposition 3.5. The following holds for 〈�, �̇〉: ∫�̇
∫
� =

∫
�,�−1�̇ .

Proof. Note that
∫
�̇
is really

∫
〈id,�̇〉 and likewise

∫
�
=

∫
〈�,id•〉 so by the previous

proposition,
∫
〈id,�̇〉

∫
〈�,id•〉 =

∫
〈id �,�−1�̇ id•〉 =

∫
〈�,�−1�̇〉. �

This means that the order itself is “almost irrelevant”, at least for finite support
iterations, and by paying a small “price of conjugation” we can switch the order to
our liking.

Definition 3.6 (Generic semidirect product). Let Ġ1 be a name for a group of
automorphisms of Q̇, and let G0 be a group of automorphisms of P which respect
both Q̇ and Ġ1. We define the generic semidirect product G0 ∗ Ġ1 to be the following
group of automorphisms of P ∗ Q̇:

G0 ∗ Ġ1 =

⎧⎨
⎩
∫
〈�,�̇〉

∣∣∣∣∣∣
� ∈ G0,
1P � �̇ ∈ Ġ1, and
�̇ was obtained by mixing over names appearing in Ġ1

⎫⎬
⎭ .

To see that G0 ∗ Ġ1 is indeed a group one can observe that because we required
that G0 respects Ġ1, the composition and inverses can still be obtained by names
that were mixed from Ġ1.

Proposition 3.7. The groupG0∗Ġ1 is generated by {
∫
�,
∫
�̇ | � ∈ G0, 1P �P �̇ ∈ Ġ1}

as a subgroup of Aut(P ∗ Q̇).
Proof. One inclusion is trivial, as by definition

∫
〈�,�̇〉 =

∫
�

∫
�̇ . In the other direc-

tion note that for every � ∈ G0 the automorphism
∫
〈�,id•〉 satisfies that � ∈ G0 and

1P �P id
• ∈ Ġ1, and similarly for

∫
〈id,�̇〉 for every �̇ which was obtained by mixing

over names appearing in Ġ1. �
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3.2. The general case.

Definition 3.8. Let 〈Q̇α | α < �〉, 〈Pα | α ≤ �〉 be a finite support iteration, and
for each α, Ġα is a name for an automorphism group of Q̇α such that the following
holds:

1. G0 = {id}.
2. Gα+1 = Gα ∗ Ġα .
3. If α is a limit ordinal, then Gα is the direct limit of the groups G	 .5
Moreover, for each α, Q̇α and Ġα are respected by all the automorphisms in Gα .
Then G� is the generic semidirect product of the Ġα and it is an automorphism group
of P�.

Much like the presentation of the two-step generic semidirect product, we can
represent the automorphisms in G� in a canonical way, as shown in the next
proposition.

Proposition 3.9. Every automorphism inG� can be represented by a finite sequence
of �̇αi , for α0 < · · · < αn < � such that 1αi �αi �̇αi ∈ Ġαi , and the automorphism is
obtained by

∫
�̇α0

· · · ∫
�̇αn
.

Proof. We prove this by induction on �. If � ≤ 1 this is just by definition, and if
� is a limit ordinal it follows immediately by the fact that G� is a direct limit of Gα
for α < �. Suppose that � = α + 1, then every automorphism in G� is obtained as a
pair 〈�, �̇α〉 where � is an automorphism in Gα , which is what we wanted to show. �
We can now use this proposition to represent our automorphisms in a rather
canonical way.

Definition 3.10. We say that a sequence 
� = 〈�̇α | α < �〉 is an automorphism
sequence if

1. For every α < �, 1α �α �̇α ∈ Ġα .
2. C (
�) ⊆ � is a finite set such that for every α /∈ C (
�), 1α �α �̇α = id•.
We write

∫

�
to denote the automorphism in G� which is induced by 
�. We will also

write 
�−1 for the sequence such that
∫

�−1 =

∫

�

−1, and 
� ◦ 
� for the sequence for
which

∫

�◦
� =

∫

�

∫

� (note that these are not the pointwise inverse or composition,

and we will calculate them explicitly in the next subsection).

To get a better intuition as to how
∫

�
acts on P� , let us first consider what happens

when C (
�) = {α}. The action is defined to be as follows
∫
�̇α
p = p � α��̇α(p(α))�(�̇α(p � (α, �))).

So when we apply
∫
�̇α
we factor P� into three parts, Pα ∗ (Q̇α ∗ P�/Pα+1), then �̇α

acts on Q̇α as an automorphism of the forcing, and on P�/Pα+1 as Q̇α-names, and
of course it does nothing to Pα itself. Now if we have

∫

�, then we simply apply it one

step at a time from the maximal element of C (
�) to the minimal.

5Note that for 	 ≤ 	 ′ there is a natural embedding of G	 into G	′ , thus the notion of a direct limit
makes natural sense.
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Remark 3.11. We use (again) the fact that P� is a finite support iteration to
ensure that such decomposition exists. If one wishes to extend this definition to
larger supports, then one needs to overcome this obstacle. For example a revised
countable support iteration might work if one wishes to extend the definition to
countable support, however in such context the automorphisms should be applied
“from the bottom up” rather than the “top to bottom” approach that we take
here. It is not entirely clear, however, that such construction will work or generalize
further (e.g., Easton support iterations).

3.3. Properties of the generic semidirect product. Let 〈Q̇α, Ġα | α < �〉 be a finite
support iteration as before. We will investigate some properties of G� .
Proposition 3.12. Suppose that 
� and 
� are two sequences of automorphisms and
p ∈ P� such that p �� �̇α = �̇α for every α < �. Then

∫

�p =

∫

�p. In particular both

automorphisms behave the same on the cone below p.
To shorten the statements, we will write p �� 
� = 
� as a shorthand for “p ��
�̇α = �̇α for all α < �”.

Proof. We prove this by induction on n = |C (
�)∪C (
�)|. Of course this is trivial
for n = 0 as that means both 
� and 
� are the identity.
Let α = minC (
�) ∪ C (
�), then p � α �α �̇α = �̇α . Consider 
� � (α, �) and

� � (α, �) as Pα-names for Q̇α-names, then we have that

p � α �α “p(α) �Qα “p � (α, �) ��/α+1 
� � (α, �) = 
� � (α, �)””.
Therefore we can apply �̇α and �̇α on the internal forcing statement and receive the
same results, since forcing below p � α both are the same. This in turn translates to
the statement that

∫
�̇α
p � α + 1 =

∫
�̇α
p � α + 1 �α+1

∫
�̇α

� � (α, �) =

∫
�̇α

� � (α, �).

Let p∗ =
∫
�̇α
p �α+1, let 
�∗ be

∫
�̇α

� � (α, �) and similarly let 
�∗ be

∫
�̇α

� � (α, �). We

have that |C (
�∗)∪C (
�∗)| = n−1 < n, and that p∗ �� 
�∗ = 
�∗, so by the induction
hypothesis we get that

∫

�∗
p∗ =

∫

�∗
p∗, but since

∫

�
p =

∫

�∗
p∗ and

∫

�
p =

∫

�∗
p∗ we

get the wanted equality. �
The above proposition is the reason the automorphism group is called generic. As
we progress in our forcing towards a generic filter new equality between sequences
can be added making them essentially the same from that point onward.

Proposition 3.13. If p �� 
� = 
� and
∫

�p = p, then for every P�-name, ẋ,

p ��
∫

�ẋ =

∫

�ẋ.

Proof. By the previous proposition it follows that
∫

�
p = p, and that for every

q ≤� p it is also true that
∫

�
q =

∫

�
q ≤�

∫

�
p = p. In other words, the cone below p

is closed under
∫

� and

∫

� , and the two are equal there. It follows that their inverses

are also equal on the cone below p (whether or not the sequences 
�−1 and 
�−1 are
forced to be equal below p).
We prove the claim by induction on the rank of ẋ. Let q ≤� p such that q ��
ż ∈ ∫


�
ẋ. We may assume without loss of generality that for some 〈s, u̇〉 ∈ ∫


�
ẋ we

have that q ≤� s and q �� ż = u̇. Thus,
∫

�−1q ��

∫

�−1 u̇ ∈ ẋ. By the induction

hypothesis, and as the rank of u̇ is lower, p ��
∫

�

∫

�−1 u̇ =

∫

�

∫

�−1 u̇ = u̇. From the

assumption that p �� 
� = 
�, we also get that
∫

�

∫

�−1q =

∫

�

∫

�−1q = q.
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Combining both these things we get that q �� u̇ ∈ ∫

�ẋ, and so we obtain

the inclusion p ��
∫

�
ẋ ⊆ ∫


�
ẋ. The other inclusion is proved similarly, and so

p ��
∫

�ẋ =

∫

�ẋ. �

Examining the above proof in detail will expose the necessity of
∫

�
p = p, andwhy

this is not a trivial statement. If we only know thatp �� 
� = 
�, there is no guarantee
that we can apply

∫

�−1 or

∫

�

∫

�−1 so judiciously and retain equality. Namely, there is

no guarantee that
∫

�p �� 
�−1 = 
�−1.6

Proposition 3.14. If 
� and 
� are two sequences of automorphisms, then the
following is true:

1. For α < �, 
�−1 � α = (
� � α)−1.
2. 
� ◦ 
� = 〈(∫
�−1 �̇α)�̇α | α < �〉.
3. 
�−1 = 〈∫
��̇−1α | α < �〉.
Proof. We prove all three simultaneously by induction on �.
For (1), we prove this by induction on α and by noting the following equality
holds ∫


��(α+1)−1 =
∫
�̇−1α

∫

��α−1 =

∫

��α−1

∫∫

��α (�̇

−1
α )
.

(The last equality is exactly because we consider Gα+1 as a two-step generic
semidirect product and applying Proposition 3.5.)
For (2), first note that if C (
�) = {α} and α > maxC (
�), then ∫
�

∫

� =

∫

�

∫∫

�−1 
�
.

Now we can prove (2) by induction on α = max(C (
�) ∪ C (
�)):
∫

�

∫

� =

∫

��α��̇α

∫

��α��̇α =

∫

��α

∫
�̇α

∫

��α

∫
�̇α
=

∫

��α

∫

��α

∫∫

��α−1 �̇α

∫
�̇α
.

The last equality follows from Proposition 3.5 as in the case of (1). Using the
induction hypothesis, we get that 
� �α ◦ 
� �α equals to 〈(∫


��α−1 �̇	)�̇	 | 	 < α〉 and∫∫
��α−1 �̇α

∫
�̇α
=

∫(∫

��α−1 �̇α

)
�̇α
is the last nontrivial coordinate of 
� ◦ 
�. Applying (1)

finishes the proof, since 
� � α−1 = 
�−1 � α.
Finally, to prove (3) we use (2), denote by 
� = 〈∫


�
�̇−1α | α < �〉. We will show

that 
� ◦ 
� = id:

� ◦ 
� = 〈(∫


�−1 (
∫

�
�̇−1α ))�̇α | α < �〉 = 〈�̇−1α �̇α | α < �〉 = 〈id• | α < �〉. �

We now get two corollaries from the above computations and Proposition 3.13.

Corollary 3.15. Suppose that p �� 
� = 
� and
∫

�
p = p, then the following is

true:

1. p �� 
�−1 = 
�−1.
2. For every 
�, p �� 
� ◦ 
� = 
� ◦ 
�.
Proof. To prove (1) first note that p �� �̇α = �̇α , therefore p �� �̇−1α = �̇−1α .
Using the symmetry lemma, and the assumption that

∫

�
p =

∫

�
p = p, we get that

p ��
∫

�
�̇−1α =

∫

�
�̇−1α and

∫

�
�̇−1α =

∫

�
�̇−1α .

6Is the failure of this even possible? We do not have the answer. It is somewhat irrelevant too, after
introducing the concept of tenacity. However, this might be somewhat natural to ponder, and to some
extent provides motivation for the discussion about tenacity to begin with.
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Now applying Proposition 3.13 we also get that p ��
∫

��̇

−1
α =

∫

� �̇

−1
α . Therefore

we obtain that for every α < �,

p ��
∫

��̇

−1
α =

∫

� �̇

−1
α =

∫

� �̇

−1
α ,

which is exactly the same as saying that p �� 
�−1 = 
�−1.
From this (2) follows immediately, as we have that 
� ◦ 
� = 〈(∫


�−1 �̇α)�̇α | α < �〉
and 
� ◦ 
� = 〈(∫
�−1 �̇α)�̇α | α < �〉. So by the assumption, (1) and Proposition 3.13,
we get that p �� (

∫

�−1 �̇α)�̇α = (

∫

�−1 �̇α)�̇α for all α < �, as wanted. �

Wefinish this section by showing that the requirement on each step of the iteration
being respected by the previous aggregate of automorphisms is a very nontrivial
requirement.

Definition 3.16. We say that a notion of forcing P is weakly homogeneous if
whenever p, q ∈ P there is some � ∈ Aut(P) such that �p is compatible with q. If G
is a subgroup of Aut(P) we say that G witnesses the homogeneity of P if we can find
such � in G .

Theorem 3.17. Suppose that 〈Q̇α, Ġα | α < �〉, 〈Pα,Gα | α ≤ �〉 are as before, and
that for every α < �, 1α �α Ġα witnesses the homogeneity of Q̇α. Then G� witnesses
the homogeneity of P�.

This is a nontrivial theorem because the iteration of two weakly homogeneous
forcings need not be weakly homogeneous itself. For example, P chooses 0 or 1, and
depending on the result Q̇ is either trivial or chooses again 0 or 1, is an iteration
where P is weakly homogeneous and Q̇ is forced to be weakly homogeneous, but
the iteration itself is not.

Sketch of Proof. Here we take advantage of the consequence of Proposition
3.5 that given any automorphism sequence 
� with C (
�) = {α1, . . . , αn} there are
names �̇αi such that ∫


� =
∫
�̇α1

· · · ∫�̇αn =
∫
�̇αn

· · · ∫�̇α1 .
Suppose that p, q ∈ P� then there is a finite subset of �, some {α1, . . . , αn} such
that both p and q have their support included in this finite set. Now we proceed
by recursion on i ≤ n to make p(αi ) compatible with q(αi), and this defines the
wanted automorphism sequence. �

§4. Combining filters and the notion of supports. In a symmetric system we have
three objects: the forcing, the automorphism group and the filter of subgroups. The
iteration of the forcings is just the finite support iteration, and we saw how to extend
the automorphisms when we assume some additional (and necessary condition).
Now we would like to extend the filters. However, we have a problem if we want to
preserve the normality of the filters, and we do.
Consider the conjugation 
� ◦ 
� ◦ 
�−1. By Proposition 3.14 we can calculate this
sequence to be the following sequence:


� ◦ 
� ◦ 
�−1 = 〈(∫

�−1 �̇α)�̇α | α < �〉 ◦ 〈∫


�
�̇−1α | α < �〉

= 〈∫

�
((
∫

�−1 �̇α)�̇α)

∫

�
�̇−1α | α < �〉 (C1)

=
∫

�
〈(∫

�−1 �̇α)�̇α�̇

−1
α | α < �〉.
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Unfortunately this does not look like pointwise conjugation, unless
∫

�−1 �̇α = �̇α ,

and even then we still have that
∫

�
acting outside the sequence. And this means that

if we want to ensure that in some sense large groups can be conjugated and remain
inside the “iteration of the filters”, then some nontrivial assumptions are needed.
While there is no escape of these additional assumptions, we chose to place them
elsewhere in order to make the notion of a “large subgroup” slightly clearer.

Definition 4.1. Suppose that 〈Q̇α, Ġα | α < �〉 is a finite support iteration system
with the same requirements as in the previous section, and in addition that for every
α < � we have a Pα-name, Ḟα such that the following holds:

1. 1α �α Ḟα is a normal filter of subgroups of Ġα .
2. Ḟα is respected by all the automorphisms in Gα .
We say that 
H = 〈Ḣα | α < �〉 is an F�-support if the following conditions hold:
1. For every α < �, Ḣα is a P�-name.
2. 1� �� Ḣα ∈ Ḟα .
3. 1� �� {α < � | Ḣα 
= Ġα} is finite.
The idea behind the definition is two-fold. First of all, we want the supports to be
closed under mixing, it will prove to be both useful and essential as we progress. The
second is that we want to allow some genericity regarding what would be the groups
which support a name from each step. In the case of a limit step, we would have
liked to say that something will turn out in the intermediate model if it was “more or
less” definable from finitely many objects until that limit steps. But even if we know
the definition, we have no way of knowing in the ground model, in advance, what
are these objects and from which steps of the iterations they brought into existence.
Allowing some genericity in the choice of the finite set of parameters, as well the
parameters themselves, grants us some freedom when we come to apply mixing in
our arguments.
If the context is clear, we will omit F� from the notation and terminology. We
will also write p �� 
� ∈ 
H , if p �� �̇α ∈ Ḣα , for every α < �, and similarly
p �� 
H ⊆ 
H ′. In the same spirit we will write 
H ∩ 
H ′ to denote the names for
pointwise intersection of the two supports, and similarly for other set theoretic
operations.

Proposition 4.2. Suppose that 
H is a support and q ≤� p. Then whenever 
� is
such that q �� 
� ∈ 
H , there is some 
� such that p �� 
� ∈ 
H and q �� 
� = 
�.
Proof. We define 
� coordinate-wise. For every α, let �̇α be a name, constructed
by mixing for example, such that q � α �α �̇α = �̇α , and any condition r ∈ Pα
incompatible with q � α satisfies r �α �̇α = id•.
If α /∈ C (
�), then we necessarily defined �̇α to be such that 1α �α �̇α = id•,
thereforeC (
�) ⊆ C (
�). If α ∈ C (
�) and therefore 1α �α �̇α ∈ {id•, �̇α}•. In either
case 1� �� 
� ∈ 
H , so p �� 
� ∈ 
H . �
Definition 4.3. We say that a support 
H = 〈Ḣα | α < �〉 is an excellent support
if:

1. For every α, Ḣα is a Pα-name.
2. The set C ( 
H ) = {α < � | 1α 
 �α Ḣα = Ġα} is finite.
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Namely, if a support is some object which is somewhat generic in the choice of
nontrivial coordinates, then an excellent support is much closer to being a concrete
object in the ground model. The following is an obvious observation.

Proposition 4.4. If 
H is an F�-support, then there is a dense open set D ⊆ P� ,
such that for every p ∈ D there is an excellent F�-support, 
Hp and p �� Ḣα = Ḣp,α
for every α < �.
If 
H is anF�-support andp ∈ P� , wewill use 
H (p) to denote the group generated
by {∫


�
| p �� 
� ∈ 
H}. Note that if q ≤� p, then 
H (p) is a subgroup of 
H (q),

and they act the same on the cone below q, especially if every
∫

�
∈ 
H (q) satisfies∫


�q = q.
We can therefore view 
H (p) as some sort of an approximation to the group 
H in
the full generic extension. And in fact, we will see later that these form something
that looks a bit like a normal filter of subgroups, in a generic sense. This will give us
a natural way to define the class of names that will become our intermediate model.
And for this we need the following definition.

Definition 4.5. We say that ẋ is F�-respected if there is a support 
H and a
predense D ⊆ P� , such that for every p ∈ D, and every ∫


�
∈ 
H (p), p ��

∫

�
ẋ = ẋ.

We say that ẋ is hereditarily F�-respected if it is F�-respected, and every ẏ which
appears in ẋ is also hereditarily F�-respected.
4.1. Tenacity. We digress momentarily from the discussion above to introduce
a new notion of a symmetric system, one that will help us simplify a lot of the
definitions.

Definition 4.6. Let 〈P,G ,F 〉 be a symmetric system. A condition p ∈ P is
called F -tenacious if there exists H ∈ F such that for every � ∈ H , �p = p.
We say that the forcing P is F -tenacious if there is a dense subset of F -tenacious
conditions.

We will often write that 〈P,G ,F 〉 is a tenacious system, or just that P is tenacious
if the symmetric system is understood from the context.

Example 4.7. The easiest example of a tenacious system is Cohen’s first model.
We forcewith finite partial functionsp : �×� → {0, 1}ordered by reverse inclusion;
the automorphisms are induced by finitary automorphisms of �, �p(�n,m) =
p(n,m); andF is the filter generated by {fix(E) | E ∈ [�]<�} where fix(E) is the
pointwise stabilizer of E.
Now given any p ∈ P, its domain is finite, so taking E to be the projection of
domp onto the left coordinate gives us fix(E) witnessing the tenacity of P.

On the other hand, if we take the same example, but F is the trivial filter, {G },
then only the maximum condition is tenacious.

Remark 4.8. With Yair Hayut we have shown that every symmetric system is
equivalent to a tenacious one. The details can be found in Section 12. This, however,
does not minimize the following theorems. They are about choosing a presentation
of the forcings in order to simplify the treatment of the iteration, much like the
presentation of the iteration as a Kunen- or Jech-style iteration has some impact on
how easily we can discuss the symmetric iteration.

https://doi.org/10.1017/jsl.2018.73 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.73


136 ASAF KARAGILA

Theorem 4.9. Suppose that 〈Q̇α, Ġα, Ḟα | α < �〉 is an iteration of symmetric
systems such that the two additional conditions hold :
1. For every α, Q̇α, Ġα and Ḟα are hereditarily Fα-respected.
2. For every α, 1α �α Q̇α is Ḟα-tenacious.
Then there exists a dense subset D ⊆ P� such that for every p ∈ D there is an
excellent support 
H such that whenever p �� 
� ∈ 
H , we have ∫
�p = p. Therefore,
every

∫

� ∈ 
H (p) will satisfy

∫

�p = p.

We will say that p satisfying the conclusion of the theorem is F�-tenacious, or
just tenacious if F� is clear from context, and we will say that 
H is a witness for p’s
tenacity if it is an excellent support as in the conclusion of the theorem.
Before the proof we will prove the following equivalence, which will be useful in
the proof of the theorem and all the proofs to come. So while the definition of being
respected is one, we will generally opt for the equivalent definition. It is easier to
workwith, because tenacious conditions are stable (under “most” automorphisms),
and stability is important.

Proposition 4.10. Under the conclusion of Theorem 4.9, ẋ is F�-respected if and
only if there is a predense subset D ⊆ P� , such that for every p ∈ D, p there is an
excellent support 
Hp and whenever

∫

� ∈ 
Hp(p), p ��

∫

�ẋ = ẋ.

Proof. In the one direction, if 
H is a support witnessing that ẋ is F�-respected
and D is a predense set of conditions computing it correctly, let D′ be a predense
set obtained by refining each p ∈ D to stronger conditions, q ≤� p, such that q is
tenacious and there is 
Hq , q �� 
H = 
Hq . By shrinking, if necessary, we can assume
that 
Hq is witnessing the tenacity of q (the support mixed from the 
Hq ’s could be
smaller than 
H , but it is still a support nonetheless). Now if q �� 
� ∈ 
Hq andp ∈ D
such that q ≤� p, then there is some 
� such that q �� 
� = 
� and p �� 
� ∈ 
H .
Therefore, p ��

∫

�ẋ = ẋ, and by the tenacity of q and Proposition 3.13 we get that

q ��
∫

�
ẋ =

∫

�
ẋ = ẋ as well; by induction and Corollary 3.15 this extends to every∫


� ∈ 
Hq(q).
In the other direction, as we can just mix all the supports to obtain 
H , and from
Proposition 4.2 the result follows. �
Proof of Theorem 4.9. We prove the theorem by induction on �. For � = 0 there
is nothing to prove, and for � = 1 this is just the definition of tenacity. If � is a limit
ordinal, if p̄ ∈ P� then there is some α < � such that p̄ ∈ Pα , and by the induction
hypothesis there is some p ≤α p̄ and an excellent Fα-support 
H with the desired
properties for α; but p ≤� p̄ and extending 
H by adding Ġ	 for 	 ≥ α preserves the
excellence of 
H and fixing p. So it remains to prove the statement for � = α + 1.
Let p̄ be a condition in P� , we will show that there exists p ≤� p̄ with the wanted
properties. By the induction hypothesis there is some p′ ∈ Pα such that p′ ≤α p̄ �α,
and p′ lies in the dense set guaranteed by the induction hypothesis for Pα, with 
E
an excellent Fα-support witnessing that. By the assumption (2) we may also assume
that there exists some q̇α which appears in Q̇α and Ḣα which appears in Ḟα such
that:

1. p′ �α q̇α ≤Q̇α
p̄(α).

2. p′ �α ∀�̇α ∈ Ḣα, �̇α(q̇α) = q̇α.
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3. As both q̇α and Ḣα appear in Q̇α and Ḟα respectively, they are themselves
Fα-respected, and so we may assume that there is an excellent Fα-support 
E ′

such that whenever
∫

� ∈ 
E ′(p′), p′ �α

∫

�q̇α = q̇α and

∫

�Ḣα = Ḣα .

4. Moreover, as the intersection of two excellent supports is excellent, we can
even assume that 
E = 
E ′.

We can do these things by using Lemma 4.11 and Corollary 4.12. There is no circu-
larity as the assumption is that Pα already satisfies the conclusion of the theorem,
namely, there is a dense subset as wanted.
Let p be such that p � α = p′ and p′ �α p(α) = q̇α , and whenever r ∈ Pα is
incompatible with p′, r �α p(α) = 1Q̇α . And similarly extend Ḣα to a name such
that whenever r is incompatible with p′, r �α Ḣα = Ġα .
Now we claim that 
H = 
E�Ḣα is an excellent support for p. First note that it is
an excellent support since 
E was excellent and we only added a Pα-name for the αth
group. Next, if p �� 
� ∈ 
H , then p′ � 
� � α ∈ 
E and p′ �α �̇α ∈ Ḣα . Therefore,

∫

�
p =

∫

��αp

′�∫

��α�̇α(q̇α) = p

′�q̇,

but p′ �α �̇α(q̇α) = q̇α, and therefore
∫

��αp

′ �α
∫

��α�̇α(q̇α) =

∫

��αq̇α .

Using the assumptions we have, this simplifies to p′ �α q̇ =
∫

�
�̇α(q̇α) = q̇α . So

p′ �α q̇ = q̇α , and therefore
∫

�p = p as wanted. �

Lemma 4.11. Under the conclusion of Theorem 4.9, if ẋ is F�-respected, then we
can find a predense set D that for every p ∈ D, p is tenacious and 
Hp is an excellent
support witnessing both this tenacity and that ẋ is respected. Moreover, for any fixed
p ∈ P� we can require that some q ∈ D will satisfy q ≤� p.
Proof. As ẋ is respected, there is someD′ predense and 
Hq for q ∈ D′ witnessing
this. Below each q ∈ D′, letDq be a maximal antichain of tenacious conditions and
for every p ∈ Dq take 
Hp to be a subsupport of 
Hq witnessing the tenacity of p.
Now we claim that D =

⋃
q∈D′ Dq is a predense set as wanted. If p ∈ D and

p �� 
� ∈ 
Hp, then there is some q ∈ D′ such that p ∈ Dq , and by Proposition 4.2
there is some 
� such that q �� 
� ∈ 
Hq with p �� 
� = 
�. Therefore, q ��

∫

� ẋ = ẋ.

By the tenacity of p and the fact that p �� 
� = 
� we have thatp ��
∫

�
ẋ =

∫

�
ẋ = ẋ.

The same follows for every
∫

� ∈ 
Hp(p) by induction.

For the last part of the lemma, given any r ∈ D which is compatible with p we
can ensure the maximal antichain below r lies below p as well. �
Corollary4.12. Under the conclusion of Theorem 4.9, if ẋ and ẏ areF�-respected
names then there exists predense set D witnessing this fact simultaneously.

Sketch of Proof. Let 
Hx , 
Hy , Dx and Dy be the supports and predense sets
witnessing ẋ and ẏ are F�-respected, respectively. Let D be a common refinement
of Dx and Dy , we may assume that each p ∈ D is tenacious with witness 
Hp and
we may assume that 
Hp ⊆ 
Hx,q ∩ 
Hy,q′ for some q ∈ Dx and q′ ∈ Dy . Then as in
the proof of the lemma above, for all

∫

�
∈ 
Hp(p) it holds that p ��

∫

�
ẋ = ẋ and∫


�ẏ = ẏ. �
So what does tenacity give us? Well, despite that it is easy to prove that if p ��

� = 
� implies that

∫

�p =

∫

�p, we could only prove that p itself also forces that∫


�
ẋ =

∫

�
ẋ under the assumption that

∫

�
p = p. If p is tenacious we can assume that
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weworkwith automorphismswhich are in the support witnessing that, and not only
that, since the witness for the tenacity of p is an excellent support, we can “pull”
any automorphisms from any extension of p to something that p already forces to
be in its tenacity witness. Combining this with the lemma above we get that we can
always make the assumption that if ẋ is respected, then there is—generically—a
large group which respects it.

§5. Iterated symmetric extensions.
Definition 5.1. A symmetric iteration (of length �) is 〈Q̇α, Ġα, Ḟα | α < �〉 and

〈Pα,Gα,Fα | α ≤ �〉 if the following holds
1. Pα is the finite support iteration of Q̇	 for 	 < α, Gα is the generic semidirect
product of Ġ	 for 	 < α and Fα is the system of supports generated by Ḟ	 for
	 < α.

2. For every α, 1α �α“〈Q̇α, Ġα, Ḟα〉• is a tenacious system”.7
3. For every α, the names Q̇α, Ġα , and Ḟα are hereditarily Fα-respected.
4. For every α, the names Q̇α, Ġα , and Ḟα are respected by every automorphism
in Gα .

We denote by ISα , for α ≤ �, the class of Pα-names which are hereditarily Fα-
respected.

The IS� class will be interpreted as our intermediate model. The idea is that IS1
will be interpreted as the symmetric extension obtained by the first step; the second
step 〈Q̇1, Ġ1, Ḟ1〉 lies in IS1, so it is a valid candidate for a symmetric system for the
second step, and so on. At limit steps, IS� is going to be something resembling to
“definable from finitely many elements from

⋃
α<� ISα”.

A natural question to ask now is why did we take the effort to even define ISα ,
rather than just talk aboutFα-respected names. The reason is that we do not require
that the symmetric systems in our iterations are hereditarily respected at each step
of the iteration. So at least in theory it is conceivable that we can find an iteration
where each iterand is respected, but not hereditarily respected, and this would be
akin to forcing from outside the model. While there might be some interest in such
approach, it has inherent difficulties and it does not faithfully reflect what we would
expect from an iteration of symmetric extensions.

For the rest of the section we will work in the context of a symmetric iteration of
length �.

5.1. Properties of IS names.
Theorem 5.2. Let ẋ be a P�-name and suppose thatD ⊆ P� is a maximal antichain
such that for every p ∈ D there exists ẋp ∈ IS� such that p �� ẋ = ẋp. Then ẋ ∈ IS� .
Proof. We prove this by induction on the rank of ẋ; it is enough to prove that ẋ
is F�-respected as the induction hypothesis immediately guarantees in this case that
it is going to be in IS� . We can assume without loss of generality that each p ∈ D
satisfies the following properties:

7It might be the case thatFα is not a filter in the generic extension, only in the “guessed” intermediate
extension. This can be fixed after defining the �IS relation, and by noticing that in either case it is a
normal filter base.
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1. p lies in the predense open set witnessing the fact ẋp is F�-respected with 
Hp
as a support, and

2. p is tenacious, and 
Hp is an excellent support witnessing this as well.

If these conditions fail to hold, we can refine D by the definition of symmetric
iterations.
We claim thatD witnesses that ẋ ∈ IS� . If p ∈ D and ∫
� ∈ 
Hp(p), then

p ��
∫

�
ẋ =

∫

�
ẋp = ẋp = ẋ

(the first equality comes from the fact that
∫

�p = p and the Symmetry Lemma). �

We get from the above theorem that if we treat an automorphism sequence 
� as
a name of a sequence (namely, {〈α̌, �̇α〉• | α < �}•) then 
� ∈ IS� , and similarly this
is the case for any support 
H .
The following proposition follows immediately from Corollary 4.12.

Proposition 5.3. If ẋ, ẏ ∈ IS� , then {ẋ, ẏ}• ∈ IS� .

Lemma 5.4. Suppose that 
� is an automorphism sequence, then there is a dense set
of tenacious conditions p, such that

∫

�
p is also tenacious.

Proof. FixD to be a predense set witnessing that 
� ∈ IS� . We may assume, using
Lemma 4.11 that every q ∈ D is tenacious and 
Hq is a witness for the tenacity of q
and for the fact that 
� ∈ IS� .
Now we claim that if p ≤� q for a tenacious p and q ∈ D, then ∫


�p is also
tenacious. First observe that if

∫

�p = p, then

∫

�

∫

�

∫

�−1

(∫

�p

)
=

∫

�p. So the first

attempt would be the conjugate 
Hp by
∫

� in order to obtain a support for

∫

�p.

However, recall the equation C1 at the beginning of the previous section:


� ◦ 
� ◦ 
�−1 = ∫

�
〈(∫

�−1 �̇α)�̇α�̇

−1
α | α < �〉.

So conjugation is not going to be enough. We also want to get rid of that
∫

�−1 , and

to do so we claim that 
E defined by
∫

�〈�̇α(Ḣp,α ∩ Hq,α)�̇−1α | α < �〉 is going to

witness the tenacity of
∫

�p.

First we observe that the intersection of two excellent supports is an excellent
support, each Ḟα is guaranteed to be a normal filter, and it is respected by

∫

�. So


E is indeed an excellent support. Now suppose that
∫

�p �� 
� ∈ 
E, we claim that∫


�

∫

�p =

∫

�p.

Apply
∫

�−1 to

∫

�p �� 
� ∈ 
E , by the Symmetric extensions and considering one

coordinate, we get that p ��
∫

�−1 �̇α = �̇α�̇α�̇

−1
α , where �̇α is some automorphism

such that p �� �̇α ∈ Ḣp,α ∩ Ḣq,α .
It follows that there is some 
� ′ such that q �� 
� ′ ∈ 
Hq andp �� 
� = 
� ′. Therefore∫

�p = p and p �

∫

��̇α =

∫

�′ �̇α = �̇α .

This means thatp ��
∫

�−1
� =

∫

�−1 (
�◦
�◦
�−1). Therefore,

∫

�p �� 
� = 
�◦
�◦
�−1,

which gives us ∫

�

∫

�
p =

∫

�

∫

�

∫

�−1

∫

�
p =

∫

�
p. �

This idea is essentially telling us that the supports are “generically normal”. We
may have to shrink something down, or extend some condition, but on a dense set
things work out. And this brings us to the following important theorem.
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Theorem 5.5. If
∫

� ∈ G� and ẋ ∈ IS� , then

∫

�ẋ ∈ IS� .

Proof. We prove this by induction on rank(ẋ). It suffices to prove that
∫

�
ẋ is

respected, as the induction hypothesis ensures that every ẏ which appears in ẋ will
satisfy that

∫

�
ẏ ∈ IS� also. Let D be a predense set witnessing that ẋ, 
� ∈ IS� .

We may also assume that D is a predense set such that whenever p ∈ D, both p
and

∫

�p are tenacious, and that 
Hp is witnessing both the tenacity of p, as well the

fact that ẋ, 
� ∈ IS� . We work below p, and follow the same path as the previous
proof: define 
Ep =

∫

�〈�̇αḢp,α�̇−1α | α < �〉, and we claim thatD′ = {∫
�p | p ∈ D}

is a predense set witnessing that
∫

�
ẋ ∈ IS� with 
Ep as the support for

∫

�
p.

Suppose that
∫

�
p ∈ D′, and

∫

�
p �� 
� ∈ 
Ep, then from the proof of the lemma we

get that p ��
∫

�−1
� =

∫

�−1
� ◦ 
� ◦ 
�−1, where 
� is an automorphism sequence such

thatp �� 
� ∈ 
Hp and thereforep ��
∫

�
ẋ = ẋ. It follows that

∫

�
p �� 
� = 
�◦
�◦
�−1,

and that
∫

�

∫

�p =

∫

�p. Therefore

∫

�p ��

∫

�

∫

�ẋ =

∫

�

∫

�

∫

�−1

∫

�ẋ. As before, it follows

that
∫

�
p �

∫

�

∫

�
ẋ =

∫

�
ẋ.

Now proceed by induction to conclude the same for every
∫

� ∈ 
Ep(

∫

�p). �

Theorem 5.6. Suppose thatG ⊆ P� is aV -generic filter. Then the classM defined
as ISG� = {ẋG | ẋ ∈ IS�} satisfies ZF and V ⊆ M ⊆ V [G ]. Moreover, for every
α < �, ISG�αα ⊆M .
Sketch of Proof. The proof is very similar to the standard proof about symmet-
ric extensions, e.g., the one in [6]. By the hereditary definition of IS� ,M is a transitive
class. The x̌ names are fixed under all automorphisms, so they are certainly in IS� ,
so V ⊆ M ⊆ V [G ]. By Theorem 5.5, {ẋ ∈ IS� | rank(ẋ) < �}• is stable under all
automorphisms in G� , and therefore it is in IS� , and it is a witness to the fact that
M is almost-universal.8 Usual arguments also give us thatM is closed under Gödel
operations, and therefore it is a model of ZF.
The additional part is trivial, as ISα ⊆ IS� forα < � (every Pα-name is a P�-name;
and simply extending the Fα-support in the obvious way, by concatenating Ġ for
 ∈ [α, �), gives the wanted conclusion). �
5.2. The IS-forcing relation. Now that we have isolated a class of names which
predict the intermediate model, we would like to also have a forcing relation so that
we can predict facts about these names from the ground model. In this section we
are not particularly interested in the iteration itself, so we will omit the � subscript
from where it is not needed: IS� becomes IS and �� becomes �, and so on.
Definition 5.7 (The forcing relation). We define p �IS ϕ by induction on the
complexity of ϕ.

• p �IS ẋ ∈ ẏ if and only if p � ẋ ∈ ẏ and ẋ, ẏ ∈ IS.
• p �IS ẋ = ẏ if and only if p � ẋ = ẏ and ẋ, ẏ ∈ IS.
• p �IS ϕ ∧ � if and only if p �IS ϕ and p �IS �.
• p �IS ¬ϕ if and only if there is no q ≤ p such that q �IS ϕ.
• p �IS ∃xϕ(x) if and only if {q | ∃ẋ ∈ IS : q �IS ϕ(ẋ)} is dense below p.
The keen-eyed observer will note that this is really just the relativization of the
usual forcing relation to the class of names IS. We write a list of useful properties

8A classM is almost universal if for every set x ⊆M , there is y ∈M such that x ⊆ y.
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of the �IS relation, they either follow immediately from the definition or from the
same properties for the � relation.
Proposition 5.8 (Substitution lemma). If p �IS ϕ(ẋ1, . . . , ẋn) ∧

∧n
i=1 ẋi = ẏi ,

then p �IS ϕ(ẏ1, . . . , ẏn).

Proposition 5.9.

1. If p �IS ϕ and q ≤ p, then q �IS ϕ.
2. There is no p such that p �IS ϕ ∧ ¬ϕ.
3. p �IS ϕ if and only if p �IS ¬¬ϕ.
4. p �IS ϕ if and only if there is no q ≤ p such that q �IS ¬ϕ.
5. p �IS ϕ if and only if the set {q | q �IS ϕ} is dense below p.
6. p �IS ∃xϕ(x) if and only if there exists ẋ ∈ IS such that p �IS ϕ(ẋ).9

Lemma 5.10 (The (IS-)symmetry lemma). If
∫

�
∈ G and ẋ ∈ IS, then

p �IS ϕ(ẋ) ⇐⇒ ∫

�p �IS ϕ(

∫

�ẋ).

Theorem 5.11 (The forcing theorem for �IS). The following are equivalent:

1. p �IS ϕ.
2. For every V -generic G such that p ∈ G , ISG |= ϕ.

§6. Toy example: No free ultrafilters on�. We digress from the rest of the general
theory in order to provide a small example of using the construction we have so
far. This might not be a very exciting example, and it is quite easy to achieve
with symmetric extensions in the usual way. However, they can provide some basic
grounds for understanding the mechanism of symmetric iterations.
Our setting is very simple. We are going to force with an iteration of length� and
for every n < � we use the same symmetric system:

1. Q̇n is the Cohen forcing, presented as finite binary sequences.
2. Ġn will be the name of the group {�A | A ⊆ �}, in the nth extension, where
�Ap(n) = p(n) if n ∈ A, and �Ap(n) = 1− p(n) otherwise.

3. Ḟn will be the improper filter.

We will omit � from the subscripts, so P = P� , IS = IS� , and so on. Let G be a
V -generic filter for P, and let N = ISG . Note that the last condition means that
every Pn-name is in IS.

Proposition 6.1. N |= Every ultrafilter on � is principal.
Proof. Suppose that U̇ ∈ IS is such that 1 �IS U̇ is an ultrafilter on �̌. Let D
be a predense set witnessing that U̇ ∈ IS, and suppose that p ∈ D, and 
Hp is an
excellent support such that p �

∫

�U̇ = U̇ for every

∫

� ∈ 
Hp(p). We will show that

every p ∈ D forces that U̇ is principal.
Let n > max suppp + maxC ( 
Hp), and let ċn be the canonical name for the
Cohen real added by Q̇n, namely {〈p, m̌〉 | suppp = {n} ∧ p(n,m) = 1}. Suppose
that q ≤ p and q � ċn ∈ U̇ . We claim that q � n + 1 � ċn ∈ U̇ : for every k, Ġk
witnesses the homogeneity of Q̇k , so the entire iteration is weakly homogeneous;
taking any two extensions of q �n+1,we canmake them compatible withoutmoving
9This makes use of mixing, of course.
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anything below n + 1 and such automorphism 
� will satisfy that
∫

� ∈ 
Hp(p), as

well
∫

� ċn = ċn, so both extensions must agree on the truth value of ċn ∈ U̇ . So we

may assume that q = q � n + 1.
Let Ȧ be a Pn-name for a subset of � such that 1n �n dom q(n) = Ȧ, and let �̇
be the Pn-name for the automorphism induced on Q̇n by Ȧ. Then the following are
true:

1. 1n �n �̇q(n) = q(n), and consequently
∫
�̇q = q and

∫
�̇ ∈ 
Hp(p).

2. 1n �n �̇ċn ∩ ċn = q(n)−1(1̌).
Therefore, q �

∫
�̇
U̇ = U̇ , but also q � q(n)−1(1̌) ∈ U̇ . Therefore q � “there is a

finite set in U̇”. It follows that if p �IS U̇ is an ultrafilter on �̌, then no extension
of p can force that U̇ is free. �
The construction is originally due to Solomon Feferman ([2, Theorem 4.12] for
the original result, or [5, Example 15.59] for a modern treatment).

§7. Symmetric iterations are iterations of symmetric extensions.
7.1. Outline of the section. We want to justify the name “symmetric iterations”
and to prove that if G is a V -generic filter for P� , then for every α < �, IS

G�α+1
α+1 is a

symmetric extension of ISG�αα using the symmetric system 〈Q̇G�αα , Ġ G�αα , ḞG�α
α 〉.

Ideally, wouldwewould like to have some sort of a decomposition theoremat play.
Something similar to the usual case of a finite support iteration: P� is isomorphic to
the iteration of Pα ∗ (Q̇α ∗P�/Pα+1), as well as to the iteration (Pα ∗ Q̇α) ∗P�/Pα+1.
But here we have a problem. When we want to decompose the automorphisms and
the supports, we relied on mixing so heavily, that there is no nice way of doing so
in general, as we may have mixed over antichains that were unstable under most
automorphisms we had at our disposal.
However, not all is lost. For “sufficiently cooperative” Pα+1-names we actually
have a good decomposition, and as luck would have it, every name in ISα+1 is
eventually forced to be equal to such a “cooperative” name. So the plan is to first
look at two-step iterations, and see how the automorphisms and supports behave
when we move from a P ∗ Q̇-name to a P-name for a Q̇-name. This will help us
to formulate the two main lemmas for going back and forth ISα and ISα+1, as
well V [G � α] and ISG�αα . From the lemmas we will have the two theorems that a
symmetric iteration is indeed an iteration of symmetric extensions, and that if we
take a symmetric extension of a symmetric iteration, then we could have done that
by extending the original symmetric iteration by exactly that last step (although we
may have to pay a price by shrinking our automorphism groups).

7.2. The factorization lemmas.

Definition 7.1. Let ẋ be a P ∗ Q̇-name. We denote by [ẋ] the P-name of the
Q̇-name for ẋ, defined recursively by

[ẋ] = {〈p, 〈q̇, [ẏ]〉•〉 | 〈〈p, q̇〉, ẏ〉 ∈ ẋ}.
Here are two general lemmas which can be proved by induction on the rank of

P ∗ Q̇-names.
Lemma 7.2. Suppose that 〈p, q̇〉 �P∗Q̇ ẋ = ẋ

′, then p �P “q̇ �Q̇ [ẋ] = [ẋ
′]”.
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Lemma 7.3. Suppose that � ∈ Aut(P) respects Q̇ and 1P �P �̇ ∈ Aut(Q̇). Then
1P �P [

∫
〈�,�̇〉ẋ] = �(�̇[ẋ]).

Alternatively, 1P �P [
∫
�
ẋ] = �[ẋ] and [

∫
�̇
ẋ] = �̇[ẋ].

Definition 7.4. Suppose that P ∗ Q̇ is a two-step iteration of symmetric exten-
sions. We denote by HS•FQ

the class of P-names which are forced to be hereditarily
ḞQ-symmetric Q̇-names.

Morally, when we are iterating two symmetric extensions, we want to have ẋ ∈ IS
if and only if “[ẋ] ∈ HSFP

and 1P �P [ẋ] ∈ HS•FQ
”. In the general context of

symmetric iteration, if Pα ∗ Q̇α is a successor length symmetric iteration, we would
have liked to have ẋ ∈ ISα+1 if and only if [ẋ] ∈ ISα and 1α �IS

α [ẋ] ∈ HS•Fα
.

Unfortunately, this is not going to be the case, since ẋ might have been the result of
mixing over antichains which are “invisible” to the intermediate extension. Namely,
if G is a generic for Pα , then ẋ might be the result of mixing over names from ISGα
using an antichain of Q̇Gα which lies outside IS

G
α .

This shows that mixing, while very useful and even necessary to a certain degree,
is an obstruction. However, it is the only obstruction, as shown below.

Lemma 7.5 (The first factorization lemma). Let Pα ∗ Q̇α be a symmetric iteration
of successor length, and let G be a V -generic filter for Pα . If ẋ ∈ ISα+1, then in V [G ]
there exists a maximal antichain D ⊆ Qα such that for every q ∈ D there exists
ẋq ∈ ISGα which is a hereditarily Fα-symmetric Qα-name and q �Qα [ẋ]

G = ẋq .

An easy corollary of this lemma is that if we take a one-step symmetric iteration,
namely a symmetric extension, then IS the closure of HS under mixing.

Proof. To ease the reading we omit α from the subscript wherever it appears.
The proof is by induction on the rank of ẋ. Let ẋ ∈ ISα+1. We may assume the
following,

1. Every condition p which appears in ẋ is such that p � α � p(α) = q̇ for some
q̇ which appears in Q̇.

2. Every ẏ which appears in ẋ is such that
(a) [ẏ] ∈ ISα , and
(b) 1 �IS [ẏ] ∈ HS•F .

If ẋ does not satisfy these properties, we can replace it by such a name which is
guaranteed to be equal in V [G ] to ẋ. If we had to replace the name it is possible
that we changed its rank too, but this turns to have no consequence on the rest of
the proof.10

Let p�q̇ be a condition which is tenacious in P ∗ Q̇ as witnessed by an excellent
support 
Hp, p�q̇ lies in the predense set witnessing that ẋ ∈ ISα+1, and p ∈ G . We
can even require that p is in the predense set witnessing the fact q̇ is hereditarily
F -respected with 
H � α as an F -support witnessing that.
10It is also possible to prove that we can always find a suitable replacement name which does not

increase the rank, but as said, it is of no consequence.
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Define the following P ∗ Q̇-name:

u̇ =

⎧⎨
⎩〈∫
�r,

∫

�ẏ〉

∣∣∣∣∣∣
r ≤α+1 p�q̇
∃s : r ≤α+1 s, and 〈s, ẏ〉 ∈ ẋ∫

�
∈ 
Hp(p)

⎫⎬
⎭ .

It might be curious why we wrote 
Hp(p) rather than 
Hp(p�q̇). But due to the
excellence of 
Hp, no names involved in 
Hp are P ∗ Q̇-names; they are all P-names.
So using p suffices for this matter. To complete the proof we need to prove these
four things,

A. p�q̇ �α+1 u̇ = ẋ, or equivalently p � “q̇ �Q̇ [u̇] = [ẋ]”.
B. u̇ ∈ ISα+1.
C. [u̇] ∈ IS.
D. 1 �IS [u̇] ∈ HS•F .
To prove (A), the first inclusion p�q̇ �α+1 ẋ ⊆ u̇ is trivial, simply take 
� to be the
identity. In the other direction, suppose that s �α+1 ṫ ∈ u̇, then we may assume
without loss of generality that 〈s, ṫ〉 ∈ u̇. By definition, 〈s, ṫ〉 = 〈∫


�
r,
∫

�
ẏ〉 such that

r �α+1 ẏ ∈ ẋ and r ≤α+1 p�q̇. However,
∫

�(p

�q̇) = p�q̇ by the tenacity and
choice of support 
Hp, and therefore s ≤α+1 p�q̇, so s �α+1

∫

�ẋ = ẋ, hence,

r �α+1 ẏ ∈ ẋ ⇐⇒ s �α+1 ṫ ∈ ẋ.
The fact that u̇ ∈ ISα+1 follows now immediately from the mixing lemma for

IS-names, since 1α+1 �α+1 u̇ ∈ {ẋ, ∅̌}•.
Next we prove that [u̇] ∈ IS. We assumed that if ẏ appears in ẋ, then [ẏ] ∈ IS,
and therefore it is enough to prove that [u̇] is F -respected in order to show it is in
IS. Let D ⊆ P be a maximal antichain with p ∈ D and every p′ ∈ D is tenacious
with support 
Ep′ and 
Ep = 
Hp � α. We claim that D witnesses [u̇] ∈ IS. First, if
p′ ∈ D \ {p}, then p′ � [u̇] = ∅̌ so there is nothing to prove there. If p � 
� ∈ 
Ep,
then

∫

�� id• ∈ Hp(p) (as an automorphism of P ∗ Q̇), and the result follows from

Lemma 7.3.
To prove (D), it is again enough to work below p, as any incompatible condition
forces that [u̇] will be the empty set which is always hereditarily symmetric. Let Ḣ =
Ḣα . If p′ ≤ p, and p′ � �̇ ∈ Ḣ , then there is some �̇α such that p � �̇α ∈ Ḣ and
p′ � �̇α = �̇. Repeating the last argument, this time taking

∫
�̇
as our automorphism

we obtain that p � �̇[u̇] = [u̇] as wanted.
The above construction happens below a specific q in Q, so to finish the proof
we need to find some maximal antichain D ∈ V [G ] where for every q ∈ D we can
find such ẋq . Of course, given q for which we can find such a name, [u̇] as defined
above works as ẋq . Moreover, there is a dense open set of q ∈ Q for which the above
construction works, so we can refine them to a maximal antichain D as wanted. �
This gives us the first part of the factorization. Namely, if ẋ ∈ ISα+1, then it is a
mixing of names which project to ISα andHS

•
Fα
. The second factorization lemma is

the converse of that. Luckily, here we can use mixing to argue for a slightly weaker
statement.

Lemma 7.6 (The second factorization lemma). Let ẋ be a Pα+1-name such that
[ẋ] ∈ ISα and 1α �IS

α [ẋ] ∈ HS•Fα
. Then ẋ ∈ ISα+1.
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Proof. We prove this by induction on the rank of ẋ; it suffices to show that ẋ
is Fα+1-respected in order to conclude that ẋ ∈ ISα+1. Let D ⊆ Pα be a predense
set which witnesses that [ẋ] ∈ ISα , and let Ḣ ∈ ISα be a name such that for every
p ∈ D, p �IS

α ∀�̇ ∈ Ḣ : �̇[ẋ] = [ẋ]. We may also assume that D is a predense set
witnessing that Ḣ ∈ ISα .
We claim that D is also a predense set witnessing that ẋ ∈ ISα+1. Given p ∈ D,
let 
Hp be a support such that:

1. 
Hp � α witnesses that p is tenacious and that [ẋ], Ḣ are Fα-respected.
2. 
Hp,α = Ḣ .

Then 
Hp is excellent, and it witnesses thatp isFα+1-tenacious. Suppose thatp �α+1

� ∈ 
Hp, then p �α [

∫

�
ẋ] =

∫

��α�̇α([ẋ]). However,

∫

��αp �

∫

��α�̇α ∈ Ḣ , so the

conclusion follows. �

Remark 7.7. The above proof may seem a bit odd. We skipped entirely any
need to extend the conditions in D to include information from Q̇α . However, the
assumption was that 1α �α [ẋ] ∈ HS•Fα

. So we could have deduced the information
on Ḣα already from conditions in Pα . As IS is the closure of HS under mixing, if we
had allowed [ẋ] to be equal to a mixing of names from HS•Fα

, then we would have
needed to include more information from Q̇α.

7.3. Two easy theorems. We finish this section with two easy theorems which are
corollaries of the above lemmas. These tell us that iterating symmetric extensions is
indeed the same as doing a symmetric iteration. To simplify the statements of the
theorems, we set a common context. 〈Q̇α, Ġα, Ḟα | α < �〉 is a symmetric iteration
of length �, and let G be a V -generic filter for P� .

Theorem 7.8. For every α < �, ISG�α+1α+1 is a symmetric extension of ISG�αα by the
symmetric system 〈Q̇G�αα , Ġ G�αα , ḞG�α

α 〉 with the ISG�αα -generic filter G(α).

Theorem 7.9. Suppose that 〈Q� ,G� ,F�〉 ∈ ISG� is a symmetric system andH is a
V [G ]-generic filter forQ� . Then there are names Q̇� , Ġ� , and Ḟ� in IS� , and a support

K for all three of them, such that by shrinking Ġα to K̇α and restricting the filters Ḟα ,
we can obtain a symmetric iteration of length � + 1, and G ∗H is a V -generic filter
for that iteration.

Note that the when shrinking the Ġ ’s, we might have to repeat the shrinking
process, however the maximal coordinate where shrinking is necessarily will form
a strictly decreasing sequence of ordinals, so it is guaranteed to stabilize in finitely
many steps. It is also worth noting that this tells us that if we kept on going
without shrinking the groups at all, then at the limit step we have a valid symmetric
iteration, although the choice of generic filters might not generate a generic filter to
this iteration.
One last thing to ponder about is why did we require that G ∗ H is V -generic
for the iteration? Well. We did so because we wanted to ensure that we catch the
antichains of Q̇G� which are not in IS

G
� . But we might have had IS

G
� -generic filters for

Q̇G� which are not V [G ]-generic themselves. What if we wanted to use one of those
instead? The next section discusses a partial solution to this problem.
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§8. The generics problem and productive iterations.
8.1. Two-step motivation. Let us start with a two-step iteration as a motivating
example, our second step will involve no symmetries so we omit that part. The
first step is going to be the standard Cohen model, like in Example 4.7. Force with
P = Add(�,�), so a condition P is a partial function p : � × � → 2 with finite
domain; G is going to be the finitary permutations of� where �p(�n,m) = p(n,m)
is the action on P; finally,F is generated by fix(E) = {� ∈ G | � �E = id} for finite
E ⊆ �.
Let ȧn denote theP-name for thenthCohen real, i.e., ȧn = {〈p, m̌〉 | p(n,m) = 1},
and let Ȧ denote the name {ȧn | n < �}•. Standard arguments show that Ȧ ∈ HSF

and that 1P �HS
P “Ȧ is Dedekind-finite”.

Nowwewant Q̇ to introduce awell-order of Ȧ, specifically, of type�. The obvious
way of doing so would be by considering finite and injective partial functions from
Ȧ to�. But despite the fact that Ȧ itself will forget its enumeration in the symmetric
extension, we can still utilize the fact that the name itself is countable in V to give
a very canonical description of a condition in Q̇.
For a finite partial function f : � × � → 2, so f ∈ P, let q̇f be the name

{〈〈ȧn, m̌〉•, f̌(n,m)〉• | 〈n,m〉 ∈ domf}•.
Now define Q̇ = {q̇f | f ∈ P}• and the order to be just reverse inclusion. It is
not hard to check that Q̇ is in fact hereditarily F -symmetric, and that P ∗ Q̇ does
in fact satisfy the definition for a symmetric iteration of length 2. Moreover, in the
generic extension by P, it is very easy to see why Q̇ is just isomorphic to P. But in
the intermediate model there is an injection from Ȧ to Q̇, whereas P is countable,
so the isomorphism itself is not symmetric.
One can show, next, that if G is the V -generic filter used for P, then there is
someH ∈ V [G ] such thatH is HSGF -generic for Q̇G , and HSGF [H ] = V [G ]. But of
course, G ∗H is not V -generic for P ∗ Q̇.
8.2. So how do we access more generics?. We want to find some condition on the
iteration so we can use filters which are generic over the intermediate model we
have at each step, rather than have genericity for the entire iteration over the ground
model; and often times it will be easy when the iteration is presented in a way where
the iterands are “almost isomorphic to forcings in the ground model”.
Our first wish is quite hard to satisfy. We used mixing in a very substantial way
when defining the iterated automorphisms,11 and we saw in Section 7 that mixing is
also creating names which are themselves not stable under automorphisms directly
(but they eventually become equal to names which are stable enough). So just using
filters which are not generic for the entire iterations will not be enough to interpret
the names in IS. The first place to look for a solution is Kunen iterations, where
mixing was not involved in the definition of the forcing itself.

8.3. Kunen iterations and partial automorphisms. The Kunen preordered set for
an iteration P ∗ Q̇ was defined as follows: conditions are pairs 〈p, q̇〉 where p �P

q̇ ∈ Q̇, and q̇ appears in Q̇. Suppose that �̇ is a name such that 1P � �̇ ∈ Aut(Q̇).
11See Proposition 3.1.
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In order to extend �̇ to
∫
�̇ we used mixing in a significant way, so now we can only

apply
∫
�̇
to a condition 〈p, q̇〉 if p �P �̇(q̇) = q̇′ and q̇′ appears in Q̇ (note that this

condition implies that p �P q̇
′ ∈ Q̇, making 〈p, q̇′〉 a condition in P ∗ Q̇).

So our automorphisms become partial automorphisms. Given
∫

�
we can only

apply it to a condition p if each initial segment has enough information about the
action on the remainder of the condition. Similarly we lose the ability to mix over
supports, we have to resort only to excellent supports. Everything becomes far more
complicated to state, as we always have to keep track what sort of information our
condition already decides about a given automorphism sequence.
Of course, this is not a mathematical problem. We only ever used finitely many
automorphisms in each of the proofs, so we can always make finitely many
extensions to decide the needed information, and then argue via density and
genericity.
But what good is a hammer which is too heavy to use? Ideally, we would have
worked out this entire method and then we could have danced at both weddings:
work with the Jech iterations for simplicity, but when you need to pick generics
switch to Kunen iterations and argue your point. However the increased complexity
compelled us to choose a different route.

8.4. The common ground: Productive iterations. In the case of P ∗ Q̇ as defined in
Section 8.1, we had a very canonical description of the forcing. It was a description
that allowed for P ∗ Q̇ to be presented as a Kunen iteration without 1P losing any
significant information about conditions of Q̇ or their order. We distill this idea in
the following definition.

Definition 8.1. Asymmetric iteration 〈Q̇α, Ġα, Ḟα | α < �〉 is called a productive
iteration if the following conditions hold:

1. For every α, Q̇α, Ġα , and Ḟα are •-names.
2. The conditions of P� are exactly those where for every α < �, p(α) appears in

Q̇α, i.e., we can think about Pα as a Kunen iteration.
3. For every α, 1α decides the statement �̇α = �̇α for every two names which
appear in Ġα .

4. For every α, for every q̇ appearing in Q̇α and every �̇ appearing in Ġα , there is
some q̇′ appearing in Q̇α , such that 1α �α �̇(q̇) = q̇′.

We modify the construction of G� by only allowing automorphism sequences 
� that
each �̇α appears in Ġα . And we also modify the definition of F�-respected names by
requiring the support to be excellent with the property that 1α decides 
� ∈ 
H for
every 
� and 
H .

The motivation is that we have symmetric systems where the forcing itself is
“almost” a groundmodel forcing, andwe can use the groundmodel’s automorphism
group and filter of subgroups to induce in a canonical way an “almost isomorphic”
structure in the intermediate extension.
We addednew restrictions that limit our access tomixing,which was very essential
for the definition. So we need to investigate what remains of the general theory. It
might seem that every proof which has an underlying appeal for mixing (which
is almost all of them) is going to fail now. However, every use of mixing can be
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circumvented with the additional assumptions. Obviously, Theorem 5.2 fails in this
context, but we retain the corollary that automorphism sequences are in IS—as we
restrict ourselves to automorphism sequences as in the definition of the productive
iteration.
It is important to point out that if we have a productive iteration and we compute

IS as in the general theory (withmixing and all), then every ẋ ∈ ISwill be generically
equal to a name which is in the “productive definition” of IS. The proof is by
induction on the rank of ẋ, and is very similar to the previous proofs by induction on
the rank of a name. So despite the additional requirements, we can jump between the
general theory and the productive theory when it comes to working with productive
iterations.

Definition 8.2. Suppose that P� is a productive iteration.
1. D ⊆ P� is a symmetrically dense if it is a dense set and there is someF�-support

H such that whenever p ∈ D and p �� 
� ∈ 
H , then

∫

�
p ∈ D.

2. G ⊆ P� is a V -symmetrically generic filter if it is a filter and for every
symmetrically dense open D ∈ V , D ∩G 
= ∅.

Remark 8.3. The above definition is general, but applying it to the productive
case, we note that our supports are all excellent, and since 1� decides all the elements
of 
H , it follows that if p �� 
� ∈ 
H , then 1� �� 
� ∈ 
H . So in effect the definition
simply states thatD is closed under the automorphisms from 
H .

We would like to be able and choose our generics pointwise, but this may still
cause problems at limit steps. Symmetrically dense sets eliminate this problem for
limit steps, while very easily allowing us to choose generics if we only want to extend
the iteration by finitely many steps. Andwe have a criterion forwhen such extensions
can proceed through limit steps.
Lemma 8.4. Let ϕ(x) be a statement in the language of forcing and ẋ ∈ IS� . Then
the decision setD = {p ∈ P� | p �IS

� ϕ(ẋ) or p �IS
� ¬ϕ(ẋ)} contains a symmetrically

dense open subset.
Of course, the lemma is formulated for single-variable formulas for simplicity, but
it holds for any formula.
Proof. Let 
H be an excellent support for ẋ, and fix a predense set E witnessing
that ẋ ∈ IS. If p �IS

� ϕ(ẋ), p �� 
� ∈ 
H , and there is some q ∈ E such that p ≤� q,
then p ��

∫

�ẋ =

∫

�−1 ẋ = ẋ. Therefore, by the symmetry lemma,∫


�
p �IS

� ϕ(
∫

�
ẋ) ∧ ∫


�
ẋ = ẋ.

Therefore the set {p ∈ P� | p �IS
� ϕ(ẋ) ∨ p �IS

� ¬ϕ(ẋ) ∧ ∃q ∈ E : p ≤� q} is a
symmetrically dense open set. �
Theorem 8.5 (The productive forcing theorem for �IS). The following are
equivalent for productive iterations:
1. p �IS ϕ.
2. For every V -symmetrically generic filter G such that p ∈ G , ISG |= ϕ.
3. For every V -generic filter G such that p ∈ G , ISG |= ϕ.
Sketch of Proof. The implication from (2) to (3) is trivial; and the implication
from (3) to (1) follows from the fact that every condition lies in a V -generic filter.
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Finally, the proof from (1) to (2) is similar to the usual proof of the forcing theorem,
here relying on the lemma above, ensuring that every decision set is met by the
symmetrically generic filter. �
We can now give a very nice reformulation (and combination) of the theorems
from the end of Section 7. As we saw, mixing was a great obstruction for nice fac-
torization theorems. However, in the productive case, all the supports are excellent
and all the automorphisms are very concretely decided. This means the following
theorem is true.

Theorem 8.6. Let Pα be a productive iteration of length α, and let Gα be a V -
symmetrically generic filter. Suppose that 〈Qα,Gα,Fα〉 is a symmetric system in ISGαα
which has a name such that extending Pα by this name is still a productive iteration.
Then Gα ∗G is V -symmetrically generic for Pα ∗ Q̇α if and only if G is ISGαα -generic
for Qα .

§9. Preservation theorems. Recall that in this work we only consider finite sup-
port iterations. There are twomajor problemswith finite support iterations and limit
steps. The first and foremost is that at every limit step we add Cohen reals; many
Cohen reals. The second is that if we are not limiting ourselves to c.c.c. forcings,
then we are likely to collapse cardinals, and many of them.
Both of these pose a problem if we want to look at anything remotely interesting.
But we can mitigate our losses and show that at least assuming each step of the
iteration is weakly homogeneous, wewill only add reals whenwe explicitly add reals,
and we will only collapse cardinals when we explicitly want to collapse cardinals.
Not only this, but this extends, in fact, to class length iterations, which completely
violate ZF in the class-generic extensions.

Remark 9.1. We do not need to worry about productive or nonproductive itera-
tions. As a consequence of Theorem 8.5, if we only prove these theorems using
V -generic filters, the same will hold for symmetrically V -generic filters in the
productive case.

9.1. Set forcing.

Theorem 9.2. Suppose that P� is a symmetric iteration, and suppose that for every
α < �,

1α �IS
α Ġα witnesses the homogeneity of Q̇α.

If � is such that there is α < �, that for every 	 > α,

1	 �IS
	 〈Q̇	 , Ġ	 , Ḟ	〉• does not add sets of von Neumann rank < �̌,

then whenever ẋ ∈ IS� and p �IS
� rank(ẋ) < �̌, there is some q ≤� p and some

ẋ′ ∈ ISα such that q �� ẋ = ẋ′.
In other words, if � is a limit ordinal, and V� (of IS

G
α ’s) was stabilized before the

�th step, then no new sets are added with von Neumann rank below � at the limit
step as well. So if no forcing added reals, the limit steps will not add reals either. At
least under the assumption of homogeneity.

Proof. We prove this by induction on �. For � = 0 there is nothing to prove, and
for successor steps this is an easy consequence of the factorization theorems and the
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assumptions. Suppose that � is a limit ordinal, we will prove the claim by induction
on the rank of ẋ ∈ IS� .
Suppose that ẋ ∈ IS� , we define the name ẋ′ as follows: for every 〈p, ẏ〉 ∈ ẋ let
D(p, ẏ) be a maximal antichain below p such that for every q ∈ D(p, ẏ) there is
some ẏq ∈ ISα such that q �� ẏ = ẏq .
Let ẋ′ = {〈q, ẏq〉 | ∃〈p, ẏ〉 ∈ ẋ : q ∈ D(p, ẏ)}. It is not hard to see that
1� � ẋ = ẋ′, so we may assume that ẋ = ẋ′.
Let 
H be a support and D be a predense set witnessing that ẋ ∈ IS, we may
assume that every p ∈ D is tenacious, p �� 
H = 
Hp for some excellent support,
and 
Hp(p) fixes p. Let p ∈ D and take 	 such that p ∈ P	 and 	 > maxC ( 
Hp). We
claim now that if q ≤� p, and q �� ẏ ∈ ẋ for ẏ appearing in ẋ, then q �	 �	 ẏ ∈ ẋ.
Let us assume that we have shown that, now define

ẋp = {〈q � 	, ẏ〉 | q ≤� p, q �� ẏ ∈ ẋ and ẏ appears in ẋ}.
It follows that p �� ẋp = ẋ. However every condition in ẋp is in P	 , and every
name appearing in ẋp is in P	 . Therefore ẋp is a P	 -name, moreover 
Hp � 	 is an
excellent F	 -support for ẋp �p, so ẋp ∈ IS	 . By the induction assumption there are
names ẋ′p ∈ ISα which ẋp will be forced to be equal to them. But this equality goes
up to �, as wanted.
So it remains to show that if q ≤� p, and q �� ẏ ∈ ẋ for some ẏ which appears
in ẋ, then q � 	 �	 ẏ ∈ ẋ. By the assumption, ẏ is a Pα-name, therefore any
automorphism sequence 
� such that minC (
�) ≥ α must satisfy ∫


�
ẏ = ẏ, and

moreover p �� 
� ∈ 
Hp. Next, by homogeneity, any two extensions of q � 	 can
be made compatible. Of course, if the two extensions are end-extensions, and 
�
witnesses this, then we may assume that minC (
�) ≥ 	 , and so q � 	 ��

∫

�
ẋ = ẋ

and we are done. But now we are really done, otherwise there was some q′ such that
q′ ≤	 q � 	 , with q′ �� ¬ẏ ∈ ẋ, and this is impossible since q′ is compatible with q.
Therefore q � 	 �� ẏ ∈ ẋ, which allows us to define ẋp and use the induction
hypothesis on P	 as wanted. �
Remark 9.3. Note that any continuous filtration of the universe can work in this
context, not just the von Neumann hierarchy, and in fact the levels of the hierarchy
need not be sets themselves. Namely, if {Dα | α ∈ Ord} is any continuous and
uniformly definable filtration of the universe, and no new sets are added to D�
above the stage α of the iteration, then under the assumption of homogeneity, D�
is preserved at limit stages above α as well. The only necessary condition is that the
Dα ’s have names stable under all automorphisms.

9.2. Class forcing. Theorem 9.2 has an interesting corollary.
Theorem 9.4. Suppose that 〈Q̇α, Ġα, Ḟα | α ∈ Ord〉 is a symmetric iteration
and each step satisfies that 1α �IS

α Ġα witnesses the homogeneity of Q̇α . Moreover,
suppose that for every �, there is some F (�) such that for every 	 ≥ F (�) no sets of
von Neumann rank <� are added by 〈Q̇	 , Ġ	 , Ḟ	 〉. Then whenever G is a V -generic
filter for P = POrd, IS

G |= ZF.

Proof. Let N be ISG . We cannot use the fact that N is a transitive, almost
universal class which is closed under Gödel operations, since this route requires us
to work inside a model of ZF, and V [G ] fails to satisfy the power set axiom, as we
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added a proper class of Cohen reals (and we may have collapsed all the cardinals or
even Ord itself to be countable). Instead, we verify all the axioms of ZF hold in N .
Extensionality, Infinity, and Regularity are easy to verify, as neither is violated in
V [G ], andN is a transitive class of V [G ]. Power set and Union hold as a corollary
of Theorem 9.2. If x ∈ N , then there is some � such that x ∈ VN� , it follows that if
ẋ is a name for which ẋG = ẋ, we can assume that ẋ ∈ ISF (�) and both the union
and power set of x will certainly be the same as they are computed in ISF (�+1). It
remains to check that Replacement holds in N .
Let ϕ(x, y) be a formula and A ∈ N (we omit the parameters for simplicity)
such that N |= ∀x ∈ A∃!y ϕ(x, y). Fix Ȧ ∈ IS such that ȦG = A. We say that α
is a closure of P for ϕ and Ȧ if Vα ∩ P = Pα , Ȧ ∈ Vα ∩ ISα , the formulas defining
p �IS ϕ(ẋ, ẏ) and p �IS ∀x ∈ Ȧ∃!y ϕ(x, y) are reflected in Vα , andmoreover there
exists some p ∈ G ∩ Vα such that p �IS ∀x ∈ Ȧ∃!y ϕ(x, y). We can find such
closure point by the reflection theorem.
Let α be a closure point for ϕ and Ȧ, and let p be a condition witnessing
that ϕ defines a function on A. Using mixing in Pα , let {ẋi | i ∈ I } be such
that p �IS

α Ȧ = {ẋi | i ∈ I }• and let ẏi ∈ ISα ∩ Vα such that p �IS
α ϕ(ẋi , ẏi )

for all i ∈ I . We claim that Ḃ = {ẏi | i ∈ I }• is the name we are looking
for to witness this instance of Replacement holds in N . By the choice of α as
a closure point, p �IS ϕ(ẋi , ẏi) for all i ∈ I . Now suppose that q ≤ p, then
q �IS ∀x ∈ Ȧ∃!y ϕ(x, y), and if q �IS ϕ(ẋi , ẏ) ∧ ϕ(ẋi , ẏi ), then it is the case that
q �IS ẏ = ẏi .
Therefore ḂG ∈ N is exactly the set {y | ∃x ∈ A ϕ(x, y)}, as wanted. �

§10. Example: Failure of Kinna–Wagner Principles.

10.1. On Kinna–Wagner Principles. The Kinna–Wagner Principle states that
every set can be injected into the power set of an ordinal. It is a weakening of
the axiom of choice that was given by Willy Kinna and Klaus Wagner in [8]. The
principle implies that every set can be linearly ordered, however it is independent
from statements like the Boolean Prime Ideal Theorem over ZF (see [10] for a
discussion on the subject).
Monro defined, for a natural number n, KWPn to be the statement that for every
X there exists an ordinal �, such that X can be injected to Pn(�). In [9], Monro
extends the classic theorem of Vopěnka and showed that ifM and N are transitive
models of ZF with the same (n + 1)th power set of ordinals, and M |= KWPn,
then M = N . We will extend both Monro’s definition and his extension of the
Balcar–Vopěnka theorem below.

Definition 10.1. We define the α-set of ordinals hierarchy by recursion. 0-sets
ordinals are sets of ordinals; α-sets of ordinals are sets of 	-sets of ordinals for
	 < α. Namely, an α-set of ordinals is a subset of Pα(�) for some ordinal �.

We will generally shorten the term, and just write that A is an α-set. Note that
by recursion and usual coding arguments, α-sets are closed under unions, finite
products, and even finite sequences. Namely, if A is an α-set, then A<� and [A]<�

can be encoded as an α-set as well.

https://doi.org/10.1017/jsl.2018.73 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.73


152 ASAF KARAGILA

Definition 10.2. For an ordinal α, KWPα is the statement that every set A is
equipotent with an α-set. We will abbreviate the statement ∃α KWPα simply to
KWP.

The axiom of choice is KWP0 and the classic Kinna–Wagner principle is KWP1.
But as Monro proved in [9], for every n, KWPn+1 � KWPn.

Theorem 10.3 (The generalized Balcar–Vopěnka–Monro theorem). Let M
and N be two transitive models of ZF with the same α-sets. If M |= KWPα , then
M = N .

The proof of the Balcar–Vopěnka theorem can be found in [5, Theorem 13.28],
and it generalizes quite immediately here.

Sketch of Proof. Every set inM can be encoded as a well-founded relation on
an α-set. By the Mostowski collapse lemma, every set inM lies in N . The direction
N ⊆M is proved by induction on the von Neumann rank of members of N . �
Andreas Blass in [1] defined SVC(X ) to be the statement “For everyA there exists
an ordinal � such that there is a surjection from X × � onto A”, let SVC be the
statement ∃X SVC(X ). We call suchX a seed. Blass also proved in that same paper,
that if M is a symmetric extension of V , where V |= ZFC, then M satisfies SVC;
and thatM |= SVC if and only if there is a generic extension of M satisfying the
axiom of choice.

Theorem 10.4. Suppose thatM |= SVC. ThenM |= KWP. Consequently, every
symmetric extension of a model of ZFC satisfies KWP.

Proof. IfM |= SVC, let X be a witness of that, and let α be the von Neumann
rank of X . Then X is an � + α-set, and by induction on α, it is equipotent with
an α-set. It follows that every set can be injected into P(X × �) for some ordinal �.
Therefore KWPα+1 holds. �
10.2. Failure of Kinna–Wagner Principles. To prove that KWPn+1 � KWPn,
Monro constructed a sequence of transitive models, Mn, such thatMn and Mn+1
have the same n-sets, but not the same n + 1-sets, and KWPn fails to hold inMn+1.
The idea was to add at each step a Dedekind-finite set An, and then construct a
model similar to Cohen’s model, only adding � subsets to An. Monro used relative
constructibility instead of symmetric extensions, but we know from the work of
Grigorieff in [3] that the two methods are tightly connected. The limitation of
Monro’s method was that it had to stop at �: the increasing union of models of ZF
is not necessarily a model of ZF again.

We present here a reconstruction of Monro’s work within the framework of
iterated symmetric extensions. This lets us coalesce these models into one, where
KWPn fails for all n < � at the same time.Wewill discuss the difficulties in extending
this construction beyond � steps.

Theorem 10.5. For all n < � there is a model where KWPn+1 holds, but KWPn.
Moreover, there is a model of ZF where KWPn fails for all n < � simultaneously.

Proof. We define for all n a symmetric systemwhich is weakly homogeneous and
does not add n-sets, and that the nth iteration forces (relative to ISn) that KWPn
holds. The idea is to iterate the construction of the Cohen model—like in Monro’s
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original paper—where we start by adding� Cohen reals, then add� Cohen subsets
to the set ofCohen reals, then� subsets to the set obtained and so on. This approach
fails when reaching limit steps. We will discuss this failure, and what can be done to
overcome it at the end of the proof.
We begin by giving a rigorous definition of the symmetric system we will use, it
is weakly homogeneous by its finitary nature. Unfortunately, it does not simplify
the definition to consider this specific context, so we give a seemingly convoluted
definition for a general context. The first one is the way we make a generic copy of
adding � subsets to a given name Ẋ , indexed by some set I .
We find it clearer to separate I and � in this definition as it is more informative
as to which role each index is taking, even though for our case I will always be �
itself. The definition is based on the following principle, if we add |I | Cohen reals,
then we have added � subsets to I , by simply rotating the matrix of the Cohen
reals.

Definition 10.6. Suppose that Ẋ = {ẋi | i ∈ I }• is a name such that for all
i 
= j, 1 � ẋi 
= ẋj .
For f ∈ Add(�, I ) we let q̇f = {〈〈ň, ẋi〉•, f(i, n)〉• | 〈i, n〉 ∈ domf}•, and let
Add•(Ẋ , �̌) denote the name {q̇f | f ∈ Add(�, I )}•. Let S� denote the group of
finitary permutations of �, then for any � ∈ S� , there is a natural action of � on
Add(�, I ) given by �f(i, �n) = f(i, n) and this translates to a natural action on
Add•(Ẋ , �) given by �̇q̇f = q̇�f .
The standard Cohen system for Ẋ is the symmetric system of Add•(Ẋ , �̌) with
the permutation group induced by S� and the normal filter of subgroups given by
finite stabilizers. The set of canonical generics for Add•(Ẋ , �̌) is given by the name

{〈1A, Ẋn〉• | n < �}•,
where Ẋn = {〈q̇f, ẋi〉• | f(i, n) = 1}•. These names are in fact names-of-names,
and are analogous to the canonical Cohen reals and the canonical name for the set
of Cohen reals in the extension where Ẋ is interpreted.

It is not hard to see that whenever Ẋ ∈ IS for some symmetric iteration satisfies
the condition of the definition, then the standard Cohen system for Ẋ is also in IS
and has the same support as Ẋ . In particular, if all automorphisms respect Ẋ , then
the standard Cohen system is a candidate for continuing the iteration.
If p is a condition in the standard Cohen system and E is a finite subset of �,
we write p � E to mean p � (E × �). Namely, p � E is the restriction of p to only
the canonical generics with indices in E. As we are going to iterate these forcings in
the proof that will now follows, if 
E is a sequence of finite sets of � of the length of
the iteration, and p is a condition in the iteration, we will write p � 
E to denote the
pointwise restriction p(n) � En .
Our assumptions on the ground model are simply ZFC. We will refer to some
proofs written elsewhere under assumption of V = L, or the existence of some
global well-ordering, however these are only cosmetic assumptions for simplifying
these proofs. We define by induction our symmetric systems. Suppose that the
symmetric iteration 〈Pn,Gn,Fn〉 was defined, and 1n �IS

n KWPn ∧ ∀k < n,¬KWPk .
For n = 0, let 〈Q0,G0,F0〉 be the standard Cohen system taking I = �. This is
exactly the standard Cohen model. We denote by ȧ1,m themth canonical generic of
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the system and by Ȧ1 the name for the set of canonical generics. It is a standard fact
that 11 �IS

1 KWP1.12

Suppose that the Pn was defined. Let 〈Q̇n, Ġn, Ḟn〉• be the standardCohen system
for Ȧn . We denote by ȧn+1,m the mth canonical generic, and Ȧn+1 is the set of
canonical generics, {ȧn+1,m | m < �}•. Using a result of Halpern–Levy (see [6,
Chapter 5, Problem 23], originally in [4]). the partial interpretation function needed
for [6, Lemma 5.25] to go through is definable in ISn+1. The lemma provides a
definable injection from the Cohen model into I × Ord, where I is the set of finite
subsets of A1 above. As the assumptions in Jech include V = L, this is indeed the
result provable, but in the general setting one can replace Ord by a sufficiently large
ordinal �, and have the result localized to each V�.
In our setting we replace Ord, or even �, by Pn(Ord) or Pn(�) for a large enough
�; and I by the finite subsets of Ȧn+1 which is an n + 1-set. And so the result is
that if ẋ ∈ ISn+1, then �IS

n+1 “∃ẏ(|ẋ| = |ẏ|) and ẏ is an n + 1-set”. In other words,
1n+1 �IS

n+1 KWPn+1.
Our proof would be complete if we can prove thatmoving from ISn to ISn+1 we do
not add new k-sets for k < n. In that case, as a consequence of Theorem 10.3 each
of the models has to be distinct, and since an element of V�+n+1 is always coded
by an n-set, this would imply the stabilization needed for the preservation theorem,
Theorem 9.2. Moreover, as we remarked at the end of Section 9, we can talk about
any uniformly definable filtration of the universe, not just the von Neumann ranks.
This applies in this case to the hierarchy of α-sets. In particular, the limit of the
iterations will not satisfy KWPn for any n, since its n-sets came from the n + 1th
step of the iteration, where KWPn fails.
We shall prove, by induction on n, that if ẋ ∈ ISn is a name of a k-set for k < n,
then there is p ∈ Pn and some ẏ ∈ ISk such that p �IS

n ẋ = ẏ. Or in other words,
that no new k sets were added when forcing with the nth symmetric system.
For n = 0, there is nothing to check (morally this would amount to checking
that no ordinals were added, which is of course the case with forcing). Suppose
that n = m + 1. We will prove the claim by induction on k < n. Suppose that
ẋ ∈ ISn = ISm+1 is such that 1n �IS

n “ẋ is a ǩ-set” for some k < n, by standard
arguments we may assume that every name which appears in ẋ is in fact in ISk . Let

E be a sequence of finite subsets of � such that 〈fix(Ek) | k < n〉 is a support for ẋ.
By standard homogeneity arguments we have that if p �IS

n u̇ ∈ ẋ and u̇ ∈ ISk ,
then p � 
E �IS

n u̇ ∈ ẋ. If we can show that there is a fixed condition r such that
supp(r) ⊆ (j, n) such that if p �IS

n u̇ ∈ ẋ, then (p � k)�r �IS
n u̇ ∈ ẋ, then it will

be enough to conclude that ẋ can be reduced to a name in ISj , and if j ≤ m, the
induction hypothesis is enough to take us all the way to k itself. So in fact it is
enough to simply get rid of the mth coordinate in this fashion. To do that, we will
need the following lemma.

Lemma 10.7. For all n, given p ∈ Pn and a condition q̇ in Q̇n, there is p′ ≤n p and
finite set D which depends only on p′ such that if p′ �n q̇′ ≤Qn q̇ � � ×D, then there
is 
� ∈ Gn such that

∫

�
p′ = p′ and p′ �n “

∫

�
q̇′ is compatible with q̇”.

12It is wise to pause and contemplate the path we slowly walked in life, if we ended up with a notation
as odd as 11.
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Assume the lemma. Without loss of generality, p = p′ as in the lemma, and that
p(m) having the property that its domain is maximal with respect to the finite set
guaranteed by the lemma. Now by homogeneity we get that given any name u̇ for a
k′-set for k′ < k, we can decide u̇ ∈ ẋ by only extending p � m. This finished the
proof indeed, as wanted. �
Proof of Lemma 10.7. For the case n = 0, P0 is the trivial forcing and there is
nothing to prove. Suppose that n = m + 1, in that case Q̇n is a standard Cohen
system and Pn is an iteration of Cohen systems too. Let p be a condition and q̇ be
a name for a condition in Q̇n. First extend p to p′ such that:

1. p′ has the property that p � k decides the condition f such that p(k) = q̇f . In
particular the domains of each coordinate of p are decided.

2. p′ itself decides that q̇ = q̇f for some f ∈ Add(�,�).
For readability, assume that p = p′. Let D be the union of all the domains of p(i)
for i < n, then it is finite and we claim that D is the wanted set. Suppose that q̇′

is such that p �n q̇′ ≤Qn q̇ � � ×D. Assume momentarily that p also decides that
q̇′ = q̇g for some g ∈ Add(�,�).
We can now find a finitary permutation of �, � such that � acts on Q̇m, and thus
on Pn, with the following properties:

1. � �D = id.
2. If we consider g ′(i, j) = g(i, �j), then g ′ and f are compatible.

Once we find such �, let it be �m such that �j = id for j < m in the sequence 
�. Then∫

�p = p by the choice of D, and

∫

�q̇g = q̇g′ which is compatible with q̇ � � ×D.

Of course, such � is easy to find. Simply “move” anything outside of D to a part
disjoint from the domain of f. If p does not decide the value of q̇′ as q̇g , then find
a maximal antichain below it which does, for each one of these conditions find a
suitable automorphism as above, and use mixing to define �. �
10.3. Transfinite failures. So what happens when we try to go forward with the
construction? We have an obvious �-set of ordinals in the form of A� =

⋃
n<� An ,

and we would like to add a new subset to A� . The obvious thing to do is to add it
with finite conditions, but this is a problem, since you want to ensure that no n-sets
are added, and a finite conditions approach will add a new subset to each of the
An ’s. So instead we need to choose the intersection of the new subset with each An .
But this too leads us to some problems.
If we choose Bn ⊆ An , then just by asking what are the n’s for which Bn is finite,
co-finite, or co-infinite, we can already code a real number. We can ask whether or
not Bn is a subset of those elements in Bn+1, and so on. So approximating using
finite conditions is surely to introduce a new real. And we only consider adding a
single subset.
Assaf Shani solves this problem in [13] by requiring that we choose one element
from each An, and that an ∈ an+1 for all n. So we create an increasing ∈-chain.
This argument works for adding a single choice function, however when adding two
generic choice sequences, the coordinates on which they agree is already going to
be a new real, so the approach does not solve the whole problem. Instead, Shani
solves this by introducing a generic tree, such that adding any finitely many branches
to the tree will not add new reals, or any n-sets for n < �. This approach can be
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generalized to any countable ordinal length by adding a cofinal sequence of tree-like
forcings which are “sufficiently distant” from one another. However, when trying
to push this approach to �1, Fodor’s lemma shows there is no way to add these
forcings in a coherent way.
We finish by pointing out that while there is no proof that KWPα+1 � KWPα for
all α, in [7] the author constructs a sequence of models Mα , and their union M ,
such thatM has the same α-sets asMα . In particular, KWP fails inM and KWPα
fails in Mα . It is unclear, however, whether or not KWPα+1 holds in Mα or how
does the failures “move up” between the different models. Therefore the only thing
we can confidently say is that there is a proper class of ordinals such that if α < 	
are both in the class, then KWP	 does not imply KWPα in ZF.

§11. Coda. As with any new mathematical technology, we hope that there will
be some exciting uses for this technology in the future. Some of these include clearer
and easier reconstruction of Gitik’s model and of those of Sageev. In [7] we use
a class-length productive iteration to construct an intermediate model of ¬KWP
which lies between L and Cohen real extension L[c].

Question 11.1. Is iterating symmetric extensions the same as a single symmetric
extension?

Weknow that in the context of forcing the answer is yes: iterated generic extensions
can be presented as a single generic extension. And while a positive answer to the
above question might seem to nullify some of the efforts taken here, it is still a
different approach to constructing models of ZF, and we can still reach class-length
iterations under some hypotheses. Using Grigorieff’s work, we know that symmetric
extensions aremodels of the formHOD(V∪x)V [G ] for somex ∈ V [G ]. Theproblem
is that HOD-type models are not robust between models, so there is no guarantee
that a symmetric extension of a symmetric extension is itself necessarily a symmetric
extension, let alone a limit of symmetric extensions.

Question 11.2. Can the construction be extended in a reasonable way to any other
type of iterations (e.g., κ-support iteration)?

If the first question is answered positively, this might shed some light on the
second answer.
It is often the case that a forcing over a model of ZF will well-order some part
of the universe. For example, when κ is regular, Add(κ, κ) introduces a bijection
between κ<κ and κ. This means that iterating Cohen-like constructions one step at a
time will only violate choice at limit steps.With finite support iterations, Dependent
Choice is sure to fail at those limit steps.However, with countable support iterations,
we might salvage Dependent Choice, or other weak choice principles.

11.1. Products of symmetric systems. The absence of products of symmetric sys-
tem from this work so far is quite notable. Much like the fact that products can be
viewed as iterations where all forcing notions come from the ground model, we can
also look at a product of symmetric systems. There, we have 〈Qα,Gα,Fα〉 for some
α < �, we define a some kind of product P� (finite support, countable support,
Easton, etc.) of the forcing notions. We can define a product of the groups with a
similar support (or a different one, if we choose to) as a group of automorphisms of
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the product P� acting pointwise on each component. Then we can define a product
of the filters, again with whatever support that our heart desires. Therefore the
product of symmetric system is itself a symmetric system. But it is also an iteration.
Moreover, since the iteration can be presented using only canonical x̌-style names,
it is a productive one.
Indeed, this gives us a small step towards answering both of the questions we
raised. Yes, the product of symmetric systems is a symmetric system. Yes, we can
extend it to a variety of supports, not just finite support, granted that we only use
ground model objects. But it also points out obvious difficulties, since in general a
countable support product is not a countable support iteration.

§12. Appendix A: More on tenacity.
Definition A.1. Two symmetric systems 〈P,G ,F 〉 and 〈P′,G ′,F ′〉 are equiva-
lent if for every V -generic G ⊆ P there is a filter G ′ ⊆ P′ such that HSGF = HSG

′
F ′

and vice versa.13

The following theorem is joint work with Yair Hayut, written here with his
permission.

Theorem A.2. Every symmetric system is equivalent to a tenacious system.

Proof. Let 〈P,G ,F 〉 be a symmetric system. We may assume without loss of
generality thatP is a complete Boolean algebra. LetB be the subalgebra of tenacious
conditions, namely p ∈ B if and only if there is someH ∈ F such that for all � ∈ G ,
�p = p. Due to the fact thatF is normal, we get that B is closed under G . Namely,
if p ∈ B is fixed by H , and � ∈ G , then �p is fixed by �H�−1. Therefore 〈B,G ,F 〉
is a symmetric system. Let us denote by HSP andHSB the two classes of hereditarily
symmetric names.
It is clear that HSB ⊆ HSP. Let us show that if ẋ ∈ HSP, then there is some
ẏ ∈ HSB such that 1P �P ẋ = ẏ. We prove this by induction on the rank of ẋ, so we
may assume that every u̇ appearing in ẋ is in fact in HSB. If 〈p, u̇〉 ∈ ẋ, let p̄ denote∑{�p | � ∈ sym(ẋ)∩ sym(u̇)}. This condition is well-defined since P is a complete
Boolean algebra. Moreover, by the Symmetry Lemma we get that p �P u̇ ∈ ẋ if
and only if �p �P u̇ ∈ ẋ for � ∈ sym(ẋ) ∩ sym(u̇) and therefore p̄ �P u̇ ∈ ẋ as
well. Finally, if � ∈ sym(ẋ) ∩ sym(u̇), then �p̄ = p̄ by the very definition of p̄, and
therefore p̄ ∈ B. Now define ẏ = {〈p̄, u̇〉 | 〈p, u̇〉 ∈ ẋ}, then it is easy to see that the
two names are equivalent and that ẏ ∈ HSB.
It remains to show that the two are equivalent. Clearly, if G ⊆ P is V -generic,
then it is also generic for B. So we only need to show that if G ⊆ B is V -generic,
then in V [G ] there is a sufficiently generic filter G ′ ⊆ P such that HSG

′
P = HSGB . Let

G ′ simply be the upwards closure of G in P.
First, G ′ is a filter, if p, p′ ∈ G ′ then there are some p̄, p̄′ ∈ G such that p̄ ≤P p
and p̄′ ≤P p

′. AsG is a filter, there is some r ∈ G such that r ≤B p̄, p̄
′, and therefore

r ∈ G and r ≤P p, p
′. By its definition, G ′ is upwards closed. So it is indeed a filter.

Next, we will show that if ẋ ∈ HSP, then the interpretation of ẋ byG ′ is the same
as ẏG , where ẏ is the name defined above. Again, this will be done by induction

13Note that G ′ need not be V -generic, just to interpret HS-names correctly.
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on the rank of ẋ, using the definition of p̄ as
∑{�p | � ∈ sym(ẋ) ∩ sym(u̇)} is a

weaker condition than p. Recall that

ẋG
′
= {u̇G′ | ∃p ∈ G ′ : 〈p, u̇〉 ∈ ẋ}.

Let 〈p, u̇〉 ∈ ẋ, there is some v̇ ∈ HSB such that 1P �P u̇ = v̇, and 〈p̄, v̇〉 ∈ ẏ. By
the induction hypothesis u̇G

′
= v̇G , but since p̄ ∈ G and p ∈ G ′ we get that indeed

ẋG
′
= ẏG as wanted. �

Acknowledgments. As with any work that is painstakingly developed over the
course of a long time, there are many people to thank, more than it would be
appropriate to recount here. Three people were particularly helpful to the overall
process: Menachem Magidor, my advisor, for his constant help and advice; Yair
Hayut,my colleague and friend, for his patience andmanyhelpful ideas; andMartin
Goldstern who visited in Jerusalem during the spring of 2015 and was willing to
listen the then-current drafts and identify weak points. Without the three of them, it
is unclear if this work would have been finished as quickly as it has. The anonymous
referee also deserves their fair share of praise for reading this paper, start to finish,
and making helpful remarks and suggestions.
Additionally, it is uncommon, but the brave readers who read this far deserve a
mention for their tenacity: thank you!14

This paper is part of the author’s Ph.D. written in the Hebrew University of
Jerusalem under the supervision of Prof. Menachem Magidor.
This research was partially done whilst the author was a visiting fellow at the
IsaacNewton Institute forMathematical Sciences in the programme ‘Mathematical,
Foundational and Computational Aspects of the Higher Infinite’ (HIF) funded by
EPSRC grant EP/K032208/1.

REFERENCES

[1] A. Blass, Injectivity, projectivity, and the axiom of choice. Transactions of the American
Mathematical Society, vol. 255 (1979), pp. 31–59.
[2] S. Feferman, Some applications of the notions of forcing and generic sets. Fundamenta

Mathematicae, vol. 56 (1964), pp. 325–345.
[3] S. Grigorieff, Intermediate submodels and generic extensions in set theory.Annals of Mathematics

(2), vol. 101 (1975), pp. 447–490.
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