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The present work studies the nonlinear dynamics of a shear layer, driven by a body
force and confined between parallel walls, a simplified setting to study transitional and
turbulent shear layers. It was introduced by Nogueira & Cavalieri (J. Fluid Mech., vol.
907, 2021, A32), and is here studied using a reduced-order model based on a Galerkin
projection of the Navier–Stokes system. By considering a confined shear layer with
free-slip boundary conditions on the walls, periodic boundary conditions in streamwise
and spanwise directions may be used, simplifying the system and enabling the use of
methods of dynamical systems theory. A basis of eight modes is used in the Galerkin
projection, representing the mean flow, Kelvin–Helmholtz vortices, rolls, streaks and
oblique waves, structures observed in the cited work, and also present in shear layers and
jets. A dynamical system is obtained, and its transition to chaos is studied. Increasing
Reynolds number Re leads to pitchfork and Hopf bifurcations, and the latter leads to a
limit cycle with amplitude modulation of vortices, as in the direct numerical simulations by
Nogueira & Cavalieri. Further increase of Re leads to the appearance of a chaotic saddle,
followed by the emergence of quasi-periodic and chaotic attractors. The chaotic attractors
suffer a merging crisis for higher Re, leading to a chaotic dynamics with amplitude
modulation and phase jumps of vortices. This is reminiscent of observations of coherent
structures in turbulent jets, suggesting that the model represents a dynamics consistent
with features of shear layers and jets.
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1. Introduction

Coherent structures are an important feature in turbulent shear layers and jets, as
recognised since the early 1970s (Crow & Champagne 1971; Brown & Roshko 1974;
Moore 1977). Large-scale turbulent structures are formed in shear layers with features
similar to Kelvin–Helmholtz vortices observed in transitional flows. Their amplitude
grows in space as structures are advected downstream, and as they reach a region with
a thicker shear layer their amplitude saturates and then decays. Such behaviour may be
modelled as an axially extended wavepacket, which is known to be a dominant source
of jet noise (Jordan & Colonius 2013; Cavalieri, Jordan & Lesshafft 2019). In turbulent
jets, wavepackets are not dominant structures in terms of kinetic energy (Jaunet, Jordan &
Cavalieri 2017), but are nonetheless strongly correlated with the far-field sound (Cavalieri
et al. 2013), in a process known to be related to amplitude modulation, or ‘jitter’, of
wavepackets, as reviewed by Jordan & Colonius (2013) and Cavalieri et al. (2019).

In order to model wavepackets and their sound radiation it became standard to apply
linearised models considering the jet mean field as a base flow. This follows from an
early idea of Crighton & Gaster (1976), who modelled wavepackets by considering the
equations of motion linearised around a slowly diverging mean flow. Coherent structures
are modelled as Kelvin–Helmholtz wavepackets excited at the nozzle exit. This leads to
exponential amplification of disturbances near the nozzle, and downstream amplitude
decay as the shear layer thickens. Predictions of such models lead to time-periodic
wavepackets, with good agreement with forced-jet experiments (Tam & Burton 1984;
Cohen & Wygnanski 1987; Matsubara, Alfredsson & Segalini 2020) and, more recently,
to unforced turbulent jets (Suzuki & Colonius 2006; Gudmundsson & Colonius 2011;
Cavalieri et al. 2013), albeit with a perceivable mismatch in the downstream region.

A more recent approach to the modelling of coherent structures in turbulent shear
flows is based on an analysis of the resolvent operator, with linearised equations forced
by nonlinear terms that are treated as external forcing. The framework relates inputs
(nonlinear forcing) and outputs (linearised flow responses), which are ranked based on
gains (ratios of output and input energies). Resolvent analysis for turbulence was initially
developed for wall-bounded flows (Hwang & Cossu 2010; McKeon & Sharma 2010), and
resolvent models for jets were subsequently developed by Garnaud et al. (2013), Jeun,
Nichols & Jovanović (2016). Recent comparisons between resolvent modes and numerical
simulation or experiment were presented by Schmidt et al. (2018) and Lesshafft et al.
(2019), showing good levels of agreement between the leading response mode and the
dominant coherent structures in the jet.

Resolvent analysis sheds light on how nonlinearities excite flow responses, but as
nonlinear terms are considered as an external forcing, further analysis is required to
understand the intrinsic nonlinear dynamics. For instance, interactions among the various
coherent structures cannot be studied with resolvent analysis in a straightforward manner.
Wall-bounded transitional and turbulent flows have seen significant advances by studies
of nonlinear dynamics, which studies how turbulence may be sustained despite the
linear stability of the laminar solution. A first possibility is to obtain reduced-order
models, where a low number of dominant coherent structures are considered in a
Galerkin projection of the Navier–Stokes system. This has been pursued, for instance,
by Waleffe (1997), Moehlis, Faisst & Eckhardt (2004) and Cavalieri (2021). The Galerkin
projection leads to a low-order dynamical system, whose inspection shows the relevant
nonlinear interactions. The system may be examined using standard methods in nonlinear
dynamics, and its low dimension allows fast computations of the response to various initial
conditions, which allows a thorough study of the dynamics.
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Transition to chaos in a reduced-order model

In more recent works, nonlinear dynamics has been studied using the full resolution
of direct numerical simulations (DNS) for low Reynolds number flows. For Couette flow,
several non-trivial steady and periodic solutions have been found since the pioneering
works of Nagata (1990) and Kawahara & Kida (2001). There is now a large catalogue
of solutions, as reviewed by Kawahara, Uhlmann & Van Veen (2012). Such solutions
are unstable, with a saddle behaviour in the state space. As solutions attract (repel)
trajectories by their stable (unstable) manifolds, they provide structure to the state space,
and it is possible to understand chaotic features by proper analyses of the state space
including invariant solutions and their stable and unstable manifolds (Gibson, Halcrow
& Cvitanović 2008). More generally, chaotic dynamics comprises an infinity of unstable
periodic solutions (or orbits), whose attracting and repelling properties may be related
to the statistics of chaotic attractors via periodic-orbit theory (Cvitanović & Eckhardt
1989; Chandler & Kerswell 2013; Lucas & Kerswell 2015), although computations are
challenging for complex flows.

The derivation of reduced-order models and the study of invariant solutions is simpler in
wall-bounded flows due to their homogeneity in two directions (streamwise and spanwise,
or azimuthal for pipe flow), which allows the use of periodic boundary conditions and
small computational domains, referred to as minimal flow units (Jiménez & Moin 1991;
Hamilton, Kim & Waleffe 1995; Flores & Jiménez 2010). A wavenumber decomposition
greatly simplifies the analysis and modelling of wall-bounded flows. On the other
hand, round jets have a single homogeneous direction, the azimuth, which makes even
linear analysis more complex, requiring a global framework (Theofilis 2003). A further
complication related to the non-homogeneity in streamwise direction is that jet dynamics
and sound radiation are known to depend on the upstream boundary layer, as observed in
experimental (Bridges & Hussain 1987; Fontaine et al. 2015) and numerical results (Bogey
& Bailly 2010; Brès et al. 2018). A recent investigation by Kaplan et al. (2021) suggests
that turbulent-jet wavepackets are excited by coherent boundary-layer structures inside the
nozzle. These would need to be included in a reduced-order model of turbulent jets. If one
tries to circumvent this by imposing streamwise homogeneity, the result is a temporal jet,
which leads to a different perspective in the analysis of dynamics and acoustics (Bogey
2019), but with a loss of temporal homogeneity, as the jet continually spreads in time.

Suponitsky, Sandham & Morfey (2010) have carried out analysis of jet dynamics and
noise by considering nonlinear dynamics with a frozen base flow, maintained by a body
force. This shows that a jet forced with two frequencies ω1 and ω2 develops significant
amplitudes in the difference frequency ω2 − ω1 in both hydrodynamic and acoustic fields,
in agreement with the early experiments of Ronneberger & Ackermann (1979). Wu
& Huerre (2009) explored a similar scenario, with the excitation of wavepackets with
close frequencies but opposing azimuthal modes, leading to a slow mean-flow distortion
that radiates sound. More recently, Wu & Zhuang (2016) and Zhang & Wu (2020)
derived a nonlinear framework for a shear layer in the incompressible and compressible
regimes, respectively, with initial disturbances introduced at the nozzle lip with a nonlinear
evolution in space and time. The effect of incoherent turbulence is accounted for by
including a model of Reynolds stresses.

The above studies offer insight into nonlinear interactions among wavepackets, with
results that depend on the details of upstream excitation, a natural feature of shear layers
and jets. In Nogueira & Cavalieri (2021) (hereafter referred to as NC) we have adopted a
different strategy and circumvented the upstream excitation problem by defining a shear
layer that is homogeneous in the streamwise direction; this is accomplished by considering
a shear layer driven by a body force and confined by two horizontal walls, as sketched in
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Lz = 2π/γ

Lx = 2π/α

y = –1

y = 1

y
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z

Figure 1. Sketch of the confined shear layer studied in NC (permanently actuated, periodically unstable flow).
Blue arrows show the applied body force (which leads to a similar velocity profile for the free-slip boundary
conditions considered in this work).

figure 1. The body force leads to a velocity profile with an inflection point, leading to
the Kelvin–Helmholtz instability typical of shear layers and jets, and homogeneity in the
streamwise and spanwise directions leads to a more straightforward extraction of coherent
structures and analysis of their interplay. The effect of jet divergence is lost, which is
beneficial for a dynamical system analysis as it allows the definition of a minimal flow unit
for a shear layer; however, this comes with a cost, as the effect of mean-flow distortion
in coherent structures appears in NC as a temporal modulation, instead of the spatial
modulation of wavepackets seen in shear layers and jets (Gudmundsson & Colonius 2011;
Cavalieri et al. 2013; Zhang & Wu 2020).

It is seen in NC that the shear layer develops not only two-dimensional (spanwise
constant) Kelvin–Helmholtz (KH) waves, but also oblique waves. KH waves are related
to non-dimensional wavenumbers (kx, kz) = (±1, 0) in the streamwise and spanwise
directions, respectively; oblique waves are related to wavenumbers (kx, kz) = (±1, ±1).
Moreover, the flow also displays streamwise vortices (or rolls) and streaks, with
wavenumbers (kx, kz) = (0, ±1). These are known as dominant structures in wall-bounded
turbulence (Hamilton et al. 1995; Del Alamo & Jimenez 2006; Hwang & Cossu 2010;
Abreu et al. 2020). Their presence in turbulent jets was recently studied by Nogueira et al.
(2019) and Pickering et al. (2020) by analyses of experimental and numerical databases,
respectively, clarifying observations from earlier works (see introduction by Pickering
et al. (2020) for a detailed review and discussion). Visualisations from the velocity field in
both cited works indicate that elongated streaks of streamwise velocity are the dominant
structures in the velocity field at outer radial positions of turbulent jets, and such streaks
are correlated to upstream streamwise vortices.

The study in NC was based on a direct numerical simulation at a low Reynolds number
of 200, and showed a limit-cycle oscillation with an amplitude modulation in time of KH
waves. This motivated labelling the configuration as permanently actuated, periodically
unstable (PAPU) flow, as the continuous body force leads to a flow that display an
alternation of KH instability and stability. The amplitude modulation was shown to be
related to time-periodic mean-flow distortion. Such distortion is related to the amplitude
of rolls, streaks and oblique waves in the flow. These three structures undergo a periodic
cycle. The observations from the DNS motivated the proposition of an ad hoc nonlinear
system, similar in spirit to the model for wall-bounded turbulence by Waleffe (1995). The
dynamical system in NC reproduced qualitatively the features of the limit cycle, giving
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Transition to chaos in a reduced-order model

hope that additional modelling work may lead to further insight into the flow at hand. Work
in such simplified configuration, enabling most of the approaches in dynamical systems
theory and chaos, has the potential of shedding light on more complex turbulent shear
layers and jets. As shear layers have a laminar solution prone to KH instability, mechanisms
to sustain turbulence are not of primary interest; for such flows, nonlinear dynamics may
reveal the interplay of the various coherent structures, which may help explain features of
turbulent flows such as the aforementioned wavepacket amplitude modulation and jitter.

In this work we continue the exploration of the streamwise homogeneous shear
layer in NC. Instead of no-slip boundary conditions used in NC, we consider free-slip
conditions on the walls. This was motivated by the observation that increasing the
Reynolds number in the NC configuration led to the appearance of near-wall turbulence,
similar to what happens in turbulent Couette flow. This greatly departs from the desired
parallel shear-layer behaviour, with walls that should act simply so as to prevent flow
spreading. The use of free-slip boundary conditions avoids the occurrence of such
near-wall fluctuations, as shown in Chantry, Tuckerman & Barkley (2016). Moreover,
the use of free-slip boundary conditions enables the derivation of a low-order dynamical
system using Fourier modes with a Galerkin projection of the Navier–Stokes equations.
With such a simplified model the dynamics is nonetheless rich, and may be studied in some
detail, with an exploration of the bifurcations of the system and its transition to chaotic
behaviour. The solutions highlight mechanisms of interaction between streaks, vortices
and oblique waves, leading to vortex jitter. This opens new directions for investigation of
more complex, spatially developing shear layers and jets.

The remainder of the paper is organised as follows. Section 2 describes the procedure
to obtain a reduced-order model and shows the resulting differential equations. Section 3
presents an analysis of the nonlinear dynamics of the model: initial bifurcations are studied
in § 3.1, leading to a limit cycle similar to the one studied in NC. Further bifurcations of
the system are studied in § 3.2. A symmetry-breaking bifurcation is shown in § 3.2.1, the
formation of a chaotic saddle is shown in § 3.2.2, the transition to a chaotic attractor is
explored in § 3.2.3 and an attractor merging crisis, leading to intermittent phase jumps in
KH vortices, is studied in § 3.3. The work is completed with conclusions in § 4.

2. Derivation of a reduced-order model

We consider the incompressible flow between two parallel plates, driven by a body
force, with a free-slip boundary condition on both walls. Non-dimensional quantities are
obtained considering the half-distance between walls and a reference velocity obtained
from the laminar solution with sinusoidal forcing, following Moehlis et al. (2004). The
coordinate system is Cartesian, with x, y and z referring respectively to streamwise,
wall-normal and spanwise coordinates, as shown in figure 1. Time is denoted by t.

We consider the system to be modelled by the continuity and Navier–Stokes equations,

∇ · u = 0, (2.1a)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + f , (2.1b)

where u = [u v w]T is the velocity vector, p is pressure and Re is the Reynolds number.
Free-slip boundary conditions are satisfied on walls at y = ±1,

∂u
∂y

( y = ±1) = v( y = ±1) = ∂w
∂y

( y = ±1) = 0, (2.2)

and periodic boundary conditions are considered in the x and z directions.
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The flow is driven by a body force in the streamwise direction,

f =
√

2
Re

⎛
⎝ β2 sin(βy) + 9Pβ2 sin(3βy)

0
0

⎞
⎠ , (2.3)

with β = π/2. With P = 0 this forcing is equivalent to the one in sinusoidal shear flow
(Wallefe flow) studied by Waleffe (1997) and Moehlis et al. (2004) and, more recently,
by Chantry et al. (2016), Chantry, Tuckerman & Barkley (2017) and Cavalieri (2021).
The cited works used this sinusoidal shear flow as a simpler system that retains features
of wall-bounded turbulent flows, with chaotic behaviour despite the linear stability of
the laminar solution for all Reynolds numbers. Here, the introduction of the PAPU
parameter P > 0 destabilises the laminar fixed point. The forcing was chosen as a minimal
combination of Fourier modes leading to a laminar solution with an inviscid instability,
which corresponds to the KH mechanism of shear layers and jets. The use of Fourier
modes for the forcing is convenient, as such modes will subsequently be used to construct
a reduced-order model

The flow so defined has a laminar fixed point given by

uL =
√

2

⎛
⎝ sin(βy) + P sin(3βy)

0
0

⎞
⎠ , (2.4)

and thus the reference velocity is taken as
√

2/2 times the (P = 0) laminar solution on the
upper wall, y = 1. This choice is the same of Moehlis et al. (2004), and will not be changed
for P /= 0 due to convenient properties of the reduced-order model that will be derived
here. The present choice of body force is different from the tanh function considered
in NC. Here the advantage is that the body force leads to a laminar solution that may
be represented exactly with only two Fourier modes, which considerably simplifies the
reduced-order model. The choice of the present body force leads to a confined shear layer
with an inviscid instability mechanism, similarly to NC.

We consider periodic boundary conditions in the streamwise and spanwise directions x
and z. The computational domain has dimensions (Lx, Ly, Lz) = (2π/α, 2, 2π/γ ), where
α and γ are fundamental wavenumbers in x and z directions, respectively.

We define an inner product as

〈f , g〉 = 1
2LxLz

∫∫∫
( fxgx + fygy + fzgz) dx dy dz, (2.5)

to use in a Galerkin projection of the Navier–Stokes equation. The use of free-slip and
periodic boundary conditions leads to a natural use of Fourier modes to represent the
velocity field, as sines or cosines with wavenumbers that are integer multiples of α, β and
γ satisfy the boundary conditions by construction. To model the structures observed in
NC, we consider a set of eight orthonormal modes, given by

u1 =
⎛
⎝

√
2 sin(βy)

0
0

⎞
⎠ , (2.6a)
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Transition to chaos in a reduced-order model

u2 =
⎛
⎝

√
2 sin(3βy)

0
0

⎞
⎠ , (2.6b)

u3 =

⎛
⎜⎜⎜⎜⎝

2β sin(αx) sin(βy)√
α2 + β2

2α cos(αx) cos(βy)√
α2 + β2

0

⎞
⎟⎟⎟⎟⎠ , (2.6c)

u4 =

⎛
⎜⎜⎜⎜⎝

4β cos(αx) cos(2βy)√
α2 + 4β2

2α sin(αx) sin(2βy)√
α2 + 4β2

0

⎞
⎟⎟⎟⎟⎠ , (2.6d)

u5 =

⎛
⎜⎜⎜⎜⎝

0
2γ cos(βy) sin(γ z)√

β2 + γ 2

−2β cos(γ z) sin(βy)√
β2 + γ 2

⎞
⎟⎟⎟⎟⎠ , (2.6e)

u6 =
⎛
⎝ −√

2 sin(γ z)
0
0

⎞
⎠ , (2.6f )

u7 =

⎛
⎜⎜⎜⎜⎝

2γ sin(αx) sin(γ z)√
α2 + γ 2

0
2α cos(αx) cos(γ z)√

α2 + γ 2

⎞
⎟⎟⎟⎟⎠ , (2.6g)

u8 =

⎛
⎜⎜⎜⎜⎜⎝

2
√

2γ cos(αx) sin(βy) sin(γ z)√
α2 + γ 2

0

−2
√

2α cos(γ z) sin(αx) sin(βy)√
α2 + γ 2

⎞
⎟⎟⎟⎟⎟⎠ . (2.6h)

Such modes are divergence free and satisfy a free-slip condition on the walls at
y = ±1. Hence, any linear superposition of modes also satisfies the same conditions.
The wavenumbers (kx, ky, kz), in streamwise, wall-normal and spanwise directions,
respectively, and physical structures related to each mode are shown in table 1. As modes
have sinusoidal dependence in all directions, they always comprise wavenumbers ±kx,
±ky and ±kz, that is, they may be seen as a superposition of exp(ikxx) and exp(−ikxx)
(and similarly for y and z directions) complex Fourier modes.

The choice of modes is motivated by the wish to model the instability of a shear
layer leading to KH vortices, the lift-up mechanism with rolls leading to streaks and the
interactions among these structures. Modes 1 and 2 are chosen to represent the laminar
solution and its eventual mean-flow distortion due to Reynolds stresses. Modes 3 and 4 are
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Mode kx ky kz Structure

u1 0 β 0 Mean flow 1
u2 0 3β 0 Mean flow 2
u3 α β 0 Vortex 1
u4 α 2β 0 Vortex 2
u5 0 β γ Roll
u6 0 0 γ Streak
u7 α 0 γ Oblique 1
u8 α β γ Oblique 2

Table 1. Modes in the Galerkin projection.

a minimal representation of two-dimensional KH vortices with streamwise wavenumber
kx = α; when considering triadic interactions in the Navier–Stokes system, we notice
that the wavenumber of mode 4 is the sum of wavenumbers of modes 1 and 3, and the
wavenumber of mode 4 is the sum of kx and the difference of ky of modes 2 and 3. These
two consistent triads were seen to lead to a KH type instability, as will be shown in § 3.1.
Modes describing streamwise independent rolls (mode 5) and streaks (mode 6) are the
same ones from Waleffe (1997) and Cavalieri (2021), and Moehlis et al. (2004) uses a
slightly modified streak mode including two Fourier modes in y.

Finally, triadic interactions between two-dimensional vortex modes 3 and 4, and
streamwise independent modes 5 and 6 are only possible if oblique-wave modes were
included. This led to the choice of modes 7 and 8. A further analysis of the results in NC
showed that the oblique modes had low amplitudes of the wall-normal velocity, and thus
only x and z components were included in modes 7 and 8. These modes are also present
in the reduced-order models of sinusoidal shear flow by Waleffe (1997) and Moehlis et al.
(2004). Their zero wall-normal velocity ensures that the laminar solution is stable to such
disturbances, which would correspond to Squire modes which are always stable (Schmid
& Henningson 2001).

We write the velocity field as a superposition of these eight modes,

u(x, y, z, t) =
∑

j

aj(t)uj(x, y, z), (2.7)

insert the decomposition in the Navier–Stokes equation and take an inner product with ui,
in a Galerkin projection as used by Moehlis et al. (2004) and Cavalieri (2021). This leads
to

dai

dt
= Fi + 1

Re

∑
j

Li,jaj +
∑

j

∑
k

Qi,j,kajak, (2.8)

where the coefficients are given by

Fi = 〈f , ui〉, (2.9)

Li,j = 〈∇2uj, ui〉, (2.10)

Qi,j,k = −〈(uj · ∇)uk, ui〉. (2.11)

As the modes satisfy an incompressibility condition and periodic boundary conditions,
the contribution of the pressure term vanishes. The reduced-order model so obtained is a
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system of eight ordinary differential equations, given by

ȧ1 = β(2β − 2a1β)

2Re
−

β

(
2a5a6γ

kβ,γ

− 3
√

2a3a4αβ

kα,2βkα,β

)

2
, (2.12a)

ȧ2 = 9β2(P − a2)

Re
+ 3

√
2a3a4αβ2

2kα,2βkα,β

, (2.12b)

ȧ3 = −a3(α
2 + β2)

Re
−

√
2a1a4α(α2 + 3β2)

2kα,2βkα,β

−
√

2a2a4α(α2 − 5β2)

2kα,2βkα,β

− 2a6a8αβγ

kα,βkα,γ

− a5a7γ
2(α2 − β2)

kα,βkα,γ kβ,γ

, (2.12c)

ȧ4 = −a4(α
2 + 4β2)

Re
+

√
2a1a3α

3

2kα,2βkα,β

+
√

2a2a3α(α2 − 8β2)

2kα,2βkα,β

+
√

2a5a8γ
2(α2 − 4β2)

2kα,2βkα,γ kβ,γ

, (2.12d)

ȧ5 = −a5(β
2 + γ 2)

Re
+

√
2a4a8α

2(β2 − γ 2)

2kα,2βkα,γ kβ,γ

− a3a7α
2(β2 − γ 2)

kα,βkα,γ kβ,γ

, (2.12e)

ȧ6 = −a6γ
2

Re
+ γ

(
a1a5β

kβ,γ

+ a3a8αβ

kα,βkα,γ

)
, (2.12f )

ȧ7 = −a7(α
2 + γ 2)

Re
+ a1a8α + a3a5β

2(α2 − γ 2)

kα,βkα,γ kβ,γ

, (2.12g)

ȧ8 = −a8(α
2 + β2 + γ 2)

Re
+ a3a6αβγ

kα,βkα,γ

− a1a7α −
√

2a4a5β
2(α2 − 4γ 2)

2kα,2βkα,γ kβ,γ

, (2.12h)

with auxiliary wavenumbers kα,β =
√

α2 + β2, kα,2β =
√

α2 + 4β2, kα,γ =
√

α2 + γ 2

and kβ,γ =
√

β2 + γ 2.
As expected from the Navier–Stokes equation, the system above has quadratic terms that

conserve energy, only distributing it among modes. The equation for the integrated kinetic
energy, E = 1/2

∑8
i=1 a2

i , is

dE
dt

= a1β
2 + 9Pa2β

2

2Re
− 1

2Re

8∑
i

κia2
i , (2.13)

with κi being the wavenumber of the ith mode. The first term on the right-hand side
represents production due to the applied body force, and the last terms are related to
viscous dissipation.

The above system admits the symmetries (a3, a4, a7, a8) → (−a3, −a4, −a7,
−a8), which is a mirror symmetry following the x axis, and (a5, a6, a7, a8) →
(−a5, −a6, −a7, −a8), a mirror symmetry following the z axis. The first group of modes
has an x dependence, and the last group has a z dependence. As the present modes are
‘pinned’ at specific positions in x and z, the symmetries also correspond to Lx/2 or Lz/2
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shifts in the x and z directions; however, this equivalence between mirror and translational
symmetries is not a general property, and is solely due to the mode shapes used here.

An inspection of the reduced-order model (ROM) in (2.12) shows that the mean shear
is maintained by the body force. The laminar solution corresponds to a1 = 1, a2 = P and
a3 = a4 = · · · = a8 = 0. A two-dimensional flow, given by modes 1–4, allows an energy
transfer between mean-flow modes 1 and 2 and vortex modes 3 and 4, which will be seen
as the mechanism for vortex growth by a KH instability. Consideration of a streamwise
independent flow, given by modes 1, 2, 5 and 6, shows that there is also energy transfer
between the mean-flow mode 1 and the streak mode 6, mediated by the roll mode 5; this
is the well-known lift-up effect (Ellingsen & Palm 1975; Brandt 2014). Finally, vortices,
rolls and streaks have various interactions with the oblique waves 7 and 8. Small initial
disturbances to the laminar solution may lead to a transient growth of streaks related to
an initial roll amplitude, or to exponential growth of the vortex modes 3 and 4 due to
the KH instability above a critical Reynolds number. Compared with earlier ROMs for
wall-bounded turbulence (Waleffe 1997; Moehlis et al. 2004), which have linearly stable
laminar solutions for all Re, the inclusion of the KH instability is an important feature of
the present model, which aims at representing the instability mechanism of shear layers.
However, the presence of rolls and streaks, coupled with the other modes, will be seen to
be important in the dynamics.

3. Model results

Besides the Reynolds number Re, the model in (2.12) has as parameters the PAPU
body force constant P, and the streamwise and spanwise domain lengths Lx and Lz that
define fundamental wavenumbers α and γ , respectively. In this work we will focus on
Lx = 4π(α = 1/2) and Lz = 2π(γ = 1) as this was the domain size in NC, and also one
of the domains considered by Moehlis et al. (2004) and Cavalieri (2021). An exploration
of model results with this domain size showed that P = 0.08 led to a dynamics similar
to the observations in NC. In what follows we will explore the results of the model with
P = 0.08. A variation of P will prove useful to understand the appearance of a chaotic
saddle.

Whenever possible, model results will be compared with the DNS of NC, which
employed no-slip boundary conditions on walls, and a tanh function for the body
force. Due to such differences the comparison remains qualitative. However, as the flow
structures in NC, such as vortices and streaks, spanned the entire channel peaking on its
centre, we do not expect drastic differences between the analysis of the present ROM
and the DNS results, as the physical picture described in NC does not involve near-wall
effects. It is nonetheless possible to carry out DNS with free-slip boundary conditions,
allowing quantitative comparisons with the present ROM. Preliminary comparisons show
quantitative agreement between ROM and DNS, and a more detailed comparison will be
reported elsewhere.

Numerical integration of (2.12) was carried out using a standard fourth- to firth-order
Runge–Kutta method. Unless otherwise specified, a random initial condition was used.

3.1. Pitchfork and Hopf bifurcations
We have tracked fixed points of the system with the aforementioned choice of parameters,
as a function of Reynolds number, to determine bifurcations of the system. Fixed points ã
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Figure 2. (a) First pitchfork bifurcation of the system. Full lines are stable fixed points, and dashed lines show
unstable ones. The black line refers to the laminar solution, and the blue line shows the saturated vortex. (b)
The z-vorticity of the saturated vortex solution for Re = 35.

may be sought by looking for solutions of

Fi +
∑

j

Li,jãj +
∑

j

∑
k

Qi,j,kãjãk = 0, (3.1)

and their stability may be studied by the eigenvalue problem∑
j

Li,ja′
j +

∑
j

∑
k

(Qi,j,k + Qi,k,j)ãka′
j = σa′

i, (3.2)

where a′ are small disturbances to the fixed point ã. The system above implies a time
dependence given by exp(σit); accordingly, an eigenvalue σ with positive real part
indicates an instability.

For P = 0.08, the laminar solution in the ROM is stable up to Re = 26.3. For Reynolds
numbers larger than this value there is one real positive eigenvalue, indicating the
occurrence of a pitchfork bifurcation. This was confirmed to be a supercritical bifurcation
by a search for fixed points, whose results are shown in figure 2. The new fixed points
are saturated two-dimensional vortex solutions, with non-zero amplitudes for the first
four modes (the two-dimensional ones), and zero amplitudes for the remaining spanwise
dependent modes. As the laminar solution and the body force are antisymmetric, these KH
vortices have zero phase velocity and are thus a steady-state solution of the system after
the pitchfork bifurcation. The two solutions differ only by an Lx/2 shift in the streamwise
direction, which is expected due to the symmetry of the system. In what follows, we will
consider these two solutions as ‘positive’ or ‘negative’ saturated vortex solutions based on
the sign of a3.

These saturated vortex modes are in turn stable up to Re = 41.8. A pair of
complex-conjugate eigenvalues become unstable for Reynolds number beyond this value.
By integrating the nonlinear ROM in (2.12) we verified that this is a supercritical Hopf
bifurcation: a low-amplitude limit cycle appears for Re slightly larger than the critical
value, and grows monotonically in amplitude for larger Re. The emerging limit cycle
involves all modes, and thus leads to three-dimensional behaviour. This may be related
to the instabilities of shear-layer vortices studied by Pierrehumbert & Widnall (1982), who
have found that a periodic array of vortices has three-dimensional instabilities which may
be either stationary (referred to as translational instability) or oscillatory (higher-order
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Figure 3. Limit-cycle oscillation for Re = 50 and comparison with DNS results from NC (Re = 200 and
no-slip boundary conditions). (a) Sample time series, (b) phase portrait of modes 3 and 6 and (c) DNS phase
portrait of vortices and streaks, from NC.

modes). The stationary mode is studied by Pierrehumbert & Widnall (1982) as leading
to the emergence of steady streaks, and the oscillatory modes have a more complex
structure. As the present limit cycle involves all modes, which oscillate at a non-zero
frequency, we tentatively associate the observed instability with the higher-order modes
by Pierrehumbert & Widnall (1982).

The behaviour of the system as a function of time for Re = 50, after the Hopf
bifurcation, is illustrated in figure 3. The system has a similar behaviour of what was found
in NC. Modes a1 (mean-flow 1) and a6 (streak) oscillate, with low values of a1 occurring
for large |a6|, which can be thought of high-amplitude streaks and rolls (modes a5 and
a6) leading to strong mean-flow distortions, reducing the mean shear. In turn, low (high)
mean shear stabilises (destabilises) the vortex modes a3 and a4, which have an amplitude
decay (growth). This has led the labelling of this cyclic behaviour as PAPU flow in NC,
as the observation of the KH modes a3 and a4 alone gives the impression that the system
oscillates between KH stable and KH unstable.

A phase portrait involving a3 and a6 is also shown in figure 3(b). The portrait has a
distorted ‘8’ shape, with streaks, a6 changing in sign and an amplitude variation of KH
mode a3 without sign change. For comparison, a phase portrait taken from the DNS in
NC is shown in figure 3(c), with ‘streak’ and ‘vortex’ states obtained using the streamwise
velocity at wavenumber (kx, kz) = (0, γ ) and (α, 0), respectively, at y = 0.5. As the DNS
in NC uses no-slip boundary conditions, and is carried out at Re = 200, only a qualitative
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Figure 4. Phase portraits of streaks and oblique waves in the limit-cycle oscillation for Re = 50 in the ROM,
and Re = 200 for the NC DNS data. (a) Phase portrait of modes 7 and 6 and (b) DNS phase portrait of streaks
and oblique waves.

comparison is possible, and thus the velocity fluctuations at this position and wavenumbers
were deemed sufficient to evaluate a corresponding phase portrait from the DNS data. For
both the present ROM and the NC data, large vortex amplitudes a3 occur for low values
of streak amplitude |a6|, in the middle section of the ‘8’. Analysis of streaky shear layers
(Marant & Cossu 2018) and jets (Lajús et al. 2019; Wang et al. 2021), with steady streaks
considered in a base flow, shows that they have a stabilising effect on the KH mechanism.
The observed limit cycle, as for the one in NC, displays a similar behaviour, albeit in the
nonlinear dynamics.

Oblique waves have an important role in defining the periodic behaviour of the model.
As explored in NC, these waves grow exponentially with the vortices, and their phase is
closely associated with the phase of streaks, such that alternation between positive and
negative streaks is directly associated with the phase of these waves. This is exemplified
in figure 4, displaying phase portraits from the model and from the DNS of NC. In the
latter case, the ‘oblique wave’ state in the DNS was obtained by taking the streamwise
velocity with (kx, kz) = (α, γ ) at y = −0.5. As in the results of figure 3, the comparison
is only qualitative due to the different Reynolds number and boundary conditions, but the
phase portraits show similar patterns, with a clear correlation between streaks and oblique
waves.

The significance of this limit cycle for the dynamics and sound radiation of jets is
that it displays amplitude modulation of the KH mode a3 in time. This is known to
be a mechanism of sound generation (Sandham, Morfey & Hu 2006), especially when
occurring simultaneously with amplitude modulation in space (Cavalieri et al. 2011). In a
shear layer or jet, the latter is known to occur due to the spatial spreading of the shear layer,
leading to the spatial decay of the KH mode in downstream regions (Jordan & Colonius
2013; Cavalieri et al. 2019). Due to the homogeneity in x of the present confined shear
layer, represented by modes that are strictly periodic in x, an amplitude modulation in
space is not possible. However, the observation of temporal modulation is relevant, and
may be related to observations in turbulent jets, as discussed in NC. Notice that, due to the
symmetry of the system, there is another stable limit cycle with a3 < 0, which bifurcates
from the lower branch of the vortex solutions in figure 2.

A visualisation of the velocity field for Re = 50, obtained with the ROM, is provided in
figure 5. The instantaneous streamwise velocity u is plotted in three chosen planes, for an
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Figure 5. Visualisation of the streamwise velocity u at three chosen planes, for an instant that maximises
streak amplitude a6 with Re = 50; (a) x–y plane at z = 0, (b) x–z plane at y = 1 and (c) x–z plane at y = 0.

instant corresponding to a maximal amplitude of the streak a6. The chosen planes highlight
vortices and streaks. In figure 5(a) an x–y plane is shown, with a dominance of a vortex
centred around x = 4. Figures 5(b) and 5(c) display x–z planes corresponding to the upper
wall and shear-layer centre, respectively. The upper-wall visualisation of figure 5(b) shows
that the vortex has a spanwise modulation, and the examination of figure 5(c) shows the
presence of streaky structures. Such streaks are thus related to the spanwise variation of
the velocity at the upper wall. The field thus shows a coexistence of vortices and streaks
similar to the observations in NC. More precisely, the solution comprises not only vortices
and streaks, but involves all eight modes, with varying amplitudes.

Nogueira & Edgington-Mitchell (2021) have identified the presence of streamwise-
elongated coherent structures in shock-containing twin jets by means of proper orthogonal
decomposition applied to particle image velocimetry data. The two first dominant modes,
whose temporal coefficients are denoted here as b1 and b2, were associated with travelling
waves in the resonance phenomenon, and are mainly dominated by a KH wavepacket.
The third mode has a spatial support similar to the modes obtained by Nogueira et al.
(2019); Pickering et al. (2020), and may thus be interpreted as a streak. Figure 6 shows the
amplitude of the resonant cycle r12 = (b2

1 + b2
2)

1/2 as a function of the streak amplitude
b3. It is clear that large positive/negative streak amplitudes are associated with large/small
amplitudes of the resonant cycle. While these trends cannot be related quantitatively with
the observations of the present ROM, they indicate that streaks modulate the amplitude
of the vortices, which impacts the overall resonant phenomenon. Further analysis of
turbulent-jet data may be able to uncover some of the nonlinear dynamics involving
vortices and streaks.

3.2. Transition to chaos for P = 0.08
As Re is increased beyond 41.8, the limit cycle of figure 3 develops with increasing
amplitude. This cycle was tracked until Re = 120 by looking for time-periodic solutions
of (2.12). The cycle stability was analysed using Floquet theory, as described by Kawahara
et al. (2012). The period of the limit cycle and its leading Floquet multipliers are shown in
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Figure 6. Instantaneous values of KH wavepacket amplitude r12 as a function of streak amplitude b3. Data
from Nogueira & Edgington-Mitchell (2021).
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Figure 7. Characteristics of the cycle emerging from the Hopf bifurcation at Re = 41.8. (a) Period of the
cycle and (b) Absolute value of 3 leading Floquet multipliers.

figure 7. There is always one multiplier equal to 1, corresponding to the neutral direction
following the periodic orbit. With increasing Re we observe a first instability appearing
between Re = 52 and 72.5. Inspection of the unstable Floquet multiplier shows that it is
real and positive, and we thus have a crossing of the unit circle at +1. The cycle stability is
restored at Re = 72.5, and a secondary Hopf bifurcation, with complex conjugate Floquet
multipliers leaving the unit circle, happens at Re = 109. These instabilities are relevant for
the appearance of chaotic behaviour, as will be shown in the next subsections.

3.2.1. Symmetry breaking
The numerical solutions of the system in this range of Re show that we have a
symmetry-breaking bifurcation at Re = 52, followed by symmetry restoring at Re = 72.5.
To show this behaviour, a Poincaré section is defined at the hyperplane a5 = 0, and we
collect points for the nonlinear simulation crossing the plane with ȧ5 < 0. Thus, the
behaviour of the dynamical system may be tracked with the Poincaré section that defines

932 A43-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1029


A.V.G. Cavalieri, E.L. Rempel and P.A.S. Nogueira

45 50 55 60 65
Re

70 75 80
0.20

0.25

0.30

0.35

0.40

a3

0.45(a) (b) 0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4
0.25 0.30 0.35 0.40 0.45

a6

a3

Figure 8. Illustration of the symmetry-breaking and -restoring bifurcations. Phase portraits in (b) correspond
to the red and blue branches shown in (a). (a) Poincaré section and (b) phase portrait for Re = 54.

a map. This is carried out successively for Reynolds number varying in small increments,
with the final state of the previous simulation taken as initial condition for the following
one to minimise transients. Simulations with duration T = 2000 are carried out and the
points in the Poincaré section are kept only for the final half of the simulation. With
this procedure we analyse systematically the attractor for each Re, without significant
transient effects. The resulting points in the Poincaré section can be plotted as a function
of Reynolds number, illustrating the changes in the behaviour of the system: a stable
limit cycle becomes a fixed point in the Poincaré section; in case of period doubling, a
period-n periodic orbit appears as n points in the section; a quasi-periodic attractor is a
dense region; and chaos is also manifest by the lack of periodicity. The same approach
was used by Kashinath, Waugh & Juniper (2014) in the analysis of the nonlinear dynamics
of a thermoacoustic system. As discussed previously, the present system has two limit
cycles, one with a3 > 0 and another with a3 < 0. The following results show only the
dynamics related to the a3 > 0; however, mirror solutions with a3 < 0 also exist due to
the symmetry of the problem.

The Poincaré section for Re between 42 and 80 is shown in figure 8(a). For Re < 52
the system has a single stable limit cycle, which becomes a point in the Poincaré section
for each Re. As the Reynolds number is increased beyond 52, the cycle becomes unstable
and two other periodic solutions emerge in a symmetry-breaking bifurcation. A sample
phase portrait for Re = 54, is shown in figure 8, where we see that the symmetry of the
‘8’ shape is broken. Such asymmetric solutions suffer a symmetry-restoring bifurcation at
Re = 72.8, and the limit cycle analysed in § 3.1 becomes stable again. Both bifurcations
are supercritical, as they do not show hysteresis.

3.2.2. Formation of a chaotic saddle
A difference between the dynamics before and after symmetry breaking and restoring is
the appearance of transient chaos. This behaviour is illustrated in figure 9. Whereas the
system quickly settles into the limit cycle for Re = 50, for Re = 80 the modes display
chaotic oscillations for a long transient before finally settling into the stable limit cycle.
This suggests the existence of a chaotic saddle, similar to observations in ROMs of
wall turbulence (Eckhardt & Mersmann 1999; Moehlis et al. 2004). Such saddle attracts
neighbouring states by its stable manifold, and the dynamics remains in the close vicinity
of the saddle for a long transient until it is eventually repelled by the unstable manifold.
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Figure 9. Transients leading to time-periodic behaviour. The system displays transient chaos for Re = 80;
(a) Re = 50 and (b) Re = 80.
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Figure 10. Poincaré section for Re = 54 and varying P. Blue and red dots show sections tracked with one of
the two asymmetric limit cycles of figure 8. (a) Full view and (b) detail of period-doubling cascade.

The origin of the chaotic saddle may be tracked by following a Poincaré section
with fixed Re and varying P. This was carried out for Re = 54, which for P = 0.08
has two asymmetric limit cycles, as shown in § 3.2.1. The Poincaré section, calculated
as in figure 8 is shown in figure 10(a). As P is increased with fixed Re, the system
undergoes a symmetry-breaking bifurcation for P = 0.077. A further increase of P leads
to a saddle-node bifurcation for P = 0.0837, seen in figure 10(a) as a jump in the value
of a3 in the Poincaré section. This bifurcation is not primarily relevant for the emergence
of a chaotic saddle; further details are shown in Appendix A, where it is shown that the
jump in a3 is related to two saddle-node bifurcations. The limit cycles for P > 0.0837
remain asymmetric as in figure 8. For P = 0.0857 the cycles undergo a period-doubling
bifurcation, starting Feigenbaum cascades leading to chaos for P ≈ 0.0874. The cascade
for one of the attractors is shown in more detail in figure 10(b).

Up to P = 0.088 the two attractors remain distinct, with chaos confined to a low range
of values of a3. For P beyond this value, the chaotic attractors undergo a merging crisis, as
they simultaneously collide with their basin boundaries. This is seen in figure 10(a) as it
becomes no longer possible to distinguish between blue and red dots. The merging crisis
leads to an attractor that is larger than the previous ones combined, as observed by Chian
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Figure 11. Phase portraits of attractors for Re = 54 and selected P. Blue and red lines show attractors with
the convention of figure 10. The larger attractor for P = 0.09 results from the merging crisis of the individual
chaotic attractors shown in (c); (a) P = 0.0865, period-2 cycle, (b) P = 0.0872, period-4 cycle, (c) P = 0.088,
chaotic attractors and (d) P = 0.09, merged chaotic attractor.

et al. (2005). Sample phase portraits are shown in figure 11, highlighting the sequence
of events: the limit cycles undergo period doubling, as illustrated in figure 11(a,b), and
become chaotic in panel (c). Such chaotic attractors remain distinct, and the system does
not go from one to the other. A further increase of P leads to the merging crisis, with a
larger merged attractor in figure 11(d).

We conjecture that the boundary between the basins of attraction of the blue and red
pre-crisis attractors is fractal. It is a known fact in dynamical systems that fractal basin
boundaries can be formed by the stable manifold of a chaotic saddle (Battelino et al. 1988;
Rempel et al. 2008). At the merging crisis, both attractors simultaneously collide with
the chaotic saddle and its stable manifold at the basin boundary and the three sets (two
attractors and a chaotic saddle) merge to form the post-crisis chaotic attractor. The presence
of the chaotic saddle is the reason why the post-crisis attractor is larger than the union of
the two pre-crisis attractors.

The period-doubling cascade and subsequent merging crisis explain the emergence of
a chaotic attractor at larger P, for instance P = 0.09 as shown in figures 10 and 11(d).
A chaotic attractor comprises an infinite number of unstable periodic orbits, and the
dynamics is related to stable and unstable manifolds of such orbits (Cvitanović & Eckhardt
1989). For P = 0.08 the dynamics eventually converges to the stable limit cycle; however,
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Figure 12. Phase portraits for Re = 80: (a) chaotic saddle with P = 0.08 and (b) chaotic attractor with
P = 0.09.

during transients, which become quite long for higher Re, the behaviour is nonetheless
chaotic, as illustrated in figure 9(b). This may now be explained by the infinity of unstable
periodic orbits that arise with the chaotic attractor for larger P. For P = 0.08 such orbits are
no longer able to retain indefinitely state-space trajectories, forming thus a chaotic saddle.
However, during transients the system remains with a dynamics similar to that observed for
the chaotic attractor for P = 0.09. This is illustrated in figure 12(a), which shows a phase
portrait of a long transient taken for P = 0.08 and Re = 80. The system has a trajectory
that closely resembles the chaotic attractor for P = 0.09, shown in figure 12(b). Hence,
the high-P chaotic attractor loses stability and becomes a saddle for P = 0.08, leading to
the observed transients. Further analysis of the chaotic saddle for P = 0.08 is presented in
Appendix B, showing its presence for Re between 80 and 126.5 and the occurrence of long
transient chaotic dynamics.

3.2.3. Quasi-periodic and chaotic attractors
We now return to the stable limit cycle for P = 0.08, which is stable for Re > 72.5 as seen
in § 3.2.1. The Floquet analysis shown in figure 7 has a second crossing of the unit circle
at Re = 109, indicating instability. This time, complex conjugate Floquet multipliers leave
the unit circle, in a secondary Hopf (or Neimark) bifurcation. This leads to a quasi-periodic
attractor, whose behaviour may be seen in the plot of the Poincaré section shown in
figure 13. Notice again that, due to the symmetry of the problem, two attractors are present,
with either positive or negative values of a3 (only the positive one is shown in figure 8);
each one is tracked separately with increasing Re.

Figure 13 shows that at Re = 109 the system transitions from a stable period-1 limit
cycle to a quasi-periodic attractor, as indicated by the dense region that forms for 109 <

Re < 126.5. The appearance of the quasi-periodic attractor is illustrated in figure 14. For
Re = 100 the attractor is periodic, and the power spectral density (PSD) of figure 14(a)
has peaks for a fundamental frequency f1 ≈ 0.05 and its harmonics. Notice that, since the
vortex mode a3 was used to calculate the PSD, the dominant frequency corresponds to
2/T , where T ≈ 40 is the period of the cycle shown in figure 7(a), since the oscillations
in a3 have a period that is half of the one for the streak mode a6, for instance. Once
the attractor becomes quasi-periodic, a second frequency f2 ≈ 0.03, incommensurate with
the previous one, appears in the PSD, as shown in figure 14(b). The time series now has
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Figure 13. Emergence of a quasi-periodic attractor and its collision with the chaotic saddle. Panel (a) shows
the Poincaré section for P = 0.08. Blue (red) dots show respectively sections tracked in Re, starting with the
attractor with a3 > 0 (a3 < 0). Panel (b) shows a phase portrait of the attractor for Re = 130.
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Figure 14. PSD of a3 for the attractor, discarding initial transients. Whereas the limit cycle for Re = 100 is
dominated by f1 ≈ 0.05 and its harmonics, the quasi-periodic attractor for Re = 120 has the appearance of a
new frequency f2 ≈ 0.03, and the time series has peaks for frequencies given by integer multiples of f1 added
to integer multiples of f2; (a) Re = 100 and (b) Re = 120.

oscillations with these two frequencies, and other ones that correspond to af1 + bf2 with
integer a, b. In state space, the trajectories become a torus.

By tracking the Poincaré section in figure 13 we notice a transition of the quasi-periodic
behaviour to larger chaotic attractors at Re = 126.5. Such chaotic attractors are the
continuation of the chaotic saddle studied in § 3.2.2: the sample phase portrait in
figure 13(b) is close to the chaotic transient in figure 12(a) and the higher-P attractor
in figure 12(b). From the observation of the Poincaré section, we may conclude
that the quasi-periodic attractor collides with the chaotic saddle at Re = 126.5. It is
not straightforward to demonstrate such a collision in a system with more than 3
degrees of freedom, since the Poincaré section still has high dimension and allows an
apparent crossing of trajectories, which cannot occur in state space. However, due to the
resemblance between chaotic attractor at larger Re and the saddle at lower Re it is likely
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Figure 15. Results for Re = 130. (a) Time series and (b) PSD of a3.

that such collision occurs, leading to the disappearance of the quasi-periodic attractor and
the emergence of persistent chaos.

We confirm the properties of a chaotic attractor by further inspection of the solutions
of the system for Re > 126.5. A sample time series for the eight modes is shown in
figure 15(a), where no periodicity is evident. The PSD for the KH mode a3 is shown
in figure 15(b), showing a broad band behaviour, unlike the spectra of periodic and
quasi-periodic attractors in figure 14. The chaotic behaviour is confirmed by a computation
of the leading Lyapunov exponent λ1 of the system, following Parker & Chua (2012). This
leads to λ1 = 0.0186, a positive value indicating exponential divergence of neighbouring
solutions in the attractor, confirming that the system has a marked sensitivity to initial
conditions, and is thus chaotic.

Despite the more complex behaviour, the solution has features that are reminiscent of the
periodic cycle observed for lower Reynolds numbers. The power spectrum of figure 15(b)
shows a broadband peak around f = 0.05, which is also the peak frequency of the limit
cycle shown in figure 14(a). Moreover, inspection of the time series in figure 15(a) shows
significant mean-flow distortions (low a1) when streaks (a6) have large amplitude. During
these periods vortex modes, in particular a3, remain with low amplitude. The eventual
decay of streak amplitude leads to a recovery of the mean shear, and a1 rises to values
around 0.5. Once this happens, vortices grow again via the KH mechanism, until they are
quenched by the mean-flow distortion due to a new high-amplitude streak. The amplitude
modulation described in § 3.1 is now a broad-band, intermittent phenomenon. This can
be tentatively compared with observations from turbulent jets, with intermittent events
(Hileman et al. 2005; Akamine et al. 2019) modelled as amplitude modulations of KH
wavepackets (Cavalieri et al. 2011), or, alternatively, as intermittent, transient growth of
wavepackets (Schmidt & Schmid 2019). Clearly, care should be taken in drawing such
connections between the present simplified ROM and realistic dynamics of high-Re jets,
but further exploration of jet data with the present mechanisms in mind appears to be
promising.

Visualisations of the instantaneous streamwise velocity for Re = 130 at x–z planes are
shown in figure 16. The same x–z planes of figures 5(b) and 5(c) are taken, corresponding
to the upper wall and shear-layer centre. The solution is shown at two times. The first one,
shown in figures 16(a) and 16(b), corresponds to a time when the solution is dominated
by the streak mode a6, as observed in the time series of figure 15(a). The solution is
dominated by the mean-flow and streak modes a1 and a6, with the vortex modes a3 and a4
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Figure 16. Visualisation of the streamwise velocity u for Re = 130 at two chosen planes, for a time with
streak dominance (a,b) and a time with streak–vortex coexistence (c,d). (a) The x–z plane at y = 1, t with
streak dominance, (b) x–z plane at y = 0, t with streak dominance, (c) x–z plane at y = 1, t with vortex–streak
coexistence and (d) x–z plane at y = 0, t with vortex–streak coexistence.

with low amplitudes. The instantaneous streamwise velocity in figures 16(a) and 16(b) thus
shows streaks at both upper wall and shear-layer centre. At other times, with comparable
magnitudes of vortex and streak modes a3 and a6, the solution still displays streaks at
the central plane (figure 16d), but the upper wall (figure 16c) shows the coexistence of
vortices and streaks, perceived as a spanwise modulation of a vortical structure, similarly
to the observation of the periodic cycle shown in figure 5.

3.3. Merging crisis
The Poincaré plot in figure 13 shows separate attractors up to Re = 164.5, represented
with blue and red dots. Thus, for the periodic, quasi-periodic and chaotic attractors of
the system the dynamics remains confined to either positive or negative a3. The time
series in figure 15(a), for instance, shows the evolution of the system for the attractor
with mostly a3 > 0. Sample phase portraits of the various regimes are shown in figure 17,
which displays both positive and negative periodic (a), quasi-periodic (b) and chaotic (c)
attractors. For such Reynolds numbers, the system stays indefinitely at one of the attractors,
and no numerical integration performed here showed any sign of switch. However, at
Re = 164.5 the chaotic attractors undergo a merging crisis, similar to what was seen in
§ 3.2.2. The present crisis leads to a larger attractor spanning both positive and negative
a3. The system spends extended periods with a3 mostly of positive sign, and abruptly
switches to mostly negative a3. This is exemplified in the time series shown in figure 18,
obtained for Re = 180.

The interpretation of the results of figure 18 is that the time series of the merged chaotic
attractor comprises extended periods where the system stays in a trajectory resembling
one of the lower-Re asymmetric chaotic attractors, as discussed by Grebogi et al. (1987).
In this case, close to the critical Reynolds number Recr of the crisis, the typical lifetime
of the solution at one of the original attractors, before switching to the other one, has
an expected power-law behaviour (Re − Recr)

γ , with γ being a negative exponent. The
lifetime statistics were obtained close to Recr = 164.8, using the time series of vortex
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Figure 17. Phase portraits of attractors of the P = 0.08 system at selected Reynolds numbers. Blue and red
lines show attractors with positive and negative a3, respectively. Notice that, for Re = 180, the attractors
of lower Re are already merged, thus blue and red lines refer to the same set. For the chaotic attractors,
λ1 is the largest Lyapunov exponent; (a) Re = 100, periodic solution, (b) Re = 120, quasi-periodic solution,
(c) Re = 150, chaotic attractor (λ1 = 0.0186) and (d) Re = 180, merged chaotic attractor (λ1 = 0.0202).
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Figure 18. Time series of mode 3 for Re = 180.

mode 3, low-pass filtered using a simple moving average, to detect if the solution is at
its ‘mostly positive’ or ‘mostly negative’ a3 dynamics; given the observed time series,
similar to the sample one shown in figure 18, detection of solution jumps with the proposed
filter is straightforward. Statistics of the lifetimes at each state were thus obtained with
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Figure 19. Lifetime of trajectories in an asymmetric chaotic saddle after the merging crisis at Recr = 164.5.
The red line indicates a (Re − Recr)

−2 dependence.

long simulations, and are shown in figure 19. The lifetime closely follows a (Re − Recr)
−2

dependence and supports the conclusion that a merging crisis occurs for this Reynolds
number.

Past the merging crisis, the evolution of the KH mode a3 now involves modulation
in amplitude and changes in phase. In the present model all modes are fixed at a given
streamwise and spanwise position. As a single Fourier mode was included for each
considered wavenumber, it is impossible to represent travelling waves or relative periodic
orbits (which are periodic except for a spatial shift, e.g. Viswanath 2007), and the only
phases in a3 are 0 or π; alternatively, one may think of vortex positions at x = 0 or
x = Lx/2, and each jump in the merged chaotic attractor represents a phase jump in a3.
A more complete model would include two modes for each wavenumber, allowing a
continuous change of phase. In this case, the dynamics of the larger, merged attractor
would lead to continuous phase drifts of the vortices. This would represent a varying phase
speed in addition to amplitude modulation.

This feature can also be seen by increasing the Reynolds number of the DNS.
Streamwise velocity fields at y = 1.5141 were extracted from a simulation at Re = 205
(keeping the same numerics as in NC), and these are shown in figure 20(a). The streamwise
averaged field was subtracted from the velocity to highlight the presence of the KH
vortices. Figure 20 shows that, differently from the Re = 200 case reported in NC, the
dynamics of the flow for this Reynolds number is no longer periodic. In this case, vortices
suffer a change in phase in some times, similar to the present model, with space–time
behaviour of vortices reconstructed using a3 and u3, taken at y = 1. As in previous
comparisons between ROM and DNS, quantitative agreement is not expected due to the
no-slip conditions in the DNS, but the results show that both the DNS and ROM display
phase jumps of π at specific times.

It should be noted that the specific behaviour observed in the ROM is related to the
low-order representation of KH vortices with a fixed phase in x. The inclusion of additional
modes to represent other possible phases in x would allow more complex behaviours, with
travelling waves (Wedin & Kerswell 2004) and relative periodic orbits (Viswanath 2007)
associated with continuous phase changes in the streamwise direction. Further work in this
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Figure 20. Vortices in the NC DNS for Re = 205, and in the present model for Re = 200, illustrated by
fluctuations of the streamwise velocity on y = 1 for the ROM and for y = 0.5 for the DNS. (a) DNS results,
with the same configuration of NC, but at Re = 205 and (b) ROM at Re = 200.

direction would be important to understand the chaotic behaviour observed in the vortex
phase in an attempt to connect such observations with more realistic flows.

In summary, by studying the ROM with increasing Reynolds number we obtain a
progressively richer dynamics, including limit cycles, quasi-periodic attractors, chaotic
saddles and attractors. The low dimension of the model, involving eight modes, limits the
dynamics to a minimal representation. Despite the low order of the system, the dynamics
resembles observations of turbulent jets. The nonlinear interactions included in the present
low-order system, shown in (2.12), point thus to phenomena of potential relevance in
flows of interest. Further investigation of the nonlinear interactions in turbulent jets, using
appropriate signal processing (Schmidt 2020), is a promising direction, and the present
ROM, as well as its solutions, may aid in the interpretation of data. The reduced number of
nonlinear interactions in the model may also help in the development of nonlinear models
for spatially developing shear layer and jets (Suponitsky et al. 2010; Wu & Zhuang 2016;
Zhang & Wu 2020).

4. Conclusions

The nonlinear dynamics of a shear layer is studied using a ROM. A shear layer confined
between parallel walls and driven by a body force, introduced by NC, prevents the spatial
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development of the flow and thus allows the use of periodic boundary conditions in
streamwise and spanwise directions, which greatly simplifies the problem. The same
configuration is considered here, but instead of the no-slip boundary conditions used in
the DNS in NC, we adopt free-slip boundary conditions on the parallel walls. This ensures
that the confined shear layer does not develop near-wall fluctuations that would clearly be
absent in free shear layers and jets. Moreover, by using free-slip boundary conditions, a
ROM may be obtained using Fourier modes in all three spatial directions, and application
of a Galerkin projection of the Navier–Stokes equation leads to a system of ordinary
differential equations, similar to related works on wall-bounded turbulence (Waleffe 1997;
Moehlis et al. 2004; Cavalieri 2021).

The procedure aims to build and study a simplified system in order to reveal the
nonlinear dynamics of shear layers, which may shed light on the behaviour of spatially
developing flows such as jets. Turbulent jets have been thoroughly studied using linearised
models and input/output analysis in recent years (Garnaud et al. 2013; Jeun et al. 2016;
Schmidt et al. 2018; Lesshafft et al. 2019), but features such as amplitude and phase
modulation of KH wavepackets, referred to as ‘jitter’, are more challenging to model
using linear theory. Jitter in amplitude and phase has been observed in numerical and
experimental data and related to the sound radiation, with particular relevance for subsonic
flows (Cavalieri et al. 2011; Baqui et al. 2015; Cavalieri et al. 2019). The analysis in NC
used a direct numerical simulation of a confined shear layer, showing that the nonlinear
dynamics leads to the appearance of a stable limit cycle with amplitude modulation of KH
vortices, in a behaviour reminiscent of amplitude jitter seen in jet data. This direction is
further pursued here by the construction of a ROM with the dominant structures studied
in NC, which allows a more straightforward analysis of the nonlinear dynamics of the
confined shear-layer configuration.

Eight modes were selected to build the ROM, based on the observations in NC. Such
modes represent the mean flow, KH vortices, rolls, streaks and oblique waves. For the mean
flow, vortices and oblique waves, a pair of Fourier modes were needed for each structure
in order to ensure a consistent representation of the dynamics. The body force that drives
the shear layer was taken as a sum of two Fourier modes, with the second parametrised by
a forcing parameter P that is related to the growth rate of the KH instability of the laminar
solution. The nonlinear dynamics of the resulting ROM could be analysed in some detail,
thanks to the reduced computational cost to obtain numerical solutions and their stability
analysis. This provides a picture of how the confined shear layer transitions to the limit
cycle studied in NC, and how such cycle eventually transitions to chaotic behaviour as the
Reynolds number is increased.

The first bifurcations identified for the ROM are a pitchfork leading to saturated vortex
solutions, and a Hopf bifurcation leading to a stable limit cycle. This limit cycle resembles
the observations in NC, with amplitude modulation of vortices related to oscillations
in rolls, streaks and oblique waves. As the Reynolds number is increased, we observe
the emergence of a chaotic saddle. This was studied by varying the forcing parameter
P, showing the emergence of chaotic attractors via a period-doubling cascade as P
is increased. Such attractors eventually merge and form a larger chaotic attractor for
P = 0.09. At Re = 80 and P = 0.08 such attractor loses stability and becomes a chaotic
saddle, with transient chaos. Thus, most initial disturbances for P = 0.08 and Reynolds
number between 72.5 and 109 display transient chaotic behaviour which eventually settles
into the stable limit cycle that emerged from the first Hopf bifurcation. Since the ROM has
symmetries, with corresponding solutions obtained by considering shifts in the streamwise
or spanwise direction, all such solutions appear in pairs, with one of them corresponding to
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a vortex mode a3 > 0, and the other related to a3 < 0. Such solutions display time-periodic
(for the limit cycle) or aperiodic (for the chaotic saddle) modulation of vortex amplitude,
a behaviour that resembles the jitter in amplitude observed in high Reynolds number jets.

A further increase of Re leads to the appearance of a quasi-periodic attractor at
Re = 109. This attractor collides with the chaotic saddle at Re = 126.5, leading to the
appearance of a chaotic attractor. The time series of the various modes show broadband
behaviour, with no periodicity, in a more complex behaviour that approaches what is
seen in turbulence. The symmetries of the system again imply that two chaotic attractors
are formed, with positive or negative vortex time coefficient a3. Such attractors suffer
a merging crisis at Re = 164.8, and become a larger chaotic attractor where solutions
spend some time at one of the original attractors and then ‘jump’ to the other one. This
implies that the solution starts to display jumps between positive and negative values of
the vortex a3, which in turn means that vortices have a π phase jump in x. Although in
a much simplified manner, such phase jitter is again reminiscent of observations of KH
wavepackets in turbulent jets. Thus, the present ROM may be thought as a minimal model
that mimics to some extent jitter in amplitude and phase of KH vortices. Its modes and
their interaction are minimal ingredients to obtain a dynamics that resembles observations
of high-Re jets.

Keeping in mind that several simplifications were applied to both the flow configuration
(by considering a confined shear layer) and the underlying equations (by reducing
the model using a Galerkin projection with eight modes), the present ROM opens a
number of interesting directions for the study of turbulent free-shear flows. The ROM
has closed-form equations that include nonlinear interactions between modes that have
turbulent-jet counterparts, such as KH vortices (Cavalieri et al. 2013), rolls and streaks
(Nogueira et al. 2019). By studying the nonlinear interactions among the various structures
in the model, one may better understand how the corresponding modes interact in turbulent
jets, which is not possible using standard linear input/output analysis. The ROM displays
clear correlations between vortices and streaks, which may be further investigated using
dedicated signal processing of numerical or experimental databases.

It is clear that high Reynolds number jets will display a dynamics that is not captured
by the model. However, it is hoped that the rich nonlinear dynamics displayed by the
ROM may shed light on behaviours of more complex flows. In the past, ROMs of
wall-bounded turbulence by Waleffe (1997) and Moehlis et al. (2004) helped to understand
the relationship of rolls, streaks and sinuous disturbances, and showed that, under some
conditions, turbulence in such configurations has finite lifetimes, an observation later
confirmed by the experiments of Hof et al. (2006). ROMs were important in defining
the concept of edge states between laminar and turbulent solutions (Skufca, Yorke &
Eckhardt 2006), a concept later extended to wall-bounded flows using full direct numerical
simulations (Schneider, Eckhardt & Yorke 2007; Duguet et al. 2013). It is hoped that the
present ROM will also enable a number of approaches based on dynamical systems theory,
which may help probing the nonlinear dynamics of turbulent shear layers and jets.
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Figure 21. Saddle-node bifurcations for Re = 54: (a) period of periodic solutions, with full lines showing
stable cycles and the dashed line showing the unstable one, and (b) Poincaré section at a5 = 0 and ȧ5 < 0, with
arrows highlighting the path in the plot as P is increased and then decreased.
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Appendix A. Saddle-node bifurcations of asymmetric limit cycles

This appendix briefly studies the saddle-node bifurcations of the asymmetric limit cycles
studied in § 3.2.1. Figure 21(a) shows periodic solutions with Re = 54, and P between
0.083 and 0.084. There are two stable limit cycles, shown with full lines, that are connected
to an unstable cycle by saddle-node bifurcations for P = 0.08373 and P = 0.08358.
This pair of saddle-node bifurcations leads to hysteresis, as shown in figure 21(b): as
P is increased above 0.083, the system remains in the lower-branch cycle until the first
saddle-node bifurcation, where it jumps to the upper-branch solution. As P is decreased
from 0.084, the system remains in the upper branch until it reaches the second saddle-node
bifurcation, where the solution jumps to the lower branch. This explains the jump observed
in figure 8.

Appendix B. Analysis of the chaotic saddle

We present here some further results related to the chaotic saddle analysed in § 3.2.2.
Unlike an attractor, chaotic saddles display transient chaos. Such saddles may be studied
using a grid of initial conditions, in the ‘sprinkler’ method proposed by Hsu, Ott & Grebogi
(1988). Statistics of the chaotic transients may then be obtained in the time period after
the solutions approach the saddle, and before they drift away from it. A positive Lyapunov
exponent, obtained by averaging several transients so obtained, confirms the chaotic nature
of the saddle. Another property of such saddles is that it is possible to obtain arbitrarily
long chaotic transients, also by sampling a grid of initial conditions (Nusse & Yorke 1989).
Chaotic saddles may emerge in various manners, such as by the occurrence of a boundary
crisis (Grebogi, Ott & Yorke 1983; Grebogi et al. 1987), where a chaotic attractor collides
with a fixed point or periodic orbit. Chaotic saddles can also be observed in relation to
interior crises and fractal basin boundaries (Robert et al. 2000; Rempel et al. 2004, 2008).

To further analyse the chaotic saddle in the present system, we applied the sprinkler
method with 10 initial conditions for each Reynolds number. Such initial conditions were
obtained using a state in the chaotic attractor with predominance of a3 > 0 for P = 0.08
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Figure 22. Poincaré section as a function of Re obtained for the attractor (blue dots) and the chaotic saddle
(green dots), the latter obtained using the sprinkler method (Hsu et al. 1988).

and Re = 130 (blue attractor in figure 13), with each mode disturbed by a random number
between −0.05 and 0.05. A Poincaré section for the chaotic transients as a function of Re
is shown in figure 22 with green dots. The attractors with dominance of a3 > 0, shown in
figure 13, are also shown in figure 22 with blue dots. The results of the sprinkler method
show the existence of a chaotic saddle, for 80 < Re < 126.5. The correspondence between
the Poincaré section of the chaotic saddle for Re < 126.5 and of the chaotic attractor for
Re > 126.5 further indicates that the quasi-periodic attractor of Re < 126.5 collides with
the chaotic saddle in an interior crisis, leading to the chaotic attractor for Re > 126.5.
Similar results are also obtained for the red attractor of figure 13, and are not shown here
for brevity.

Another feature of the chaotic saddle explored in a similar manner is the distribution of
lifetimes of chaotic transients. We have studied the lifetimes for Re = 80, with an initial
condition taken as a state at the chaotic attractor of Re = 130, but with varying initial a1.
We again used the attractor with dominant a3 > 0. Since the periodic orbit at Re = 80
has strictly a3 > 0, an occurrence of a3 < 0 can only happen for a chaotic transient (as
illustrated later, in figure 24). Accordingly, we took the last instant of time when a3 < 0
as a lower bound of chaotic lifetime. Such lifetimes are shown in figure 23, with each
subfigure displaying a refined version of the previous one. For some initial conditions, the
solution quickly converges towards the stable periodic orbit, and the computed lifetime
is approximately 200 time units or less. However, some initial conditions display much
longer lifetimes, of more than a thousand time units. The results show an apparently fractal
distribution of lifetimes, similar to the observations of Eckhardt & Mersmann (1999) and
Moehlis et al. (2004) in ROMs of wall-bounded turbulence.

To further illustrate the nature of the chaotic transients, the largest lifetime obtained in
figure 23(d) is shown in figure 24, where we observe a long chaotic transient until t ≈ 4100,
after which the solution converges to the stable periodic solution. Further sampling of
initial conditions may lead to arbitrarily long transients (Nusse & Yorke 1989), which
may be used to calculate Lyapunov exponents of the chaotic saddle; however, this was not
pursued here.
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Figure 23. Lifetimes of chaotic transients for P = 0.08, Re = 80, with initial conditions with varying a1(0).
Each successive panel is a refined version of the previous one, with a range of initial conditions shortened by a
factor of 10.
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Figure 24. Illustration of a long chaotic transient, taken using the initial condition of figure 23(d) with largest
chaotic lifetime.
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GIBSON, J.F., HALCROW, J. & CVITANOVIĆ, P. 2008 Visualizing the geometry of state space in plane

Couette flow. J. Fluid Mech. 611, 107–130.
GREBOGI, C., OTT, E., ROMEIRAS, F. & YORKE, J.A. 1987 Critical exponents for crisis-induced

intermittency. Phys. Rev. A 36 (11), 5365.
GREBOGI, C., OTT, E. & YORKE, J.A. 1983 Fractal basin boundaries, long-lived chaotic transients, and

unstable-unstable pair bifurcation. Phys. Rev. Lett. 50 (13), 935.

932 A43-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1029


A.V.G. Cavalieri, E.L. Rempel and P.A.S. Nogueira

GUDMUNDSSON, K. & COLONIUS, T. 2011 Instability wave models for the near-field fluctuations of turbulent
jets. J. Fluid Mech. 689, 97–128.

HAMILTON, J.M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence structures.
J. Fluid Mech. 287 (1), 317–348.

HILEMAN, J.I., THUROW, B.S., CARABALLO, E.J. & SAMIMY, M. 2005 Large-scale structure evolution
and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements.
J. Fluid Mech. 544, 277–307.

HOF, B., WESTERWEEL, J., SCHNEIDER, T.M. & ECKHARDT, B. 2006 Finite lifetime of turbulence in shear
flows. Nature 443 (7107), 59–62.

HSU, G.-H. , OTT, E. & GREBOGI, C. 1988 Strange saddles and the dimensions of their invariant manifolds.
Phys. Lett. A 127 (4), 199–204.

HWANG, Y. & COSSU, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in
the turbulent channel flow. J. Fluid Mech. 664, 51–73.

JAUNET, V., JORDAN, P. & CAVALIERI, A. 2017 Two-point coherence of wave packets in turbulent jets. Phys.
Rev. Fluids 2 (2), 024604.
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