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RAMSEY’S COHEIRS

EUGENIO COLLA AND DOMENICO ZAMBELLA

Abstract. We use the model theoretic notion of coheir to give short proofs of old and new theorems
in Ramsey Theory. As an illustration we start from Ramsey’s theorem itself. Then we prove Hindman’s
theorem and the Hales–Jewett theorem. Finally, we prove two Ramsey theoretic principles that have among
their consequences partition theorems due to Carlson and to Gowers.

§1. Introduction. Ramsey theory has substantial and diverse applications to many
parts of mathematics. In particular, Ramsey’s theorem has foundational applications
to model theory through the Ehrenfeucth–Mostowski construction of indiscernibles
and generalizations thereof. In this paper we explore the converse direction, that is,
we use model theory to obtain new proofs of classical results in Ramsey Theory.

The Stone–Čech compactification, obtained via ultrafilters, is a widely employed
method for proving Ramsey theoretic results. One of its first major applications
is the celebrated Galvin–Glazer proof of Hindman’s theorem, see, e.g., [4]. Our
methods are related, but alternative, to the ultrafilter approach. We replace �G (the
Stone–Čech compactification of a semigroup G) with a large saturated elementary
extension of G, i.e., a monster model of Th(G/G). One immediate advantage is that
we work with elements of a natural semigroup with a natural operation. In contrast,
elements of �G are ultrafilters, that is, sets of sets, and the semigroup operation
among ultrafilters is far from straightforward.

This idea is not completely new: in his seminal work on the applications of
topological dynamics to model theory [14, 15], Newelski replaces the semigroup �G
with the space of types over G with a suitably defined operation. Our approach is
similar, except that, unlike Newelski, we do not pursue connections with topological
dynamics, but rather offer an alternative realm of application. The investigation of
alternative methods in the study of regularity phenomena has been called for by Di
Nasso [5, Open problem #1]. This article contains a possible answer.

The model theoretic tools employed in this paper are relatively basic. Section 2
is meant to give an accessible overview of the necessary notions for readers whose
expertise is not primarily in model theory. Our results do not require assumptions
of model theoretic tameness such as stability, NIP, etc., much like those that use
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378 EUGENIO COLLA AND DOMENICO ZAMBELLA

nonstandard analysis, for example in [6]. Investigating the effect of such assumptions
remains as future work.

When this paper was essentially complete, we became aware of [2], which is worth
mentioning since it employs similar methods in a related context.

The paper is divided into two parts. In the first part we prove that the notion of
coheir leads to short and elegant proofs of well-known results. Most proofs in this
part may be considered folklore, though they have not appeared in the literature so
far. They are included here to provide a self-contained, gentle introduction to the
techniques that are used in the second part.

As a preliminary illustrative step, we present a proof of Ramsey’s theorem
(Theorem 3.1). Then we prove a generalization of Hindman’s theorem (Theorem
5.1), which is required in the second part of the paper. We also show how to
combine Ramsey’s and Hindman’s theorems in a single proposition—the Milliken–
Taylor theorem (Theorem 5.3). Finally, we prove an abstract algebraic version of
the Hales–Jewett theorem (Theorem 6.4) due to Sabine Koppelberg [11].

In the second part of the paper we prove two Ramsey-theoretic properties of
semigroups (Lemmas 7.1 and 8.1). As an application, we derive a generalization
of Carlson’s theorem on colourings of variable words which we present in the style
of Koppelberg (Theorem 7.2) and in its classical form (Corollary 7.3). Lemma 8.1
is a partition theorem that generalizes Gowers’ FINk Theorem [8] in a different
direction than [12].

The extent of the generalizations mentioned above is limited, and they could be
obtained in other ways, but our motivation here is to show the use and relevance of
model theoretic methods. Numerous papers in the literature strengthen or generalize
the partition theorems considered here. The comparison of the results that appear
in these papers is not always straightforward—a few are compared in [1].

The proofs in this paper require a modicum of familiarity with model theory.
However, the results can be stated in an elementary language, and in the rest of this
introduction we introduce the necessary terminology.

Throughout the paper G is a semigroup and Σ a non-empty set of endomorphisms
of G. For ā ∈ G≤� we write

fpΣ ā =
{
�0 ai0 · ··· · �k aik : i0 < ··· < ik < |ā|, �̄ ∈

(
Σ ∪ {idG}

)k+1
, k < |ā|

}
.

Overlined symbols, such as ā or �̄, always denote a tuple, and ai , �i denote the
ith entry of that tuple.

When Σ is empty, we write fp ā.

Example 1.1. For future reference, we instantiate the definition above in the
context of free semigroups. Let G be the set of words on a finite alphabet A ∪ {x},
where x is a symbol not in A which we call variable. Let C be the set of words
on the alphabet A. Words in C are called constant words, while those in G \ C are
called variable words. When G is endowed with the operation of concatenation of
words, C and G \ C are subsemigroups of G. For t ∈ G and a ∈ A, let t(a) be the
word obtained by replacing all the occurrences of x in t by a. Note that the map
�a : t �→ t(a) is an endomorphism of G. In the literature, when G is as above and
Σ = {�a : a ∈ A}, the elements of fpΣ s̄ are called extracted words. We say that a
tuple ā ∈

(
fpΣs̄

)�
is an extracted sequence if ai ∈ fpΣs� [ni ,ni+1) for some increasing
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RAMSEY’S COHEIRS 379

sequence of positive integers 〈ni : i < �〉. If, moreover, ai /∈ C for all i, we say that
ā is an extracted variable sequence of s̄ .

The following definition will be used to express our results in the general context
of semigroups.

Definition 1.2. Let –< be a binary relation on G. We say that G is –<-covered if
for every finite A ⊆ G there is a c such that A–< c. If c can be found in some fixed
B ⊆ G , we say –<-covered by B. We say that G is -closed if a –< b –< c implies a –< b·c
for all a, b, c ∈ G . A –<-chain in G is a tuple ā ∈ G≤� such that ai –< ai+1.

The preorder relation given by the length of the words on a free semigroup G is a
natural example that is both -closed and –<-covered. A less straightforward relation
is used in the proof of Theorem 7.2.

Finally, we recall two standard notions. Let C ⊆ G be a subsemigroup. We say
that C is nice if a · b ∈ C implies a, b ∈ C . A homomorphism � : G → C such that
��C = idC is called retraction of G onto C. Note that the set of constant words in
Example 1.1 is a nice subsemigroup and that the maps �a are retractions.

We are now ready to state Lemma 7.1.

Lemma. Let Σ be a finite set of retractions of G onto a nice subsemigroup C. Let –<
be a relation on G that makes it -closed and –<-covered byG \ C . Then, for every finite
coloring of G, there is a –<-chain ā ∈ (G \ C )� such that fpΣā \ C is monochromatic.

When C and Σ are empty and –< holds for all pairs, the lemma reduces to
Hindman’s theorem (Theorem 5.1).

The appropriate choice of G, C, Σ, and –< yields Carlson’s partition theorem
(in particular no model theoretic argument is necessary, see Theorem 7.2 and its
Corollary 7.3).

In the last section we prove Lemma 8.1 which is similar to the lemma above but
deals with composition of homomorphisms. This is also stated in an elementary
language and a general version of a partition theorem by Gowers is derived from it.

§2. Coheirs, and coheir sequences. We assume that the reader is familiar with
undergraduate model theory and in this section we only review the few prerequisites
that go beyond that. Proofs are omitted. The reader may consult any standard
model theory textbook, e.g., [18] (the intrepid reader may consult [19], some lecture
notes which use the same notation and quirks as this paper). The notation and
terminology are standard with the possible exception of Definitions 2.3 and 2.5.

A sequence is a function whose domain is a linear order. A tuple is a sequence
whose domain is an ordinal. The domain of the tuple c is denoted by |c| and is called
the length of c.

Notation 2.1. Sometimes (i.e., not always) we may overline tuples as mnemonic.
When a tuple c̄ is introduced, ci denotes the ith element of c̄. We write c�I , where
I ⊆ |c̄|, for the tuple which is naturally associated with the restriction of c̄ to I. The
bar is dropped for ease of notation.

We denote the monster model by U or, when dealing with semigroups, by G. We
always work over a fixed set of parameters A ⊆ U. When this set is a model, as it
will often be, we denote it by M, or G in the case of semigroups.
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380 EUGENIO COLLA AND DOMENICO ZAMBELLA

We say that a type p(x) is finitely satisfied in A if every conjunction of formulas in
p(x) has a solution in A|x|. A global type that is finitely satisfiable in A is invariant
over A.

If M is a model every consistent type p(x) ⊆ L(M ) is finitely satisfied in M. For
this reason in a few points in this paper it is necessary to work over a model. For
simplicity, we always assume this.

The following is an easy, well-known fact.

Proposition 2.2. Every type q(x) ⊆ L(U) that is finitely satisfiable in M has an
extension to a global type finitely satisfiable in M.

Ifp(x) is finitely satisfied in M, the extensions ofp(x) that are also finitely satisfied
in M are called coheirs of p(x).

In many cases it is useful to focus on elements instead of their types. We introduce
the following notation to express that tp(a/M, b) is finitely satisfied in M. (The
notion is standard in model-theory, and it has no standard notation though.)

Definition 2.3. For every a ∈ U|x| and b ∈ U|z| we define

a�Mb ⇔ ϕ(a ; b) for all ϕ(x ; z) ∈ L(M ) such thatM |x| ⊆ ϕ(U|x| ; b).

We call this the coheir–heir relation. We define the type

x�Mb =
{
ϕ(x ; b) : ϕ(x ; b) ∈ L(M ) andM |x| ⊆ ϕ(U|x| ; b)

}
.

The tuples a realizing this type are those such that a�Mb. We will use the symbol
a ≡A x�Mb for the union of the types x�Mb and tp(a/M ).

We imagine a�Mb as saying that a is independent from b over M. This is a very
strong form of independence. In general it is not symmetric, that is, a�Mb is not
the same as b�Ma (symmetry is equivalent to stability).

We shall use, sometimes without reference, the following easy lemma.

Lemma 2.4. The following properties hold for all smallM,a, b, and c:

1. a�Mb ⇒ fa�Mfb for every f ∈ Aut(U/M ) invariance;
2. a�Mb ⇔ a0�Mb0 for all finite a0 ⊆ a and b0 ⊆ b finite character;
3. a�Mb, c and b�Mc ⇒ a, b�Mc transitivity;
4. a�Mb ⇒ there exists a′ ≡M, b a such that a′�M b, c coheir extension.

Note that a ≡M x�Mb is the intersection of all types in S(M,b) that are coheirs
of tp(a/M ). As there may be more than one of such coheirs, a ≡M x�Mb need not
be a complete overM,b. In fact, completeness is a rather strong property.

Definition 2.5. Ifa ≡M x�Mb is a complete type (overM,b) for everya ∈ U<� ,
every b ∈ U|x|, and every tuple of variables x, then we say that�M is stationary. We
say n-stationary if the requirement above is restricted to |x| = n.

Stationarity is often ensured by the following property.

Proposition 2.6. Fix a tuple of variable x of length n. If for every ϕ(x) ∈ L(U)
there is a formula �(x) ∈ L(M ) such that ϕ(M |x|) = �(M |x|) then �M is n-
stationary.
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Remark 2.7. Stationarity of�M over every model M is equivalent to the stability
of T. However, in unstable theories the assumption may hold for some particular
model. For example, if every subset ofMn is the trace of a definable set, then�M
is n-stationary by the proposition above. This simple observation will be of help in
the proof of Theorem 5.1. For natural example let T = Tdlo and letM ⊆ U have the
order-type of R. By quantifier elimination every definable of U is union of finitely
many intervals. By Dedekind completeness, the trace on A of any interval of U

coincides with that of an M-definable interval.

Let p(x) ∈ S(U) be a global type that is finitely satisfiable in M. We say that the
tuple c̄ is a coheir sequence of p(x) over M if ci |= p�M, c�i (x) for every i < |c̄|.

The following is a convenient characterization of coheir sequences.

Lemma 2.8. For c̄ a tuple of length �, the following are equivalent:
1. c̄ is a coheir sequence overM ;
2. cn�Mc�n and cn+1 ≡M, c�n cn for every n < �.

Let I,<I be a linear order. We call a function ā : I → U|x| an I-sequence, or
simply a sequence when I is clear.

If I0 ⊆ I we call a�I0 , the restriction of ā to I0, a subsequence of ā. When I0 is
finite we identify a�I0 with a tuple of length |I0|.

Definition 2.9. Let I,<I be an infinite linear order and let ā be an I-sequence.
We say that a is a sequence of indiscernibles over A or, a sequence of A-indiscernibles,
if a�I0 ≡A a�I1 for every I0, I1 ⊆ I of equal finite cardinality.

The following can be easily derived from the lemma above by induction.

Proposition 2.10. Every sequence of coheirs over M is M-indiscernible.

§3. Ramsey’s theorem from coheir sequences. We illustrate the relation between
coheirs and Ramsey phenomena in the simplest possible case: Ramsey’s theorem.
The subsequent sections build on this proof for more sophisticated results.

In this chapter we deal with finite partitions. The partition of a set X into k subsets
is often represented by a mapf : X → [k]. The elements of [k] = {1, ... , k} are also
called colors, and the partition a coloring, or k-coloring, of X. We say that Y ⊆ X is
monochromatic if f is constant on Y.

Let M be an arbitrary infinite set. Fix n, k < � and fix a coloring f of the set of
all n-subsets of M, i.e., the complete n-uniform hypergraph with vertex set M,

f :
(
M

n

)
→ [k].

We say that H ⊆M is a monochromatic subgraph if the subgraph induced by
H is monochromatic. In the literature monochromatic subgraphs are also called
homogeneous sets.

The following is a very famous theorem which we prove here in an unusual way.
The proof will serve as a blueprint for other constructions in this paper.

Ramsey’s Theorem 3.1. Let M be an infinite set. Then for every positive integer n
and every finite coloring of the complete n-uniform hypergraph with vertex set M there
is an infinite monochromatic subgraph.
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Proof. Let L be a language that contains k relation symbols r1, ... , rk of arity n.
Given a k-coloring f we define a structure with domain M. The interpretation of
the relation symbols is

rMi = {a1, ... , an ∈M : f
(
{a1, ... , an}

)
= i}.

We may assume that M is an elementary substructure of some large saturated
model U. Pick any type p(x) ∈ S(U) finitely satisfied in M but not realized in M
and let c̄ = 〈ci : i < �〉 be a coheir sequence of p(x).

There is a first-order sentence saying that the formulas ri(x1, ... , xn) are a coloring
of

(
M
n

)
. Then by elementarity the same holds in U. By indiscernibility, all tuples of

n distinct elements of c̄ have the same color, say 1. We now prove that there is a
sequence ā = 〈ai : i < �〉 in M with the same property.

We construct a�i by induction on i as follows.
Assume as induction hypothesis that the subsequences of length n of a�i , c�n all

have color 1. Our goal is to find ai ∈M such that the same property holds for
a�i , ai , c�n. By the indiscernibility of c̄, the property holds for a�i , c�n, cn. And this
can be written by a formula ϕ(a�i , c�n, cn). As c̄ is a coheir sequence, by Lemma 2.8
we can find ai ∈M such that ϕ(a�i , c�n, ai). So, as the order is irrelevant, a�i , ai , c�n
satisfies the induction hypothesis. �

§4. Idempotent orbits in semigroups. In this and the following sections we fix a
semigroup G which we identify with a first-order structure. The language contains,
among others, the symbol · which is interpreted as a binary associative operation
on G. We write G for a large saturated elementary extension of G.

For any two sets A,B ⊆ G we define

A ·G B = {a·b : a ∈ A, b ∈ B and a�Gb}.
In this and the next section we abbreviate Ø(a/G), the orbit of a under Aut(G/G),

with aG . We write a ·G B for Ø(a/G) ·G B. Similarly for A ·G b and a ·G b.
Lemma 4.1. If A is type definable over G then so is A ·G b for any b.

Proof. The set A ·G b is the union of A ·G {c} as c ranges in bG . The set A ·G {c}
is type definable, say by the the type ∃y p(x, y, c) where

p(x, y, c) = y�Gc ∧ y·c = x ∧ y ∈ A.

Note that, by the invariance of�G , iff ∈ Aut(G/G), then ∃y p(x, y, fc) defines
A ·G {fc}. Therefore if q(z) = tp(b/G) then ∃y, z

[
q(z) ∪ p(x, y, z)

]
defines A ·G

b. �
By the invariance of�G , for every f ∈ Aut(G/G) we have f[A ·G B] = f[A] ·G

f[B]. Therefore when A and B are invariant over G, also A ·G B is invariant over
G. Below we mainly deal with invariant sets.

Proposition 4.2. For all G-invariant sets A, B, and C

A ·G
(
B ·G C

)
⊆

(
A ·G B

)
·G C.

Proof. Let a·b·c be an arbitrary element of the l.h.s. where a�Gb·c and b�Gc.
By extension (Lemma 2.4), there exists a′ such that a ≡G, b·c a′�G b·c, b, c. By
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transitivity (again Lemma 2.4), a′·b �G c. Therefore a′·b·c belongs to the r.h.s.
Finally, as a′ ≡G, b·c a, also a·b·c belongs to the r.h.s. by invariance. �

LetA be a non-empty set. WhenA ·G A ⊆ A, we say that it is idempotent (over G).

Corollary 4.3. Assume B ⊆ A are both G-invariant. Then if A is idempotent,
also A ·G B is idempotent.

Proof. We check that if A is idempotent so is A ·G B(
A ·G B

)
·G

(
A ·G B

)
⊆ A ·G

(
A ·G B

)
because A ·G B ⊆ A

⊆
(
A ·G A

)
·G B by the lemma above

⊆ A ·G B. �
We show that, under the assumption of stationarity, the operation ·G is associative.

The quotient map G → G/≡G is almost a homomorphism.

Proposition 4.4. Assume �G is 1-stationary, see Definition 2.5. Fix a�Gb
arbitrarily. Then a′·b′ ≡G a·b for every a′ ≡G a and b′ ≡G b such that a′�Gb′.
Or, in other words, (a·b)G = a ·G b.

Proof. We prove two inclusions, only the second one requires stationarity.
⊆ As a�Gb holds by hypothesis, a·b ∈ a ·G b. The inclusion follows by

invariance.
⊇ By invariance it suffices to show that the l.h.s. contains a ·G {b}. Let a′ ∈ aG

such that a′�Gb. We claim that a′·b ∈ (a·b)G . Both a and a′ satisfy a ≡G x�Gb.
By 1-stationarity, a ≡G, b a′. Hence a·b ≡G a′·b. �

Corollary 4.5 (Associativity). Assume �G is 1-stationary. Then for all G-
invariant sets A, B, and C

A ·G
(
B ·G C

)
=

(
A ·G B

)
·G C.

Proof. We can assume that A, B, and C are G-orbits. Say of a, b, and c
respectively. We can assume that a�Gb·c and b�Gc. By Proposition 4.4 the set
on the l.h.s. equals (a·b·c)G . By a similar argument the set on the r.h.s. equals
(a′·b′·c′)G for some elements a′, b′, and c′. Proposition 4.2 proves that inclusion ⊆
holds in general. But inclusion between orbits amounts to equality. �

The following lemma proves the existence of idempotent orbits. The proof is
self-contained, i.e., it does not use Ellis’ theorem on the existence of idempotents
in compact left topological semigroups (however, the argument is very similar). As
a comparison, finding a proof in the setting of nonstandard analysis is listed as an
open problem in [5].

Lemma 4.6. Assume �G is 1-stationary. If A is minimal among the idempotent
sets that are type-definable over G, then A = bG for some (any) b ∈ A.

Proof. Fix arbitrarily some b ∈ A. By Corollary 4.3, the set A ·G b is contained
in A, idempotent and type-definable over G by Lemma 4.1. Therefore by minimality
A ·G b = A. Let A′ ⊆ A be the set of those a such that a ·G b = bG . This set is
non-empty because b ∈ A ·G b. It is easy to verify that A′ is type-definable over
G, b. As it is clearly invariant over G, it is type-definable over G. By associativity it is
idempotent. Hence, by minimality,A′ = A. Then b ∈ A′, which implies b ·G b = bG .
That is, b has idempotent orbit. Finally, by minimality, A = bG . �
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Corollary 4.7. Under the same assumptions of the lemma above, every idempotent
set that is type-definable over G contains an element with an idempotent orbit.

§5. Hindman’s theorem. In this section we merge the theory of idempotents
presented in Section 4 with the proof of Ramsey’s theorem to obtain Hindman’s
theorem [10].

Let ā be a tuple of elements of G of length ≤ �. In Section 1 we defined fp ā and
the notions of -closed and–<-covered. The relation–< is introduced mainly for future
reference. The classical Hindman’s theorem is obtained with the positive integers (as
an additive semigroup) for G and < for –<.

Hindman Theorem 5.1. Let –< be a relation on G that makes it -closed and –<-
covered. Then for every finite coloring of G there is a –<-chain ā such that fp ā is
monochromatic. If there is no g ∈ G such that G –< g, we may further assume that the
elements of the –<-chain are all distinct.

Proof. We interpret G as a structure in a language that extends the language of
semigroups with a symbol for –< and one for each subset of G. Let G be a saturated
elementary superstructure of G. As observed in Remark 2.7, the language makes
�G trivially 1-stationary.

We write G′ for the type-definable set {g : G –< g}, which is non-empty because G
is –<-covered. We claim that G′ is idempotent. In fact, if a, b ∈ G′ then, as G –< a, b
and a�Gb, we must have that a –< b. Therefore, from the -closedness of G we infer
a·b ∈ G′.

Let g0 be an element of G′ with idempotent orbit as given by Corollary 4.7. We
can assume that g0 /∈ G otherwise the sequence that is identically g0 trivially proves
the theorem. We can assume that g0 /∈ G otherwise the sequence that is identically
g0 trivially proves the theorem. If we want the elements of the chain ā to be distinct
it suffices require that g0 /∈ G . By definition of g0, this can be directly assumed when
there is no g ∈ G such that G –< g.

Let p(x) ∈ S(G) be a global coheir of tp(g0/G). Let ḡ be a coheir sequence of
p(x), that is gi |= p�G, g�i (x).

We write �g�i for the tuple gi–1, ... , g0. By the idempotency of (g0)G and Proposition
4.4, h ≡G g0 for all h ∈ fp �g�i and all i. It follows in particular that fp �g�i is
monochromatic, say all its elements have color 1. Now, we use the sequence ḡ
to define ā ∈ G� such that all elements of fp ā have color 1.

Assume as induction hypothesis that fp(a�i , g0) is monochromatic of color 1. Our
goal is to find ai such that the same property holds for fp(a�i+1, g0).

First we claim that from the induction hypothesis it follows that, for all j, all
elements of fp(a�i , �g�j) have color 1. In fact, the elements of fp(a�i , �g�j) have the
form b · h for some b ∈ fp(a�i) and h ∈ fp( �g�j). As h ≡G g0, we conclude that
b · h ≡G b · g0, which proves the claim.

Let ϕ(a�i , gi+1, g�i+1) say that all elements of fp(a�i , �g�i+2) have color 1. As ḡ is
a coheir sequence we can find ai such that ϕ(a�i , ai , g�i+1). Hence all elements of
fp(a�i+1, �g�i+1) have color 1. Therefore ai is as required. �

https://doi.org/10.1017/jsl.2019.93 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.93


RAMSEY’S COHEIRS 385

Hindman’s theorem generalizes to a proposition that subsumes Ramsey’s theorem.
It is usually referred to as the Milliken–Taylor theorem [13] and [17]. By the following
observation, we may use virtually the same proof.

Proposition 5.2. Assume�G is 1-stationary. Let ḡ ∈ G� be a coheir sequence of
some global coheir of tp(g/G) where g has idempotent orbit. Let h̄ ∈ G� be such that
hi ∈ fp( �g�Ii ) for some finite non-empty Ii ⊆ � such that Ii < Ii+1. Then h̄ ≡G ḡ.

Proof. Write ni for the minimum of Ii . It suffices to prove that hi ≡G,g�ni gni .
Note that the type g ≡G x�Gg�ni is satisfied both by hi and gni , hence the claim
follows by stationarity. �

Write fp(ā)n for the n-uniform hypergraph with vertex set fp(ā) and as edges
those sets {h1, ... , hn} such that hi ∈ fp(a�Ii ) for some finite sets I1 < ··· < In.

Milliken–Taylor Theorem 5.3. Let–< be a relation on G that makes it -closed and
–<-covered. Then for every positive integer n and every finite coloring of the complete
n-uniform hypergraph with vertex set G there is a –<-chain ā such that fp(ā)n is
monochromatic.

Proof. Given a coheir sequence ḡ as in the proof of Theorem 5.1 we want
to define ā ∈ G� such that fp(ā)n is monochromatic. By the proposition above,
fp( �g�i)n is monochromatic for every i ≥ n. As in the proof of Theorem 5.1, we
define by induction ā ∈ G� in such a way that fp(a�i , �g�n)n is a finite monochromatic
subgraph of G. �

§6. The Hales–Jewett theorem. The Hales–Jewett theorem is a purely combina-
torial statement that implies the van der Waerden theorem. The original proof by
Alfred Hales and Robert Jewett is combinatorial [9]. An alternative proof, also
combinatorial, is due by Saharon Shelah [16]. Our proof is similar to the proof by
Andreas Blass in [4] (based on ideas from [3]), but we use saturated models where he
uses Stone–Čech compactification. We present three versions of the main theorem.

First we prove an abstract algebraic version due to Sabine Koppelberg [11] which
is easier to state and to prove (this version comes in two variants). The classical
version follows easily from the algebraic one.

We work with the same notation as in Section 4. We say that an element c is
left-minimal (w.r.t. A) if c ∈ A ·G g for every g ∈ A ·G c.

Proposition 6.1. Assume �G is 1-stationary. Let A be idempotent and type-
definable over G. Then A contains a left-minimal element c with idempotent orbit.

Proof. Construct by induction a chain of type-definable idempotent setsBα ⊆ A

and elements bα ∈ Bα such that B0 = A and Bα+1 = A ·G bα . For α limit take the
intersection. By idempotency of A, it is straightforward to check that Bα+1 ⊆ Bα .
The sets Bα are type-definable and idempotent by Lemma 4.1 and Corollary 4.3.
For α limit Bα is non-empty by compactness, as it is intersection of a chain of closed
sets.

For some α we cannot properly extend this construction. For this α, for every
c, g ∈ Bα we have A ·G c = Bα = A ·G g. Hence every c ∈ Bα is left-minimal. As
Bα is idempotent, by Corollary 4.7 there is some c ∈ Bα with idempotent orbit. �
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Proposition 6.2. Assume �G is 1-stationary. Let A be idempotent and type-
definable over G. Let cG be idempotent and such that c ·G A, A ·G c ⊆ A. Then

1. c ·G A ·G c contains some g with idempotent orbit;
2. if moreover c is left-minimal, then c ≡G g for every g as in 1.

Note, parenthetically, that the set in 1 may not be type-definable, therefore
Corollary 4.7 does not apply directly and we need an indirect argument.

Proof.

1. From c ·G A ⊆ Awe obtain that A ·G cis idempotent. As it is also type-
definable, A ·G ccontains a bwith idempotent orbit by Corollary 4.7. There
is an a ∈ Asuch that bG = a ·G c, then b ·G c = bG . From this we obtain that
c ·G bis idempotent and contained in c ·G A ·G c.

2. From g ∈ c ·G A ·G cand the idempotency of cGwe obtain gG = c ·G g. As g ∈
A ·G c, from the left-minimality of cGwe obtain c ∈ A ·G g. Hence cG = c ·G g,
by the idempotency of gG . Therefore cG = gG , which proves 2. �

The following is a technical lemma that is required in many proofs below.

Proposition 6.3. Assume �G is 1-stationary. Let � : G → G be a semigroup
homomorphism definable over G. Then for every a, b ∈ G

1. �
[
aG

]
= (� a)G ,

2. �
[
a ·G b

]
= � a ·G � b.

Proof.

1. As a ≡G a′ implies � a ≡G � a′, inclusion ⊆ is clear. For the converse, note
that the type ∃y

[
� y = x ∧ y ≡G a

]
is trivially realized by � a. Therefore it is

realized by all elements of (� a)G . Hence all elements of (� a)G are the image
of some element in aG .

2. Let a ≡G a′�Gb′ ≡G b. By Proposition 4.4 we have �
[
a ·G b

]
= �

[
(a′ · b′)G

]
.

Then it suffices to prove that �
[
(a′ · b′)G

]
⊆ � a ·G � b, because by 1 and

Proposition 4.4 both sides of the equality are orbits. As � preserves�G and
orbits, we obtain that �(a′ · b′) is in � a ·G � b, as well as all other elements of
�
[
(a′ · b′)G

]
. �

Hales–Jewett Theorem 6.4 (Koppelberg’s version). Let G be an infinite
semigroup and let C ⊂ G be a nice subsemigroup. Let Σ be a finite set of retractions
of G onto C. Then, for every finite coloring of C, there is an a ∈ G \ C such that
{� a : � ∈ Σ} is monochromatic.

Proof. Let G � G. Here G is a monster model in a language that expands the
natural one with a symbol for all subsets of G and for every retraction in Σ. As
observed in Remark 2.7, this makes�G trivially 1-stationary. Let C be the definable
set such that C = G ∩ C. By elementarity, C is a nice subsemigroup of G. The
language contains also symbols for the retractions � : G → C.

By Proposition 6.1, there is a left-minimal c ∈ C with idempotent orbit.
By niceness, G \ C and c satisfy the assumptions of Proposition 6.2. Hence, by

the first claim of that proposition, there is an idempotent g ∈ c ·G (G \ C) ·G c. In
particular, g ∈ G \ C. Now apply the second claim of Proposition 6.3, with C for
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A to obtain � g ∈ c ·G C ·G c for all � ∈ Σ. As � g is also idempotent, we apply
Proposition 6.2 to conclude that � g ≡G c. In particular the set {� g : � ∈ Σ} is
monochromatic.

Though the element g above does not need to belong to G \ C , by elementarity
G \ C contains some a with the same property and this proves the theorem. �

Finally we show how the classical Hales–Jewett theorem follows from its abstract
version.

If C and X are two semigroups we denote by C ∗ X their free product. That
is, C ∗ X contains finite sequences of elements of C ∪ X , below called words, that
alternate elements in C with elements in X. The product of two words is obtained
concatenating them and, when it applies, replacing two contiguous elements of the
same semigroup by their product. Note that C and X are nice subsemigroups of
C ∗ X . When X is the free semigroup generated by a variable x, we denote C ∗ X
by C [x]. If w(x) is an element of C [x] and a ∈ C we denote by w(a) the result of
replacing x by a in w(x).

Hales–Jewett Theorem 6.5 (Classical version). Let C be a semigroup generated
by some finite set A. Let x be a variable. Then for every finite coloring of C [x] there
is a w(x) ∈ C [x] \ C such that {w(a) : a ∈ A} is monochromatic.

Proof. Let G = C [x]. For every a ∈ A the homomorphism �a : w(x) �→ w(a)
is a retraction of G onto C. Hence we can apply the theorem above. �

We conclude with a variant of Theorem 6.4 that applies to a broader class of
semigroup homomorphisms. This result is not required for the following.

For Σ a set of maps � : G → C and c ∈ C we define

Σ–1[c] =
⋂
�∈Σ

�–1[c].

Clearly, when the maps in Σ are retractions, Σ–1[c] is non-empty for all c ∈ C
because it contains at least c.

Hales–Jewett Theorem 6.6 (Yet another variant). Let C be a semigroup and
let Σ be a finite set of homomorphisms � : G → C such that Σ–1[c] is non-empty for
all c ∈ C . Then, for every finite coloring of C, there is a g ∈ G such that the set
{� g : � ∈ Σ} is monochromatic.

Proof. Let G ∗ C be the free product of the two semigroups. Any
homomorphism � : G → C extends canonically to a retraction of G ∗ C onto
C. The elements of G that occur in a word are replaced by their image under
�, finally the elements in the resulting sequence are multiplied. This extension is
denoted by the same symbol �.

Apply Theorem 6.4 to obtain some w ∈ G ∗ C such that {� w : � ∈ Σ} is
monochromatic. Suppose w = c0 · g0 ··· cn · gn for some gi ∈ G and ci ∈ C ,
where one or both of c0 or gn could be absent. Pick some hi ∈ Σ–1[ci ] and let
g = h0 · g0 ··· hn · gn. Then {� g : � ∈ Σ} is monochromatic as required to complete
the proof. �
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§7. Carlson’s theorem. This section is devoted to the following lemma and some
of its consequences.

Lemma 7.1. Let Σ be a finite set of retractions of G onto a nice subsemigroup
C. Let –< be a relation on G that makes it -closed and –<-covered by G \ C . Then,
for every finite coloring of G, there is a –<-chain ā ∈ (G \ C )� such that fpΣā \ C is
monochromatic.

Proof. The models G and C are as in the proof of Theorem 6.4. The language is
the same with –< included. Let B = {g ∈ G \ C : G –< g}. By Proposition 6.1 there
is some left-minimal c ∈ C with idempotent orbit. As G is –<-covered by G \ C , the
set B is non-empty. As G is -closed and C is nice, B and c satisfy the assumptions
of Proposition 6.2. Then, c ·G B ·G c contains some g0 with idempotent orbit. By
Proposition 6.3, we obtain that � g0 ∈ c ·G C ·G c for all � ∈ Σ. As (� g0)G is also
idempotent, we apply the second claim of Proposition 6.3, with C for A to conclude
that � g0 ≡G c for all � ∈ Σ. Now, let ḡ be a coheir sequence as in Theorem 5.1, and
assume the notation thereof. As g0 ∈ c ·G B ·G c then c ·G g0 = g0 ·G c = (g0)G .
Hence h ≡G g0 for all i and all h ∈ fp �g�i \ C. In particular all these h have the
same color, say color 1. Now, we can use the sequence ḡ to define ā ∈ (G \ C )�

such that all elements of fpΣ ā \ C have color 1 by reasoning as in the proof of
Theorem 5.1. �

Carlson’s theorem is a result that combines the theorems of Hindman and Hales–
Jewett and has a number of important consequences. We refer the reader to [7] for a
discussion of some of these consequences. The definitions in Example 1.1 will help
matching the notation.

We first present a Koppelberg-style version of the theorem. It is obtained from
the lemma above applying a suitable coding.

Carlson Theorem 7.2 (À la Koppelberg). Let Σ be a finite set of retractions
of G onto a nice subsemigroup C. Let s̄ ∈ (G \ C )� . Then for every finite coloring
of G, there is an increasing sequence of positive integers 〈ni : i < �〉 and some ai ∈
fpΣs� [ni ,ni+1) \ C such that fpΣā \ C is monochromatic.

Proof. Let G∗ be the free semigroup generated by the alphabet

{〈�, g〉 : � ∈ Σ ∪ {idG}, g ∈ G \ C}.

The semigroup C∗ is defined as G∗, only � is restricted to range over Σ. Clearly
C∗ is a nice subsemigroup of G∗. We associate to each � ∈ Σ the endomorphism of
G∗ that substitutes � for every occurrence of idG in a word. These maps, which we
denote by �∗, are retractions of G∗ onto C∗.

If g∗ ∈ G∗ has the form 〈�1, g1〉 ··· 〈�n, gn〉 we call �1 g1 ··· �n gn ∈ G the evaluation
of g∗. We denote the evaluation by eval(g∗). As 	 � = � for every 	, � ∈ Σ, we have
that eval(�∗ g∗) = � eval(g∗). The evaluation of g∗ ∈ C∗ belongs to C and, as C is
nice, and the evaluation of g∗ ∈ G∗ \ C∗ belongs to G \ C .

We color each element of G∗ with the color of its evaluation.
We define the relation –< on G∗. First, we need to define the well-formed elements

ofG∗. These are elements of the form 〈�1, si1〉 ··· 〈�n, sin 〉 for some i1 < ··· < in. Now,
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for h∗, g∗ ∈ G∗ we define h∗ –< g∗ if one of the following holds:

1. h∗ is not well-formed while g∗ is;
2. the product (i.e., concatenation) h∗g∗ is well-formed.

It is immediate to verify that –< is G∗ is -closed and –<-covered by G∗ \ C∗.
Therefore by Lemma 7.1 there is a –<-chain ā∗ ∈ (G∗ \ C∗)� such that fpΣā∗ \ C∗
is monochromatic. We can assume that all elements of ā∗ are well-formed (only
the first element might be ill-formed, but we can drop it). Then the sequence
〈eval(ai∗) : i ∈ �〉 is as required by the lemma. �

From the algebraic version of Carlson’s theorem we obtain the classical one in
the same way as for the Hales–Jewett theorem (Theorem 6.5), which we refer to for
the notation.

Corollary 7.3 (Carlson’s theorem, classical version). Let C be a semigroup
generated by some finite set A. Let x be a variable. Let s̄ ∈

(
C [x] \ C

)�
. Let Σ

contain, for every a ∈ A, the function w(x) �→ w(a). Then, for every finite coloring
of C [x], there is an increasing sequence of positive integers 〈ni : i < �〉 and some
ai ∈ fpΣs� [ni ,ni+1) \ C such that fpΣā \ C is monochromatic (with the terminology of
Example 1.1, ā is an extracted variable sequence of s̄).

§8. Gowers’ partition theorem. The following is similar to Lemma 7.1 but here Σ
contains compositions of homomorphisms.

Lemma 8.1. For 0 < i < n, let Gi be a nice subsemigroup of Gi+1 and let �i :
Gi+1 → Gi be homomorphisms. Let –< be a relation on Gn that makes it -closed and
–<-covered by Gn \Gn–1. Finally, let Σ =

{
�i ◦ ··· ◦ �n–1 : 0 < i < n

}
. Then, for every

finite coloring of Gn, there is a –<-chain ā ∈
(
Gn \Gn–1

)�
such that fpΣā \Gn–1 is

monochromatic.

Proof. For convenience, we let i run from 0, hence we agree that �0 : G1 → G0 =
G1 is the identity. Let Bn = {b ∈ Gn \ Gn–1 : Gn –< b} and Bi = �i [Bi+1]. Note that
the Bi are non-empty because Gn is –<-covered by Gn \Gn–1. Also, as Gi is a nice
subsemigroup of Gi+1, we have that Bi ·G Bi+1, Bi+1 ·G Bi ⊆ Bi+1.

We claim there is some bn ∈ Bn with idempotent orbit such that, if we define
bi = �i bi+1 for 0 ≤ i < n, the following holds:

bn ·G bi = bi ·G bn = (bn)G.

Note that these equalities may be replaced by

bi ·G bi+1 = bi+1 ·G bi = (bi+1)G. (
i)

Let b0 = b1 be any element of B0 with idempotent orbit. We assume as induction
hypothesis that we have bi ∈ Bi for i ≤ k, with idempotent orbits, such that bi =
�i bi+1 and 
i hold for all i < k. We show how to find bk+1.

We prove that bk and the setBk+1 ∩ �–1
k [bk], which below we denote byA for short,

satisfy the assumptions of Proposition 6.2. The proof of the idempotency of A is
left to the reader. We prove that bk ·G A ⊆ A, the proof of A ·G bk ⊆ A is similar.
As bk ·G Bk+1 ⊆ Bk+1 by nicety, it suffices to prove that bk ·G �–1

k [bk] is contained
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in �–1
k [bk]. This latter inclusion holds because, by the induction hypothesis,

�k

[
bk ·G �–1

k [bk]
]

= �k[bk] ·G bk = bk–1 ·G bk = (bk)G.

Now we apply Proposition 6.2 to find an idempotent bk+1 ∈ bk ·G A ·G bk .
Therefore 
k is satisfied. Moreover �k bk+1 ∈ (bk)G by Proposition 6.3, hence we
can assume bk = �k bk+1 as claimed above.

Finally, as in the proof of Theorem 5.1, the required chain ā is obtained from a
coheir sequence of a global coheir of tp(bn/G). �

Remark 8.2. The lemma above continues to hold, with essentially the same proof,
if for Σ we take a set of the form

Σ =
n–1⋃
i=1

Σi ◦ ··· ◦ Σn–1,

where

Σi ◦ ··· ◦ Σn–1 = {�i ◦ ··· ◦ �n–1 : �i ∈ Σi , ... , �n–1 ∈ Σn–1},

and where Σi are some finite sets of homomorphisms Gi+1 → Gi such that for every
g ∈ Gi the set Σ–1

i [g] is non-empty.

Let Gi be the set of functions a : � → {0, ... , i} with finite support that is, the set
supp(a) = {x ∈ � : a x �= 0} is finite. We introduce a semigroup operation on Gi
by defining (a·b)x = max{ax, bx}. This makes Gi a nice subsemigroup of Gi+1.

Corollary 8.3 (Gowers’ partition theorem). With Gi as above, let �i : Gi+1 →
Gi be homomorphisms and let Σ be as in Lemma 8.1. Then for every finite coloring ofGn
there is an ā ∈

(
Gn \Gn–1

)�
such that fpΣā \Gn–1 is monochromatic and supp(ai) <

supp(ai+1).

The homomorphisms �i usually considered in the literature are so-called tetris
operations, i.e., (�i a)x = max{a x – 1, 0}, or generalizations thereof. However the
theorem is more general.

Proof. Let –< be the relation supp(a) < supp(b) and apply Theorem 8.1. �
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