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Online in situ prediction of 3-D flame evolution has been long desired and is
considered to be the Holy Grail for the combustion community. Recent advances
in computational power have facilitated the development of computational fluid
dynamics (CFD), which can be used to predict flame behaviours. However, the most
advanced CFD techniques are still incapable of realizing online in situ prediction
of practical flames due to the enormous computational costs involved. In this work,
we aim to combine the state-of-the-art experimental technique (that is, time-resolved
volumetric tomography) with deep learning algorithms for rapid prediction of 3-D
flame evolution. Proof-of-concept experiments conducted suggest that the evolution of
both a laminar diffusion flame and a typical non-premixed turbulent swirl-stabilized
flame can be predicted faithfully in a time scale on the order of milliseconds, which
can be further reduced by simply using a few more GPUs. We believe this is the
first time that online in situ prediction of 3-D flame evolution has become feasible,
and we expect this method to be extremely useful, as for most application scenarios
the online in situ prediction of even the large-scale flame features are already useful
for an effective flame control.
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1. Introduction

Flames are one of the most complex nonlinear dynamic systems, which involve
the interplay between chemical reactions, heat and mass transfer, and flow dynamics
(Sohn et al. 2000; Kashinath, Waugh & Juniper 2014). Since the eighteenth century,
generations of scientists have devoted themselves to the study of flames, hoping to
master the law of combustion and predict the evolution of practical flames. Even
though considerable progress has been made due to the emergence of large-scale
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clusters and the development of computational fluid dynamics (CFD), online in situ
prediction of 3-D flame evolution is still a formidable task (Kaminski et al. 2000;
Klein, Chakraborty & Ketterl 2017), mainly for two reasons: first, CFD modelling
involves the solution of Navier–Stokes equations with millions or even billions of
cells and thousands of time steps; second, a detailed chemical kinetic mechanism is
only available for simple low-carbon fuels (Curran 2019). In addition, since the CFD
modelling is highly sensitive to boundary conditions – for example, the roughness
and geometry of the boundary – this will cause extreme difficulties in practical
applications where the boundary conditions are hard to define. Thus, the proposal and
development of an alternative approach for 3-D flame prediction is of great interest.

Recently, time-resolved volumetric tomography (VT) for combustion diagnostics has
made significant progress due to the invention of high-energy burst mode lasers and
upgrades in high-speed cameras (Halls et al. 2017a, 2018). For example, volumetric
imaging of important intermediate flame species such as OH, CH2O and PAH has
been demonstrated with a repetition rate up to 10 kHz (Halls et al. 2017b,c). The
development of VT has greatly facilitated understanding of complex combustion
processes such as flame ignition and combustion instability (Ma et al. 2016; Ruan
et al. 2019). In addition, enormous amounts of experimental data can be accumulated
within a short period of time. Such an amount of data provides unprecedented
opportunities for machine learning (ML) algorithms which can effectively explore
the hidden information behind the large dataset and make a faithful regression (Xu,
Pei & Lai 2017) or prediction (Bakkouri & Afdel 2017). For example, in a recent
review of developments in improving turbulence models by using ML algorithms it
was proposed that data-driven approaches can be used to design useful predictive
models (Duraisamy, Iaccarino & Xiao 2019). In particular, Kutz recommends that
deep learning (DL) may play a key role in the field of fluid dynamics (Kutz 2017).

So far, successful applications of DL have been reported in various fields such
as computer vision and speech recognition for its great ability to approximate
complex functions of nonlinear systems (LeCun, Bengio & Hinton 2015). For example,
convolution neural network (CNN) is famous for its capability in extracting features
from images and has been applied extensively in medical imaging (Litjens et al.
2017), such as computed tomography (CT) and magnetic resonance imaging (MRI).
In addition, DL algorithms had also been applied to predict heat release rates (Tóth,
Garami & Csordás 2017; Wang, Song & Chen 2017), NOx emission (Li et al. 2016)
and oxygen contents (Yi, Yu & Chen 2017) for combustion studies. Long short-term
memory (LSTM) neural network (Hochreiter & Schmidhuber 1997) is one such
algorithm that excels in predicting time series data, such as stock markets (Nelson,
Pereira & Oliveira 2017), weather forecasting (Qing & Niu 2018) and simulated
turbulent flows (Alathur Srinivasan 2018; Mohan & Gaitonde 2018; Wang et al.
2018), to list a few. It has also been demonstrated for stance detection, where it has
obtained state-of-the-art results (Augenstein et al. 2016).

In this work, we aim to develop a data-driven approach to predict 3-D flame
evolution, which combines the state-of-the-art VT technique with DL algorithms.
The former can provide a tremendous amount of useful experimental data and the
latter can effectively utilize this big data to construct efficient neural networks for
prediction. Different from the CFD approaches, which start from the Navier–Stokes
equations, here we start directly from experimental data of the target flame measured
at previous time instants. The advantage is obvious – our method starts from true
representations of the practical flame; however, this is not necessarily guaranteed by
a CFD technique, as it depends on how accurate the flow model and the chemical
kinetic mechanisms are, and how well the initial conditions can be characterized.
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FIGURE 1. Illustration of the volumetric tomography system, which consists of one swirl-
stabilized burner, one customized fibre bundle, one high-speed camera and one computer.
Nine projections from different angles are captured simultaneously and then used for the
reconstruction of 3-D flame structures to generate both the training and testing datasets.

2. Volumetric tomography of 3-D flame imaging

In this work, we designed a hybrid CNN–LSTM model to rapidly predict the
evolution of 3-D flame structures based on its history 2-D projections without explicit
tomographic reconstructions. Volumetric tomography of 3-D flame chemiluminescence
was adopted here to generate a trustworthy dataset. The layout of the experimental
set-up is shown in figure 1. Nine projections of the flame from different perspectives
at each time instant were simultaneously captured by a camera through a customized
fibre bundle which has nine input ends and one output end. The 3-D flame structures
can then be reconstructed using the so-called algebraic reconstruction technique (ART)
(Yu et al. 2018). More details about the VT system, including the components of
the set-up as well as the reconstruction process, can be found in the supplementary
material available at https://doi.org/10.1017/jfm.2019.545. Capturing the projections
continuously, for example, for 10 s with a framing rate of 1k and repeating the
reconstruction processes, a dataset including 10 000 consecutive frames of the 3-D
flame structures can be obtained. To test the CNN–LSTM model, both a simple
laminar diffusion flame (Flame no. 1, see figure 2(a)) and a complex non-premixed
turbulent swirl-stabilized flame (Flame no. 2, see figure 2(b)) were tested, which
contain the main features of flame evolution, including changing flame heights,
drifting of flame wrinkles and the rotation of flames. As shown in the movie (see
supplementary material), the profile of both flames changed considerably over time.
For both Flame no. 1 and Flame no. 2, the reconstruction volume was discretized into
50 × 50 × 110 voxels, with each voxel having dimensions of 0.5 mm × 0.5 mm ×
0.5 mm.

To validate the correctness of the reconstructions, the re-projection method was
applied (Yu et al. 2018). In this method, eight projections were used to reconstruct
the 3-D flame structure, which was then used to predict the ninth projection. If
the reconstruction is correct, then the estimate of the ninth projection should be
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FIGURE 2. The 3-D renderings for Flame no. 1 and Flame no. 2.
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FIGURE 3. Correlation coefficients between the ninth measured projection and its
corresponding re-projection, which are plotted as a function of the frame index of the
two flames, respectively.

consistent with the measured one. The correlation coefficient (R) between the estimate
and the measurement of the ninth projection was used to quantify the quality of
reconstructions. The definition of R between two projections (X) and (Y) is (Shi, Liu
& Yu 2010)

R(X, Y)=
(X · YT)

‖X‖2 × ‖Y‖2
, (2.1)

where (·) represents the dot product between two vectors, ‖ · ‖2 is the 2-norm of the
vector and superscript T means the transpose of the row vector. As shown in figure 3,
the correlation coefficients are constantly larger than 0.99 for the selected 50 frames
of both flames, suggesting a good reconstruction accuracy of the VT system. Thus,
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FIGURE 4. Schematic of the proposed CNN–LSTM model. The 3-D flame evolution (for
example, t = t11) can be predicted based on its history 2-D projections (for example,
t = t1 ∼ t10) using this model, which comprises a convolutional neural network (CNN),
a long short-term memory network (LSTM) and a dense layer.

the reconstructions of the flames using the ART algorithm can be considered as the
ground truths and used to train and test our CNN–LSTM model.

3. Deep neural network

The evolution of a 3-D flame structure is essentially composed of translation,
rotation, scaling, erosion and dilation of the structure. These operations are elemental
for image processing and can be learned effectively with a deep learning algorithm.
The schematic of our CNN–LSTM model is illustrated in figure 4. First, 10 000
samples obtained from the VT measurements, each of which contains nine projections
and the corresponding 3-D flame structure, were divided into five groups to perform
5-fold cross-validation for our model. For example, the first four groups, containing
8000 samples (t = 0.001 s ∼ 8.000 s), were used as the training dataset, and the
last group, containing 2000 samples (t = 8.001 s ∼ 10.000 s), was used as the
testing dataset. The results presented below are the average results from the 5-fold
cross-validation. The detailed frameworks of CNN and LSTM as well as the training
strategies can be found in the supplementary material.

It is noteworthy that the training process consists of two steps – training the CNN
to extract features from projections, then training the LSTM to model the temporal
sequence of these features. Within the iterations of the first step, nine projections at
each time instant were put into CNN to obtain a vector of useful features. The 2-D
projections for each frame can then be represented by the feature vector. Therefore,
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the problem of predicting the 3-D flame evolution can be transformed into another one
of predicting the evolution of the corresponding feature vectors. Within the iterations
in the second step, a sequence of history feature vectors (for example, at t= t1 ∼ th)
and a future one (for example, at t = th+1t) were sent to the input layer and the
output layer of the LSTM, respectively. The subscripts h and 1t denote history time
window and prediction horizon, respectively. After 30 epochs, the loss function L2
converged and a trained CNN–LSTM prediction model was obtained. The details of
the training process and the optimization of hyperparameters can be found in the
supplementary material. Finally, the testing process was performed using the testing
dataset. For instance, as shown in figure 4, projections (t = t1 ∼ t10) in the testing
dataset were input to the trained CNN–LSTM model to obtain the prediction of 3-D
flame structure (t = t11), that is, h= 10 ms and 1t = 1 ms, which can be treated as
one testing case.

4. Results

The neural networks were implemented, trained and tested using Keras (version
2.22.4) using the TensorFlow backend (version 12.112.0) in Python (version 32.62.8).
All algorithms were implemented on a workstation equipped with an Intelr Core2TM

i7-DMI2-X79 PHC 2·60 GHz CPU with a single NVIDIA TITAN XP GPU with
12 GB VRAM. The training process of the CNN–LSTM model took approximately
30 min and the computational cost for each prediction was approximately 2 ms
without any specific code optimization. Thus, online in situ prediction of 3-D
flame evolution can be achieved with a moderate coding effort by using multiple
GPUs for parallel computing (You et al. 2017). Hence, our proposed method has an
overwhelming advantage in terms of computational efficiency compared with CFD
techniques.

The testing results for three cases of both Flame no. 1 and no. 2 are shown in
figures 5 and 6, respectively. As can be seen, there is almost no difference in the
3-D distributions between the ground truths (panels a–c) and the predictions (panels
d–f ), proving that our prediction model can successfully ‘learn’ the evolution law
of flames and make accurate predictions. Furthermore, the middle slices of these
3-D distributions were selected to better illustrate the prediction performance of our
proposed method, as shown in the last two rows of figures 5 and 6. As expected,
the internal structures of both flames can be faithfully predicted as well. Thus,
by using the CNN–LSTM model, the evolution of 3-D flame structures, including
changing flame height, drifting of flame wrinkles and rotation of the flame, can
be predicted accurately based on its history 2-D projections without explicitly
tomographic reconstructions.

To further investigate the prediction capability of our CNN–LSTM model, several
comparative experiments have been conducted with the same training and testing
datasets. Quantitatively, the correlation coefficient (R) and the root mean square
error (RMSE) between the predictions and the ground truths were adopted as the
performance parameters to evaluate prediction accuracy. The testing results as a
function of prediction horizon (1t) are shown in figure 7. The values of R and
RMSE remained nearly constant for Flame no. 1 (black lines) and changed slightly
for Flame no. 2 (blue lines), when 1t increased from 5 ms to 30 ms. In contrast,
the inherent R and RMSE between two consecutive true frames (that is, the ground
truths) with the same time interval (1t) were calculated as the basic benchmark. The
results are shown in figure 7 (red and magenta lines for Flame no. 1 and Flame no. 2,
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FIGURE 5. Prediction of Flame no. 1 using the CNN–LSTM model. Panels (a–c) are the
ground truths at three time instants and panels (d–f ) are the corresponding predictions
obtained using the CNN–LSTM model. Panels (g–l) are the middle slices of panels
(a–f ), respectively.

respectively). Obviously, for the same 1t, the inherent difference between two ground
truths is much larger than the difference between the prediction and the ground truth
for both Flame no. 1 and Flame no. 2, indicating the effectiveness of prediction.

In addition, it has been found that the performance of the CNN–LSTM model
varied for Flame no. 1 and Flame no. 2. This is mainly due to the distinct features
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FIGURE 6. Prediction of Flame no. 2 using the CNN–LSTM model. Panels (a–c) are the
ground truths at three time instants and panels (d–f ) are the corresponding predictions
obtained using the CNN–LSTM model. Panels (g–l) are the middle slices of panels
(a–f ), respectively.

of their structures and evolutions. Qualitatively, the evolution of Flame no. 1 was
mainly reflected in the variation of the flame height, while the flame surface stayed
relatively smooth over time. However, the height of Flame no. 2 was almost constant,
but there were obvious wrinkles on the flame surface which drifted over time,
making the flame structure more complicated. Its evolution is associated with vortex
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FIGURE 7. Performance of CNN–LSTM model. The black and blue lines indicate the
prediction performance (R: correlation coefficient; RMSE: root mean square error) as a
function of prediction horizon (1t) for both Flame no. 1 and Flame no. 2. The red and
magenta lines denote the inherent R and RMSE between two consecutive true frames (i.e.
ground truths) with the same time interval (1t).

generation, movement and shedding. According to a relevant CFD study (Hasegawa,
Nakamichi & Nishiki 2002), small-scale vortices are more complex and irregular than
large-scale vortices, and the evolution of Flame no. 2 was controlled by both scale
vortices. To improve the prediction of Flame no. 2, more training samples should be
incorporated so that more useful features of the small-scale vortices can be extracted,
which is within the scope of our future research direction.

The successful demonstration of the CNN–LSTM model in predicting 3-D flame
evolution suggested its potential for practical applications. In order to mimic the
practical situations where measurement noise prevails, a series of experiments with
different noise levels in projections were conducted. Additional artificial Gaussian
noise was added to the measured projections as

p′ = p× (1+ δ× g), g∼G(0, 1), (4.1)

where p denotes the measured projections without noise, δ is the noise level and g
is a set of random numbers that satisfy a Gaussian distribution. The results shown in
figure 8 suggested good noise immunity of the proposed CNN–LSTM model.

5. Summary

To summarize, a data-driven approach for the online in situ prediction of 3-D
flame evolution based on volumetric tomography and deep learning algorithms has
been proposed. The method was successfully demonstrated with proof-of-concept
experiments by predicting the evolution of both a laminar diffusion flame and a
non-premixed turbulent swirl-stabilized flame. There are two key advantages of this
prediction model. First, the model starts directly from the experimental data of the
target flame measured at previous time instants, which are true representations of the
practical flames. Second, unlike CFD techniques, the solution of a complicated partial
differential equation system is not required and only simple algorithmic operations are
involved, resulting in an overwhelming advantage over CFD techniques in terms of
computational efficiency. Thus, it serves as a promising alternative approach to CFD
techniques for applications where rapid prediction of 3-D flame evolution is required.
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FIGURE 8. Results of experiments with different noise levels in projections. Additional
artificial Gaussian noise was added to the measured projections to mimic the practical
situations. Although the noise level increases gradually, R decreases slightly and the RMSE
remains nearly constant for both Flame no. 1 and Flame no. 2.

Although there was an implicit assumption that the dominant flame features of the
training dataset and the testing dataset are similar (Noack, Morzyski & Tadmor 2011),
the prediction horizon can be effectively expanded when a larger training dataset is
available. With the help of the proposed CNN–LSTM predictor, some key structure
parameters of the flame (Floyd, Geipel & Kempf 2011) – such as flame surface
density, wrinkling factor, flame normal direction and flame curvature, to name a
few – can be calculated based on the predicted 3-D flame structures. Thus, these
key parameters, which are related to flame stability and propagation (Floyd et al.
2011), can be used to control turbulent flames (Brunton & Noack 2015). Finally, the
successful demonstration of our proposed model is just an example application of
deep learning in predicting complex flows. It should be emphasized that this method
can also be applied to predict the evolution of any other physical parameters/fields
of reactive/non-reactive flows, such as the velocity field measured by particle image
velocimetry (Baum et al. 2013) and the temperature field measured by two-line
atomic fluorescence spectroscopy (Hult, Burns & Kaminski 2005; Fang et al. 2019).
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